A Complexity Approach to Tree Algebras: the Bounded Case

Arthur Jaquard joint work with Thomas Colcombet

IRIF, CNRS, Université de Paris

Journées annuelles GT ALGA | June 18, 2021

Algebras are used to characterize classes of languages

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Schützenberger, 1965

A regular language *L* is star-free if and only if its syntactic monoid is aperiodic.

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Infinitely sorted algebras

 $(A_n)_{n\in\mathbb{N}}\ (A_X)_X$ finite

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language *L* is star-free if and only if its syntactic monoid is aperiodic.

Infinitely sorted algebras

 $(A_n)_{n\in\mathbb{N}}\ (A_X)_X$ finite

Problem: Hard to derive characterizations with infinitely sorted algebras

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language *L* is star-free if and only if its syntactic monoid is aperiodic.

Infinitely sorted algebras

 $(A_n)_{n\in\mathbb{N}}\ (A_X)_X$ finite

Problem: Hard to derive characterizations with infinitely sorted algebras

Objective: characterize classes that can be naturally defined using infinitely sorted algebras

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{ \text{trees in which all the variables of } X \text{ appear on the leaves} \}$

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$

Definition (Finite Tree algebras)

A finite FT_{Σ} -algebra \mathcal{A} consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_x^{\mathcal{A}} \colon A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and $x \in X$, **Renaming.** rename $\mathcal{A}[\sigma] \colon A_X \to A_Y$ for all surjective maps $\sigma \colon X \to Y$.

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{ \text{trees in which all the variables of } X \text{ appear on the leaves} \}$

Definition (Finite Tree algebras)

A finite FT_{Σ} -algebra \mathcal{A} consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_x^{\mathcal{A}} : A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and $x \in X$, **Renaming.** rename $\mathcal{A}[\sigma] : A_X \to A_Y$ for all surjective maps $\sigma : X \to Y$.

Identities? $a(x, y) \cdot_y b$ $a(x, z) \cdot_z b$ We also define morphisms, congruences...

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$

Definition (Finite Tree algebras)

A finite FT_{Σ} -algebra \mathcal{A} consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_x^{\mathcal{A}} \colon A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and $x \in X$, **Renaming.** rename^{\mathcal{A}}[σ]: $A_X \to A_Y$ for all surjective maps $\sigma \colon X \to Y$.

Given a finite FT_{Σ} -algebra \mathcal{A} , there is a unique morphism from the free algebra to \mathcal{A} . It is called the evaluation morphism of \mathcal{A} .

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Example L = The language of all trees that only contains *a*'s and *b*'s

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Example L = The language of all trees that only contains *a*'s and *b*'s

$$x \xrightarrow{a} \{a\} \in A_{\{x\}}$$

 $x x$

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Example L = The language of all trees that only contains *a*'s and *b*'s

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Example L = The language of all trees that only contains *a*'s and *b*'s

The size of $|A_X|$ is bounded (it does not depend on |X|).

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Example L = The language of all trees that only contains *a*'s and *b*'s

 $\begin{array}{ccc} a & & & \\ & \swarrow & & \\ x & & x \\ & & & \\$

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier

 $(A_X)_X$ finite, all A_X finite

its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$. $(|X| = |Y| \text{ implies } |A_X| = |A_Y|)$

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Long term objective

. . .

Characterize the languages recognized by algebras of

- Bounded complexity (This talk)
- Polynomial complexity
- Exponential complexity

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier

 $(A_X)_X$ finite, all A_X finite

its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$. $(|X| = |Y| \text{ implies } |A_X| = |A_Y|)$

L = trees without *b*'s on the leftmost branch

L = trees without *b*'s on the leftmost branch

L = trees without *b*'s on the leftmost branch

$$A_X = 2^{\Sigma} \uplus (2^{\Sigma} \times X)$$

 $\operatorname{lb}(t) = \{a \in \Sigma \mid a \text{ occurs in the leftmost branch of } t\}$

 $\alpha(t) = \begin{cases} lb(t) & \text{if there is no variable on the leftmost branch of } t \\ (lb(t), x) & \text{if } x \text{ is the variable on the leftmost branch of } t \end{cases}$

This algebra has linear complexity.

