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o-algebras... Problem: Hard to derive
Trees characterizations with infinitely

Deterministic automata, Preclones,  sorted algebras

Hyperclones, Operads,...
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HR-algebras, VR-algebras that can be naturally defined
using infinitely sorted algebras
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Definition (Finite Tree algebras)

A finite FTs-algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, ..., X, 1) € Ao, 1} for all a € X, and variables x;,
Substitution. -7': Ax x Ay — Ax\{xyuy for all finite X, Y and x € X,
Renaming. rename“[o]: Ax — Ay for all surjective maps o: X — Y.

Given a finite FTs-algebra A, there is a unique morphism from the free algebra to
A. It is called the evaluation morphism of A.
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Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite FTs-algebra A
if there is a set P C Ay such that L = a~1(P) in which « is the evaluation
morphism of A.

Long term objective

Characterize the languages recognized by algebras of
- Bounded complexity (This talk)
- Polynomial complexity
- Exponential complexity

[\

Given a finite FTx-algebra A with carrier

(Ax)x finite, all Ax finite
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Example: The language of all trees with at least a b on every branch

L = trees with at least a b on every branch

Languages recognized by top-down deterministic automata

All languages recognized by top-down deterministic automata are
recognized by FTx-algebras of exponential complexity.

/o o o T
Regular languages

A top-down nondeterministic automaton can be transformed into a
FTs-algebras of doubly-exponential complexity that recognizes the same
language.

(t {J_ if there is branch without a b that ends with a constant
(8% =

vwp(t) otherwise

This algebra has exponential complexity and is syntactic for L



Main result

Characterization theorem

A language of finite trees is recognized
by an FTs-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L C ¥7.

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
BCY.

d. A regular language K of bounded
branching.

Unary prefix: upref () = aab

S — R ——1Q

irst non unary symbol: fnu(t) = d

Post-branching symbols:
pbsymb(¢t) = {a,c, ¢, g}

Bounded branching: Jk all trees
in K have at most k branches
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Lemma

A regular language K of bounded branching is recognized by an algebra of
bounded complexity.

Let A recognize K. Let k be such that trees with more than k branches
never belong to K.
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Easy direction of the characterization theorem

Lemma

The languages UPref(L), FNU(b) and PBSymb(B) are recognized by

algebras of bounded complexity for all b€ X2, BC ¥ and L C X7 that is
regular.

Lemma

|

A regular language K of bounded branching is recognized by an algebra of
bounded complexity.

Let A recognize K. Let k be such that trees with more than k branches
never belong to K.
./4 A@ A{XO} e A{X07~--axk}
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A Boolean combination of FTx-algebras of bounded complexity has
bounded complexity.
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Invariance under permutations

Consider for all X the group morphism induced by renaming

¢x: Sym(X) — Sym(Ax)

o +— rename”[o]

Lemma 1 (Invariance under permutations)

A finite syntactic FTx-algebra is of bounded complexity if and only if for
all sufficiently large finite set of variables X, Ker(¢x) = Sym(X).




Conclusion

Complexity map: c4(|X|) = |Ax| KSUEICltEgr£ialelyRaal=ele=00!

Bounded complexity A language of finite trees is recognized
by an FTx-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L C X7.

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
BCY.

d. A regular language K of bounded
branching.




Conclusion

Complexity map: c4(|X|) = |Ax| KSUEICltEgr£ialelyRaal=ele=00!

Bounded complexity A language of finite trees is recognized

by an FTx-algebra of bounded

complexity if and only if it is a Boolean

Exponential complexity 7 combination of languages of the
following kinds:

Polynomial complexity ?

a. The language of finite trees with
unary prefix in a given regular
language of words L C X7.

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
BCY.

d. A regular language K of bounded
branching.




Conclusion

Complexity map: c4(|X|) = |Ax| KSUEICltEgr£ialelyRaal=ele=00!

Bounded complexity A language of finite trees is recognized

by an FTx-algebra of bounded

complexity if and only if it is a Boolean

Exponential complexity 7 combination of languages of the
following kinds:

Polynomial complexity ?

A similar characterization of . :
| £ infini | a. The language of finite trees with
anguages of In |n.|te regu ar trees unary prefix in a given regular
as Boolean combinations of a.-d. language of words L C X}

and other languages b. The language of finite trees with

first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
BCY.

d. A regular language K of bounded
branching.




Conclusion

Complexity map: c4(|X|) = |Ax| KSUEICltEgr£ialelyRaal=ele=00!

Bounded complexity A language of finite trees is recognized

by an FTx-algebra of bounded

complexity if and only if it is a Boolean

Exponential complexity 7 combination of languages of the
following kinds:

Polynomial complexity ?

