A Complexity Approach to Tree Algebras: the Polynomial Case

Arthur Jaquard joint work with Thomas Colcombet

Université de Paris, CNRS, IRIF, F-75006, Paris, France

September 17, Highlights 2021

The free tree algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$

The free tree algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{ \text{trees in which all the variables of } X \text{ appear on the leaves} \}$

Objects

$$\overset{a}{\underset{b}{\overset{\prime}{\searrow}}\in T_{\emptyset}} \overset{a}{\underset{x}{\overset{\prime}{\underset{x}{x}}}\in T_{\{x\}}} \overset{a}{\underset{x}{\underset{x}{x}}} \overset{a}{\underset{x}{\underset{x}{x}}} \overset{a}{\underset{x}{x}} \overset{c}{\underset{x}{x}} \overset{c}{\overset{c}{\underset{x}{x}} \overset{c}{\underset{x}{x}} \overset{c}{\overset{c}{x}} \overset{c}{\overset{c}{x}} \overset{c}{\overset{c}{x}} \overset{c}{\overset{c}{x}} \overset{c}{\overset{c}{x}} \overset{c}{\overset{c}{x}} \overset{c}{\overset{c}{x}} \overset{c}{x} \overset{c}{x}} \overset{c}{\overset{c}{x}} \overset{$$

The free tree algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{ \text{trees in which all the variables of } X \text{ appear on the leaves} \}$

Objects Substitution

$$\begin{array}{ccc} a & a \\ x' & y \\ x' & y \\ b & c \\ b \\ b \\ c \end{array} = \begin{array}{ccc} a \\ y \\ y \\ b \\ c \\ b \\ c \end{array}$$

The free tree algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{ \text{trees in which all the variables of } X \text{ appear on the leaves} \}$

The free tree algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$

A tree algebra $\mathcal{A} = (A_X)_X$ finite is finite if all the sorts A_X are finite.

The free tree algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$

A tree algebra $\mathcal{A} = (A_X)_X$ finite is finite if all the sorts A_X are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A} .

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A} .

Example L = trees without b's on the leftmost branch

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A} .

Example L = trees without b's on the leftmost branch

Definition (Language recognized by an algebra)

A language *L* of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A} .

Example L = trees without b's on the leftmost branch

 $A_X = 2^{\Sigma} \uplus (2^{\Sigma} \times X)$ $|A_X| = 2^{|\Sigma|} + 2^{|\Sigma|} |X|$ is linear in |X|.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A} .

Example L = trees without b's on the leftmost branch

 $A_X = 2^{\Sigma} \uplus (2^{\Sigma} \times X) \qquad \qquad |A_X| = 2^{|\Sigma|} + 2^{|\Sigma|} |X| \text{ is linear in } |X|.$

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier $(A_X)_X$ finite its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$.

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier $(A_X)_X$ finite its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$.

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier $(A_X)_X$ finite its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$.

2-EXP

EXP

Polynomial

Bounded

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier $(A_X)_X$ finite its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$.

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier $(A_X)_X$ finite its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$.

2-EXP Regular languages EXP Polynomial

Bounded

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier $(A_X)_X$ finite its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$.

2-EXP Regular languages EXP Polynomial Bounded [Colcombet & J. 2021]

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier $(A_X)_X$ finite its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$.

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier $(A_X)_X$ finite its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$.

How to build the following tree ?

0

$$\begin{array}{c} a \\ \swarrow \\ b \\ \end{pmatrix} \begin{bmatrix} 0 \leftarrow a(1,2) \\ 1 \leftarrow b(3,4) \end{bmatrix} \\ \swarrow \\ 3 \\ 4 \end{bmatrix}$$

How to build the following tree ?

This is a word over an orbit-finite alphabet

How to build the following tree ?

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

How to build the following tree ?

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

Finite deterministic automaton ${\mathcal A}$ with k registers that store integers

 \mathcal{A} accepts t(u) if it accepts u

How to build the following tree ?

$$\begin{array}{c} a \\ & [0 \leftarrow a(1,2)] \\ b \\ & c \\ & [1 \leftarrow b(3,4)] \\ \\ / \\ & [2 \leftarrow c] \\ 3 \\ & 4 \\ & \dots \end{array}$$

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If
$$t(u) = t(v)$$
 then \mathcal{A} accepts u iff \mathcal{A} accepts v

 \mathcal{A} accepts t(u) if it accepts u

How to build the following tree ?

$$\begin{array}{c} a \\ & [0 \leftarrow a(1,2)] \\ b \\ c \\ & [1 \leftarrow b(3,4)] \\ \\ A \\ 3 \\ 4 \\ & \dots \end{array}$$

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

Finite deterministic automaton ${\mathcal A}$ with k registers that store integers

- If t(u) = t(v) then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)

 \mathcal{A} accepts t(u) if it accepts u

а	
/ \	$[0 \leftarrow a(1,2)]$
b c	$[1 \leftarrow b(3,4)]$
/ \	$[2 \leftarrow c]$
3 4	