L = trees without *b*'s on the leftmost branch

$$A_X = 2^{\Sigma} \uplus (2^{\Sigma} \times X)$$

 $\operatorname{lb}(t) = \{a \in \Sigma \mid a \text{ occurs in the leftmost branch of } t\}$

 $\alpha(t) = \begin{cases} lb(t) & \text{if there is no variable on the leftmost branch of } t\\ (lb(t), x) & \text{if } x \text{ is the variable on the leftmost branch of } t \end{cases}$

This algebra has linear complexity.

Better algebra: $A_X = X \uplus \{\bot, \top\}$

L = trees without *b*'s on the leftmost branch

$$A_X = 2^{\Sigma} \uplus (2^{\Sigma} \times X)$$

 $\operatorname{lb}(t) = \{a \in \Sigma \mid a \text{ occurs in the leftmost branch of } t\}$

 $\alpha(t) = \begin{cases} lb(t) & \text{if there is no variable on the leftmost branch of } t\\ (lb(t), x) & \text{if } x \text{ is the variable on the leftmost branch of } t \end{cases}$

This algebra has linear complexity.

Better algebra: $A_X = X \uplus \{\bot, \top\}$ (it is the syntactic algebra of L)

L = trees with at least a b on every branch

L = trees with at least a b on every branch $A = \frac{a}{x} \xrightarrow{\alpha} \{y\}$ $A_X = 2^X \uplus \{\bot\}$

 $\operatorname{vw}_b(t) = \{x \in X \mid x \text{ occurs on a branch that has no } b$'s $\}$

 $\alpha(t) = \begin{cases} \bot & \text{if there is branch without a } b \text{ that ends with a constant} \\ vw_b(t) & \text{otherwise} \end{cases}$

L = trees with at least a b on every branch

$$A_X = 2^X \uplus \{\bot\}$$

 $\operatorname{vw}_b(t) = \{x \in X \mid x \text{ occurs on a branch that has no } b's\}$

 $\alpha(t) = \begin{cases} \bot & \text{if there is branch without a } b \text{ that ends with a constant} \\ vw_b(t) & \text{otherwise} \end{cases}$

L = trees with at least a b on every branch

$$A_X = 2^X \uplus \{\bot\}$$

 $\operatorname{vw}_b(t) = \{x \in X \mid x \text{ occurs on a branch that has no } b's\}$

 $\alpha(t) = \begin{cases} \bot & \text{if there is branch without a } b \text{ that ends with a constant} \\ vw_b(t) & \text{otherwise} \end{cases}$

L = trees with at least a b on every branch

Languages recognized by top-down deterministic automata

All languages recognized by top-down deterministic automata are recognized by FT_{Σ} -algebras of exponential complexity.

$$A_X = 2^X \uplus \{\bot\}$$

 $\operatorname{vw}_b(t) = \{x \in X \mid x \text{ occurs on a branch that has no } b's\}$

 $\alpha(t) = \begin{cases} \bot & \text{if there is branch without a } b \text{ that ends with a constant} \\ vw_b(t) & \text{otherwise} \end{cases}$

 $\alpha(t) = \begin{cases} \bot & \text{if there is branch without a } b \text{ that ends with a constant} \\ vw_b(t) & \text{otherwise} \end{cases}$

Main result

Characterization theorem

A language of finite trees is recognized by an FT_{Σ} -algebra of bounded complexity if and only if it is a Boolean combination of languages of the following kinds:

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol b for a fixed non unary symbol b.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Bounded branching: $\exists k$ all trees in K have at most k branches

Main result

Characterization theorem

A language of finite trees is recognized by an FT_{Σ} -algebra of bounded complexity if and only if it is a Boolean combination of languages of the following kinds:

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol b for a fixed non unary symbol b.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Easy direction: any Boolean combination of a.-d. is recognized by an FT_{Σ} -algebra of bounded complexity.
Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

The languages UPref(L), FNU(b) and PBSymb(B) are recognized by algebras of bounded complexity for all $b \in \Sigma_{\neq 1}$, $B \subseteq \Sigma$ and $L \subseteq \Sigma_1^*$ that is regular.

Lemma

A regular language K of bounded branching is recognized by an algebra of bounded complexity.

Let \mathcal{A} recognize K. Let k be such that trees with more than k branches never belong to K.

Lemma

The languages UPref(L), FNU(b) and PBSymb(B) are recognized by algebras of bounded complexity for all $b \in \Sigma_{\neq 1}$, $B \subseteq \Sigma$ and $L \subseteq \Sigma_1^*$ that is regular.

