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Infinitely sorted tree algebras

The free tree algebra has as carrier (TX )X finite where the X ’s are finite
sets of variables.

TX = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming

A tree algebra A = (AX )X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.
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Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

Example L = trees without b’s on the leftmost branch

a

b

c c

a

y y

α7−→ {a, b, c} a

a

x c

a

y y

α7−→ ({a}, x),

AX = 2Σ ] (2Σ × X ) |AX | = 2|Σ| + 2|Σ||X | is linear in |X |.

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX )X finite its complexity map is
cA(|X |) = |AX |.
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Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX )X finite its complexity map is
cA(|X |) = |AX |.

2-EXP

EXP

Polynomial

Bounded

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.
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Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX )X finite its complexity map is
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The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.
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The corresponding automaton model

How to build the following tree ?
a

b

...
...

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...
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Same expressive power as algebras of polynomial complexity.
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Theorem on permutation groups

[DIXON, MORTIMER, Permutation groups. Springer Science & Business Media, 1996]

Corollary: existence of small pseudo-support

Fix k ∈ N, and let Sym(n) act transitively on A with |A| ≤ nk . If n is large
enough then, for every a ∈ A, there is some ∆ ⊆ n with |∆| ≤ k such that

Alt(n \∆) ⊆ Stabilizer(a)
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