A Complexity Approach to Tree Algebras: the

Polynomial Case

Arthur Jaquard

joint work with Thomas Colcombet

Université de Paris, CNRS, IRIF

Automata Seminar | March 11, 2021

. °
| I 1F
INSTITUT
DE RECHERCHE

EN INFORMATIQUE Université de Paris
FONDAMENTALE

@

Infinitely sorted tree algebras

Let > be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

1/22

Infinitely sorted tree algebras

Let > be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}
Objects
a a
/\ETy / \ET4)
b ¢ r T

a a
/ \€ T(fy} / \ET{TVKI)
Tz Ty

1/22

Infinitely sorted tree algebras

Let > be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution
a p e~ a _ a
/\€T)y / \ET(I} /N T /N T /N
b ¢ r T X Yy b I a
a a /
INE Tiayy 7 \ET(ayy b \C
xr T Ty

1/22

Infinitely sorted tree algebras

Let > be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
a a a . a o a _ _
/\E€Ty / \ET4) /N TN T /N O'(ZU) —O'(y) =X
b ¢ r T Y b c a 7 a a
a a /\ o
€ Tryy /€Ty, —>
1'/ \x e} y {zy} b ¢ / N\ / N\

1/22

Infinitely sorted tree algebras

Let ¥ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
a a a . a o a _ _
/\ €Ty / \ET4) /N TN T /N O'(Z')—O'(y)—$
b ¢ Tz T Y b c a a a
a a /\ o
€ Tio, €T, (AN
l/ \$ (z,y} m/ \y {zy} b ¢ / N\ / N\

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, .. . ,xn,l)A € Alx,....xo1) forall a € X, and variables x;,
Substitution. -/': Ax x Ay — Ax\ixyuy for all finite X, Y and variable x,

Renaming. o: Ax — Ay for all maps o: X — Y.

1/22

Infinitely sorted tree algebras

Let ¥ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
a a a . a o a _ _
/\ €Ty / \ET4) /N TN T /N O'(Z')—O'(y)—$
b ¢ Tz T Y b c a a a
a a /\ o
€ Tio, €T, (AN
l/ \$ (z,y} m/ \y {zy} b ¢ / N\ / N\

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, .. . ,xn,l)A € Alx,....xo1) forall a € X, and variables x;,
Substitution. -/': Ax x Ay — Ax\ixyuy for all finite X, Y and variable x,

Renaming. o: Ax — Ay for all maps o: X — Y.

Identities? a(x,y)-y b a(x,z) -, b
We also define morphisms, congruences...

1/22

Infinitely sorted tree algebras

Let ¥ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (Tx)xcv finite-

Tx = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming
a a a . a o a _ _
/\ €Ty / \ET4) /N TN T /N O'(Z') = O'(y) =X
b ¢ r r Yy b e a y a a
a a /\ o
€ Tio, €Tra, (AN
w/ \$ (z,y} m/ \y {zy} b ¢ / N\ / N\

Definition (Finite Tree algebras)

A finite tree algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, .. . ,xn,l)A € Alx,....xo1) forall a € X, and variables x;,
Substitution. -/': Ax x Ay — Ax\ixyuy for all finite X, Y and variable x,
Renaming. o: Ax — Ay for all maps o: X — Y.

Given a finite tree algebra A, there is a unique morphism from the free algebra to
A. It is called the evaluation morphism of A.

1/22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation

morphism of A.

2/22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.)

2/22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.)

Example L = trees with a b on the leftmost branch

2/22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.)
Example L = trees with a b on the leftmost branch

RN =T /N = (L, x),

2/22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.)

Example L = trees with a b on the leftmost branch

a a
RN =T /N = (L, x),
b a a a
/N /N /N / \
c ¢c y vy X c y y
Ax ={T, L}y ({T, L} x X) |Ax| =2+ 2|X] is linear in | X|.

2/22

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over ¥ is recognized by a finite algebra A if
there is a set P C Ay such that L = a~(P) in which « is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.)

