
A Complexity Approach to Tree Algebras: the
Polynomial Case

Arthur Jaquard

joint work with Thomas Colcombet

Université Paris Cité, CNRS, IRIF

ANR Delta | June 3, 2022

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and variable x ,
Renaming. σA : AX → AY for all maps σ : X → Y .

1 / 22

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}
Objects

Substitution Renaming

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and variable x ,
Renaming. σA : AX → AY for all maps σ : X → Y .

1 / 22

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}
Objects Substitution

Renaming

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and variable x ,
Renaming. σA : AX → AY for all maps σ : X → Y .

1 / 22

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}
Objects Substitution Renaming

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and variable x ,
Renaming. σA : AX → AY for all maps σ : X → Y .

1 / 22

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}
Objects Substitution Renaming

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and variable x ,
Renaming. σA : AX → AY for all maps σ : X → Y .

1 / 22

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}
Objects Substitution Renaming

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and variable x ,
Renaming. σA : AX → AY for all maps σ : X → Y .

Identities? a(x , y) ·y b a(x , z) ·z b
We also define morphisms, congruences...

1 / 22

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}
Objects Substitution Renaming

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and variable x ,
Renaming. σA : AX → AY for all maps σ : X → Y .

Given a finite tree algebra A, there is a unique morphism from the free algebra to
A. It is called the evaluation morphism of A.

1 / 22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ > a

a

x c

a

y y

α7−→ (⊥, x),

AX = {>,⊥}] ({>,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ > a

a

x c

a

y y

α7−→ (⊥, x),

AX = {>,⊥}] ({>,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ > a

a

x c

a

y y

α7−→ (⊥, x),

AX = {>,⊥}] ({>,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ > a

a

x c

a

y y

α7−→ (⊥, x),

AX = {>,⊥}] ({>,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ > a

a

x c

a

y y

α7−→ (⊥, x),

AX = {>,⊥}] ({>,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.

This algebra has linear complexity.

2 / 22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ > a

a

x c

a

y y

α7−→ (⊥, x),

AX = {>,⊥}] ({>,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity This talk

Exponential complexity -

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity This talk

Exponential complexity -

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity This talk

Exponential complexity -

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity This talk

Exponential complexity -

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity This talk

Exponential complexity -

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 22

Another example

L = trees whose leftmost branch ends with a(c , c), where
Σ = {(c, 0), (d , 0), (a, 2)}

AX = {c , d} ∪ {a(x , y) | x , y ∈ X ∪ {c , ∗}}

d α7−→ d
a

a

x z

a

y y

α7−→ a(x , z)
a

x a

y y

α7−→ a(x , ∗)

c α7−→ c
a

a

x c

a

y y

α7−→ a(x , c)
a

a

c c

y

α7−→ a(c , c)

Orbits: c , d , a(x , y), a(x , x), a(x , c), a(c , x), a(x , ∗), a(∗, x), a(c , c), a(∗, ∗)

This algebra has quadratic complexity and bounded orbit complexity.

4 / 22

Another example

L = trees whose leftmost branch ends with a(c , c), where
Σ = {(c, 0), (d , 0), (a, 2)}

AX = {c , d} ∪ {a(x , y) | x , y ∈ X ∪ {c , ∗}}

d α7−→ d
a

a

x z

a

y y

α7−→ a(x , z)
a

x a

y y

α7−→ a(x , ∗)

c α7−→ c
a

a

x c

a

y y

α7−→ a(x , c)
a

a

c c

y

α7−→ a(c , c)

Orbits: c , d , a(x , y), a(x , x), a(x , c), a(c , x), a(x , ∗), a(∗, x), a(c , c), a(∗, ∗)

This algebra has quadratic complexity and bounded orbit complexity.

4 / 22

Another example

L = trees whose leftmost branch ends with a(c , c), where
Σ = {(c, 0), (d , 0), (a, 2)}

AX = {c , d} ∪ {a(x , y) | x , y ∈ X ∪ {c , ∗}}

d α7−→ d
a

a

x z

a

y y

α7−→ a(x , z)
a

x a

y y

α7−→ a(x , ∗)

c α7−→ c
a

a

x c

a

y y

α7−→ a(x , c)
a

a

c c

y

α7−→ a(c , c)

Orbits: c , d , a(x , y), a(x , x), a(x , c), a(c , x), a(x , ∗), a(∗, x), a(c , c), a(∗, ∗)

This algebra has quadratic complexity and bounded orbit complexity.