Lemma

A regular language K of bounded branching is recognized by an algebra of bounded complexity.

Let \mathcal{A} recognize K. Let k be such that trees with more than k branches never belong to K.

Lemma

A Boolean combination of FT_{Σ} -algebras of bounded complexity has bounded complexity.

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Characterization theorem

A language of finite trees is recognized by an FT_{Σ} -algebra of bounded complexity if and only if it is a Boolean combination of languages of the following kinds:

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols B, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

 In syntactic algebras of bounded complexity, the elements of A_X are invariant under permutations for large X.

The converse is also true.

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

- In syntactic algebras of bounded complexity, the elements of A_X are invariant under permutations for large X.
 The converse is also true.
- 2. For all finite trees s and t with sufficiently many branches, if upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(s) = pbsymb(t) then A does not distinguish between s and t.

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

- In syntactic algebras of bounded complexity, the elements of A_X are invariant under permutations for large X.
 The converse is also true.
- 2. For all finite trees s and t with sufficiently many branches, if upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(s) = pbsymb(t) then A does not distinguish between s and t.
- A language recognized by an algebra of bounded complexity is a Boolean combination of a.-d.

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols B, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

- In syntactic algebras of bounded complexity, the elements of A_X are invariant under permutations for large X.
 The converse is also true.
- 2. For all finite trees s and t with sufficiently many branches, if upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(s) = pbsymb(t) then A does not distinguish between s and t.
- A language recognized by an algebra of bounded complexity is a Boolean combination of a.-d.

$$\varphi_X \colon \mathbf{Sym}(X) \to \mathbf{Sym}(A_X)$$
$$\sigma \mapsto \operatorname{rename}^{\mathcal{A}}[\sigma]$$

Lemma 1 (Invariance under permutations)

A finite syntactic FT_{Σ} -algebra is of bounded complexity if and only if for all sufficiently large finite set of variables X, $\text{Ker}(\varphi_X) = \text{Sym}(X)$.

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$

Bounded complexity 🗸

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$

Bounded complexity ✓ Polynomial complexity ? Exponential complexity ?

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$

Bounded complexity ✓ Polynomial complexity ? Exponential complexity ?

A similar characterization of languages of infinite regular trees as Boolean combinations of a.-d. and other languages

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$

Bounded complexity ✓ Polynomial complexity ? Exponential complexity ?

A similar characterization of languages of infinite regular trees as Boolean combinations of a.-d. and other languages

Orbit complexity: renaming yields an action of Sym(X) over A_X .

 $c^\circ_{\mathcal{A}}(|X|) = |A_X/\mathsf{Sym}(X)|$

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$

Bounded complexity ✓ Polynomial complexity ? Exponential complexity ?

A similar characterization of languages of infinite regular trees as Boolean combinations of a.-d. and other languages

Orbit complexity: renaming yields an action of Sym(X) over A_X .

 $c^{\circ}_{\mathcal{A}}(|X|) = |A_X/\mathsf{Sym}(X)|$

Ongoing: polynomial complexity, bounded orbit complexity...

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Characterization theorem for languages of regular trees

A regular language of trees is recognized by an algebra of bounded complexity if and only if it is a Boolean combination of languages of the kinds a.-d. and:

- e. The language of finite trees.
- f. The language of regular trees with a finite number of branches.
- g. The language of regular trees that have a subtree u that is both infinite and only has symbols of arity 1, such that $u \in L$, where $L \subseteq \Sigma_1^{\omega}$ is regular and prefix-invariant.
- h. The language of regular trees that have a subtree t that is B-dense, for some $B \subseteq \Sigma$.

Where *B*-dense means that all the symbols of *t* belong to *B*, and that every symbol $b \in B$ occurs in every subtree of *t*.

Characterization theorem for languages of regular trees

A regular language of trees is recognized by an algebra of bounded complexity if and only if it is a Boolean combination of languages of the kinds a.-d. and:

- e. The language of finite trees.
- f. The language of regular trees with a finite number of branches.
- g. The language of regular trees that have a subtree u that is both infinite and only has symbols of arity 1, such that $u \in L$, where $L \subseteq \Sigma_1^{\omega}$ is regular and prefix-invariant.
- h. The language of regular trees that have a subtree t that is B-dense, for some $B \subseteq \Sigma$.