Example L = trees with a b on the leftmost branch

a a
RN =T /N = (L, x),
b a a a
/N /N /N / \
c ¢c y vy X c y y
Ax ={T, L}y ({T, L} x X) |Ax| =2+ 2|X] is linear in | X|.

This algebra has linear complexity.

2/22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

3/22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

3/22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

3/22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]
Polynomial complexity This talk
Exponential complexity -

Doubly-exponential complexity | All regular languages

3/22

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

A bounded hierarchy of classes

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]
Polynomial complexity This talk
Exponential complexity -

Doubly-exponential complexity | All regular languages

The objective is to identify new classes of languages and to gain a

better understanding of tree algebras.
3/22

Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} ’

4/22

Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} ’

Ax ={c,d}Ufal(x,y) | x,y € XU{c,+}}

4/22

Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} ’

Ax ={c,dtU{a(x,y) [x,y € XU {c,x}}
d %d PN S alxz) A S a(x, %)
a a X a
/ N\ /\ /N

X z y Yy y y

4/22

Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} ’

Ax ={c,d}Ufal(x,y) | x,y € XU{c,+}}

« a « a «
d % g PN % a(x,z) 2 s a(x, *)
a a X a
/ A\ /A /A
X z y vy y y
C [} a a @
— C AN — a(x, c) S = alc, o)
a a a vy
/ A\ N / A\
X ¢ y vy c ¢

4/22

Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} ’

Ax ={c,d}Ufal(x,y) | x,y € XU{c,+}}

« a « a «
d % g PN % a(x,z) 2 s a(x, *)
a a X a
/ A\ /A /A
X z y vy y y
C [} a a @
— C AN — a(x, c) S = alc, o)
a a a vy
/ A\ N / A\
X ¢ y vy c ¢

Orbits: ¢, d, a(x,y), a(x, x), a(x, ¢), a(c, x), a(x, *), a(x,x), a(c, c), a(*,*)

4/22

Another example

L = trees whose leftmost branch ends with a(c, ¢), where
Y ={(c,0),(d,0),(a,2)} ’

Ax ={c,d}Ufal(x,y) | x,y € XU{c,+}}

« a « a «
d % g PN % a(x,z) 2 s a(x, *)
a a X a
/ A\ /A /A
X z y vy y y
C [} a a @
— C AN — a(x, c) S = alc, o)
a a a vy
/ A\ N / A\
X ¢ y vy c ¢

Orbits: ¢, d, a(x,y), a(x, x), a(x, ¢), a(c, x), a(x, *), a(x, x), a(c, c), a(x, %)
This algebra has quadratic complexity and bounded orbit complexity.

4/22

Orbit complexity

Let |[Ax/Sym(X)| be the number of orbits of Ax under the action of
Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra A is the asymptotic size of
|Ax /Sym(X)| as a function of |X|.

5/22

Orbit complexity

Let |[Ax/Sym(X)| be the number of orbits of Ax under the action of
Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra A is the asymptotic size of
|Ax /Sym(X)| as a function of |X].

Another bounded hierarchy of classes

All regular languages are recognized by algebras of exponential orbit
complexity.

5/22

Orbit complexity

Let |[Ax/Sym(X)| be the number of orbits of Ax under the action of
Sym(X) induced by renamings.

Definition (Orbit complexity of an algebra)

The orbit complexity of a finite algebra A is the asymptotic size of
|Ax /Sym(X)| as a function of |X].

Another bounded hierarchy of classes
All regular languages are recognized by algebras of exponential orbit
complexity.

Another hierarchy of classes:

Bounded orbit complexity -
Polynomial orbit complexity -
Exponential orbit complexity | All regular languages

5/22

What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.

6/22

What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.

Polynomial complexity
Ax = X¥ ~ k variables (e.g. k branches)

6/22

What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.

Polynomial complexity
Ax = X¥ ~ k variables (e.g. k branches)

Exponential complexity
Ax = kX ~ a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

6/22

What complexity means

Complexity is a tool to quantify what the algebra remembers about the
variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.