4 / 22

Another example

L = trees whose leftmost branch ends with a(c , c), where
Σ = {(c, 0), (d , 0), (a, 2)}

AX = {c , d} ∪ {a(x , y) | x , y ∈ X ∪ {c , ∗}}

d α7−→ d
a

a

x z

a

y y

α7−→ a(x , z)
a

x a

y y

α7−→ a(x , ∗)

c α7−→ c
a

a

x c

a

y y

α7−→ a(x , c)
a

a

c c

y

α7−→ a(c , c)

Orbits: c , d , a(x , y), a(x , x), a(x , c), a(c , x), a(x , ∗), a(∗, x), a(c , c), a(∗, ∗)

This algebra has quadratic complexity and bounded orbit complexity.

4 / 22

Another example

L = trees whose leftmost branch ends with a(c , c), where
Σ = {(c, 0), (d , 0), (a, 2)}

AX = {c , d} ∪ {a(x , y) | x , y ∈ X ∪ {c , ∗}}

d α7−→ d
a

a

x z

a

y y

α7−→ a(x , z)
a

x a

y y

α7−→ a(x , ∗)

c α7−→ c
a

a

x c

a

y y

α7−→ a(x , c)
a

a

c c

y

α7−→ a(c , c)

Orbits: c , d , a(x , y), a(x , x), a(x , c), a(c , x), a(x , ∗), a(∗, x), a(c , c), a(∗, ∗)

This algebra has quadratic complexity and bounded orbit complexity.

4 / 22

Another example

L = trees whose leftmost branch ends with a(c , c), where
Σ = {(c, 0), (d , 0), (a, 2)}

AX = {c , d} ∪ {a(x , y) | x , y ∈ X ∪ {c , ∗}}

d α7−→ d
a

a

x z

a

y y

α7−→ a(x , z)
a

x a

y y

α7−→ a(x , ∗)

c α7−→ c
a

a

x c

a

y y

α7−→ a(x , c)
a

a

c c

y

α7−→ a(c , c)

Orbits: c , d , a(x , y), a(x , x), a(x , c), a(c , x), a(x , ∗), a(∗, x), a(c , c), a(∗, ∗)

This algebra has quadratic complexity and bounded orbit complexity.

4 / 22

Orbit complexity

Let |AX/Sym(X)| be the number of orbits of AX under the action of
Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra A is the asymptotic size of
|AX/Sym(X)| as a function of |X |.

Another bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
orbit complexity.

5 / 22

Orbit complexity

Let |AX/Sym(X)| be the number of orbits of AX under the action of
Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra A is the asymptotic size of
|AX/Sym(X)| as a function of |X |.

Another bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
orbit complexity.

5 / 22

What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
AX the variables that appear in the tree are in X .

Polynomial complexity
AX = X k k variables (e.g. k branches)

Exponential complexity
AX = kX a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

Doubly exponential complexity
All regular languages.

6 / 22

What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
AX the variables that appear in the tree are in X .

Polynomial complexity
AX = X k k variables (e.g. k branches)

Exponential complexity
AX = kX a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

Doubly exponential complexity
All regular languages.

6 / 22

What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
AX the variables that appear in the tree are in X .

Polynomial complexity
AX = X k k variables (e.g. k branches)

Exponential complexity
AX = kX a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

Doubly exponential complexity
All regular languages.

6 / 22

What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
AX the variables that appear in the tree are in X .

Polynomial complexity
AX = X k k variables (e.g. k branches)

Exponential complexity
AX = kX a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

Doubly exponential complexity
All regular languages.

6 / 22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,

- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c , c).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

7 / 22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,

- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c , c).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

7 / 22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,

- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c , c).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

7 / 22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,

- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c , c).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

7 / 22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,

- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c , c).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

7 / 22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,

- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c , c).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

7 / 22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,

- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c , c).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Equivalence between a. and b. is not obvious.
7 / 22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,

- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c , c).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Equivalence between a. and b. is not obvious.
7 / 22

Nominal automata

Let Sym(V) act upon sets X and Y .

- X is called orbit-finite if the group action has finitely many orbits.

- x ∈ X is called finitely supported if there exists S ⊆ V finite such that, for
every σ ∈ Sym(V), σ(x) = x whenever σ(s) = s for every s ∈ S .

- X is called nominal if its elements are finitely supported.

- f : X → Y is supported by S ⊆ V if f (σ(x)) = σ(f (x)), for all x ∈ X ,
σ ∈ Sym(V \ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set Q (the states),

- equivariant subsets {q0} and F of Q (the initial state and the final states),

- and an equivariant transition function δ : Q × A→ Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton.

8 / 22

Nominal automata

Let Sym(V) act upon sets X and Y .

- X is called orbit-finite if the group action has finitely many orbits.

