A Complexity Approach to Tree Algebras: the Polynomial Case

Arthur Jaquard

joint work with Thomas Colcombet

Université Paris Cité, CNRS, IRIF

ANR Delta | June 3, 2022

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

 $\begin{array}{c} \textbf{Objects} \\ {}^{a}_{\scriptstyle \begin{array}{c} {}^{\prime} {\scriptstyle \begin{array}{c} {\scriptstyle \\ {\scriptstyle \end{array}}}} \in T_{\emptyset} \\ b \\ c \end{array} } } & {}^{a}_{\scriptstyle \begin{array}{c} {\scriptstyle \begin{array}{c} {\scriptstyle \\ {\scriptstyle \end{array}}}} \\ x \end{array} } \times {}^{\prime} \\ {}^{a}_{\scriptstyle \begin{array}{c} {\scriptstyle \end{array}}} T_{\{x,y\}} \\ x \\ x \end{array} } & {}^{a}_{\scriptstyle \begin{array}{c} {\scriptstyle \begin{array}{c} {\scriptstyle \end{array}}} \\ x \end{array} } \times {}^{a}_{\scriptstyle \begin{array}{c} {\scriptstyle \end{array}}} E_{\{x,y\}} \\ x \\ y \end{array} } } \end{array} } \end{array}$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Objects	Substitution
$b = c = T_{\emptyset} $	$\begin{array}{c} a \\ x \\ x \\ y \\ b \\ c \\ a \\ a$
$x \stackrel{a}{\underset{x}{\overset{\leftarrow}{}}} T_{\{x,y\}} \xrightarrow{x} \stackrel{a}{\underset{y}{\overset{\leftarrow}{}}} T_{\{x,y\}}$	b c b c

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_{X}^{\mathcal{A}} : A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and variable x, **Renaming.** $\sigma^{\mathcal{A}} : A_X \to A_Y$ for all maps $\sigma : X \to Y$.

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_x^{\mathcal{A}} \colon A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and variable x, **Renaming.** $\sigma^{\mathcal{A}} \colon A_X \to A_Y$ for all maps $\sigma \colon X \to Y$.

Identities? $a(x, y) \cdot_y b$ $a(x, z) \cdot_z b$ We also define morphisms, congruences...

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_x^{\mathcal{A}} : A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and variable x, **Renaming.** $\sigma^{\mathcal{A}} : A_X \to A_Y$ for all maps $\sigma : X \to Y$.

Given a finite tree algebra A, there is a unique morphism from the free algebra to A. It is called the evaluation morphism of A.

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

$$\begin{array}{cccccccccc}
 & a & \stackrel{\alpha}{\mapsto} \top & \stackrel{a}{\searrow} & \stackrel{\alpha}{\mapsto} (\bot, x), \\
 & b & a & a & a \\
 & c & c & y & y & x & c & y & y \\
\end{array}$$

 $A_X = \{\top, \bot\} \uplus (\{\top, \bot\} \times X) \qquad |A_X| = 2 + 2|X| \text{ is linear in } |X|.$

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

$$\begin{array}{ccccccccc}
 & a & & a & & a \\
 & b & a & & a & & a \\
 & c & c & y & y & & x & c & y & y \\
\end{array}$$

 $A_X = \{\top, \bot\} \uplus (\{\top, \bot\} \times X) \qquad |A_X| = 2 + 2|X| \text{ is linear in } |X|.$ This algebra has linear complexity.

Definition (Complexity of an algebra)

The complexity of a finite algebra \mathcal{A} is the asymptotic size of $|\mathcal{A}_X|$ as a function of |X|.

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of $|A_X|$ as a function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential complexity.

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of $|A_X|$ as a function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of $|A_X|$ as a function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Bounded complexity	[Colcombet, J, 2021]
Polynomial complexity	This talk
Exponential complexity	-
Doubly-exponential complexity	All regular languages

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of $|A_X|$ as a function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Bounded complexity	[Colcombet, J, 2021]
Polynomial complexity	This talk
Exponential complexity	-
Doubly-exponential complexity	All regular languages

The objective is to identify new classes of languages and to gain a better understanding of tree algebras.