Polynomial complexity
Ax = X¥ ~ k variables (e.g. k branches)

Exponential complexity
Ax = kX ~ a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

Doubly exponential complexity
All regular languages.

6/22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

7/22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

7/22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c, ¢).

7/22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

7/22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

7/22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

7/22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).
Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

Equivalence between a. and b. is not obvious.
7/22

Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).
Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.
b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Equivalence between a. and b. is not obvious.
7/22

Nominal automata

Let Sym(V) act upon sets X and Y.

- X is called orbit-finite if the group action has finitely many orbits.

8/22

Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

8/22

Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

- X is called nominal if its elements are finitely supported.

8/22

Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

X is called nominal if its elements are finitely supported.

- f: X = Y is supported by S C V if f(o(x)) = o(f(x)), for all x € X,
o € Sym(V\ S).

8/22

Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

X is called nominal if its elements are finitely supported.

- f: X = Y is supported by S C V if f(o(x)) = o(f(x)), for all x € X,
o € Sym(V\ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

8/22

Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

X is called nominal if its elements are finitely supported.

- f: X = Y is supported by S C V if f(o(x)) = o(f(x)), for all x € X,
o € Sym(V\ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

- an orbit-finite nominal set A (the alphabet),
- an orbit-finite nominal set @ (the states),
- equivariant subsets {qg;} and F of @ (the initial state and the final states),

- and an equivariant transition function §: Q@ x A — Q.

8/22

Nominal automata

Let Sym(V) act upon sets X and Y.
- X is called orbit-finite if the group action has finitely many orbits.

- x € X is called finitely supported if there exists S C V finite such that, for
every o € Sym(V), o(x) = x whenever o(s) = s for every s € S.

X is called nominal if its elements are finitely supported.

- f: X = Y is supported by S C V if f(o(x)) = o(f(x)), for all x € X,
o € Sym(V\ S).

- X (resp. f) is called equivariant if it is supported by the empty set.

A deterministic orbit-finite nominal automaton is given by

an orbit-finite nominal set A (the alphabet),

- an orbit-finite nominal set @ (the states),

- equivariant subsets {qg;} and F of @ (the initial state and the final states),
- and an equivariant transition function §: Q@ x A — Q.

Example: a deterministic register automaton can be seen as a deterministic
orbit-finite nominal automaton. 822

Coding of trees

How to build the following tree 7

/\
/\

9/22

Coding of trees

How to build the following tree 7

x [x]

9/22

Coding of trees

How to build the following tree 7

a [x]

/\ [xa(x.)

Xy

9/22

Coding of trees

How to build the following tree 7

a 8
/\ [ca(x.)

by [b(x, 2)]
X/ \Z

9/22

Coding of trees

How to build the following tree 7

[x]
/ \ [-xa(x, y)]

/ \ ['xb(x,2)]

[yc]

9/22

Coding of trees

How to build the following tree 7
G =A{lx] | xeV}

/ \ [X] Cv,z = {[-Xa(Xo, ...,Xn_l)] | ac
['xa(x,y)] Y0, X, X0y ey Xp—1 € V}
/ \ ['xb(x,2)] The alphabet Gy U Cy 5 is called the
[yc] coding alphabet. It is a nominal

orbit-finite alphabet.

9/22

Coding of trees

How to build the following tree ?
G =A{lx] | xeV}

/ \ [X] Cv,z = {[-Xa(Xo, ...,Xn_l)] | ac
['xa(x,y)] Y0, X, X0y ey Xp—1 € V}
/ \ ['xb(x,2)] The alphabet Gy U Cy 5 is called the
[yc] coding alphabet. It is a nominal

orbit-finite alphabet.

Tree coding and the coding alphabet

A word ¢ € () ()5 is called a tree coding. A coding c evaluates to a
finite tree T(c).

9/22

Coding of trees

How to build the following tree ?
G =A{lx] | xeV}

/ \ [X] Cv,z = {[-Xa(Xo, ...,Xn_l)] ’ ac
['xa(x,y)] Y0, X, X0y ey Xp—1 € V}
/ \ ['xb(x,2)] The alphabet Gy U Cy 5 is called the
[yc] coding alphabet. It is a nominal

orbit-finite alphabet.

