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Algebras and classes of languages

Algebras are used to
characterize classes

of languages

Schützenberger, 1965

A regular language L is
star-free if and only if its
syntactic monoid is
aperiodic.

Finite words
Monoids, semigroups
Infinite words
Wilke algebras, ω-semigroups,
◦-algebras...
Trees
Deterministic automata, Preclones,
Hyperclones, Operads,...
Graphs
HR-algebras, VR-algebras

Infinitely sorted algebras
(An)n∈N

(AX )X finite

Problem: Hard to derive
characterizations with infinitely
sorted algebras

Objective: characterize classes
that can be naturally defined
using infinitely sorted algebras
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Infinitely sorted tree algebras: FTΣ-algebras

Let Σ be a ranked alphabet. The free FTΣ-algebra has as carrier (TX )X finite

where the X ’s are finite sets of variables.

TX = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming

Definition (Finite Tree algebras)

A finite FTΣ-algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and x ∈ X ,
Renaming. renameA[σ] : AX → AY for all surjective maps σ : X → Y .
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Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and x ∈ X ,
Renaming. renameA[σ] : AX → AY for all surjective maps σ : X → Y .

Identities? a(x , y) ·y b a(x , z) ·z b
We also define morphisms, congruences...
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Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and x ∈ X ,
Renaming. renameA[σ] : AX → AY for all surjective maps σ : X → Y .

Given a finite FTΣ-algebra A, there is a unique morphism from the free algebra to
A. It is called the evaluation morphism of A.
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Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FTΣ-algebra A
if there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Example L = The language of all trees that only contain a’s and b’s

AX = 2Σ for all X

A ·x B = A ∪ B

|AX | = 2|Σ|).

Example L = trees without b’s on the leftmost branch

a

b

c c

a

y y

α7−→ {a, b, c} a

a

x c

a

y y

α7−→ ({a}, x),

AX = 2Σ ] (2Σ × X ) |AX | = 2|Σ| + 2|Σ||X | is linear in |X |.
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Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier

(AX )X finite, all AX finite

its complexity map is cA(|X |) = |AX |. (|X | = |Y | implies |AX | = |AY |)

AX = 2Σ

|AX | = 2|Σ|

Bounded complexity

AX = 2Σ ] (2Σ × X )

|AX | = 2|Σ| + 2|Σ||X |

Linear complexity
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Example: The language of all trees with at least a b on every branch

L = trees with at least a b on every branch

AX = 2X × {>,⊥}

|AX | = 2|X | × 2

This algebra has exponential complexity.

Languages recognized by top-down deterministic automata

All languages recognized by top-down deterministic automata are
recognized by FTΣ-algebras of exponential complexity.
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What complexity means

Bounded complexity
The algebra does not remember anything about the variables.
AX  the variables that appear in the tree are exactly X .

Polynomial complexity
AX = X k  k variables (e.g. k branches)
Exponential complexity
AX = kX  a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)
Doubly exponential complexity

Regular languages

A top-down nondeterministic automaton can be transformed into a
FTΣ-algebras of doubly-exponential complexity that recognizes the same
language.
Conversely, any language recognized by a finite FTΣ-algebra is regular.
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Syntactic algebras

Let A be some FTΣ-algebra and let X = {x0, ..., xn−1} be a finite set of
variables. Define for all a ∈ AX

...
...

Lemma

If A is a syntactic algebra then a = b iff 〈a〉 = 〈b〉, for all a, b in A.
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Characterizing bounded complexity

What are the languages recognized by FTΣ-algebras of bounded
complexity?

Consider for all X the group morphism induced by renaming

ϕX : Sym(X )→ Sym(AX )

σ 7→ renameA[σ]

Kernel of ϕX

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

Invariance under permutations

A finite syntactic FTΣ-algebra is of bounded complexity if and only if for
all sufficiently large finite set of variables X , Ker(ϕX ) = Sym(X ).
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Proofs

Kernel of ϕX

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

M = max(5, |A∅|+ 1)

Suppose for the sake
of contradiction that
|X | ≥ M and
Ker(ϕX ) = Alt(X )

Im(ϕX ) = {idAX
, τ}

Prove renameA[t] = idAX
by showing

〈renameA[t](a)〉 = 〈a〉 for all a ∈ AX .
Fix a ∈ AX

c ∈ A{x}, b ∈ (A∅)
X

x 6= y with b(x) = b(y)

〈renameA[t](a)〉(b, c) = 〈τ(a)〉(b, c)

= 〈renameA[(x y)](a)〉(b, c)

= 〈a〉(b, c)

...
...