L= trees whose leftmost branch ends with a(c,c), where $\Sigma=\{(c,0),(d,0),(a,2)\}$

L= trees whose leftmost branch ends with a(c,c), where $\Sigma=\{(c,0),(d,0),(a,2)\}$

 $A_X = \{c, d\} \cup \{a(x, y) \mid x, y \in X \cup \{c, *\}\}$

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{(c, 0), (d, 0), (a, 2)\}$

$$A_X = \{c, d\} \cup \{a(x, y) \mid x, y \in X \cup \{c, *\}\}$$

$$d \xrightarrow{\alpha} d \xrightarrow{a} \xrightarrow{\alpha} a(x, z) \xrightarrow{a} \xrightarrow{\alpha} a(x, *)$$

$$x \xrightarrow{z} y \xrightarrow{y} y \xrightarrow{y} y$$

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{(c, 0), (d, 0), (a, 2)\}$

 $A_{X} = \{c, d\} \cup \{a(x, y) \mid x, y \in X \cup \{c, *\}\}$ $d \xrightarrow{\alpha}_{X \to Z} d \xrightarrow{a}_{Y \to Y} a(x, z) \xrightarrow{a}_{X \to A} a(x, x)$ $c \xrightarrow{\alpha}_{X \to C} z \xrightarrow{a}_{X \to A} a(x, c) \xrightarrow{a}_{Y \to A} a(z, c)$

$$c \stackrel{\cong}{\mapsto} c \stackrel{a}{\swarrow} a \stackrel{\cong}{\to} a(x,c) \stackrel{a}{\frown} a \stackrel{\cong}{\to} a(c,c)$$

 $a \stackrel{a}{\to} a \stackrel{a}{\to} y$
 $x \stackrel{i}{\leftarrow} c \stackrel{i}{\lor} y$
 $x \stackrel{i}{\leftarrow} c \stackrel{i}{\to} c \stackrel{i}{\leftarrow} c$

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{(c, 0), (d, 0), (a, 2)\}$

Orbits: c, d, a(x, y), a(x, x), a(x, c), a(c, x), a(x, *), a(*, x), a(c, c), a(*, *)

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{(c, 0), (d, 0), (a, 2)\}$

Orbits: c, d, a(x, y), a(x, x), a(x, c), a(c, x), a(x, *), a(*, x), a(c, c), a(*, *)This algebra has quadratic complexity and bounded orbit complexity.

Let $|A_X/Sym(X)|$ be the number of orbits of A_X under the action of Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra \mathcal{A} is the asymptotic size of $|A_X/\mathbf{Sym}(X)|$ as a function of |X|.

Let $|A_X/Sym(X)|$ be the number of orbits of A_X under the action of Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra \mathcal{A} is the asymptotic size of $|A_X/\mathbf{Sym}(X)|$ as a function of |X|.

Another bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential orbit complexity.

Bounded complexity

The algebra does not remember anything about the variables. $A_X \rightarrow$ the variables that appear in the tree are in X.

Bounded complexity

The algebra does not remember anything about the variables.

 $A_X \rightsquigarrow$ the variables that appear in the tree are in X.

Polynomial complexity

 $A_X = X^k \rightsquigarrow k$ variables (e.g. k branches)

Bounded complexity

The algebra does not remember anything about the variables.

 $A_X \rightsquigarrow$ the variables that appear in the tree are in X.

Polynomial complexity

 $A_X = X^k \rightsquigarrow k$ variables (e.g. k branches)

Exponential complexity

 $A_X = k^X \rightsquigarrow$ a function from X to k (e.g. a set of variables when k = 2, or modulo counting if $k = \mathbb{Z}/q\mathbb{Z}$)

Bounded complexity

The algebra does not remember anything about the variables.

 $A_X \rightsquigarrow$ the variables that appear in the tree are in X.

Polynomial complexity

 $A_X = X^k \rightsquigarrow k$ variables (e.g. k branches)

Exponential complexity

 $A_X = k^X \rightsquigarrow$ a function from X to k (e.g. a set of variables when k = 2, or modulo counting if $k = \mathbb{Z}/q\mathbb{Z}$)

Doubly exponential complexity

All regular languages.

What are the languages recognized by algebras of polynomial complexity?

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.
Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.

Equivalence between a. and b. is not obvious.

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.
- c. Being described by a coding automaton.

Equivalence between a. and b. is not obvious.

Let $Sym(\mathcal{V})$ act upon sets X and Y.

- X is called orbit-finite if the group action has finitely many orbits.