- x ∈ X is called finitely supported if there exists S ⊆ V finite such that, for
every σ ∈ Sym(V), σ(x) = x whenever σ(s) = s for every s ∈ S .

- X is called nominal if its elements are finitely supported.

- f : X → Y is supported by S ⊆ V if f (σ(x)) = σ(f (x)), for all x ∈ X ,
σ ∈ Sym(V \ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set Q (the states),

- equivariant subsets {q0} and F of Q (the initial state and the final states),

- and an equivariant transition function δ : Q × A→ Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton.

8 / 22

Nominal automata

Let Sym(V) act upon sets X and Y .

- X is called orbit-finite if the group action has finitely many orbits.

- x ∈ X is called finitely supported if there exists S ⊆ V finite such that, for
every σ ∈ Sym(V), σ(x) = x whenever σ(s) = s for every s ∈ S .

- X is called nominal if its elements are finitely supported.

- f : X → Y is supported by S ⊆ V if f (σ(x)) = σ(f (x)), for all x ∈ X ,
σ ∈ Sym(V \ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set Q (the states),

- equivariant subsets {q0} and F of Q (the initial state and the final states),

- and an equivariant transition function δ : Q × A→ Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton.

8 / 22

Nominal automata

Let Sym(V) act upon sets X and Y .

- X is called orbit-finite if the group action has finitely many orbits.

- x ∈ X is called finitely supported if there exists S ⊆ V finite such that, for
every σ ∈ Sym(V), σ(x) = x whenever σ(s) = s for every s ∈ S .

- X is called nominal if its elements are finitely supported.

- f : X → Y is supported by S ⊆ V if f (σ(x)) = σ(f (x)), for all x ∈ X ,
σ ∈ Sym(V \ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set Q (the states),

- equivariant subsets {q0} and F of Q (the initial state and the final states),

- and an equivariant transition function δ : Q × A→ Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton.

8 / 22

Nominal automata

Let Sym(V) act upon sets X and Y .

- X is called orbit-finite if the group action has finitely many orbits.

- x ∈ X is called finitely supported if there exists S ⊆ V finite such that, for
every σ ∈ Sym(V), σ(x) = x whenever σ(s) = s for every s ∈ S .

- X is called nominal if its elements are finitely supported.

- f : X → Y is supported by S ⊆ V if f (σ(x)) = σ(f (x)), for all x ∈ X ,
σ ∈ Sym(V \ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set Q (the states),

- equivariant subsets {q0} and F of Q (the initial state and the final states),

- and an equivariant transition function δ : Q × A→ Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton.

8 / 22

Nominal automata

Let Sym(V) act upon sets X and Y .

- X is called orbit-finite if the group action has finitely many orbits.

- x ∈ X is called finitely supported if there exists S ⊆ V finite such that, for
every σ ∈ Sym(V), σ(x) = x whenever σ(s) = s for every s ∈ S .

- X is called nominal if its elements are finitely supported.

- f : X → Y is supported by S ⊆ V if f (σ(x)) = σ(f (x)), for all x ∈ X ,
σ ∈ Sym(V \ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set Q (the states),

- equivariant subsets {q0} and F of Q (the initial state and the final states),

- and an equivariant transition function δ : Q × A→ Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton.

8 / 22

Nominal automata

Let Sym(V) act upon sets X and Y .

- X is called orbit-finite if the group action has finitely many orbits.

- x ∈ X is called finitely supported if there exists S ⊆ V finite such that, for
every σ ∈ Sym(V), σ(x) = x whenever σ(s) = s for every s ∈ S .

- X is called nominal if its elements are finitely supported.

- f : X → Y is supported by S ⊆ V if f (σ(x)) = σ(f (x)), for all x ∈ X ,
σ ∈ Sym(V \ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set Q (the states),

- equivariant subsets {q0} and F of Q (the initial state and the final states),

- and an equivariant transition function δ : Q × A→ Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton. 8 / 22

Nominal automata example

L = data words with at least three different datas

- A = V,
- Q = {q0,>} ∪ {{x} | x ∈ V} ∪ {{x , y} | x , y ∈ V, x 6= y}

q0 {x} {x , y} >
x

x

y , y 6= x

x , y

z /∈ {x , y}

9 / 22

Nominal automata example

L = data words with at least three different datas

- A = V,
- Q = {q0,>} ∪ {{x} | x ∈ V} ∪ {{x , y} | x , y ∈ V, x 6= y}

q0 {x} {x , y} >
x

x

y , y 6= x

x , y

z /∈ {x , y}

9 / 22

Nominal automata example

L = data words with at least three different datas

- A = V,
- Q = {q0,>} ∪ {{x} | x ∈ V} ∪ {{x , y} | x , y ∈ V, x 6= y}

q0 {x} {x , y} >
x

x

y , y 6= x

x , y

z /∈ {x , y}

9 / 22

Coding of trees

How to build the following tree ?

a

b

...
...

c

[x]

[·xa(x , y)]

[·xb(x , z)]

[·yc]

...

