A Complexity Approach to Tree Algebras: the

Polynomial Case

Arthur Jaquard

joint work with Thomas Colcombet

Université Paris Cité, CNRS, IRIF

ANR Delta | June 3, 2022

. °
| 1 F
INSTITUT
DE RECHERCHE

EN INFORMATIQUE Université de Paris
FONDAMENTALE




Infinitely sorted tree algebras

Let > be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the ( Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}



Infinitely sorted tree algebras

Let > be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the ( Tx)xcv finite-
Tx = {trees in which all the variables on the leaves are in X}
Objects
a a
/\ETy / \ET4)
b c xT T

a a
/\€ T(fy} / \ET{TVKI)
Tz Ty



Infinitely sorted tree algebras

Let > be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the ( Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution
a a a a _ a
/\€T)y / \ET(I} /N T /N T /N
¢ T T Y b e a
7\

C

b

a a
INE Trayy /€Ty b
Tz Ty



Infinitely sorted tree algebras

Let > be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the ( Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
a a a . a o a _ _
/\E€Ty / \ET4) /N TN T /N O'(ZU) —O'(y) =X
b ¢ r T Y b c a 7 a a
a a /\ o
€ Tryy /€Ty, —>
1'/ \x e} y {zy} b ¢ / N\ / N\



Infinitely sorted tree algebras

Let ¥ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the ( Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
a a a a . a _ _
/\E€Ty / \ET4) /N TN T /N U(.I')—O'(Q)—Q?
b ¢ T T xr Yy b c a a a
a a /\ o
S €Ty, —
l/ \x (z,y} m/ \y {zy} b ¢ / N\ / N\

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, .. . ,xn,l)A € Alx,....xo1) forall a € X, and variables x;,
Substitution. -/': Ax x Ay — Ax\ixyuy for all finite X, Y and variable x,

Renaming. o: Ax — Ay for all maps o: X — Y.




Infinitely sorted tree algebras

Let ¥ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the ( Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
a a a . a o a _ _
/\ €Ty / \ET4) /N TN T /N O'(Z')—O'(y)—$
b ¢ Tz T Y b c a a a
a a /\ o
€ Tio, €T, (AN
l/ \$ (z,y} m/ \y {zy} b ¢ / N\ / N\

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, .. . ,xn,l)A € Alx,....xo1) forall a € X, and variables x;,
Substitution. -/': Ax x Ay — Ax\ixyuy for all finite X, Y and variable x,

Renaming. o: Ax — Ay for all maps o: X — Y.

Identities? a(x,y)-y b a(x,z) -, b
We also define morphisms, congruences...



Infinitely sorted tree algebras

Let ¥ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the ( Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
a a a | a _ a — —
/\ €Ty / \ET4) /N TN T /N O'(Z') = O'(y) =X
b ¢ r r Yy b e a y a a
a a /\ o
€ Tr,, S —
.'L‘/ \$ {z,y} .T,/ \,1/ {=y} b ¢ / \ / \

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, .. . ,xn,l)A € Alx,....xo1) forall a € X, and variables x;,
Substitution. -/': Ax x Ay — Ax\ixyuy for all finite X, Y and variable x,

Renaming. o: Ax — Ay for all maps o: X — Y.

Given a finite tree algebra A, there is a unique morphism from the free algebra to
A. It is called the evaluation morphism of A.




Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation

morphism of A.




Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages. J




Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages. )

Example L = trees with a b on the leftmost branch



Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages. )

Example L = trees with a b on the leftmost branch

RN =T /N = (L, x),



Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages. )

Example L = trees with a b on the leftmost branch

RN =T /N = (L, x),

Ax ={T, L}y ({T, L} x X) |Ax| =2+ 2|X] is linear in |X|.



Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages. )

Example L = trees with a b on the leftmost branch

a a
RN =T /N = (L, x),
b a a a
/N /N / N\ /\
c ¢c y y X ¢ y vy
Ax ={T, L}y ({T, L} x X) |Ax| =2+ 2|X] is linear in |X|.