Tree coding and the coding alphabet

A word ¢ € () ()5 is called a tree coding. A coding c evaluates to a
finite tree T(c).

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € Lif and only if T(c) € K.

9/22

Dealing with missing variables

Let ¢ = [x][-xa(x, y)][-z¢]. What is T(c)?

10/22

Dealing with missing variables

Let ¢ = [x][-xa(x, y)][-z¢]. What is T(c)?

10/22

Dealing with missing variables

Let ¢ = [x][-xa(x, ¥)][-z¢]. What is T(c)?
create;: X — X U {z}

such that create,(x) = x for all x € X.

10/22

Dealing with missing variables

Let ¢ = [x][-xa(x, ¥)][-z¢]. What is T(c)?
create;: X — X U {z}

such that create,(x) = x for all x € X.

create,

—

10/22

Dealing with missing variables

Let ¢ = [x][-xa(x, ¥)][-z¢]. What is T(c)?
create;: X — X U {z}

such that create,(x) = x for all x € X.

create,

—

T(c) = createz(a(x,y)) -z ¢ = a(x, y)

10/22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

11/22

Coding automata

Coding languages describing tree languages
A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"

11/22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"
Example L = "the third letter is of the form [-,c]|", ¥ = {(a,2),(c,0)}.

11/22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"
Example L = "the third letter is of the form [-,c]|", ¥ = {(a,2),(c,0)}.

¢ = [X][xaCe, MILyellxaly Ylyel ¢ = [x][xalx, y)llxaly, y)][ye]
T(c)=T(c) = a(a(c, c),)

11/22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"
Example L = "the third letter is of the form [-,c]|", ¥ = {(a,2),(c,0)}.

¢ = [X][xa(x VIlyellxaly, MIlyel ¢ = [X]lxalx y)llxaly:)]yl
T(c)=T(c") = a(a(c, c),c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K. We say that it describes K.

11/22

Coding automata

Coding languages describing tree languages

A language L of codings describes a language K C Ty of trees if, for every
coding ¢ such that T(c) € Ty, c € L if and only if T(c) € K.

Example L = "codings ¢ such that T(c) € K"
Example L = "the third letter is of the form [-,c]|", ¥ = {(a,2),(c,0)}.

¢ = [X][xa(x VIlyellxaly, MIlyel ¢ = [X]lxalx y)llxaly:)]yl
T(c)=T(c") = a(a(c, c),c)

Coding automaton

A deterministic orbit-finite nominal automaton over the coding alphabet is
a coding automaton if it recognizes a language L of codings that describes
a tree language K. We say that it describes K.

We assume that there is no transition toward the initial state qp.
11/22

Language described by a coding automaton

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

12/22

Language described by a coding automaton

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,*) a(x,c) a(c,x) a(c,c)

12/22

Language described by a coding automaton

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,*) a(x,c) a(c,x) a(c,c)

Remark we should also consider a(c, *) and a(x, c).

12/22

Language described by a coding automaton

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,*) a(x,c) a(c,x) a(c,c)

g x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,%) a(x,c) a(c,x) a(c,c)

Remark we should also consider a(c, *) and a(x, c).

12/22

Language described by a coding automaton

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,*) a(x,c) a(c,x) a(c,c)

g x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,%) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, c).

12/22

Language described by a coding automaton

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,*) a(x,c) a(c,x) a(c,c)

g x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,%) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, c).

12/22

Language described by a coding automaton

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,*) a(x,c) a(c,x) a(c,c)

g x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,%) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, c).

12/22

Language described by a coding automaton

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,*) a(x,c) a(c,x) a(c,c)

g x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,%) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T

Remark we should also consider a(c, *) and a(x, c).