CV = {[x] | x ∈ V}
CV,Σ = {[·xa(x0, ..., xn−1)] | a ∈
Σn, x , x0, ..., xn−1 ∈ V}

The alphabet CV ∪ CV,Σ is called the
coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word c ∈ CVC
∗
V,Σ is called a tree coding. A coding c evaluates to a

finite tree T (c).

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

10 / 22

Coding of trees

How to build the following tree ?

x [x]

[·xa(x , y)]

[·xb(x , z)]

[·yc]

...

CV = {[x] | x ∈ V}
CV,Σ = {[·xa(x0, ..., xn−1)] | a ∈
Σn, x , x0, ..., xn−1 ∈ V}

The alphabet CV ∪ CV,Σ is called the
coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word c ∈ CVC
∗
V,Σ is called a tree coding. A coding c evaluates to a

finite tree T (c).

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

10 / 22

Coding of trees

How to build the following tree ?

a

x y

[x]

[·xa(x , y)]

[·xb(x , z)]

[·yc]

...

CV = {[x] | x ∈ V}
CV,Σ = {[·xa(x0, ..., xn−1)] | a ∈
Σn, x , x0, ..., xn−1 ∈ V}

The alphabet CV ∪ CV,Σ is called the
coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word c ∈ CVC
∗
V,Σ is called a tree coding. A coding c evaluates to a

finite tree T (c).

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

10 / 22

Coding of trees

How to build the following tree ?

a

b

x z

y

[x]

[·xa(x , y)]

[·xb(x , z)]

[·yc]

...

CV = {[x] | x ∈ V}
CV,Σ = {[·xa(x0, ..., xn−1)] | a ∈
Σn, x , x0, ..., xn−1 ∈ V}

The alphabet CV ∪ CV,Σ is called the
coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word c ∈ CVC
∗
V,Σ is called a tree coding. A coding c evaluates to a

finite tree T (c).

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

10 / 22

Coding of trees

How to build the following tree ?

a

b

...
...

c

[x]

[·xa(x , y)]

[·xb(x , z)]

[·yc]

...

CV = {[x] | x ∈ V}
CV,Σ = {[·xa(x0, ..., xn−1)] | a ∈
Σn, x , x0, ..., xn−1 ∈ V}

The alphabet CV ∪ CV,Σ is called the
coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word c ∈ CVC
∗
V,Σ is called a tree coding. A coding c evaluates to a

finite tree T (c).

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

10 / 22

Coding of trees

How to build the following tree ?

a

b

...
...

c

[x]

[·xa(x , y)]

[·xb(x , z)]

[·yc]

...

CV = {[x] | x ∈ V}
CV,Σ = {[·xa(x0, ..., xn−1)] | a ∈
Σn, x , x0, ..., xn−1 ∈ V}

The alphabet CV ∪ CV,Σ is called the
coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word c ∈ CVC
∗
V,Σ is called a tree coding. A coding c evaluates to a

finite tree T (c).

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

10 / 22

Coding of trees

How to build the following tree ?

a

b

...
...

c

[x]

[·xa(x , y)]

[·xb(x , z)]

[·yc]

...

CV = {[x] | x ∈ V}
CV,Σ = {[·xa(x0, ..., xn−1)] | a ∈
Σn, x , x0, ..., xn−1 ∈ V}

The alphabet CV ∪ CV,Σ is called the
coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word c ∈ CVC
∗
V,Σ is called a tree coding. A coding c evaluates to a

finite tree T (c).

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

10 / 22

Coding of trees

How to build the following tree ?

a

b

...
...

c

[x]

[·xa(x , y)]

[·xb(x , z)]

[·yc]

...

CV = {[x] | x ∈ V}
CV,Σ = {[·xa(x0, ..., xn−1)] | a ∈
Σn, x , x0, ..., xn−1 ∈ V}

The alphabet CV ∪ CV,Σ is called the
coding alphabet. It is a nominal
orbit-finite alphabet.

Tree coding and the coding alphabet

A word c ∈ CVC
∗
V,Σ is called a tree coding. A coding c evaluates to a

finite tree T (c).

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

10 / 22

Dealing with missing variables

Let c = [x][·xa(x , y)][·zc]. What is T (c)?

createz : X → X ∪ {z}

such that createz(x) = x for all x ∈ X .

