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Algebras and classes of languages

Algebras are used to
characterize classes

of languages

Schützenberger, 1965

A regular language L is
star-free if and only if its
syntactic monoid is
aperiodic.

Finite words
Monoids, semigroups
Infinite words
Wilke algebras, ω-semigroups,
◦-algebras...
Trees
Deterministic automata, Preclones,
Hyperclones, Operads,...
Graphs
HR-algebras, VR-algebras

Infinitely sorted algebras
(An)n∈N

(AX )X finite

Problem: Hard to derive
characterizations with infinitely
sorted algebras

Objective: characterize classes
that can be naturally defined
using infinitely sorted algebras
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Infinitely sorted tree algebras: FTΣ-algebras

Let Σ be a ranked alphabet. The free FTΣ-algebra has as carrier (TX )X finite

where the X ’s are finite sets of variables.

TX = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming

Definition (Finite Tree algebras)

A finite FTΣ-algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and x ∈ X ,
Renaming. renameA[σ] : AX → AY for all surjective maps σ : X → Y .
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Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and x ∈ X ,
Renaming. renameA[σ] : AX → AY for all surjective maps σ : X → Y .

Identities? a(x , y) ·y b a(x , z) ·z b
We also define morphisms, congruences...
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where the X ’s are finite sets of variables.
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indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and x ∈ X ,
Renaming. renameA[σ] : AX → AY for all surjective maps σ : X → Y .

Given a finite FTΣ-algebra A, there is a unique morphism from the free algebra to
A. It is called the evaluation morphism of A.
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Languages and complexity

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FTΣ-algebra A
if there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Example L = The language of all trees that only contains a’s and b’s

AX = 2Σ for all X

A ·x B = A ∪ B

The size of |AX | is
bounded (it does not
depend on |X |).

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier

(AX )X finite, all AX finite

its complexity map is cA(|X |) = |AX |. (|X | = |Y | implies |AX | = |AY |)

Long term objective

Characterize the languages recognized by algebras of

- Bounded complexity

- Polynomial complexity

- Exponential complexity

- ...
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its complexity map is cA(|X |) = |AX |. (|X | = |Y | implies |AX | = |AY |)

Long term objective

Characterize the languages recognized by algebras of

- Bounded complexity (This talk)

- Polynomial complexity

- Exponential complexity

- ...
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Example: The language of all trees without b’s on the leftmost branch

L = trees without b’s on the leftmost branch

a

b

c c

a

y y

α7−→ {a, b, c} a

a

x c

a

y y

α7−→ ({a}, x),

AX = 2Σ ] (2Σ × X )

lb(t) = {a ∈ Σ | a occurs in the leftmost branch of t}

α(t) =

{
lb(t) if there is no variable on the leftmost branch of t

(lb(t), x) if x is the variable on the leftmost branch of t

This algebra has linear complexity.

Better algebra: AX = X ] {⊥,>}
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(lb(t), x) if x is the variable on the leftmost branch of t

This algebra has linear complexity.

Better algebra: AX = X ] {⊥,>}(it is the syntactic algebra of L)
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Example: The language of all trees with at least a b on every branch

L = trees with at least a b on every branch

AX = 2X ] {⊥}

vwb(t) = {x ∈ X | x occurs on a branch that has no b’s}

α(t) =

{
⊥ if there is branch without a b that ends with a constant

vwb(t) otherwise

This algebra has exponential complexity and is syntactic for L

Languages recognized by top-down deterministic automata

All languages recognized by top-down deterministic automata are
recognized by FTΣ-algebras of exponential complexity.

Regular languages

A top-down nondeterministic automaton can be transformed into a
FTΣ-algebras of doubly-exponential complexity that recognizes the same
language.
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Main result

Characterization theorem
A language of finite trees is recognized
by an FTΣ-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L ⊆ Σ∗1 .

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
B ⊆ Σ.

d. A regular language K of bounded
branching.

Bounded branching: ∃k all trees
in K have at most k branches
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Easy direction of the characterization theorem

Lemma

The languages UPref(L), FNU(b) and PBSymb(B) are recognized by
algebras of bounded complexity for all b ∈ Σ 6=1, B ⊆ Σ and L ⊆ Σ∗1 that is
regular.

Let ϕ : Σ∗1 → M recognize L.

