#### Diagrammatic sets and higher categories

Amar Hadzihasanovic Formerly: RIMS, Kyoto University Currently: IRIF, Université de Paris

Leicester, 17 December 2019

#### 1. Higher categories $\sim$ directed homotopy types

#### 1. Higher categories $\sim$ directed homotopy types

- If it's not stable under equivalence, it doesn't matter
- The end of history: synthetic higher category theory

Homotopy hypothesis "for cheap"

#### 1. Higher categories $\sim$ directed homotopy types

- If it's not stable under equivalence, it doesn't matter
- The end of history: synthetic higher category theory

- Homotopy hypothesis "for cheap"
- 2. Higher categories  $\sim$  directed cell complexes

- 1. Higher categories  $\sim$  directed homotopy types
  - If it's not stable under equivalence, it doesn't matter
  - The end of history: synthetic higher category theory

- Homotopy hypothesis "for cheap"
- 2. Higher categories  $\sim$  directed cell complexes
  - Higher-dimensional rewriting, ACT
  - We care about **presented** higher categories
  - Pasting theorem, diagrammatic reasoning

- 1. Higher categories  $\sim$  directed homotopy types
  - If it's not stable under equivalence, it doesn't matter
  - The end of history: synthetic higher category theory
  - Homotopy hypothesis "for cheap"
- 2. Higher categories  $\sim$  directed cell complexes
  - Higher-dimensional rewriting, ACT
  - We care about presented higher categories
  - Pasting theorem, diagrammatic reasoning

Diagrammatic sets: let's have it both ways

#### RDS = Representable diagrammatic set

"Groupoidal" RDSs (in which every cell is an equivalence) model all homotopy types, in the sense of the homotopy hypothesis.

#### RDS = Representable diagrammatic set

- "Groupoidal" RDSs (in which every cell is an equivalence) model all homotopy types, in the sense of the homotopy hypothesis.
- Conditional to a conjecture (later in the talk), strict
  ω-categories embed as a full subcategory
  (if one takes morphisms that preserve a choice of weak composites)

#### RDS = Representable diagrammatic set

- "Groupoidal" RDSs (in which every cell is an equivalence) model all homotopy types, in the sense of the homotopy hypothesis.
- 2 Conditional to a conjecture (later in the talk), strict ω-categories embed as a full subcategory (if one takes morphisms that preserve a choice of weak composites)
- 3 There are *n*-truncated RDSs corresponding to weak *n*-categories. 2-truncated RDSs are equivalent to bicategories

Dimension 0: (labelled) abstract rewrite system

(ロ)、(型)、(E)、(E)、 E) の(の)

Dimension 0: (labelled) abstract rewrite system

(ロ)、(型)、(E)、(E)、 E) の(の)



Dimension 0: (labelled) abstract rewrite system



(ロ)、(型)、(E)、(E)、 E) のQの

Dimension 0: (labelled) abstract rewrite system



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dimension 0: (labelled) abstract rewrite system



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dimension 0: (labelled) abstract rewrite system



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dimension 1: string rewriting system

Dimension 0: (labelled) abstract rewrite system



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dimension 0: (labelled) abstract rewrite system



Dimension 1: string rewriting system



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dimension 0: (labelled) abstract rewrite system



Dimension 1: string rewriting system



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Dimension 0: (labelled) abstract rewrite system



Dimension 1: string rewriting system



#### Dimension 2: algebraic theories / monoidal categories



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで



◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆







◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Except cells have a direction ("Computationally aware" homotopy theory?)

Except cells have a direction ("Computationally aware" homotopy theory?)



Except cells have a direction ("Computationally aware" homotopy theory?)



Except cells have a direction ("Computationally aware" homotopy theory?)



Except cells have a direction ("Computationally aware" homotopy theory?)



Except cells have a direction ("Computationally aware" homotopy theory?)



"Point-set" cells not available — need a combinatorial notion of 1. **directed cells** 2. their **pasting** 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Directed *n*-cells are modelled by *n*-globes, the objects classifying *n*-cells in a strict ω-category

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Directed *n*-cells are modelled by *n*-globes, the objects classifying *n*-cells in a strict ω-category
- Any formal composition in the algebra of strict ω-categories gives a valid pasting map

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Directed *n*-cells are modelled by *n*-globes, the objects classifying *n*-cells in a strict ω-category
- Any formal composition in the algebra of strict ω-categories gives a valid pasting map

### Problem:

The pasting maps are **not sound** for the interpretation of "rewrite systems as CW complexes"

- Directed *n*-cells are modelled by *n*-globes, the objects classifying *n*-cells in a strict ω-category
- Any formal composition in the algebra of strict ω-categories gives a valid pasting map

### Problem:

The pasting maps are **not sound** for the interpretation of "rewrite systems as CW complexes"

...plus other technical issues

### Towards diagrammatic sets

## Let the CW complex interpretation guide us

(ロ)、(型)、(E)、(E)、 E) の(の)



We can associate to a CW complex its face poset...