T (c) = createz(a(x , y)) ·z c = a(x , y)

11 / 22

Dealing with missing variables

Let c = [x][·xa(x , y)][·zc]. What is T (c)?

createz : X → X ∪ {z}

such that createz(x) = x for all x ∈ X .

T (c) = createz(a(x , y)) ·z c = a(x , y)

11 / 22

Dealing with missing variables

Let c = [x][·xa(x , y)][·zc]. What is T (c)?

createz : X → X ∪ {z}

such that createz(x) = x for all x ∈ X .

T (c) = createz(a(x , y)) ·z c = a(x , y)

11 / 22

Dealing with missing variables

Let c = [x][·xa(x , y)][·zc]. What is T (c)?

createz : X → X ∪ {z}

such that createz(x) = x for all x ∈ X .

T (c) = createz(a(x , y)) ·z c = a(x , y)

11 / 22

Dealing with missing variables

Let c = [x][·xa(x , y)][·zc]. What is T (c)?

createz : X → X ∪ {z}

such that createz(x) = x for all x ∈ X .

T (c) = createz(a(x , y)) ·z c = a(x , y)

11 / 22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

Example L = ”codings c such that T (c) ∈ K”
Example L = ”the third letter is of the form [·yc]”, Σ = {(a, 2), (c , 0)}.

c = [x][·xa(x , y)][·yc][·xa(y , y)][·yc] c ′ = [x][·xa(x , y)][·xa(y , y)][·yc]

T (c) = T (c ′) = a(a(c , c), c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K . We say that it describes K .

We assume that there is no transition toward the initial state q0.

12 / 22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

Example L = ”codings c such that T (c) ∈ K”

Example L = ”the third letter is of the form [·yc]”, Σ = {(a, 2), (c , 0)}.

c = [x][·xa(x , y)][·yc][·xa(y , y)][·yc] c ′ = [x][·xa(x , y)][·xa(y , y)][·yc]

T (c) = T (c ′) = a(a(c , c), c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K . We say that it describes K .

We assume that there is no transition toward the initial state q0.

12 / 22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

Example L = ”codings c such that T (c) ∈ K”
Example L = ”the third letter is of the form [·yc]”, Σ = {(a, 2), (c , 0)}.

c = [x][·xa(x , y)][·yc][·xa(y , y)][·yc] c ′ = [x][·xa(x , y)][·xa(y , y)][·yc]

T (c) = T (c ′) = a(a(c , c), c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K . We say that it describes K .

We assume that there is no transition toward the initial state q0.

12 / 22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

Example L = ”codings c such that T (c) ∈ K”
Example L = ”the third letter is of the form [·yc]”, Σ = {(a, 2), (c , 0)}.

c = [x][·xa(x , y)][·yc][·xa(y , y)][·yc] c ′ = [x][·xa(x , y)][·xa(y , y)][·yc]

T (c) = T (c ′) = a(a(c , c), c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K . We say that it describes K .

We assume that there is no transition toward the initial state q0.

12 / 22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

Example L = ”codings c such that T (c) ∈ K”
Example L = ”the third letter is of the form [·yc]”, Σ = {(a, 2), (c , 0)}.

c = [x][·xa(x , y)][·yc][·xa(y , y)][·yc] c ′ = [x][·xa(x , y)][·xa(y , y)][·yc]

T (c) = T (c ′) = a(a(c , c), c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K . We say that it describes K .

We assume that there is no transition toward the initial state q0.

12 / 22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K ⊆ T∅ of trees if, for every
coding c such that T (c) ∈ T∅, c ∈ L if and only if T (c) ∈ K .

Example L = ”codings c such that T (c) ∈ K”
Example L = ”the third letter is of the form [·yc]”, Σ = {(a, 2), (c , 0)}.

c = [x][·xa(x , y)][·yc][·xa(y , y)][·yc] c ′ = [x][·xa(x , y)][·xa(y , y)][·yc]

T (c) = T (c ′) = a(a(c , c), c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K . We say that it describes K .