A similar characterization of . :
| £ infini | a. The language of finite trees with
anguages of In |n.|te regu ar trees unary prefix in a given regular
as Boolean combinations of a.-d. language of words L C X}

and other languages b. The language of finite trees with

) ) first non unary symbol b for a
Orbit complexity: renaming yields fixed non unary symbol b.

an action of Sym(X) over Ax. c. The language of finite trees with

post-branching symbols B, for
BCY.

d. A regular language K of bounded
branching.

¢5(IX]) = [Ax/Sym(X)




Conclusion
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by an FTx-algebra of bounded

complexity if and only if it is a Boolean
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following kinds:
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and other languages b. The language of finite trees with

) ) first non unary symbol b for a
Orbit complexity: renaming yields fixed non unary symbol b.
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post-branching symbols B, for
BCY.
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Characterization theorem for
languages of regular trees

A regular language of trees is recognized
by an algebra of bounded complexity if
and only if it is a Boolean combination of
languages of the kinds a.-d. and:

e. The language of finite trees.

f. The language of regular trees with a
finite number of branches.

g. The language of regular trees that
have a subtree u that is both infinite
and only has symbols of arity 1, such
that u € L, where L C ¥ is regular
and prefix-invariant.

h. The language of regular trees that
have a subtree t that is B-dense, for
some B C .

Where B-dense means that all the

symbols of t belong to B, and that
every symbol b € B occurs in every
subtree of t.
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Invariance under permutations

Consider for all X the group morphism induced by renaming

¢x: Sym(X) — Sym(Ax)

o +— rename”[o]

Lemma 1 (Invariance under permutations)

A finite syntactic FTx-algebra is of bounded complexity if and only if for
all sufficiently large finite set of variables X, Ker(¢x) = Sym(X).
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A finite syntactic FTx-algebra is of bounded complexity if and only if for
all sufficiently large finite set of variables X, Ker(¢x) = Sym(X).

Lemma, folklore: Ker(px) may only be Sym(X), Alt(X) or {idx}
whenever | X| > 5.

Lemma 1la: In a syntactic algebra, Ker(px) = {idx} or

Ker(px) = Sym(X) for large X.

Lemma 1b: In a syntactic algebra of bounded complexity,

Ker(px) = Sym(X) for large X.
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Syntactic FTx-algebras

Let A be some FTx-algebra and let X = {xo, ..., x,—1} be a finite set of
variables. Define for all a € Ax

(@): (A9)™ x A= Ay
(b,c) = Cop (@ D(X0) - vmy, D(Tn—1))

AL~ /2N

If A is a syntactic algebra then a = b iff (a) = (b), for all a,b in A.

Corollary: A syntactic algebra is of complexity at most
doubly-exponential:
1Ax| < ‘A@|IA{X}|IAQI‘X'



Lemmas 1la and 1b

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(px) = Sym(X) or Ker(px) = {idx}.

(a): (Ag)™ x Ay Ap a
(byc) = cop (@ (o). . w,_, b(Tn_1))
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Lemmas 1la and 1b
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Suppose for the sake
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Lemmas 1la and 1b

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(px) = Sym(X) or Ker(px) = {idx}.

M = max(5, |Ag| + 1) Prove rename®[t] = ida, by showing
(rename?[t](a)) = (a) for all a € Ax.
Suppose for the sake Fix a € Ax

of contradiction that
ce A{X}7 be (A@)X

|X| > M and
Ker(px) = Alt(X) x # y with b(x) = b(y)
Im(px) = {ida,, 7} (renameA[t](a)>(b, c) = (1(a))(b,c)
U = (rename™[(x y)}(a))(b ©)
N (b,c) {J}Hci (@ -2y b(20) -+ -2, b@n_1)) A = (a)(b, c)

/o\
NN



Lemmas 1la and 1b

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(px) = Sym(X) or Ker(px) = {idx}.

Lemma 1b

In a syntactic algebra of bounded complexity, Ker(px) = Sym(X)
whenever X is large enough.

Suppose |Ax| < k for all X and Ker(ypx) = {idx}



Lemmas 1la and 1b

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(px) = Sym(X) or Ker(px) = {idx}.

Lemma 1b

In a syntactic algebra of bounded complexity, Ker(px) = Sym(X)
whenever X is large enough.

Suppose |Ax| < k for all X and Ker(ypx) = {idx}

(X[ = [Im(ex)| < [Sym(Ax)| = [Ax|! < K!
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Invariance under permutations

Consider for all X the group morphism induced by renaming

¢x: Sym(X) — Sym(Ax)

o +— rename”[o]

Lemma 1 (Invariance under permutations)

A finite syntactic FTx-algebra is of bounded complexity if and only if for
all sufficiently large finite set of variables X, Ker(¢x) = Sym(X).