- X is called orbit-finite if the group action has finitely many orbits.
- $x \in X$ is called finitely supported if there exists $S \subseteq \mathcal{V}$ finite such that, for every $\sigma \in \mathbf{Sym}(\mathcal{V}), \ \sigma(x) = x$ whenever $\sigma(s) = s$ for every $s \in S$.

- X is called orbit-finite if the group action has finitely many orbits.
- $x \in X$ is called finitely supported if there exists $S \subseteq \mathcal{V}$ finite such that, for every $\sigma \in \mathbf{Sym}(\mathcal{V}), \ \sigma(x) = x$ whenever $\sigma(s) = s$ for every $s \in S$.
- X is called nominal if its elements are finitely supported.

- X is called orbit-finite if the group action has finitely many orbits.
- $x \in X$ is called finitely supported if there exists $S \subseteq \mathcal{V}$ finite such that, for every $\sigma \in \mathbf{Sym}(\mathcal{V}), \ \sigma(x) = x$ whenever $\sigma(s) = s$ for every $s \in S$.
- X is called nominal if its elements are finitely supported.
- $f: X \to Y$ is supported by $S \subseteq \mathcal{V}$ if $f(\sigma(x)) = \sigma(f(x))$, for all $x \in X$, $\sigma \in \mathbf{Sym}(\mathcal{V} \setminus S)$.

- X is called orbit-finite if the group action has finitely many orbits.
- $x \in X$ is called finitely supported if there exists $S \subseteq \mathcal{V}$ finite such that, for every $\sigma \in \mathbf{Sym}(\mathcal{V}), \ \sigma(x) = x$ whenever $\sigma(s) = s$ for every $s \in S$.
- X is called nominal if its elements are finitely supported.
- $f: X \to Y$ is supported by $S \subseteq \mathcal{V}$ if $f(\sigma(x)) = \sigma(f(x))$, for all $x \in X$, $\sigma \in \mathbf{Sym}(\mathcal{V} \setminus S)$.
- X (resp. f) is called equivariant if it is supported by the empty set.

Let $Sym(\mathcal{V})$ act upon sets X and Y.

- X is called orbit-finite if the group action has finitely many orbits.
- $x \in X$ is called finitely supported if there exists $S \subseteq \mathcal{V}$ finite such that, for every $\sigma \in \mathbf{Sym}(\mathcal{V}), \ \sigma(x) = x$ whenever $\sigma(s) = s$ for every $s \in S$.
- X is called nominal if its elements are finitely supported.
- $f: X \to Y$ is supported by $S \subseteq \mathcal{V}$ if $f(\sigma(x)) = \sigma(f(x))$, for all $x \in X$, $\sigma \in \mathbf{Sym}(\mathcal{V} \setminus S)$.
- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),
- an orbit-finite nominal set Q (the states),
- equivariant subsets $\{q_0\}$ and F of Q (the initial state and the final states),
- and an equivariant transition function $\delta \colon Q \times A \to Q$.

Let $Sym(\mathcal{V})$ act upon sets X and Y.

- X is called orbit-finite if the group action has finitely many orbits.
- $x \in X$ is called finitely supported if there exists $S \subseteq \mathcal{V}$ finite such that, for every $\sigma \in \mathbf{Sym}(\mathcal{V}), \ \sigma(x) = x$ whenever $\sigma(s) = s$ for every $s \in S$.
- X is called nominal if its elements are finitely supported.
- $f: X \to Y$ is supported by $S \subseteq \mathcal{V}$ if $f(\sigma(x)) = \sigma(f(x))$, for all $x \in X$, $\sigma \in \mathbf{Sym}(\mathcal{V} \setminus S)$.
- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),
- an orbit-finite nominal set Q (the states),
- equivariant subsets $\{q_0\}$ and F of Q (the initial state and the final states),
- and an equivariant transition function $\delta \colon Q \times A \to Q$.

Example: a deterministic register automaton can be seen as a deterministic orbit-finite nominal automaton.

L = data words with at least three different datas

L = data words with at least three different datas

-
$$A = \mathcal{V}$$
,
- $Q = \{q_0, \top\} \cup \{\{x\} \mid x \in \mathcal{V}\} \cup \{\{x, y\} \mid x, y \in \mathcal{V}, x \neq y\}$

L = data words with at least three different datas

х

How to build the following tree ?