AX = M × 2Σ1 × Σ 6=1 × 2Σ

α1(t) = ϕ(upref(t))

α2(t) = {letters of upref(t)}
α3(t) = fnu(t)

α4(t) = pbsymb(t)

A{x} = M×2Σ1 × (Σ6=1∪{x})×2Σ
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Let A recognize K . Let k be such that trees with more than k branches
never belong to K .
A A∅ A{x0} . . . A{x0,...,xk} . . .

A′ A∅ × {1, ..., k − 1,⊥} A{x0} × {1, ..., k − 1,⊥} . . . {⊥} . . .

7 / 18



Easy direction of the characterization theorem

Lemma

The languages UPref(L), FNU(b) and PBSymb(B) are recognized by
algebras of bounded complexity for all b ∈ Σ 6=1, B ⊆ Σ and L ⊆ Σ∗1 that is
regular.

Lemma

A regular language K of bounded branching is recognized by an algebra of
bounded complexity.

Let A recognize K . Let k be such that trees with more than k branches
never belong to K .
A A∅ A{x0} . . . A{x0,...,xk} . . .

A′ A∅ × {1, ..., k − 1,⊥} A{x0} × {1, ..., k − 1,⊥} . . . {⊥} . . .

Lemma

A Boolean combination of FTΣ-algebras of bounded complexity has
bounded complexity.

7 / 18



Structure of the proof of the hard direction

Characterization theorem
A language of finite trees is recognized
by an FTΣ-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L ⊆ Σ∗1 .

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
B ⊆ Σ.

d. A regular language K of bounded
branching.

1. In syntactic algebras of
bounded complexity, the
elements of AX are invariant
under permutations for
large X .
The converse is also true.

2. For all finite trees s and t with
sufficiently many branches, if
upref(s) = upref(t),
fnu(s) = fnu(t) and
pbsymb(s) = pbsymb(t) then
A does not distinguish
between s and t.

3. A language recognized by an
algebra of bounded complexity
is a Boolean combination of
a.-d.
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Invariance under permutations

Consider for all X the group morphism induced by renaming

ϕX : Sym(X )→ Sym(AX )

σ 7→ renameA[σ]

Lemma 1 (Invariance under permutations)

A finite syntactic FTΣ-algebra is of bounded complexity if and only if for
all sufficiently large finite set of variables X , Ker(ϕX ) = Sym(X ).

Lemma, folklore: Ker(ϕX ) may only be Sym(X ), Alt(X ) or {idX}
whenever |X | ≥ 5.
Lemma 1a: In a syntactic algebra, Ker(ϕX ) = {idX} or
Ker(ϕX ) = Sym(X ) for large X .
Lemma 1b: In a syntactic algebra of bounded complexity,
Ker(ϕX ) = Sym(X ) for large X .
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Syntactic FTΣ-algebras

Let A be some FTΣ-algebra and let X = {x0, ..., xn−1} be a finite set of
variables. Define for all a ∈ AX

...
...

Lemma

If A is a syntactic algebra then a = b iff 〈a〉 = 〈b〉, for all a, b in A.

Corollary: A syntactic algebra is of complexity at most
doubly-exponential:

|AX | ≤ |A∅||A{x}||A∅||X |
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Lemmas 1a and 1b

Lemma 1a

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

M = max(5, |A∅|+ 1)

Suppose for the sake
of contradiction that
|X | ≥ M and
Ker(ϕX ) = Alt(X )

Im(ϕX ) = {idAX
, τ}

Prove renameA[t] = idAX
by showing

〈renameA[t](a)〉 = 〈a〉 for all a ∈ AX .
Fix a ∈ AX

c ∈ A{x}, b ∈ (A∅)
X

x 6= y with b(x) = b(y)

〈renameA[t](a)〉(b, c) = 〈τ(a)〉(b, c)

= 〈renameA[(x y)](a)〉(b, c)

= 〈a〉(b, c)

...
...
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cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

Lemma 1b

In a syntactic algebra of bounded complexity, Ker(ϕX ) = Sym(X )
whenever X is large enough.

Suppose |AX | ≤ k for all X and Ker(ϕX ) = {idX}
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In a syntactic algebra of bounded complexity, Ker(ϕX ) = Sym(X )
whenever X is large enough.
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Invariance under permutations

Consider for all X the group morphism induced by renaming

ϕX : Sym(X )→ Sym(AX )

σ 7→ renameA[σ]

Lemma 1 (Invariance under permutations)

A finite syntactic FTΣ-algebra is of bounded complexity if and only if for
all sufficiently large finite set of variables X , Ker(ϕX ) = Sym(X ).

Lemma 1a: In a syntactic algebra, Ker(ϕX ) = {idX} or
Ker(ϕX ) = Sym(X ) for large X .