This algebra has linear complexity.



Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.




Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.




Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.



Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]
Polynomial complexity This talk
Exponential complexity -

Doubly-exponential complexity | All regular languages




Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]
Polynomial complexity This talk
Exponential complexity -

Doubly-exponential complexity | All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.



Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} J




Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} J

Ax ={c,d}Ufa(x,y) | x,y € XU{c,+}}




Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} J

Ax ={c,d}Ufa(x,y) | x,y € XU{c,+}}

d %4 AEN 2y a(x, z) /a\ - a(x, x)
a a X a
/ N\ /A /N

x z y Yy y vy



Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} J

Ax ={c,d}Ufa(x,y) | x,y € XU{c,+}}

d %4 y a N N a(x, z) /a\ 2y a(x, x)
a a X a
/A /A /A
X z y 'y y y
RN s a\ — a(x, c) /a\ o a(c, c)
a a a vy
/N / A\ /N



Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} J

Ax ={c,d}Ufa(x,y) | x,y € XU{c,+}}

@ a « a [e]
d %4 AEN — a(x,z) — a(x, *)
a a X a
/ A\ /A / A\
X z y 'y y y
c « a a a
— C RN — a(x, c) Sy —alc, o)
a a a y
/ A\ /A / A\
X ¢ y vy c ¢

Orbits: ¢, d, a(x,y), a(x, x), a(x, ¢), a(c,x), a(x,*), a(x,x), a(c, c), a(*,*)



Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} J

Ax ={c,d}Ufa(x,y) | x,y € XU{c,+}}

d @ a « a [e]
— d AEN — a(x,z) — a(x, *)
a a X a
/ A\ /A / A\
X z y 'y y y
c « a a a
— C RN — a(x, c) Sy —alc, o)
a a a y
/ A\ /A / A\
X ¢ y vy c ¢

Orbits: ¢, d, a(x,y), a(x, x), a(x, ¢), a(c,x), a(x,*), a(x,x), a(c, c), a(*,*)

This algebra has quadratic complexity and bounded orbit complexity.



Orbit complexity

Let |[Ax/Sym(X)| be the number of orbits of Ax under the action of
Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra A is the asymptotic size of
|Ax /Sym(X)| as a function of |X|.




Orbit complexity

Let |[Ax/Sym(X)| be the number of orbits of Ax under the action of
Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra A is the asymptotic size of
|Ax /Sym(X)| as a function of |X|.

Another bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
orbit complexity.




What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.



What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.

Polynomial complexity
Ax = X¥ ~ k variables (e.g. k branches)



What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.

Polynomial complexity
Ax = X¥ ~ k variables (e.g. k branches)

Exponential complexity
Ax = kX ~ a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)



What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.

Polynomial complexity
Ax = X¥ ~ k variables (e.g. k branches)

Exponential complexity
Ax = kX ~ a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

Doubly exponential complexity
All regular languages.



Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?



Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.



Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

L = trees whose leftmost branch ends with a(c, c).



Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.



Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.




Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.




Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

Equivalence between a. and b. is not obvious.



Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).
Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.
b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Equivalence between a. and b. is not obvious.



Nominal automata

Let Sym(V) act upon sets X and Y.

- X is called orbit-finite if the group action has finitely many orbits.



Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.



Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

- X is called nominal if its elements are finitely supported.



Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

X is called nominal if its elements are finitely supported.

- f: X = Y is supported by S C V if f(o(x)) = o(f(x)), for all x € X,
o € Sym(V\ S).



Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

X is called nominal if its elements are finitely supported.

- f: X = Y is supported by S C V if f(o(x)) = o(f(x)), for all x € X,
o € Sym(V\ S).

- X (resp. f) is called equivariant if it is supported by the empty set.



Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

X is called nominal if its elements are finitely supported.

- f: X = Y is supported by S C V if f(o(x)) = o(f(x)), for all x € X,
o € Sym(V\ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),
- an orbit-finite nominal set @ (the states),
- equivariant subsets {go} and F of Q (the initial state and the final states),

- and an equivariant transition function §: Q@ X A — Q.




Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

X is called nominal if its elements are finitely supported.

- f: X = Y is supported by S C V if f(o(x)) = o(f(x)), for all x € X,
o € Sym(V\ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set @ (the states),

- equivariant subsets {go} and F of Q (the initial state and the final states),
- and an equivariant transition function §: Q@ X A — Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton.



Nominal automata example

L = data words with at least three different datas )




Nominal automata example

L = data words with at least three different datas )

-A=Y,
- @={q, THU{{x} [xeV}U{{x,y} [x,y € V.x#y}



Nominal automata example

L = data words with at least three different datas )

o,T}U{{XHXEV}U{{X yrx,y eV, x#y}




Coding of trees

How to build the following tree ?

/\
/\



Coding of trees

How to build the following tree ?

x [x]



Coding of trees

How to build the following tree ?

a [x]

/\ [xa(x, )]

Xy



Coding of trees

How to build the following tree ?

[
/ \ [xa(x, )]

b, 2)]
/ \



Coding of trees

How to build the following tree ?

[x]
/ \ ['xa(x, y)]
/ \ ['xb(x, Z)]

[ye]



Coding of trees

How to build the following tree ?

/\
/\

[x]
[-xa(x; )]
[xb(x, 2)]

[ye]

G ={[x]|xeV}
CV,Z = {[-Xa(Xo, ...,X,,,l)] | ac
Y 1y X, X0y ooy Xn—1 € V}

The alphabet ¢y U Gy 5 is called the

coding alphabet. It is a nominal
orbit-finite alphabet.



Coding of trees

How to build the following tree ?
G =A{xl[xeV}

/ \ [X] CV7): = {['Xa(Xo, ...,X,,,l)] | ac
[xa(x,y)] Y 0y Xy X0y -y Xn—1 € V}
['xb(x,2)] The alphabet Gy U Gy 5 is called the
/\ [yc] coding alphabet. It is a nominal

orbit-finite alphabet.

Tree coding and the coding alphabet

A word ¢ € () (5 is called a tree coding. A coding c evaluates to a
finite tree T(c).




Coding of trees

How to build the following tree ?
GO ={x]|xeV}
/ \ [X] CV,Z = {[-Xa(Xo, ...,X,,,l)] | ac
[-Xa(xjy)] 2 hy X, X0y ey Xp—1 € V}
/ \ [-xb(x,2)] The alphabet ¢y U Gy 5 is called the
[yc] coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word ¢ € () (5 is called a tree coding. A coding c evaluates to a
finite tree T(c).

Coding languages describing tree languages
A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € Lif and only if T(c) € K.




Dealing with missing variables

Let ¢ = [x][-xa(x, y)][-z¢]. What is T(c)?



Dealing with missing variables

Let ¢ = [x][-xa(x, y)][-z¢]. What is T(c)?



Dealing with missing variables

Let ¢ = [x][-xa(x, ¥)][-z¢]. What is T(c)?
create;: X — X U {z}

such that create,(x) = x for all x € X.



Dealing with missing variables

Let ¢ = [x][-xa(x, ¥)][-z¢]. What is T(c)?
create;: X — X U {z}

such that create,(x) = x for all x € X.

create,

—



Dealing with missing variables

Let ¢ = [x][-xa(x, ¥)][-z¢]. What is T(c)?
create;: X — X U {z}

such that create,(x) = x for all x € X.

create,

—

T(c) = createz(a(x,y)) -z ¢ = a(x, y)



Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.




Coding automata

Coding languages describing tree languages
A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"



Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"
Example L = "the third letter is of the form [-,c]|", ¥ = {(a,2),(c,0)}.



Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"
Example L = "the third letter is of the form [-,c]|", ¥ = {(a,2),(c,0)}.

¢ = [X][xaCe, MILyellxaly Ylye] ¢ = [x][xalx, y)llxaly, y)][ye]
T(c)=T(c) = a(a(c, c), )



Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"
Example L = "the third letter is of the form [-,c]|", ¥ = {(a,2),(c,0)}.