[x]

$$\begin{array}{c} a & [x] \\ / \\ x & y \end{array}$$

а [x] $[\cdot_x a(x,y)]$ b с $\left[\cdot_{x}b(x,z)\right]$ $[\cdot_y c]$ ÷ ÷ . . .

How to build the following tree ?

$$C_{\mathcal{V}} = \{ [x] \mid x \in \mathcal{V} \}$$

$$C_{\mathcal{V},\Sigma} = \{ [\cdot_x a(x_0, ..., x_{n-1})] \mid a \in \Sigma_n, x, x_0, ..., x_{n-1} \in \mathcal{V} \}$$

The alphabet $C_{\mathcal{V}} \cup C_{\mathcal{V},\Sigma}$ is called the coding alphabet. It is a nominal orbit-finite alphabet.

How to build the following tree ?

$$C_{\mathcal{V}} = \{ [x] \mid x \in \mathcal{V} \}$$

$$C_{\mathcal{V},\Sigma} = \{ [\cdot_x a(x_0, ..., x_{n-1})] \mid a \in \Sigma_n, x, x_0, ..., x_{n-1} \in \mathcal{V} \}$$

The alphabet $C_{\mathcal{V}} \cup C_{\mathcal{V},\Sigma}$ is called the coding alphabet. It is a nominal orbit-finite alphabet.

Tree coding and the coding alphabet

A word $c \in C_{\mathcal{V}}C^*_{\mathcal{V},\Sigma}$ is called a tree coding. A coding c evaluates to a finite tree T(c).

How to build the following tree ?

$$C_{\mathcal{V}} = \{ [x] \mid x \in \mathcal{V} \}$$

$$C_{\mathcal{V},\Sigma} = \{ [\cdot_x a(x_0, ..., x_{n-1})] \mid a \in \Sigma_n, x, x_0, ..., x_{n-1} \in \mathcal{V} \}$$

The alphabet $C_{\mathcal{V}} \cup C_{\mathcal{V},\Sigma}$ is called the coding alphabet. It is a nominal orbit-finite alphabet.

Tree coding and the coding alphabet

A word $c \in C_{\mathcal{V}}C^*_{\mathcal{V},\Sigma}$ is called a tree coding. A coding c evaluates to a finite tree T(c).

Coding languages describing tree languages

A language L of codings describes a language $K \subseteq T_{\emptyset}$ of trees if, for every coding c such that $T(c) \in T_{\emptyset}$, $c \in L$ if and only if $T(c) \in K$.

Let $c = [x][\cdot_x a(x, y)][\cdot_z c]$. What is T(c)?

Let $c = [x][\cdot_x a(x, y)][\cdot_z c]$. What is T(c)?

Let $c = [x][\cdot_x a(x, y)][\cdot_z c]$. What is T(c)? create_z: $X \to X \cup \{z\}$

such that $\operatorname{create}_z(x) = x$ for all $x \in X$.

Let
$$c = [x][\cdot_x a(x, y)][\cdot_z c]$$
. What is $T(c)$?
create_z: $X \to X \cup \{z\}$

such that $\operatorname{create}_z(x) = x$ for all $x \in X$.

Let
$$c = [x][\cdot_x a(x, y)][\cdot_z c]$$
. What is $T(c)$?
create_z: $X \to X \cup \{z\}$

such that $\operatorname{create}_z(x) = x$ for all $x \in X$.

Coding automata

Coding languages describing tree languages

A language L of codings describes a language $K \subseteq T_{\emptyset}$ of trees if, for every coding c such that $T(c) \in T_{\emptyset}$, $c \in L$ if and only if $T(c) \in K$.

Coding automata

Coding languages describing tree languages

A language L of codings describes a language $K \subseteq T_{\emptyset}$ of trees if, for every coding c such that $T(c) \in T_{\emptyset}$, $c \in L$ if and only if $T(c) \in K$.

Example L = "codings c such that $T(c) \in K$ "

A language L of codings describes a language $K \subseteq T_{\emptyset}$ of trees if, for every coding c such that $T(c) \in T_{\emptyset}$, $c \in L$ if and only if $T(c) \in K$.

Example L = "codings c such that $T(c) \in K$ " **Example** L = "the third letter is of the form $[\cdot_v c]$ ", $\Sigma = \{(a, 2), (c, 0)\}$.

A language L of codings describes a language $K \subseteq T_{\emptyset}$ of trees if, for every coding c such that $T(c) \in T_{\emptyset}$, $c \in L$ if and only if $T(c) \in K$.