12/22

Language described by a coding automaton

K = "trees with a c at depth 1", where ¥ = {(a,2),(c,0)}. J

x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,*) a(x,c) a(c,x) a(c,c)

g x ¢ alx,y) a(x,x) a(x,*) a(x,x) a(x,%) a(x,c) a(c,x) a(c,c)

g x L a{xy} a{x} a{x} af{x} L T T T
Remark we should also consider a(c, *) and a(x, c).

A state is an abstraction of a tree, that possibly forgot some variables.

12/22

Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(ev) € Ty and T(c'v) € Ty.

13/22

Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(cv) € Ty and T(c'v) € Ty.

13/22

Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(ev) € Ty and T(c'v) € Ty.

The minimal automaton Min; of L is defined as follows:
- the set of states is Q = {qo} W OO (5 5/ =1,
- [c]z, is accepting if [c]=z, C L,
- 0(q0 X)) =[] |=, ([e]=,,v) = [ev]=,

13/22

Minimizing coding automata

Myhill-Nerode relation of a tree language L. Let ¢,c’ € GG 5 be tree
codings. c =, ¢ if

T(cv) € L T(c'v) € Lforall v e G5 such that
T(ev) € Ty and T(c'v) € Ty.
The minimal automaton Min; of L is defined as follows:
- the set of states is Q = {qo} W OO (5 5/ =1,
- [c]z, is accepting if [c]=z, C L,
- 0(q0, X)) = [X |=,, d([e]=,v) = [ev]=,

Minimal automaton

For L a tree language described by a coding automaton, Min,; is a coding
automaton which describes L.

13/22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

14/22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min; and define a tree algebra A that recognizes L.

14/22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min; and define a tree algebra A that recognizes L.
Fix a tree t with variables xi, ..., x,, we define a function J; as

OIN: (T) T = 0

TIT2 ... Ty

T1T ... Tp

where g € Q \ {qo} is a state supported by {yi, ..., ym}.

14/22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min; and define a tree algebra A that recognizes L.
Fix a tree t with variables xi, ..., x,, we define a function J; as

OIN: (T) T = 0

TIT2 ... Ty

T1T ... Tp

where g € Q \ {qo} is a state supported by {yi, ..., ym}.
Example For t = a(x1, c), this is defined by ¢’ = 0(q, [-y,a(x1, 2)][-z¢])-

14/22

From coding automata to tree algebras 1/2

From coding automata to tree algebras

Every tree language L described by a coding automaton is recognized by a
tree algebra that has polynomial complexity and bounded orbit complexity.

Idea: start from Min; and define a tree algebra A that recognizes L.
Fix a tree t with variables xi, ..., x,, we define a function §; as

TIT2 ... Ty

LT3 ... Ty

where g € Q\ {qo} is a state supported by {y1,..., ¥m}-
Example For t = a(x1, c), this is defined by ¢’ = 0(q, [-y,a(x1, 2)][-z¢])-

0 is well defined

The definition of d; does not depend on a particular choice of coding.
Let Trans(Min;) be the set of all functions d;.

14/22

From coding automata to tree algebras 2/2

We define the tree as algebra A as

Ax = {0+ € Trans(Min,) | d¢ is supported by X} .

15/22

From coding automata to tree algebras 2/2

We define the tree as algebra A as
Ax = {0+ € Trans(Min,) | d¢ is supported by X} .

The operations are defined so that a.: t +— J; is the evaluation morphism.

15/22

From coding automata to tree algebras 2/2

We define the tree as algebra A as
Ax = {0+ € Trans(Min,) | d¢ is supported by X} .
The operations are defined so that a.: t +— J; is the evaluation morphism.

Support of §;

The size of the supports of the d;'s is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite. ’

15/22

From coding automata to tree algebras 2/2

We define the tree as algebra A as
Ax = {0+ € Trans(Min,) | d¢ is supported by X} .
The operations are defined so that a.: t +— J; is the evaluation morphism.

Support of 4,

The size of the supports of the d;'s is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite. ’

A has bounded orbit complexity. Trans(Min,) has finitely many orbits.
f,g € Ax are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.

15/22

From coding automata to tree algebras 2/2

We define the tree as algebra A as
Ax = {0+ € Trans(Min,) | d¢ is supported by X} .
The operations are defined so that a.: t +— J; is the evaluation morphism.