¢ = [X][xalx YLy ellxaly, MIlyel ¢ = [X]Exalx y)llxaly: )]yl
T(c)=T(c") = a(a(c, c),c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K. We say that it describes K.




Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"
Example L = "the third letter is of the form [-,c]|", ¥ = {(a,2),(c,0)}.

¢ = [X][xalx YLy ellxaly, MIlyel ¢ = [X]Exalx y)llxaly: )]yl
T(c)=T(c") = a(a(c, c),c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K. We say that it describes K.

We assume that there is no transition toward the initial state qp.



Language described by a coding automaton 1/2

K = "trees with a b on the leftmost branch” )




Language described by a coding automaton 1/2

K = "trees with a b on the leftmost branch” )

b a [X]lxa(x, Yy a(z, 2)][xb(z, 2)][-2¢]



Language described by a coding automaton 1/2

K = "trees with a b on the leftmost branch” )

b a [X]lxa(x, Yy a(z, 2)][xb(z, 2)][-2¢]

Q={qo, T, L}U{x|x€eV}

by Ixaboyl [va(z,2)] PRELCEINE S CONE

qo0



Language described by a coding automaton 1/2

K = "trees with a b on the leftmost branch” )

b a [X]lxa(x, Yy a(z, 2)][xb(z, 2)][-2¢]

Q={qo, T, L}U{x|x€eV}

[2¢]

b, Ixaberll [va(z,2)] PRELCEINES T

o — X

[xIlxaly, 2)][za(t, O1[ec][-y b(z, £)][-¢c][-2€]



Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J




Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)



Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

Remark we should also consider a(c, *) and a(x, ¢).



Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

go X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

Remark we should also consider a(c, *) and a(x, ¢).



Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

go X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, ¢).



Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

go X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, ¢).



Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

go X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, ¢).



Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

go X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, ¢).



Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

go X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, ¢).

A state is an abstraction of a tree, that possibly forgot some variables.



Language described by a coding automaton 2/2

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

go X c a(x,y) a(x,x) a(x,*) a(x,x) a(x, ) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, ¢).
A state is an abstraction of a tree, that possibly forgot some variables.

T([x][-xa(x, x)][:xc]) € K and T([x][-xa(x, y)]['xc]) ¢ K even though
3(qo, [X][-xalx, ¥)][x€]) = 8(qo, [x][xalx; y)I[xe])-



Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(ev) € Ty and T(c'v) € Ty.



Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(cv) € Ty and T(c'v) € Ty.



Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(ev) € Ty and T(c'v) € Ty.
The minimal automaton Min; of L is defined as follows:
- the set of states is Q = {qo} W OO (5 5/ =1,
- [c]z, is accepting if [c]=z, C L,
- 0(q0, X)) = [ X |=,,  d([e]=,v) = [ev]=,



Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(ev) € Ty and T(c'v) € Ty.
The minimal automaton Min; of L is defined as follows:
- the set of states is Q = {qo} W OO (5 5/ =1,
- [c]z, is accepting if [c]=z, C L,
- 0(q0, X)) = [ X |=,,  d([e]=,v) = [ev]=,

Minimal automaton

For L a tree language described by a coding automaton, Min,; is a coding
automaton which describes L.




Reminder

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.
c. Being described by a coding automaton.

Let us prove c. = a. and b.



From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.




From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min; and define a tree algebra A that recognizes L.



From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min; and define a tree algebra A that recognizes L.
Fix a tree t with variables xi, ..., x,, we define a function J; as

OIN: (T ) T = 0

TIT2 ... Ty

LTy ... T

where g € Q \ {qo} is a state supported by {yi, ..., ym}.