Lemma 1la: In a syntactic algebra, Ker(px) = {idx} or

Ker(ypx) = Sym(X) for large X.

Lemma, admitted: In a syntactic algebra, either Ker(px) = {idx} for
large X, or Ker(px) = Sym(X) for large X.

Lemma lc: A syntactic algebra in which Ker(px) = Sym(X) for every
sufficiently large X is of bounded complexity.



el (3): (Ao x Agy — Ay
Suppose that Ker(¢x) = Sym(X)
whenever |X| € {n,n—1}. Then
for all a € Ax with |X| = n, and all

N\ _ /A
b,bl € (Ap)X, c € Apy A
(a)(b,c) = (a)(b', c) /‘\ /CL\
whenever Im(b) = Im(b'). MAA 3V 1V2V2
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Suppose that Ker(¢x) = Sym(X)

whenever |X| € {n,n—1}. Then
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el (3): (Ao x Agy — Ay
Suppose that Ker(¢x) = Sym(X)
whenever |X| € {n,n—1}. Then

for all a € Ax with |X| = n, and all

N\ _ /A

b, b € (Ag)%, c € A A
(a)(b,c) = (a)(b', c) /‘\ A
2V3V3\ [V 1V2V2

whenever Im(b) = Im(b').

A finite syntactic algebra such that Ker(¢x) = Sym(X) for all sufficiently
large set of variables X has bounded complexity.

For all a, (a) must be chosen in a set of at most |A(z)||"‘{x}‘2|A(z'| functions.
Lemma: for all a,b, a = b if and only if (a) = (b).



Structure of the proof of the hard direction

Characterization theorem

A language of finite trees is recognized
by an FTs-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L C ¥7.

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
BCY.

d. A regular language K of bounded
branching.

1. In syntactic algebras of

bounded complexity, the
elements of Ax are invariant
under permutations for

large X.

The converse is also true.

. For all finite trees s and t with

sufficiently many branches, if
upref(s) = upref(t),

fnu(s) = fou(t) and
pbsymb(s) = pbsymb(t) then
A does not distinguish
between s and t.

. A language recognized by an

algebra of bounded complexity
is a Boolean combination of
a.-d.



Lemma 2 (Trees with many branches) 1/2

Fix a syntactic FTx-algebra A of bounded complexity, with evaluation
morphism «. Write s ~ 4 t if a(s) = a(t).

Permutation lemma

If a tree t(x, y) has sufficiently many branches then, for all trees t1, to,

t(t1, t2) ~4 t(t2, t1)

Duplication lemma

If a tree t(x, y, z) has sufficiently many branches then, for all trees t1, tp,

t(tla t27 t2) =A t(t17 t].a t2)
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Fix a syntactic FTx-algebra A of bounded complexity, with evaluation
morphism «. Write s ~ 4 t if a(s) = a(t).

Permutation lemma: after repetitive and careful applications

If a tree t(t1, tp) has sufficiently many branches then

t(ty, t2) ~4 t(to, t1)

Duplication lemma

If a tree t(x, y, z) has sufficiently many branches then, for all trees t1, tp,

t(tla t27 t2) =A t(t17 t].a t2)

Creation lemma

If a tree t has sufficiently many branches then, for all trees s(x, y) and all
¢, d symbols that appear in t (c constant),

s(t,c) ~4 s(t,d(c,...,c))
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Lemma 2 (Trees with many branches) 2/2

Creation lemma

If a tree t has sufficiently many branches then, for all trees s(x, y) and all
symbols ¢, d that appear in t (¢ constant),

s(t,c) ~4 s(t,d(c,...,c))

Lemma 2
For all finite trees s and t with sufficiently many branches, if
upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(s) = pbsymb(t) then
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Structure of the proof of the hard direction

Characterization theorem

A language of finite trees is recognized
by an FTx-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L C ¥7.

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
BCY.

d. A regular language K of bounded
branching.

1.

In syntactic algebras of
bounded complexity, the
elements of Ax are invariant
under permutations whenever
X is large enough,

. The converse is also true,

For all finite trees s and t with
sufficiently many branches, if
upref(s) = upref(t),

fou(s) = fou(t) and
pbsymb(s) = pbsymb(t) then
A does not distinguish
between s and t,

Express the language as a
Boolean combination of a.-d.



Structure of the proof of the hard direction

Characterization theorem

A language of finite trees is recognized
by an FTx-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L C ¥7.

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
BCY.

d. A regular language K of bounded
branching.




	Appendix