Support of 4,
The size of the supports of the d;'s is bounded by an integer K.

Let A and B be orbit-finite nominal sets. The set of all functions from A
to B with support of size at most K is orbit-finite. ’

A has bounded orbit complexity. Trans(Min,) has finitely many orbits.
f,g € Ax are on the same Sym(X)-orbit if and only if they are on the
same Sym(V)-orbit.

A has polynomial complexity. Ax has boundedly many orbits. On any
. | .
orbit, there are at most % elements under the action of Sym(X).

15/22

From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding
automaton.

16/22

From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding

automaton.

Structure of the proof.
1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X C V finite.

16/22

From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding

automaton.

Structure of the proof.
1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X C V finite.
2. Prove that tree algebras of polynomial complexity or bounded orbit
complexity have supports of bounded size (say K).

16/22

From tree algebras to coding automata

From tree algebra to coding automata

Every language of trees L recognized by a tree algebra of polynomial
complexity or of bounded orbit complexity is described by a coding
automaton.

Structure of the proof.
1. Extend the notion of support to tree algebras, which are a collection
of Sym(X)-sets for X C V finite.

2. Prove that tree algebras of polynomial complexity or bounded orbit
complexity have supports of bounded size (say K).

3. Thus, only the elements in sorts Ax where |X| < K matter. Let

Q:UAX.

IX|<K

This is used to define a coding automaton that describes L.
16 /22

Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

17/22

Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t € Ty, is L-sensitive to a leaf x if there exist trees

a,b, ty,..., t, such that
A .

NN NNV

17/22

Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t € Ty, is L-sensitive to a leaf x if there exist trees
a,b, ty,..., t, such that

€L ¢ L

NN NNV

A regular language of trees L is described by a coding automaton if and
only if there is a bound on the number of L-sensitive leaves in trees.

17/22

Decidability

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree t € Ty, is L-sensitive to a leaf x if there exist trees
a,b, ty,..., t, such that

€L ¢ L

NN NNV

A regular language of trees L is described by a coding automaton if and
only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is
decidable.

17/22

From a coding automaton to a bound

From a coding automaton to a bound
If L is described by a coding automaton, then there is a bound on the
number of L-sensitive leaves in trees.

Suppose t € T,y is L-sensitive to some leaf (and let a, b, ti, ..., t, be the
associated trees).

18/22

From a coding automaton to a bound

From a coding automaton to a bound

If L is described by a coding automaton, then there is a bound on the
number of L-sensitive leaves in trees.

Suppose t € T,y is L-sensitive to some leaf (and let a, b, ti, ..., t, be the
associated trees).

Let ¢ be a coding such that T(c) = t'.
t'[xallyb] # ((x y)t')[xallyb]

Then x is in the support of d(qo, ¢) in Min;.

18/22

From a bound to a coding automaton 1/2

From a bound to a coding automaton

If there is a bound on the number of L-sensitive leaves in trees, then L is
described by a coding automaton.

Let A = (Q, qo, F,0) be the minimal tree automaton for L, and suppose
K is a bound on the number of L-sensitive leaves.

19/22

From a bound to a coding automaton 1/2

From a bound to a coding automaton

If there is a bound on the number of L-sensitive leaves in trees, then L is
described by a coding automaton.

Let A = (Q, qo, F,0) be the minimal tree automaton for L, and suppose
K is a bound on the number of L-sensitive leaves.
Let X = {x1,..., xo}. The profile p;: QX — {0,1} of a tree t € Tx is

Pt(Gxys -5 Gx,) = 1 if and only if t[x1 <= Gxy, ..., Xn < Qx,] i accepted.

19/22

From a bound to a coding automaton 1/2

From a bound to a coding automaton

If there is a bound on the number of L-sensitive leaves in trees, then L is
described by a coding automaton.