9 / 11



Proofs

Kernel of ϕX

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

M = max(5, |A∅|+ 1)

Suppose for the sake
of contradiction that
|X | ≥ M and
Ker(ϕX ) = Alt(X )

Im(ϕX ) = {idAX
, τ}

Prove renameA[t] = idAX
by showing

〈renameA[t](a)〉 = 〈a〉 for all a ∈ AX .
Fix a ∈ AX

c ∈ A{x}, b ∈ (A∅)
X

x 6= y with b(x) = b(y)

〈renameA[t](a)〉(b, c) = 〈τ(a)〉(b, c)

= 〈renameA[(x y)](a)〉(b, c)

= 〈a〉(b, c)

...
...

9 / 11



Proofs

Kernel of ϕX

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

M = max(5, |A∅|+ 1)

Suppose for the sake
of contradiction that
|X | ≥ M and
Ker(ϕX ) = Alt(X )

Im(ϕX ) = {idAX
, τ}

Prove renameA[t] = idAX
by showing

〈renameA[t](a)〉 = 〈a〉 for all a ∈ AX .

Fix a ∈ AX

c ∈ A{x}, b ∈ (A∅)
X

x 6= y with b(x) = b(y)

〈renameA[t](a)〉(b, c) = 〈τ(a)〉(b, c)

= 〈renameA[(x y)](a)〉(b, c)

= 〈a〉(b, c)

...
...

9 / 11



Proofs

Kernel of ϕX

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

M = max(5, |A∅|+ 1)

Suppose for the sake
of contradiction that
|X | ≥ M and
Ker(ϕX ) = Alt(X )

Im(ϕX ) = {idAX
, τ}

Prove renameA[t] = idAX
by showing

〈renameA[t](a)〉 = 〈a〉 for all a ∈ AX .
Fix a ∈ AX

c ∈ A{x}, b ∈ (A∅)
X

x 6= y with b(x) = b(y)

〈renameA[t](a)〉(b, c) = 〈τ(a)〉(b, c)

= 〈renameA[(x y)](a)〉(b, c)

= 〈a〉(b, c)

...
...

9 / 11



Proofs

Kernel of ϕX

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

Invariance under permutations (easy direction)

In a syntactic algebra of bounded complexity, Ker(ϕX ) = Sym(X )
whenever X is large enough.

Suppose |AX | ≤ k for all X and Ker(ϕX ) = {idX}

9 / 11



Proofs

Kernel of ϕX

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

Invariance under permutations (easy direction)

In a syntactic algebra of bounded complexity, Ker(ϕX ) = Sym(X )
whenever X is large enough.

Suppose |AX | ≤ k for all X and Ker(ϕX ) = {idX}

|X |! = |Im(ϕX )| ≤ |Sym(AX )| = |AX |! ≤ k!

9 / 11



Proofs

Kernel of ϕX

In a syntactic algebra A, there is an integer M such that for all X of
cardinal at least M, either Ker(ϕX ) = Sym(X ) or Ker(ϕX ) = {idX}.

Invariance under permutations (easy direction)

In a syntactic algebra of bounded complexity, Ker(ϕX ) = Sym(X )
whenever X is large enough.

Suppose |AX | ≤ k for all X and Ker(ϕX ) = {idX}

|X |! = |Im(ϕX )| ≤ |Sym(AX )| = |AX |! ≤ k!

id and Sym do not alternate

In a syntactic algebra, either Ker(ϕX ) = {idX} for large X , or
Ker(ϕX ) = Sym(X ) for large X .
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Characterisation of bounded complexity

Characterization theorem
A language of finite trees is recognized
by an FTΣ-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L ⊆ Σ∗1 .

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
B ⊆ Σ.

d. A regular language K of bounded
branching.

Bounded branching: ∃k all trees
in K have at most k branches
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