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Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier (Ax)x finite its complexity map is
ca(|X[) = |Ax|.

2_EXP Regular languages
EXP [Future work]
Polynomial [This talk]
Bounded [Colcombet & J. 2021]

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.
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Same expressive power as algebras of polynomial complexity. |




Theorem on permutation groups

Theorem 5.2A. Let A := Alt(Q)) where n := || > 5,, and let v be an
integer with 1 < r < n/2. Suppose that G < A has index |A : G| < (7).
Then one of the following holds:
(i) for some A C Q with |A| < r we have Aay £ G < Afpy;
(i) n = 2m zs even, G is imprimitive with two blocks of size m, and
[A:Gl=1("); or
(ili) one of siz efEceptionat cases hold where:
(a) G is imprimitive on Q and (n,r,|A : G|) = (6,8,15) ;
(b) G is primitive on Q and (n,7,|A : G|,G) = (5,2,6,5:2),
(6,2,6,PSLs(5)), (7,2,15,PSLs(2)), (8,2,15,AGLs(2)),
or (9,4,120,PT'L,(8)).

[DIXON, MORTIMER, Permutation groups. Springer Science & Business Media, 1996]
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Corollary: existence of small pseudo-support

Fix k € N, and let Sym(n) act transitively on A with |A| < n¥. If n is large
enough then, for every a € A, there is some A C n with |A| < k such that

Alt(n\ A) C Stabilizer(a)