Let A = (Q, qo, F,0) be the minimal tree automaton for L, and suppose
K is a bound on the number of L-sensitive leaves.
Let X = {x1,..., xo}. The profile p;: QX — {0,1} of a tree t € Tx is

Pt(Gxys -5 Gx,) = 1 if and only if t[x1 <= Gxy, ..., Xn < Qx,] i accepted.
The reduct of tree t is the tree t defined as follows

/\—>/\—>/\—> i

T1 Ty T3 T4 - R ecec --c I1 Cx3C +-C

19/22

From a bound to a coding automaton 1/2

From a bound to a coding automaton

If there is a bound on the number of L-sensitive leaves in trees, then L is
described by a coding automaton.

Let A = (Q, qo, F,0) be the minimal tree automaton for L, and suppose
K is a bound on the number of L-sensitive leaves.
Let X = {x1,..., xo}. The profile p;: QX — {0,1} of a tree t € Tx is

Pt(Gxys -5 Gx,) = 1 if and only if t[x1 <= Gxy, ..., Xn < Qx,] i accepted.
The reduct of tree t is the tree t defined as follows

/\—>/\—>/\—> i

T1 Ty T3 T4 - R ecec --c I1 Cx3C +-C

The reduct of a tree has at most K different variables.
19/22

From a bound to a coding automaton 2/2

Let s and t be X, X-trees. Suppose p; = pz, then |

t[x1 <= Gxgy--er Xn < Gx,] € L if and only if s[x1 <= Gxqy ..oy Xn < Gx,] € L .

20/22

From a bound to a coding automaton 2/2

Let s and t be X, X-trees. Suppose p; = pz, then

t[x1 <= Gxgy--er Xn < Gx,] € L if and only if s[x1 <= Gxqy ..oy Xn < Gx,] € L . |

Define an equivalence relation ~ on trees by s ~ t whenever p; = ps.

The set of tree modulo ~ is orbit-finite and nominal.

20/22

From a bound to a coding automaton 2/2

Let s and t be X, X-trees. Suppose p; = pz, then

t[x1 <= Gxgy--er Xn < Gx,] € L if and only if s[x1 <= Gxqy ..oy Xn < Gx,] € L . |

Define an equivalence relation ~ on trees by s ~ t whenever p; = ps.

The set of tree modulo ~ is orbit-finite and nominal.

Define a coding automaton as follows:
- the set of states is the set of trees modulo ~,

- the transitions are defined so that, for all coding ¢, §(qo, ¢) = pﬁ;).

20/22

From a bound to a coding automaton 2/2

Let s and t be X, X-trees. Suppose p; = pz, then

t[x1 <= Gxgy--er Xn < Gx,] € L if and only if s[x1 <= Gxqy ..oy Xn < Gx,] € L .

Define an equivalence relation ~ on trees by s ~ t whenever p; = ps.

The set of tree modulo ~ is orbit-finite and nominal.

Define a coding automaton as follows:
- the set of states is the set of trees modulo ~,

- the transitions are defined so that, for all coding ¢, §(qo, ¢) = pﬁ;).

Decidability

There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

20/22

Different types of tree algebras

Unrestrained tree algebras

21/22

Different types of tree algebras

Unrestrained tree algebras

r Yy y <

Sublinear tree algebras

21/22

Different types of tree algebras

. Superlinear tree algebras
Unrestrained tree algebras

/\

ry vy =z r Yy

Sublinear tree algebras

r Yy z

21/22

Different types of tree algebras

. Superlinear tree algebras
Unrestrained tree algebras

ANYA

r Yy y <

Sublinear tree algebras Linear tree algebras

21/22

Different types of tree algebras

. Superlinear tree algebras
Unrestrained tree algebras

ANYA

r Yy y <

Sublinear tree algebras Linear tree algebras

21/22

Conclusion

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

22/22

Conclusion

Equivalence theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.
b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Decidability
There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

22/22

Conclusion

Equivalence theorem
For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Decidability
There is an algorithm which, given a regular tree language, decides
whether it is recognizable by a tree algebra of polynomial complexity.

Future work. Tree algebras of exponential complexity.

22/22