We assume that there is no transition toward the initial state q0.
12 / 22

Language described by a coding automaton 1/2

K = ”trees with a b on the leftmost branch”

a

b

c c

a

c c

[x][·xa(x , y)][·ya(z , z)][·xb(z , z)][·zc]

Q = {q0,>,⊥} ∪ {x | x ∈ V}

q0
[x]−→ x

[·xa(x ,y)]−−−−−→ x
[·ya(z,z)]−−−−−→ x

[·xb(z,z)]−−−−−→ > [·zc]−−→ >

[x][·xa(y , z)][·za(t, t)][·tc][·yb(z , t)][·tc][·zc]

13 / 22

Language described by a coding automaton 1/2

K = ”trees with a b on the leftmost branch”

a

b

c c

a

c c

[x][·xa(x , y)][·ya(z , z)][·xb(z , z)][·zc]

Q = {q0,>,⊥} ∪ {x | x ∈ V}

q0
[x]−→ x

[·xa(x ,y)]−−−−−→ x
[·ya(z,z)]−−−−−→ x

[·xb(z,z)]−−−−−→ > [·zc]−−→ >

[x][·xa(y , z)][·za(t, t)][·tc][·yb(z , t)][·tc][·zc]

13 / 22

Language described by a coding automaton 1/2

K = ”trees with a b on the leftmost branch”

a

b

c c

a

c c

[x][·xa(x , y)][·ya(z , z)][·xb(z , z)][·zc]

Q = {q0,>,⊥} ∪ {x | x ∈ V}

q0
[x]−→ x

[·xa(x ,y)]−−−−−→ x
[·ya(z,z)]−−−−−→ x

[·xb(z,z)]−−−−−→ > [·zc]−−→ >

[x][·xa(y , z)][·za(t, t)][·tc][·yb(z , t)][·tc][·zc]

13 / 22

Language described by a coding automaton 1/2

K = ”trees with a b on the leftmost branch”

a

b

c c

a

c c

[x][·xa(x , y)][·ya(z , z)][·xb(z , z)][·zc]

Q = {q0,>,⊥} ∪ {x | x ∈ V}

q0
[x]−→ x

[·xa(x ,y)]−−−−−→ x
[·ya(z,z)]−−−−−→ x

[·xb(z,z)]−−−−−→ > [·zc]−−→ >

[x][·xa(y , z)][·za(t, t)][·tc][·yb(z , t)][·tc][·zc]

13 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Language described by a coding automaton 2/2

K = ”trees with a c at depth 1”, where Σ = {(a, 2), (c, 0)}.

x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x c a(x , y) a(x , x) a(x , ∗) a(∗, x) a(∗, ∗) a(x , c) a(c , x) a(c , c)

q0 x ⊥ a{x , y} a{x} a{x} a{x} ⊥ > > >

Remark we should also consider a(c , ∗) and a(∗, c).

A state is an abstraction of a tree, that possibly forgot some variables.

T ([x][·xa(x , x)][·xc]) ∈ K and T ([x][·xa(x , y)][·xc]) /∈ K even though
δ(q0, [x][·xa(x , x)][·xc]) = δ(q0, [x][·xa(x , y)][·xc]).

14 / 22

Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let c , c ′ ∈ CVC
∗
V,Σ be tree

codings. c ≡L c ′ if

T (cv) ∈ L⇔ T (c ′v) ∈ L for all v ∈ C ∗V,Σ such that
T (cv) ∈ T∅ and T (c ′v) ∈ T∅.

The minimal automaton MinL of L is defined as follows:

- the set of states is Q = {q0}] CVC
∗
V,Σ/ ≡L,

- [c]≡L
is accepting if [c]≡L

⊆ L,

- δ(q0, [x]) = [[x]]≡L
, δ([c]≡L

, v) = [cv]≡L
.

Minimal automaton

For L a tree language described by a coding automaton, MinL is a coding
automaton which describes L.

15 / 22

Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let c , c ′ ∈ CVC
∗
V,Σ be tree

codings. c ≡L c ′ if

T (cv) ∈ L⇔ T (c ′v) ∈ L for all v ∈ C ∗V,Σ such that
T (cv) ∈ T∅ and T (c ′v) ∈ T∅.

The minimal automaton MinL of L is defined as follows:

- the set of states is Q = {q0}] CVC
∗
V,Σ/ ≡L,

- [c]≡L
is accepting if [c]≡L

⊆ L,

- δ(q0, [x]) = [[x]]≡L
, δ([c]≡L

, v) = [cv]≡L
.

Minimal automaton

For L a tree language described by a coding automaton, MinL is a coding
automaton which describes L.

15 / 22

Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let c , c ′ ∈ CVC
∗
V,Σ be tree

codings. c ≡L c ′ if

T (cv) ∈ L⇔ T (c ′v) ∈ L for all v ∈ C ∗V,Σ such that
T (cv) ∈ T∅ and T (c ′v) ∈ T∅.

The minimal automaton MinL of L is defined as follows:

- the set of states is Q = {q0}] CVC
∗
V,Σ/ ≡L,

- [c]≡L
is accepting if [c]≡L

⊆ L,

- δ(q0, [x]) = [[x]]≡L
, δ([c]≡L

, v) = [cv]≡L
.

