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Let ¥ be a ranked alphabet and V be a countably infinite set of variables. The
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Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
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Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, .. . ,xn,l)A € Alx,....xo1) forall a € X, and variables x;,
Substitution. -/': Ax x Ay — Ax\ixyuy for all finite X, Y and variable x,

Renaming. o: Ax — Ay for all maps o: X — Y.
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We also define morphisms, congruences...



Infinitely sorted tree algebras

Let ¥ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the ( Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
a a a | a _ a — —
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Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, .. . ,xn,l)A € Alx,....xo1) forall a € X, and variables x;,
Substitution. -/': Ax x Ay — Ax\ixyuy for all finite X, Y and variable x,

Renaming. o: Ax — Ay for all maps o: X — Y.

Given a finite tree algebra A, there is a unique morphism from the free algebra to
A. It is called the evaluation morphism of A.
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Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages. )

Example L = trees with a b on the leftmost branch

a a
RN =T /N = (L, x),
b a a a
/N /N / N\ /\
c ¢c y y X ¢ y vy
Ax ={T, L}y ({T, L} x X) |Ax| =2+ 2|X] is linear in |X|.

This algebra has linear complexity.
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Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]
Polynomial complexity This talk
Exponential complexity -

Doubly-exponential complexity | All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.
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Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} J

Ax ={c,d}Ufa(x,y) | x,y € XU{c,+}}

d @ a « a [e]
— d AEN — a(x,z) — a(x, *)
a a X a
/ A\ /A / A\
X z y 'y y y
c « a a a
— C RN — a(x, c) Sy —alc, o)
a a a y
/ A\ /A / A\
X ¢ y vy c ¢

Orbits: ¢, d, a(x,y), a(x, x), a(x, ¢), a(c,x), a(x,*), a(x,x), a(c, c), a(*,*)

This algebra has quadratic complexity and bounded orbit complexity.
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Let |[Ax/Sym(X)| be the number of orbits of Ax under the action of
Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra A is the asymptotic size of
|Ax /Sym(X)| as a function of |X|.

Another bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
orbit complexity.
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What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.

Polynomial complexity
Ax = X¥ ~ k variables (e.g. k branches)

Exponential complexity
Ax = kX ~ a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

Doubly exponential complexity
All regular languages.
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Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).
Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.
b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Equivalence between a. and b. is not obvious.
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Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

X is called nominal if its elements are finitely supported.

- f: X = Y is supported by S C V if f(o(x)) = o(f(x)), for all x € X,
o € Sym(V\ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set @ (the states),

- equivariant subsets {go} and F of Q (the initial state and the final states),
- and an equivariant transition function §: Q@ X A — Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton.
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L = data words with at least three different datas )

o,T}U{{XHXEV}U{{X yrx,y eV, x#y}
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Coding of trees

How to build the following tree ?
GO ={x]|xeV}
/ \ [X] CV,Z = {[-Xa(Xo, ...,X,,,l)] | ac
[-Xa(xjy)] 2 hy X, X0y ey Xp—1 € V}
/ \ [-xb(x,2)] The alphabet ¢y U Gy 5 is called the
[yc] coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word ¢ € () (5 is called a tree coding. A coding c evaluates to a
finite tree T(c).

Coding languages describing tree languages
A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € Lif and only if T(c) € K.
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Dealing with missing variables

Let ¢ = [x][-xa(x, ¥)][-z¢]. What is T(c)?
create;: X — X U {z}

such that create,(x) = x for all x € X.

create,

—

T(c) = createz(a(x,y)) -z ¢ = a(x, y)
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Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"
Example L = "the third letter is of the form [-,c]|", ¥ = {(a,2),(c,0)}.

¢ = [X][xalx YLy ellxaly, MIlyel ¢ = [X]Exalx y)llxaly: )]yl
T(c)=T(c") = a(a(c, c),c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K. We say that it describes K.

We assume that there is no transition toward the initial state qp.
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Language described by a coding automaton 1/2

K = "trees with a b on the leftmost branch” )

b a [X]lxa(x, Yy a(z, 2)][xb(z, 2)][-2¢]

Q={qo, T, L}U{x|x€eV}

[2¢]

b, Ixaberll [va(z,2)] PRELCEINES T

o — X

[xIlxaly, 2)][za(t, O1[ec][-y b(z, £)][-¢c][-2€]
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K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

go X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, ¢).
A state is an abstraction of a tree, that possibly forgot some variables.

T([x][-xa(x, x)][:xc]) € K and T([x][-xa(x, y)]['xc]) ¢ K even though
3(qo, [X][-xalx, ¥)][x€]) = 8(qo, [x][xalx; y)I[xe])-



Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(ev) € Ty and T(c'v) € Ty.
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Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(ev) € Ty and T(c'v) € Ty.
The minimal automaton Min; of L is defined as follows:
- the set of states is Q = {qo} W OO (5 5/ =1,
- [c]z, is accepting if [c]=z, C L,
- 0(q0, X)) = [ X |=,,  d([e]=,v) = [ev]=,

Minimal automaton

For L a tree language described by a coding automaton, Min,; is a coding
automaton which describes L.




Reminder

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.
c. Being described by a coding automaton.

Let us prove c. = a. and b.
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From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min; and define a tree algebra A that recognizes L.
Fix a tree t with variables xi, ..., x,, we define a function §; as

TIT2 ... Ty

LT3 ... Ty

where g € Q \ {qo} is a state supported by {yi, ..., ym}.
Example For t = a(x1, c), this is defined by ¢’ = 6(q, [-y,a(x1, 2)][-z¢])-

0 is well defined

The definition of d; does not depend on a particular choice of coding.
Let Trans(Min; ) be the set of all functions d;.




From coding automata to tree algebras 2/2

We define the tree as algebra A as
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From coding automata to tree algebras 2/2

We define the tree as algebra A as
Ax = {0+ € Trans(Min,) | d¢ is supported by X} .
The operations are defined so that a.: t +— J; is the evaluation morphism.

Support of 4,
The size of the supports of the d;'s is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite. ’

A has bounded orbit complexity. Trans(Min, ) has finitely many orbits.
f,g € Ax are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.

A has polynomial complexity. Ax has boundedly many orbits. On any
. | .
orbit, there are at most % elements under the action of Sym(X).
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From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding
automaton.

Structure of the proof.
1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X C V finite.

2. Prove that tree algebras of polynomial complexity or bounded orbit
complexity have supports of bounded size (say K).

3. Thus, only the elements in sorts Ax where |X| < K matter. Let

Q:UAX.

IX|<K

This is used to define a coding automaton that describes L.
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Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t € Ty, is L-sensitive to a leaf x if there exist trees
a,b, ty,..., t, such that

€L ¢ L

NN NNV

A regular language of trees L is described by a coding automaton if and
only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is
decidable.
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. Superlinear tree algebras
Unrestrained tree algebras

ANYA
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Sublinear tree algebras Linear tree algebras




Conclusion

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.
b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Decidability
There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.