From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min; and define a tree algebra A that recognizes L.
Fix a tree t with variables xi, ..., x,, we define a function J; as

OIN: (T ) T = 0

TIT2 ... Ty

LTy ... T

where g € Q \ {qo} is a state supported by {yi, ..., ym}.
Example For t = a(x1, c), this is defined by ¢’ = 6(q, [-y,a(x1, 2)][-z¢])-



From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min; and define a tree algebra A that recognizes L.
Fix a tree t with variables xi, ..., x,, we define a function §; as

TIT2 ... Ty

LT3 ... Ty

where g € Q \ {qo} is a state supported by {yi, ..., ym}.
Example For t = a(x1, c), this is defined by ¢’ = 6(q, [-y,a(x1, 2)][-z¢])-

0 is well defined

The definition of d; does not depend on a particular choice of coding.
Let Trans(Min; ) be the set of all functions d;.




From coding automata to tree algebras 2/2

We define the tree as algebra A as

Ax = {0+ € Trans(Min,) | d¢ is supported by X} .



From coding automata to tree algebras 2/2

We define the tree as algebra A as
Ax = {0+ € Trans(Min,) | d¢ is supported by X} .

The operations are defined so that a.: t +— J; is the evaluation morphism.



From coding automata to tree algebras 2/2

We define the tree as algebra A as
Ax = {0+ € Trans(Min,) | d¢ is supported by X} .

The operations are defined so that a.: t +— J; is the evaluation morphism.

Support of §;

The size of the supports of the d;'s is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite. J




From coding automata to tree algebras 2/2

We define the tree as algebra A as
Ax = {0+ € Trans(Min,) | d¢ is supported by X} .
The operations are defined so that a.: t +— J; is the evaluation morphism.

Support of §;
The size of the supports of the d;'s is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite. J

A has bounded orbit complexity. Trans(Min, ) has finitely many orbits.
f,g € Ax are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.



From coding automata to tree algebras 2/2

We define the tree as algebra A as
Ax = {0+ € Trans(Min,) | d¢ is supported by X} .
The operations are defined so that a.: t +— J; is the evaluation morphism.

Support of 4,
The size of the supports of the d;'s is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite. ’

A has bounded orbit complexity. Trans(Min, ) has finitely many orbits.
f,g € Ax are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.

A has polynomial complexity. Ax has boundedly many orbits. On any
. | .
orbit, there are at most % elements under the action of Sym(X).



From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding
automaton.




From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding

automaton.

Structure of the proof.
1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X C V finite.



From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding

automaton.

Structure of the proof.
1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X C V finite.
2. Prove that tree algebras of polynomial complexity or bounded orbit
complexity have supports of bounded size (say K).



From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding
automaton.

Structure of the proof.
1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X C V finite.

2. Prove that tree algebras of polynomial complexity or bounded orbit
complexity have supports of bounded size (say K).

3. Thus, only the elements in sorts Ax where |X| < K matter. Let

Q:UAX.

IX|<K

This is used to define a coding automaton that describes L.



Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.




Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t € Ty, is L-sensitive to a leaf x if there exist trees

a,b, ty,..., t, such that
A .

NN NNV




Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t € Ty, is L-sensitive to a leaf x if there exist trees
a,b, ty,..., t, such that

€L ¢ L

NN NNV

A regular language of trees L is described by a coding automaton if and
only if there is a bound on the number of L-sensitive leaves in trees.




Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t € Ty, is L-sensitive to a leaf x if there exist trees
a,b, ty,..., t, such that

€L ¢ L

NN NNV

A regular language of trees L is described by a coding automaton if and
only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is
decidable.



Different types of tree algebras

Unrestrained tree algebras




Different types of tree algebras

Unrestrained tree algebras

r Yy y <

Sublinear tree algebras




Different types of tree algebras

. Superlinear tree algebras
Unrestrained tree algebras

/\

ry vy =z r Yy

Sublinear tree algebras

r Yy z




Different types of tree algebras

. Superlinear tree algebras
Unrestrained tree algebras

ANYA

r Yy y <

Sublinear tree algebras Linear tree algebras




Different types of tree algebras

. Superlinear tree algebras
Unrestrained tree algebras

ANYA

r Yy y <

Sublinear tree algebras Linear tree algebras




Conclusion

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.
b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Decidability
There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.