Where *B*-dense means that all the symbols of *t* belong to *B*, and that every symbol $b \in B$ occurs in every subtree of *t*.

$$\varphi_X \colon \mathbf{Sym}(X) \to \mathbf{Sym}(A_X)$$

 $\sigma \mapsto \operatorname{rename}^{\mathcal{A}}[\sigma]$

Lemma 1 (Invariance under permutations)

A finite syntactic FT_{Σ} -algebra is of bounded complexity if and only if for all sufficiently large finite set of variables X, $Ker(\varphi_X) = Sym(X)$.

```
\varphi_X \colon \mathbf{Sym}(X) \to \mathbf{Sym}(A_X)\sigma \mapsto \operatorname{rename}^{\mathcal{A}}[\sigma]
```

Lemma 1 (Invariance under permutations)

A finite syntactic FT_{Σ} -algebra is of bounded complexity if and only if for all sufficiently large finite set of variables X, $Ker(\varphi_X) = Sym(X)$.

Lemma, folklore: Ker(φ_X) may only be **Sym**(X), **Alt**(X) or {id_X} whenever $|X| \ge 5$.

$$\varphi_X \colon \mathbf{Sym}(X) \to \mathbf{Sym}(A_X)$$

 $\sigma \mapsto \operatorname{rename}^{\mathcal{A}}[\sigma]$

Lemma 1 (Invariance under permutations)

A finite syntactic FT_{Σ} -algebra is of bounded complexity if and only if for all sufficiently large finite set of variables X, $Ker(\varphi_X) = Sym(X)$.

Lemma, folklore: Ker(φ_X) may only be **Sym**(X), **Alt**(X) or {id_X} whenever $|X| \ge 5$. **Lemma 1a:** In a syntactic algebra, Ker(φ_X) = {id_X} or Ker(φ_X) = **Sym**(X) for large X.

$$\varphi_X \colon \mathbf{Sym}(X) \to \mathbf{Sym}(A_X)$$

 $\sigma \mapsto \operatorname{rename}^{\mathcal{A}}[\sigma]$

Lemma 1 (Invariance under permutations)

A finite syntactic FT_{Σ} -algebra is of bounded complexity if and only if for all sufficiently large finite set of variables X, $Ker(\varphi_X) = Sym(X)$.

Lemma, folklore: Ker(φ_X) may only be **Sym**(X), **Alt**(X) or {id_X} whenever $|X| \ge 5$.

Lemma 1a: In a syntactic algebra, $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$ or $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ for large X. **Lemma 1b:** In a syntactic algebra of bounded complexity, $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ for large X.

Syntactic FT_{Σ} -algebras

Let A be some FT_{Σ} -algebra and let $X = \{x_0, ..., x_{n-1}\}$ be a finite set of variables. Define for all $a \in A_X$

Syntactic FT_{Σ} -algebras

Let A be some FT_{Σ} -algebra and let $X = \{x_0, ..., x_{n-1}\}$ be a finite set of variables. Define for all $a \in A_X$

Lemma

If \mathcal{A} is a syntactic algebra then a = b iff $\langle a \rangle = \langle b \rangle$, for all a, b in \mathcal{A} .

Syntactic FT_{Σ} -algebras

Let A be some FT_{Σ} -algebra and let $X = \{x_0, ..., x_{n-1}\}$ be a finite set of variables. Define for all $a \in A_X$

Lemma

If \mathcal{A} is a syntactic algebra then a = b iff $\langle a \rangle = \langle b \rangle$, for all a, b in \mathcal{A} .

Corollary: A *syntactic algebra* is of complexity at most doubly-exponential:

$$|A_X| \le |A_{\emptyset}|^{|A_{\{x\}}||A_{\emptyset}||^{\chi}}$$

Lemma 1a

In a syntactic algebra \mathcal{A} , there is an integer M such that for all X of cardinal at least M, either $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ or $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$.

Lemma 1a

In a syntactic algebra \mathcal{A} , there is an integer M such that for all X of cardinal at least M, either $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ or $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$.

 $M = \max(5, |A_{\emptyset}| + 1)$

Suppose for the sake of contradiction that $|X| \ge M$ and $\operatorname{Ker}(\varphi_X) = \operatorname{Alt}(X)$

 $\operatorname{Im}(\varphi_X) = \{ \operatorname{id}_{A_X}, \tau \}$

Lemma 1a

In a syntactic algebra \mathcal{A} , there is an integer M such that for all X of cardinal at least M, either $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ or $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$.