Minimal automaton

For L a tree language described by a coding automaton, MinL is a coding
automaton which describes L.

15 / 22

Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let c , c ′ ∈ CVC
∗
V,Σ be tree

codings. c ≡L c ′ if

T (cv) ∈ L⇔ T (c ′v) ∈ L for all v ∈ C ∗V,Σ such that
T (cv) ∈ T∅ and T (c ′v) ∈ T∅.

The minimal automaton MinL of L is defined as follows:

- the set of states is Q = {q0}] CVC
∗
V,Σ/ ≡L,

- [c]≡L
is accepting if [c]≡L

⊆ L,

- δ(q0, [x]) = [[x]]≡L
, δ([c]≡L

, v) = [cv]≡L
.

Minimal automaton

For L a tree language described by a coding automaton, MinL is a coding
automaton which describes L.

15 / 22

Reminder

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Let us prove c. ⇒ a. and b.

16 / 22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from MinL and define a tree algebra A that recognizes L.
Fix a tree t with variables x1, ..., xn, we define a function δt as

where q ∈ Q \ {q0} is a state supported by {y1, ..., ym}.
Example For t = a(x1, c), this is defined by q′ = δ(q, [·y2a(x1, z)][·zc]).

δt is well defined

The definition of δt does not depend on a particular choice of coding.
Let Trans(MinL) be the set of all functions δt .

17 / 22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from MinL and define a tree algebra A that recognizes L.

Fix a tree t with variables x1, ..., xn, we define a function δt as

where q ∈ Q \ {q0} is a state supported by {y1, ..., ym}.
Example For t = a(x1, c), this is defined by q′ = δ(q, [·y2a(x1, z)][·zc]).

δt is well defined

The definition of δt does not depend on a particular choice of coding.
Let Trans(MinL) be the set of all functions δt .

17 / 22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from MinL and define a tree algebra A that recognizes L.
Fix a tree t with variables x1, ..., xn, we define a function δt as

where q ∈ Q \ {q0} is a state supported by {y1, ..., ym}.

Example For t = a(x1, c), this is defined by q′ = δ(q, [·y2a(x1, z)][·zc]).

δt is well defined

The definition of δt does not depend on a particular choice of coding.
Let Trans(MinL) be the set of all functions δt .

17 / 22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from MinL and define a tree algebra A that recognizes L.
Fix a tree t with variables x1, ..., xn, we define a function δt as

where q ∈ Q \ {q0} is a state supported by {y1, ..., ym}.
Example For t = a(x1, c), this is defined by q′ = δ(q, [·y2a(x1, z)][·zc]).

δt is well defined

The definition of δt does not depend on a particular choice of coding.
Let Trans(MinL) be the set of all functions δt .

17 / 22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from MinL and define a tree algebra A that recognizes L.
Fix a tree t with variables x1, ..., xn, we define a function δt as

where q ∈ Q \ {q0} is a state supported by {y1, ..., ym}.
Example For t = a(x1, c), this is defined by q′ = δ(q, [·y2a(x1, z)][·zc]).

δt is well defined

The definition of δt does not depend on a particular choice of coding.
Let Trans(MinL) be the set of all functions δt .

17 / 22

From coding automata to tree algebras 2/2

We define the tree as algebra A as

AX = {δt ∈ Trans(MinL) | δt is supported by X} .

The operations are defined so that α : t 7→ δt is the evaluation morphism.

Support of δt
The size of the supports of the δt ’s is bounded by an integer K .

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite.

A has bounded orbit complexity. Trans(MinL) has finitely many orbits.
f , g ∈ AX are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.

A has polynomial complexity. AX has boundedly many orbits. On any
orbit, there are at most |X |!

(|X |−k)! elements under the action of Sym(X).

18 / 22

From coding automata to tree algebras 2/2

We define the tree as algebra A as

AX = {δt ∈ Trans(MinL) | δt is supported by X} .

The operations are defined so that α : t 7→ δt is the evaluation morphism.

Support of δt
The size of the supports of the δt ’s is bounded by an integer K .

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite.

A has bounded orbit complexity. Trans(MinL) has finitely many orbits.
f , g ∈ AX are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.

A has polynomial complexity. AX has boundedly many orbits. On any
orbit, there are at most |X |!

(|X |−k)! elements under the action of Sym(X).

18 / 22

From coding automata to tree algebras 2/2

We define the tree as algebra A as

AX = {δt ∈ Trans(MinL) | δt is supported by X} .

The operations are defined so that α : t 7→ δt is the evaluation morphism.