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If t(u) = t(v) then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)

 \mathcal{A} accepts t(u) if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

Example: no *b* on the leftmost branch

a / \	$[0 \leftarrow a(1,2)]$
b c	$[1 \leftarrow b(3,4)]$
$/ \setminus$	$[2 \leftarrow c]$
3 4	

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If t(u) = t(v) then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)

 \mathcal{A} accepts t(u) if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

Example: no *b* on the leftmost branch

 $(\emptyset, 0)$

b c	$egin{array}{l} [0 \leftarrow {\it a}(1,2)] \ [1 \leftarrow {\it b}(3,4)] \end{array}$
/\	$[2 \leftarrow c]$
3 4	

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If t(u) = t(v) then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)

 \mathcal{A} accepts t(u) if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

Example: no *b* on the leftmost branch *a*

 $({a}, 1)$

$$\begin{array}{c} a \\ & [0 \leftarrow a(1,2)] \\ b \\ c \\ & [1 \leftarrow b(3,4)] \\ \\ A \\ 3 \\ 4 \\ & \dots \end{array}$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If t(u) = t(v) then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)

 \mathcal{A} accepts t(u) if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

Example: no *b* on the leftmost branch

$$\begin{array}{c}
a \\
/ \\
b 2 \\
/ \\
3 4
\end{array}$$

 $(\{a, b\}, 3)$

$$\begin{array}{c} a \\ & [0 \leftarrow a(1,2)] \\ b \\ c \\ & [1 \leftarrow b(3,4)] \\ \\ A \\ 3 \\ 4 \\ & \dots \end{array}$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If t(u) = t(v) then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)

 \mathcal{A} accepts t(u) if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

Example: no *b* on the leftmost branch

$$\begin{array}{c}
a \\
/ \\
b \\
/ \\
3 \\
4
\end{array}$$

$$(\{a, b\}, 3)$$

How to build the following tree ?

Finite deterministic automaton ${\mathcal A}$ with k registers that store integers

- If t(u) = t(v) then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree (t(u) = t(v))

Example: no *b* on the leftmost branch

 $(\{a, b\}, 3)$

 \mathcal{A} accepts t(u) if it accepts u

Same expressive power as algebras of polynomial complexity.

Theorem on permutation groups

Theorem 5.2A. Let $A := Alt(\Omega)$ where $n := |\Omega| \ge 5$, and let r be an integer with $1 \le r \le n/2$. Suppose that $G \le A$ has index $|A : G| < \binom{n}{r}$. Then one of the following holds:

- (i) for some $\Delta \subseteq \Omega$ with $|\Delta| < r$ we have $A_{(\Delta)} \leq G \leq A_{\{\Delta\}}$;
- (ii) n = 2m is even, G is imprimitive with two blocks of size m, and $|A:G| = \frac{1}{2} \binom{m}{m}$; or
- (iii) one of six exceptional cases hold where:
 - (a) G is imprimitive on Ω and (n, r, |A:G|) = (6,3,15);
 - (b) G is primitive on Ω and (n, r, |A : G|, G) = (5,2,6,5:2), (6,2,6,PSL₂(5)), (7,2,15,PSL₃(2)), (8,2,15,AGL₃(2)), or (9,4,120,PΓL₂(8)).

[DIXON, MORTIMER, Permutation groups. Springer Science & Business Media, 1996]

Theorem on permutation groups

Theorem 5.2A. Let $A := Alt(\Omega)$ where $n := |\Omega| \ge 5$, and let r be an integer with $1 \le r \le n/2$. Suppose that $G \le A$ has index $|A : G| < \binom{n}{r}$. Then one of the following holds:

- (i) for some $\Delta \subseteq \Omega$ with $|\Delta| < r$ we have $A_{(\Delta)} \leq G \leq A_{\{\Delta\}}$;
- (ii) n = 2m is even, G is imprimitive with two blocks of size m, and $|A:G| = \frac{1}{2} \binom{m}{m}$; or
- (iii) one of six exceptional cases hold where:
 - (a) G is imprimitive on Ω and (n, r, |A : G|) = (6,3,15);
 - (b) G is primitive on Ω and (n, r, |A : G|, G) = (5,2,6,5:2), (6,2,6,PSL₂(5)), (7,2,15,PSL₃(2)), (8,2,15,AGL₃(2)), or (9,4,120,PΓL₂(8)).

[DIXON, MORTIMER, Permutation groups. Springer Science & Business Media, 1996]

Corollary: existence of small pseudo-support

Fix $k \in \mathbb{N}$, and let **Sym**(*n*) act transitively on *A* with $|A| \leq n^k$. If *n* is large enough then, for every $a \in A$, there is some $\Delta \subseteq n$ with $|\Delta| \leq k$ such that

 $Alt(n \setminus \Delta) \subseteq Stabilizer(a)$