 $M = \max(5, |A_{\emptyset}| + 1)$ Pr

Prove rename
$${}^{\mathcal{A}}[t] = \mathrm{id}_{\mathcal{A}_X}$$
 by showing $\langle \mathrm{rename}^{\mathcal{A}}[t](a) \rangle = \langle a \rangle$ for all $a \in \mathcal{A}_X$.

Suppose for the sake of contradiction that $|X| \ge M$ and $\operatorname{Ker}(\varphi_X) = \operatorname{Alt}(X)$

 $\operatorname{Im}(\varphi_X) = \{ \operatorname{id}_{A_X}, \tau \}$

Lemma 1a

In a syntactic algebra \mathcal{A} , there is an integer M such that for all X of cardinal at least M, either $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ or $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$.

Prove rename $\mathcal{A}[t] = \mathrm{id}_{A_{\chi}}$ by showing $M = \max(5, |A_{\emptyset}| + 1)$ $\langle \operatorname{rename}^{\mathcal{A}}[t](a) \rangle = \langle a \rangle$ for all $a \in A_X$. Suppose for the sake Fix $a \in A_X$ of contradiction that $c \in A_{\{x\}}, b \in (A_{\emptyset})^X$ $|X| \geq M$ and $\operatorname{Ker}(\varphi_X) = \operatorname{Alt}(X)$ $x \neq y$ with b(x) = b(y) $\langle \operatorname{rename}^{\mathcal{A}}[t](a)\rangle(b,c) = \langle \tau(a)\rangle(b,c)$ $\operatorname{Im}(\varphi_X) = \{ \operatorname{id}_{A_X}, \tau \}$ $= \langle \operatorname{rename}^{\mathcal{A}}[(x \ y)](a) \rangle (b, c)$ $\langle a \rangle \colon (A_{\emptyset})^X \times A_{\{x\}} \to A_{\emptyset}$ $/c \sum_{\underline{x}}$ $= \langle a \rangle (b, c)$ $(b,c) \xrightarrow{(c)} c \cdot_x (a \cdot_{x_0} b(x_0) \dots \cdot_{x_{n-1}} b(x_{n-1}))$ $\bigwedge_{x}\bigwedge_{x}\bigwedge_{x}\cdots,\bigwedge_{x} \longmapsto$

Lemma 1a

In a syntactic algebra \mathcal{A} , there is an integer M such that for all X of cardinal at least M, either $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ or $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$.

Lemma 1b

In a syntactic algebra of bounded complexity, $Ker(\varphi_X) = Sym(X)$ whenever X is large enough.

Suppose $|A_X| \leq k$ for all X and $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$

Lemma 1a

In a syntactic algebra \mathcal{A} , there is an integer M such that for all X of cardinal at least M, either $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ or $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$.

Lemma 1b

In a syntactic algebra of bounded complexity, $Ker(\varphi_X) = Sym(X)$ whenever X is large enough.

Suppose $|A_X| \leq k$ for all X and $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$

$$|X|! = |\mathrm{Im}(\varphi_X)| \le |\mathsf{Sym}(A_X)| = |A_X|! \le k!$$

```
\varphi_X \colon \mathbf{Sym}(X) \to \mathbf{Sym}(A_X)\sigma \mapsto \operatorname{rename}^{\mathcal{A}}[\sigma]
```

Lemma 1 (Invariance under permutations)

A finite syntactic FT_{Σ} -algebra is of bounded complexity if and only if for all sufficiently large finite set of variables X, $Ker(\varphi_X) = Sym(X)$.

Lemma 1a: In a syntactic algebra, $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$ or $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ for large X.

```
\varphi_X \colon \mathbf{Sym}(X) \to \mathbf{Sym}(A_X)\sigma \mapsto \operatorname{rename}^{\mathcal{A}}[\sigma]
```

Lemma 1 (Invariance under permutations)

A finite syntactic FT_{Σ} -algebra is of bounded complexity if and only if for all sufficiently large finite set of variables X, $Ker(\varphi_X) = Sym(X)$.

Lemma 1a: In a syntactic algebra, $\operatorname{Ker}(\varphi_X) = {\operatorname{id}}_X {\operatorname{for}}$ or $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ for large X.