Support of δt
The size of the supports of the δt ’s is bounded by an integer K .

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite.

A has bounded orbit complexity. Trans(MinL) has finitely many orbits.
f , g ∈ AX are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.

A has polynomial complexity. AX has boundedly many orbits. On any
orbit, there are at most |X |!

(|X |−k)! elements under the action of Sym(X).

18 / 22

From coding automata to tree algebras 2/2

We define the tree as algebra A as

AX = {δt ∈ Trans(MinL) | δt is supported by X} .

The operations are defined so that α : t 7→ δt is the evaluation morphism.

Support of δt
The size of the supports of the δt ’s is bounded by an integer K .

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite.

A has bounded orbit complexity. Trans(MinL) has finitely many orbits.
f , g ∈ AX are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.

A has polynomial complexity. AX has boundedly many orbits. On any
orbit, there are at most |X |!

(|X |−k)! elements under the action of Sym(X).

18 / 22

From coding automata to tree algebras 2/2

We define the tree as algebra A as

AX = {δt ∈ Trans(MinL) | δt is supported by X} .

The operations are defined so that α : t 7→ δt is the evaluation morphism.

Support of δt
The size of the supports of the δt ’s is bounded by an integer K .

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite.

A has bounded orbit complexity. Trans(MinL) has finitely many orbits.
f , g ∈ AX are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.

A has polynomial complexity. AX has boundedly many orbits. On any
orbit, there are at most |X |!

(|X |−k)! elements under the action of Sym(X).

18 / 22

From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding
automaton.

Structure of the proof.

1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X ⊆ V finite.

2. Prove that tree algebras of polynomial complexity or bounded orbit
complexity have supports of bounded size (say K).

3. Thus, only the elements in sorts AX where |X | ≤ K matter. Let

Q =
⋃
|X |≤K

AX .

This is used to define a coding automaton that describes L.

19 / 22

From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding
automaton.

Structure of the proof.

1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X ⊆ V finite.

2. Prove that tree algebras of polynomial complexity or bounded orbit
complexity have supports of bounded size (say K).

3. Thus, only the elements in sorts AX where |X | ≤ K matter. Let

Q =
⋃
|X |≤K

AX .

This is used to define a coding automaton that describes L.

19 / 22

From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding
automaton.

Structure of the proof.

1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X ⊆ V finite.

2. Prove that tree algebras of polynomial complexity or bounded orbit
complexity have supports of bounded size (say K).

3. Thus, only the elements in sorts AX where |X | ≤ K matter. Let

Q =
⋃
|X |≤K

AX .

This is used to define a coding automaton that describes L.

19 / 22

From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding
automaton.

Structure of the proof.

1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X ⊆ V finite.

2. Prove that tree algebras of polynomial complexity or bounded orbit
complexity have supports of bounded size (say K).

3. Thus, only the elements in sorts AX where |X | ≤ K matter. Let

Q =
⋃
|X |≤K

AX .

This is used to define a coding automaton that describes L.

19 / 22

Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t ∈ T{•} is L-sensitive to a leaf x if there exist trees
a, b, t1, ..., tn such that

Lemma

A regular language of trees L is described by a coding automaton if and
only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is
decidable.

20 / 22

Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t ∈ T{•} is L-sensitive to a leaf x if there exist trees
a, b, t1, ..., tn such that

Lemma

A regular language of trees L is described by a coding automaton if and
only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is
decidable.

20 / 22

Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t ∈ T{•} is L-sensitive to a leaf x if there exist trees
a, b, t1, ..., tn such that

Lemma

A regular language of trees L is described by a coding automaton if and
only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is
decidable.

20 / 22

Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t ∈ T{•} is L-sensitive to a leaf x if there exist trees
a, b, t1, ..., tn such that

Lemma

A regular language of trees L is described by a coding automaton if and
only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is
decidable.

20 / 22

Different types of tree algebras

Unrestrained tree algebras

Sublinear tree algebras

Superlinear tree algebras

Linear tree algebras

21 / 22

Different types of tree algebras

Unrestrained tree algebras

Sublinear tree algebras

Superlinear tree algebras

Linear tree algebras

21 / 22

Different types of tree algebras

Unrestrained tree algebras

Sublinear tree algebras

Superlinear tree algebras

Linear tree algebras

21 / 22

Different types of tree algebras

Unrestrained tree algebras

Sublinear tree algebras

Superlinear tree algebras

Linear tree algebras

21 / 22

Different types of tree algebras

Unrestrained tree algebras

Sublinear tree algebras

Superlinear tree algebras

Linear tree algebras

21 / 22

Conclusion

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

22 / 22