Example L = "codings c such that $T(c) \in K$ " **Example** L = "the third letter is of the form $[\cdot_{v}c]$ ", $\Sigma = \{(a, 2), (c, 0)\}$.

 $c = [x][\cdot_x a(x, y)][\cdot_y c][\cdot_x a(y, y)][\cdot_y c] \qquad c' = [x][\cdot_x a(x, y)][\cdot_x a(y, y)][\cdot_y c]$ T(c) = T(c') = a(a(c, c), c)

A language L of codings describes a language $K \subseteq T_{\emptyset}$ of trees if, for every coding c such that $T(c) \in T_{\emptyset}$, $c \in L$ if and only if $T(c) \in K$.

Example L = "codings c such that $T(c) \in K$ " **Example** L = "the third letter is of the form $[\cdot_{v}c]$ ", $\Sigma = \{(a, 2), (c, 0)\}$.

$$c = [x][\cdot_x a(x, y)][\cdot_y c][\cdot_x a(y, y)][\cdot_y c] \qquad c' = [x][\cdot_x a(x, y)][\cdot_x a(y, y)][\cdot_y c]$$
$$T(c) = T(c') = a(a(c, c), c)$$

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is a coding automaton if it recognizes a language L of codings that describes a tree language K. We say that it describes K.

A language L of codings describes a language $K \subseteq T_{\emptyset}$ of trees if, for every coding c such that $T(c) \in T_{\emptyset}$, $c \in L$ if and only if $T(c) \in K$.

Example L = "codings c such that $T(c) \in K$ " **Example** L = "the third letter is of the form $[\cdot_y c]$ ", $\Sigma = \{(a, 2), (c, 0)\}$.

$$c = [x][\cdot_x a(x,y)][\cdot_y c][\cdot_x a(y,y)][\cdot_y c] \qquad c' = [x][\cdot_x a(x,y)][\cdot_x a(y,y)][\cdot_y c]$$
$$T(c) = T(c') = a(a(c,c),c)$$

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is a coding automaton if it recognizes a language L of codings that describes a tree language K. We say that it describes K.

We assume that there is no transition toward the initial state q_0 .

K = "trees with a *b* on the leftmost branch"

K = "trees with a b on the leftmost branch"

$$[x][\cdot_x a(x,y)][\cdot_y a(z,z)][\cdot_x b(z,z)][\cdot_z c]$$

K = "trees with a b on the leftmost branch"

-

K = "trees with a b on the leftmost branch"

$$a \qquad [x][\cdot_{x}a(x,y)][\cdot_{y}a(z,z)][\cdot_{x}b(z,z)][\cdot_{z}c]$$

$$Q = \{q_{0}, \top, \bot\} \cup \{x \mid x \in \mathcal{V}\}$$

$$q_{0} \xrightarrow{[x]} x \xrightarrow{[\cdot_{x}a(x,y)]} x \xrightarrow{[\cdot_{y}a(z,z)]} x \xrightarrow{[\cdot_{x}b(z,z)]} \top \xrightarrow{[\cdot_{z}c]} \top$$

$$[x][\cdot_{x}a(y,z)][\cdot_{z}a(t,t)][\cdot_{t}c][\cdot_{y}b(z,t)][\cdot_{t}c][\cdot_{z}c]$$
K = "trees with a c at depth 1", where $\Sigma = \{(a, 2), (c, 0)\}$.

K = "trees with a c at depth 1", where $\Sigma = \{(a, 2), (c, 0)\}$.

x c a(x,y) a(x,x) a(x,*) a(*,x) a(*,*) a(x,c) a(c,x) a(c,c)

K = "trees with a c at depth 1", where $\Sigma = \{(a, 2), (c, 0)\}$.

$$x$$
 c $a(x,y)$ $a(x,x)$ $a(x,*)$ $a(*,x)$ $a(*,*)$ $a(x,c)$ $a(c,x)$ $a(c,c)$

$$K =$$
 "trees with a c at depth 1", where $\Sigma = \{(a, 2), (c, 0)\}$.