Lemma, admitted: In a syntactic algebra, either $\text{Ker}(\varphi_X) = {\text{id}_X}$ for large X, or $\text{Ker}(\varphi_X) = \text{Sym}(X)$ for large X.
Consider for all X the group morphism induced by renaming

```
\varphi_X \colon \mathbf{Sym}(X) \to \mathbf{Sym}(A_X)\sigma \mapsto \operatorname{rename}^{\mathcal{A}}[\sigma]
```

Lemma 1 (Invariance under permutations)

A finite syntactic FT_{Σ} -algebra is of bounded complexity if and only if for all sufficiently large finite set of variables X, $Ker(\varphi_X) = Sym(X)$.

Lemma 1a: In a syntactic algebra, $\operatorname{Ker}(\varphi_X) = {\operatorname{id}_X}$ or $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ for large X.

Lemma, admitted: In a syntactic algebra, either $\text{Ker}(\varphi_X) = {\text{id}_X}$ for large X, or $\text{Ker}(\varphi_X) = \text{Sym}(X)$ for large X.

Lemma 1c: A syntactic algebra in which $Ker(\varphi_X) = Sym(X)$ for every sufficiently large X is of bounded complexity.

Lemma

Suppose that $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ whenever $|X| \in \{n, n-1\}$. Then for all $a \in A_X$ with |X| = n, and all $b, b' \in (A_{\emptyset})^X$, $c \in A_{\{x\}}$

$$\langle a \rangle (b,c) = \langle a \rangle (b',c)$$

whenever Im(b) = Im(b').

$$\langle a \rangle : (A_{\emptyset})^{X} \times A_{\{x\}} \to A_{\emptyset}$$

$$\overbrace{x}^{x} = \overbrace{x}^{c} = \overbrace{x}^{c}$$

$$a = a$$

$$a = a$$

$$a$$

$$a$$

$$a$$

$$a$$

$$a$$

$$a$$

$$a$$

$$a$$

$$a$$

Lemma

Suppose that $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ whenever $|X| \in \{n, n-1\}$. Then for all $a \in A_X$ with |X| = n, and all $b, b' \in (A_{\emptyset})^X$, $c \in A_{\{x\}}$

$$\langle a \rangle (b,c) = \langle a \rangle (b',c)$$

whenever $\operatorname{Im}(b) = \operatorname{Im}(b')$.

 $\langle z \rangle \cdot (A_{x})^{X} \times A_{x} \dots \wedge A_{x}$

Lemma

Suppose that $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ whenever $|X| \in \{n, n-1\}$. Then for all $a \in A_X$ with |X| = n, and all $b, b' \in (A_{\emptyset})^X$, $c \in A_{\{x\}}$

$$\langle a \rangle (b,c) = \langle a \rangle (b',c)$$

whenever
$$\operatorname{Im}(b) = \operatorname{Im}(b')$$
.

Lemma

Suppose that $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ whenever $|X| \in \{n, n-1\}$. Then for all $a \in A_X$ with |X| = n, and all $b, b' \in (A_{\emptyset})^X$, $c \in A_{\{x\}}$

$$\langle a \rangle (b,c) = \langle a \rangle (b',c)$$

whenever Im(b) = Im(b').

Lemma 1c

A finite syntactic algebra such that $\operatorname{Ker}(\varphi_X) = \operatorname{Sym}(X)$ for all sufficiently large set of variables X has bounded complexity.

For all a, $\langle a \rangle$ must be chosen in a set of at most $|A_{\emptyset}|^{|A_{\{x\}}|2^{|A_{\emptyset}|}}$ functions. **Lemma:** for all a, b, a = b if and only if $\langle a \rangle = \langle b \rangle$.

Structure of the proof of the hard direction

Characterization theorem

A language of finite trees is recognized by an FT_{Σ} -algebra of bounded complexity if and only if it is a Boolean combination of languages of the following kinds:

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

- In syntactic algebras of bounded complexity, the elements of A_X are invariant under permutations for large X.
 The converse is also true.
- 2. For all finite trees s and t with sufficiently many branches, if upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(s) = pbsymb(t) then A does not distinguish between s and t.
- A language recognized by an algebra of bounded complexity is a Boolean combination of a.-d.

Fix a syntactic FT_{Σ} -algebra \mathcal{A} of bounded complexity, with evaluation morphism α . Write $s \simeq_{\mathcal{A}} t$ if $\alpha(s) = \alpha(t)$.