・ロト ・聞ト ・ヨト ・ヨト

æ



We can associate to a CW complex its face poset...



and to a pasting diagram its oriented face poset.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



## **Regular** CW complex X: pasting maps are homeomorphisms with their image

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



# **Regular** CW complex X: pasting maps are homeomorphisms with their image

A classical theorem of combinatorial topology

A regular CW complex is specified up to cellular homeomorphism by its face poset



**Regular** CW complex X: pasting maps are homeomorphisms with their image

A classical theorem of combinatorial topology

A regular CW complex is specified up to cellular homeomorphism by its face poset

#### Conjecture

A regular pasting diagram is specified up to cellular isomorphism by its oriented face poset

 Directed *n*-cells are modelled by regular directed complexes (which are oriented face posets of regular pasting diagrams)
with a greatest element of rank *n* (so the underlying poset is the face poset of a regular CW *n*-ball)

 Directed *n*-cells are modelled by regular directed complexes (which are oriented face posets of regular pasting diagrams)
with a greatest element of rank *n* (so the underlying poset is the face poset of a regular CW *n*-ball)

These have realisations **both** in  $\omega$ -categories and in spaces

 Directed *n*-cells are modelled by regular directed complexes (which are oriented face posets of regular pasting diagrams)
with a greatest element of rank *n* (so the underlying poset is the face poset of a regular CW *n*-ball)

These have realisations **both** in  $\omega$ -categories and in spaces

 Pasting is given by maps of posets that are compatible functorially with both realisations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Maps factor into

■ injections, giving face operations

Maps factor into

- injections, giving face operations
  - ightarrow sub-diagrams, substitutions in context

Maps factor into

- injections, giving face operations
  - ightarrow sub-diagrams, substitutions in context
- surjections, giving units and degeneracy operations

Maps factor into

- injections, giving face operations
  - ightarrow sub-diagrams, substitutions in context
- surjections, giving units and degeneracy operations

 $\rightarrow$  "nullary" operations in universal algebra

Enough for higher-dimensional rewriting?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Diagrammatic sets have *some* features of a model (pasting, units)

Diagrammatic sets have some features of a model (pasting, units)

Idea: higher categories  $\rightarrow$  diagrammatic sets with an **internal** notion of *weak composition* 

Diagrammatic sets have some features of a model (pasting, units)

Idea: higher categories  $\rightarrow$  diagrammatic sets with an **internal** notion of *weak composition* 

(in the spirit of categorical semantics: syntax and semantics in the same universe)

Computational meaning of composition:

A diagram x can be **substituted** in every context with a cell [x]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Computational meaning of composition:

A diagram x can be **substituted** in every context with a cell [x]

A special case of the more general:

A diagram x can be substituted in every context with another diagram y (and vice versa)

### Computational meaning of composition:

A diagram x can be **substituted** in every context with a cell [x]

A special case of the more general:

A diagram x can be substituted in every context with another diagram y (and vice versa)  $\downarrow$ 

There are special equivalence cells  $x \Rightarrow y$ ,  $y \Rightarrow x$ , which mediate between all cells containing x and all cells containing y in their boundary



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○





◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



(日)、

э

And this equivalence should be witnessed by **3-dimensional** equivalence cells...



And this equivalence should be witnessed by **3-dimensional** equivalence cells...

whose definition involves 4-dimensional equivalence cells, etc

This is a **coinductive** definition.

Let X be a diagrammatic set. For all subsets  $A \subseteq \operatorname{Cell}(X)$ , define

$$\begin{split} \mathcal{F}(A) &:= \{ x : U \to X \mid \text{ for all } \alpha \in \{+, -\} \text{ and} \\ (\Lambda \hookrightarrow W, \lambda : \Lambda \to X) \in \mathcal{D}iv(x, \partial^{\alpha}U), \\ \text{ there exists } (h : W \to X) \in A \text{ such that } h|_{\Lambda} = \lambda \}; \end{split}$$

Then  $\mathcal{F}$  is an order-preserving map on  $\mathcal{P}(\operatorname{Cell}(X))$ . Its **greatest** fixed point is the set  $\mathcal{E}qX$  of equivalence cells of X.

This is a **coinductive** definition.

Let X be a diagrammatic set. For all subsets  $A \subseteq \operatorname{Cell}(X)$ , define

$$\mathcal{F}(A) := \{x : U \to X \mid \text{ for all } \alpha \in \{+, -\} \text{ and} \\ (\Lambda \hookrightarrow W, \lambda : \Lambda \to X) \in \mathcal{D}iv(x, \partial^{\alpha}U), \\ \text{ there exists } (h : W \to X) \in A \text{ such that } h|_{\Lambda} = \lambda\};$$

Then  $\mathcal{F}$  is an order-preserving map on  $\mathcal{P}(\operatorname{Cell}(X))$ . Its **greatest** fixed point is the set  $\mathcal{E}qX$  of equivalence cells of X.

**Proof method**: if  $A \subseteq \mathcal{F}(A)$ , then  $A \subseteq \mathcal{E}qX$ .

### Representable diagrammatic set

A diagrammatic set where, for all diagrams x, there exist cells [x], [x]' and equivalence cells  $x \Rightarrow [x], [x]' \Rightarrow x$ .

#### Representable diagrammatic set

A diagrammatic set where, for all diagrams x, there exist cells  $[\![x]\!], [\![x]\!]'$  and equivalence cells  $x \Rightarrow [\![x]\!], [\![x]\!]' \Rightarrow x$ .

For all diagrams x and y, let  $x \simeq y$  if there exists an equivalence  $x \Rightarrow y$ .

### Representable diagrammatic set

A diagrammatic set where, for all diagrams x, there exist cells [x], [x]' and equivalence cells  $x \Rightarrow [x], [x]' \Rightarrow x$ .

For all diagrams x and y, let  $x \simeq y$  if there exists an equivalence  $x \Rightarrow y$ .

#### Theorem

In a representable diagrammatic set,

- 1 all degenerate cells are equivalence cells, and
- **2**  $\simeq$  is an equivalence relation.
