	X	С	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q_0	x	с	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)

	x	С	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q_0	x	с	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c, c)
q_0	x	\perp	$a\{x,y\}$ $a\{x\}$	$a\{x\}$	$a\{x\}$	\perp	Т	Т	Т
-				()		`			

	x	С	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q_0	x	с	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c, c)
q 0	x	\bot	$a\{x,y\}$ $a\{x\}$	$a\{x\}$	$a\{x\}$	\perp	Т	Т	Т

	x	С	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q_0	x	с	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q 0	x	\perp	$a\{x,y\}$ $a\{x\}$	$a\{x\}$	a {x}	\perp	Т	Т	Т

	x	С	a(x,y) a(x	,x) a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q_0	x	с	a(x,y) a(x)	,x) a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c, c)
q_0	x	\perp	$a\{x,y\}$ $a\{x,y\}$	x $a\{x\}$	$a\{x\}$	\perp	т	Т	Т
_									

$$K =$$
 "trees with a c at depth 1", where $\Sigma = \{(a, 2), (c, 0)\}$.

	x	С	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q_0	x	с	a(x,y) a(x,x)	a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q_0	x	\perp	$a\{x,y\}$ $a\{x\}$	$a\{x\}$	a {x}	\perp	Т	Т	Т

Remark we should also consider a(c,*) and a(*,c).

A state is an abstraction of a tree, that possibly forgot some variables.

$$K =$$
 "trees with a c at depth 1", where $\Sigma = \{(a, 2), (c, 0)\}$.

	x	С	a(x,y) a(x,x)) $a(x,*)$	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q_0	x	с	a(x,y) a(x,x)) a(x,*)	a(*,x)	a(*,*)	a(x,c)	a(c,x)	a(c,c)
q 0	x	\perp	$a\{x,y\}$ $a\{x\}$	$a\{x\}$	$a\{x\}$	\perp	Т	Т	Т

Remark we should also consider a(c, *) and a(*, c).

A state is an abstraction of a tree, that possibly forgot some variables.

 $T([x][\cdot_{x}a(x,x)][\cdot_{x}c]) \in K \text{ and } T([x][\cdot_{x}a(x,y)][\cdot_{x}c]) \notin K \text{ even though}$ $\delta(q_{0}, [x][\cdot_{x}a(x,x)][\cdot_{x}c]) = \delta(q_{0}, [x][\cdot_{x}a(x,y)][\cdot_{x}c]).$

$$T(cv) \in L \Leftrightarrow T(c'v) \in L$$
 for all $v \in C^*_{\mathcal{V},\Sigma}$ such that $T(cv) \in T_{\emptyset}$ and $T(c'v) \in T_{\emptyset}$.

 $T(cv) \in L \Leftrightarrow T(c'v) \in L \text{ for all } v \in C^*_{\mathcal{V},\Sigma} \text{ such that } T(cv) \in T_{\emptyset} \text{ and } T(c'v) \in T_{\emptyset}.$

$$T(cv) \in L \Leftrightarrow T(c'v) \in L$$
 for all $v \in C^*_{\mathcal{V},\Sigma}$ such that $T(cv) \in T_{\emptyset}$ and $T(c'v) \in T_{\emptyset}$.

The minimal automaton Min_L of L is defined as follows:

- the set of states is $Q=\{q_0\} \uplus C_\mathcal{V} C^*_{\mathcal{V}, \Sigma}/\equiv_L$,

-
$$[c]_{\equiv_L}$$
 is accepting if $[c]_{\equiv_L} \subseteq L$,

 $- \delta(q_0, [x]) = [[x]]_{\equiv_L}, \qquad \delta([c]_{\equiv_L}, v) = [cv]_{\equiv_L}.$

$$T(cv) \in L \Leftrightarrow T(c'v) \in L$$
 for all $v \in C^*_{\mathcal{V},\Sigma}$ such that $T(cv) \in T_{\emptyset}$ and $T(c'v) \in T_{\emptyset}$.

The minimal automaton Min_L of *L* is defined as follows:

- the set of states is $Q=\{q_0\} \uplus C_\mathcal{V} C^*_{\mathcal{V}, \Sigma}/\equiv_L$,

-
$$[c]_{\equiv_L}$$
 is accepting if $[c]_{\equiv_L} \subseteq L$,

$$- \delta(q_0, [x]) = [[x]]_{\equiv_L}, \qquad \delta([c]_{\equiv_L}, v) = [cv]_{\equiv_L}.$$

Minimal automaton

For L a tree language described by a coding automaton, Min_L is a coding automaton which describes L.

Equivalence theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.
- c. Being described by a coding automaton.