Lemma, admitted: In a syntactic algebra, either Ker(ϕX ) = {idX} for
large X , or Ker(ϕX ) = Sym(X ) for large X .
Lemma 1c: A syntactic algebra in which Ker(ϕX ) = Sym(X ) for every
sufficiently large X is of bounded complexity.
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Lemma 1c

Lemma

Suppose that Ker(ϕX ) = Sym(X )
whenever |X | ∈ {n, n − 1}. Then
for all a ∈ AX with |X | = n, and all
b, b′ ∈ (A∅)

X , c ∈ A{x}

〈a〉(b, c) = 〈a〉(b′, c)

whenever Im(b) = Im(b′).

〈a〉 : (A∅)
X × A{x} → A∅
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whenever Im(b) = Im(b′).

〈a〉 : (A∅)
X × A{x} → A∅

Lemma 1c

A finite syntactic algebra such that Ker(ϕX ) = Sym(X ) for all sufficiently
large set of variables X has bounded complexity.

For all a, 〈a〉 must be chosen in a set of at most |A∅||A{x}|2|A∅| functions.
Lemma: for all a, b, a = b if and only if 〈a〉 = 〈b〉.

13 / 18



Structure of the proof of the hard direction

Characterization theorem
A language of finite trees is recognized
by an FTΣ-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L ⊆ Σ∗1 .

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
B ⊆ Σ.

d. A regular language K of bounded
branching.

1. In syntactic algebras of
bounded complexity, the
elements of AX are invariant
under permutations for
large X .
The converse is also true.

2. For all finite trees s and t with
sufficiently many branches, if
upref(s) = upref(t),
fnu(s) = fnu(t) and
pbsymb(s) = pbsymb(t) then
A does not distinguish
between s and t.

3. A language recognized by an
algebra of bounded complexity
is a Boolean combination of
a.-d.
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Lemma 2 (Trees with many branches) 1/2

Fix a syntactic FTΣ-algebra A of bounded complexity, with evaluation
morphism α. Write s 'A t if α(s) = α(t).

Permutation lemma

If a tree t(x , y) has sufficiently many branches then, for all trees t1, t2,

t(t1, t2) 'A t(t2, t1)

Duplication lemma

If a tree t(x , y , z) has sufficiently many branches then, for all trees t1, t2,

t(t1, t2, t2) 'A t(t1, t1, t2)
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If a tree t has sufficiently many branches then, for all trees s(x , y) and all
c , d symbols that appear in t (c constant),
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Lemma 2 (Trees with many branches) 2/2

Creation lemma

If a tree t has sufficiently many branches then, for all trees s(x , y) and all
symbols c , d that appear in t (c constant),

s(t, c) 'A s(t, d(c , ..., c))
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Structure of the proof of the hard direction

Characterization theorem
A language of finite trees is recognized
by an FTΣ-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L ⊆ Σ∗1 .

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
B ⊆ Σ.

d. A regular language K of bounded
branching.

1. In syntactic algebras of
bounded complexity, the
elements of AX are invariant
under permutations whenever
X is large enough,

1’. The converse is also true,

2. For all finite trees s and t with
sufficiently many branches, if
upref(s) = upref(t),
fnu(s) = fnu(t) and
pbsymb(s) = pbsymb(t) then
A does not distinguish
between s and t,

3. Express the language as a
Boolean combination of a.-d.
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Conclusion

Complexity map: cA(|X |) = |AX |
Bounded complexity 3

Polynomial complexity ?

Exponential complexity ?

A similar characterization of
languages of infinite regular trees
as Boolean combinations of a.-d.

and other languages

Orbit complexity: renaming yields
an action of Sym(X ) over AX .

c◦A(|X |) = |AX/Sym(X )|

Ongoing: polynomial complexity,
bounded orbit complexity...
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Characterization theorem for
languages of regular trees
A regular language of trees is recognized
by an algebra of bounded complexity if
and only if it is a Boolean combination of
languages of the kinds a.-d. and:

e. The language of finite trees.

f. The language of regular trees with a
finite number of branches.

g. The language of regular trees that
have a subtree u that is both infinite
and only has symbols of arity 1, such
that u ∈ L, where L ⊆ Σω

1 is regular
and prefix-invariant.

h. The language of regular trees that
have a subtree t that is B-dense, for
some B ⊆ Σ.
Where B-dense means that all the
symbols of t belong to B, and that
every symbol b ∈ B occurs in every
subtree of t.
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