Permutation lemma

If a tree t(x, y) has sufficiently many branches then, for all trees t_1, t_2 ,

 $t(t_1,t_2)\simeq_{\mathcal{A}} t(t_2,t_1)$

Duplication lemma

If a tree t(x, y, z) has sufficiently many branches then, for all trees t_1, t_2 ,

 $t(t_1, t_2, t_2) \simeq_{\mathcal{A}} t(t_1, t_1, t_2)$

Fix a syntactic FT_{Σ} -algebra \mathcal{A} of bounded complexity, with evaluation morphism α . Write $s \simeq_{\mathcal{A}} t$ if $\alpha(s) = \alpha(t)$.

Permutation lemma

If a tree t(x, y) has sufficiently many branches then, for all trees t_1, t_2 ,

 $t(t_1,t_2)\simeq_{\mathcal{A}} t(t_2,t_1)$

Duplication lemma

If a tree t(x, y, z) has sufficiently many branches then, for all trees t_1, t_2 ,

 $t(t_1,t_2,t_2)\simeq_{\mathcal{A}} t(t_1,t_1,t_2)$

Fix a syntactic FT_{Σ} -algebra \mathcal{A} of bounded complexity, with evaluation morphism α . Write $s \simeq_{\mathcal{A}} t$ if $\alpha(s) = \alpha(t)$.

Permutation lemma: after repetitive and careful applications

If a tree $t(t_1, t_2)$ has sufficiently many branches then

 $t(t_1,t_2)\simeq_{\mathcal{A}} t(t_2,t_1)$

Duplication lemma

If a tree t(x, y, z) has sufficiently many branches then, for all trees t_1, t_2 ,

 $t(t_1,t_2,t_2)\simeq_{\mathcal{A}} t(t_1,t_1,t_2)$

Fix a syntactic FT_{Σ} -algebra \mathcal{A} of bounded complexity, with evaluation morphism α . Write $s \simeq_{\mathcal{A}} t$ if $\alpha(s) = \alpha(t)$.

Permutation lemma: after repetitive and careful applications

If a tree $t(t_1, t_2)$ has sufficiently many branches then

 $t(t_1,t_2) \simeq_{\mathcal{A}} t(t_2,t_1)$

Duplication lemma

If a tree t(x, y, z) has sufficiently many branches then, for all trees t_1, t_2 ,

$$t(t_1,t_2,t_2)\simeq_{\mathcal{A}} t(t_1,t_1,t_2)$$

Creation lemma

If a tree t has sufficiently many branches then, for all trees s(x, y) and all c, d symbols that appear in t (c constant),

 $s(t,c) \simeq_{\mathcal{A}} s(t,d(c,...,c))$

Creation lemma

If a tree t has sufficiently many branches then, for all trees s(x, y) and all symbols c, d that appear in t (c constant),

Creation lemma

If a tree t has sufficiently many branches then, for all trees s(x, y) and all symbols c, d that appear in t (c constant),

$$s(t,c) \simeq_{\mathcal{A}} s(t,d(c,...,c))$$

Lemma 2

For all finite trees s and t with sufficiently many branches, if upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(s) = pbsymb(t) then

 $s \simeq_{\mathcal{A}} t$

Creation lemma

If a tree t has sufficiently many branches then, for all trees s(x, y) and all symbols c, d that appear in t (c constant),

$$s(t,c) \simeq_{\mathcal{A}} s(t,d(c,...,c))$$

Lemma 2

For all finite trees s and t with sufficiently many branches, if upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(s) = pbsymb(t) then

 $s \simeq_{\mathcal{A}} t$

Structure of the proof of the hard direction

Characterization theorem

A language of finite trees is recognized by an FT_{Σ} -algebra of bounded complexity if and only if it is a Boolean combination of languages of the following kinds:

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols B, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

- In syntactic algebras of bounded complexity, the elements of A_X are invariant under permutations whenever X is large enough,
- 1'. The converse is also true,
- 2. For all finite trees s and t with sufficiently many branches, if upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(s) = pbsymb(t) then A does not distinguish between s and t,
- 3. Express the language as a Boolean combination of a.-d.

Characterization theorem

A language of finite trees is recognized by an FT_{Σ} -algebra of bounded complexity if and only if it is a Boolean combination of languages of the following kinds:

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols B, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.