Let us prove c. \Rightarrow a. and b.

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a tree algebra that has polynomial complexity and bounded orbit complexity.

From coding automata to tree algebras

Every tree language *L* described by a coding automaton is recognized by a tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min_L and define a tree algebra \mathcal{A} that recognizes L.

Every tree language *L* described by a coding automaton is recognized by a tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min_L and define a tree algebra A that recognizes L. Fix a tree t with variables $x_1, ..., x_n$, we define a function δ_t as

$$\delta_{\underbrace{t}_{x_1x_2\dots x_n}}:\left(\begin{array}{c} \overbrace{y_1 \ y_2 \ \dots \ y_r}^q, \ y_2\end{array}\right) \ \mapsto \ \overbrace{x_1x_2\dots x_n}^{q} \ = \begin{array}{c} \overbrace{q'} \\ \overbrace{x_1x_2\dots x_n}^{q}\end{array}$$

where $q \in Q \setminus \{q_0\}$ is a state supported by $\{y_1, ..., y_m\}$.

Every tree language *L* described by a coding automaton is recognized by a tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min_L and define a tree algebra A that recognizes L. Fix a tree t with variables $x_1, ..., x_n$, we define a function δ_t as

$$\delta \underbrace{t}_{x_1 x_2 \dots x_n} \left(\begin{array}{c} \overbrace{y_1 \ y_2 \ y_2 \ y_r}^q, \ y_2 \end{array} \right) \ \mapsto \ \overbrace{x_1 x_2 \dots x_n}^{q} \ = \begin{array}{c} \overbrace{q} \\ \overbrace{x_1 x_2 \dots x_n}^{q} \end{array}$$

where $q \in Q \setminus \{q_0\}$ is a state supported by $\{y_1, ..., y_m\}$. **Example** For $t = a(x_1, c)$, this is defined by $q' = \delta(q, [\cdot_{y_2}a(x_1, z)][\cdot_z c])$.

Every tree language L described by a coding automaton is recognized by a tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min_L and define a tree algebra A that recognizes L. Fix a tree t with variables $x_1, ..., x_n$, we define a function δ_t as

$$\delta \bigwedge_{x_1 x_2 \dots x_n} \left(\begin{array}{c} \overbrace{y_1 \ y_2 \ \dots \ y_r}^q, \ y_2 \end{array} \right) \ \mapsto \ \overbrace{x_1 x_2 \dots x_n}^{q} \ = \begin{array}{c} \overbrace{q'} \\ \overbrace{x_1 x_2 \dots x_n}^{q} \end{array}$$

where $q \in Q \setminus \{q_0\}$ is a state supported by $\{y_1, ..., y_m\}$. **Example** For $t = a(x_1, c)$, this is defined by $q' = \delta(q, [\cdot_{y_2}a(x_1, z)][\cdot_z c])$.

δ_t is well defined

The definition of δ_t does not depend on a particular choice of coding. Let $\operatorname{Trans}(\operatorname{Min}_L)$ be the set of all functions δ_t .

We define the tree as algebra $\ensuremath{\mathcal{A}}$ as

 $A_X = \{\delta_t \in \operatorname{Trans}(\operatorname{Min}_L) \mid \delta_t \text{ is supported by } X\}$.

We define the tree as algebra $\ensuremath{\mathcal{A}}$ as

 $A_X = \{\delta_t \in \operatorname{Trans}(\operatorname{Min}_L) \mid \delta_t \text{ is supported by } X\}$.

The operations are defined so that $\alpha \colon t \mapsto \delta_t$ is the evaluation morphism.

We define the tree as algebra $\ensuremath{\mathcal{A}}$ as

 $A_X = \{\delta_t \in \operatorname{Trans}(\operatorname{Min}_L) \mid \delta_t \text{ is supported by } X\}$.

The operations are defined so that $\alpha \colon t \mapsto \delta_t$ is the evaluation morphism.

Support of δ_t

The size of the supports of the δ_t 's is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A to B with support of size at most K is orbit-finite.

We define the tree as algebra $\ensuremath{\mathcal{A}}$ as

 $A_X = \{\delta_t \in \operatorname{Trans}(\operatorname{Min}_L) \mid \delta_t \text{ is supported by } X\}$.

The operations are defined so that $\alpha \colon t \mapsto \delta_t$ is the evaluation morphism.

Support of δ_t

The size of the supports of the δ_t 's is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A to B with support of size at most K is orbit-finite.

 \mathcal{A} has bounded orbit complexity. $\operatorname{Trans}(\operatorname{Min}_L)$ has finitely many orbits. $f, g \in A_X$ are on the same $\operatorname{Sym}(X)$ -orbit if and only if they are on the same $\operatorname{Sym}(\mathcal{V})$ -orbit.

We define the tree as algebra $\ensuremath{\mathcal{A}}$ as

 $A_X = \{\delta_t \in \operatorname{Trans}(\operatorname{Min}_L) \mid \delta_t \text{ is supported by } X\}$.

The operations are defined so that $\alpha \colon t \mapsto \delta_t$ is the evaluation morphism.

Support of δ_t

The size of the supports of the δ_t 's is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A to B with support of size at most K is orbit-finite.

 \mathcal{A} has bounded orbit complexity. $\operatorname{Trans}(\operatorname{Min}_L)$ has finitely many orbits. $f, g \in A_X$ are on the same $\operatorname{Sym}(X)$ -orbit if and only if they are on the same $\operatorname{Sym}(\mathcal{V})$ -orbit.

 \mathcal{A} has polynomial complexity. A_X has boundedly many orbits. On any orbit, there are at most $\frac{|X|!}{(|X|-k)!}$ elements under the action of Sym(X).

Every language of trees L recognized by a tree algebra of polynomial complexity or of bounded orbit complexity is described by a coding automaton.

Every language of trees L recognized by a tree algebra of polynomial complexity or of bounded orbit complexity is described by a coding automaton.

Structure of the proof.

1. Extend the notion of support to tree algebras, which are a collection of Sym(X)-sets for $X \subseteq \mathcal{V}$ finite.

Every language of trees L recognized by a tree algebra of polynomial complexity or of bounded orbit complexity is described by a coding automaton.

Structure of the proof.

- 1. Extend the notion of support to tree algebras, which are a collection of Sym(X)-sets for $X \subseteq \mathcal{V}$ finite.
- 2. Prove that tree algebras of polynomial complexity or bounded orbit complexity have supports of bounded size (say K).

Every language of trees L recognized by a tree algebra of polynomial complexity or of bounded orbit complexity is described by a coding automaton.

Structure of the proof.

- 1. Extend the notion of support to tree algebras, which are a collection of Sym(X)-sets for $X \subseteq \mathcal{V}$ finite.
- 2. Prove that tree algebras of polynomial complexity or bounded orbit complexity have supports of bounded size (say K).
- 3. Thus, only the elements in sorts A_X where $|X| \leq K$ matter. Let

$$Q = igcup_{|X| \leq K} A_X \; .$$

This is used to define a coding automaton that describes L.

There is an algorithm which, given a regular tree language, decides whether it is recognizable by a tree algebra of polynomial complexity.

There is an algorithm which, given a regular tree language, decides whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree $t \in T_{\{\bullet\}}$ is L-sensitive to a leaf x if there exist trees $a, b, t_1, ..., t_n$ such that

There is an algorithm which, given a regular tree language, decides whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree $t \in T_{\{\bullet\}}$ is L-sensitive to a leaf x if there exist trees $a, b, t_1, ..., t_n$ such that \wedge

Lemma

A regular language of trees L is described by a coding automaton if and only if there is a bound on the number of L-sensitive leaves in trees.

There is an algorithm which, given a regular tree language, decides whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree $t \in T_{\{\bullet\}}$ is L-sensitive to a leaf x if there exist trees $a, b, t_1, ..., t_n$ such that \wedge

Lemma

A regular language of trees L is described by a coding automaton if and only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is decidable.

Different types of tree algebras

Unrestrained tree algebras

Different types of tree algebras

Unrestrained tree algebras

Sublinear tree algebras

Different types of tree algebras

Unrestrained tree algebras

Superlinear tree algebras

Sublinear tree algebras

Different types of tree algebras

Unrestrained tree algebras

Sublinear tree algebras

Superlinear tree algebras

Linear tree algebras

Different types of tree algebras

Unrestrained tree algebras

Sublinear tree algebras

Superlinear tree algebras

Linear tree algebras

Equivalence theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.
- c. Being described by a coding automaton.

Decidability

There is an algorithm which, given a regular tree language, decides whether it is recognizable by a tree algebra of polynomial complexity.