A Complexity Approach to Tree Algebras: the Polynomial Case

Arthur Jaquard joint work with Thomas Colcombet

Université de Paris, CNRS, IRIF, F-75006, Paris, France
September 17, Highlights 2021

Infinitely sorted tree algebras

The free tree algebra has as carrier $\left(T_{X}\right)_{X}$ finite where the X 's are finite sets of variables.

$$
T_{X}=\{\text { trees in which all the variables of } X \text { appear on the leaves }\}
$$

Infinitely sorted tree algebras

The free tree algebra has as carrier $\left(T_{X}\right)_{X}$ finite where the X 's are finite sets of variables.

$$
T_{X}=\{\text { trees in which all the variables of } X \text { appear on the leaves }\}
$$

Objects

$$
\begin{aligned}
& x_{x} \stackrel{a}{a_{y}}{ }_{y} T_{\{x, y\}}
\end{aligned}
$$

Infinitely sorted tree algebras

The free tree algebra has as carrier $\left(T_{X}\right)_{X}$ finite where the X 's are finite sets of variables.

$$
T_{X}=\{\text { trees in which all the variables of } X \text { appear on the leaves }\}
$$

Objects

$$
\begin{aligned}
& x_{x} \stackrel{a}{a_{y}}{ }_{y} T_{\{x, y\}}
\end{aligned}
$$

Substitution

Infinitely sorted tree algebras

The free tree algebra has as carrier $\left(T_{X}\right)_{X}$ finite where the X 's are finite sets of variables.
$T_{X}=\{$ trees in which all the variables of X appear on the leaves $\}$

Objects

Substitution

Renaming

\[

\]

Infinitely sorted tree algebras

The free tree algebra has as carrier $\left(T_{X}\right)_{X}$ finite where the X 's are finite sets of variables.
$T_{X}=\{$ trees in which all the variables of X appear on the leaves $\}$
Objects

A tree algebra $\mathcal{A}=\left(A_{X}\right)_{X}$ finite is finite if all the sorts A_{X} are finite.

Infinitely sorted tree algebras

The free tree algebra has as carrier $\left(T_{X}\right)_{X}$ finite where the X 's are finite sets of variables.
$T_{X}=\{$ trees in which all the variables of X appear on the leaves $\}$

Objects

$$
\begin{aligned}
& x_{x}^{/ \backslash}{ }_{y}^{a} \in T_{\{x, y\}}
\end{aligned}
$$

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A}.

Example $L=$ trees without b 's on the leftmost branch

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A}.

Example $L=$ trees without b 's on the leftmost branch

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A}.

Example $L=$ trees without b 's on the leftmost branch

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A}.

Example $L=$ trees without b 's on the leftmost branch

$$
\begin{aligned}
& A_{X}=2^{\Sigma} \uplus\left(2^{\Sigma} \times X\right) \quad\left|A_{X}\right|=2^{|\Sigma|}+2^{|\Sigma|}|X| \text { is linear in }|X| .
\end{aligned}
$$

Definition (Complexity)

Given a finite $F T_{\Sigma \text {-algebra }} \mathcal{A}$ with carrier $\left(A_{X}\right)_{X}$ finite its complexity map is $c_{\mathcal{A}}(|X|)=\left|A_{X}\right|$.

Complexity

Definition (Complexity)

Given a finite $F T_{\Sigma}$-algebra \mathcal{A} with carrier $\left(A_{X}\right)_{X}$ finite its complexity map is $c_{\mathcal{A}}(|X|)=\left|A_{X}\right|$.

Complexity

Definition (Complexity)

Given a finite $F T_{\Sigma}$-algebra \mathcal{A} with carrier $\left(A_{X}\right)_{X}$ finite its complexity map is $c_{\mathcal{A}}(|X|)=\left|A_{X}\right|$.

2-EXP

EXP

Polynomial

Bounded

Complexity

Definition (Complexity)

Given a finite $F T_{\Sigma \text {-algebra }} \mathcal{A}$ with carrier $\left(A_{X}\right)_{X}$ finite its complexity map is $c_{\mathcal{A}}(|X|)=\left|A_{X}\right|$.

2-EXP

EXP

Polynomial

Bounded

Regular languages

Complexity

Definition (Complexity)

Given a finite $F T_{\Sigma}$-algebra \mathcal{A} with carrier $\left(A_{X}\right)_{X}$ finite its complexity map is $c_{\mathcal{A}}(|X|)=\left|A_{X}\right|$.

2-EXP

EXP

Polynomial

Bounded

The objective is to identify new classes of languages and to gain a better understanding of tree algebras.

Complexity

Definition (Complexity)

Given a finite $F T_{\Sigma}$-algebra \mathcal{A} with carrier $\left(A_{X}\right)_{X}$ finite its complexity map is $c_{\mathcal{A}}(|X|)=\left|A_{X}\right|$.
2-EXP

Regular languages
EXP

Polynomial

Bounded
[Colcombet \& J. 2021]

The objective is to identify new classes of languages and to gain a better understanding of tree algebras.

Complexity

Definition (Complexity)

Given a finite $F T_{\Sigma}$-algebra \mathcal{A} with carrier $\left(A_{X}\right)_{X}$ finite its complexity map is $c_{\mathcal{A}}(|X|)=\left|A_{X}\right|$.

2-EXP

EXP

Polynomial

Bounded

Complexity

Definition (Complexity)

Given a finite $F T_{\Sigma \text {-algebra }} \mathcal{A}$ with carrier $\left(A_{X}\right)_{X}$ finite its complexity map is $c_{\mathcal{A}}(|X|)=\left|A_{X}\right|$.
2-EXP

EXP

Polynomial

Bounded

Regular languages
[Future work]
[This talk]
[Colcombet \& J. 2021]

The objective is to identify new classes of languages and to gain a better understanding of tree algebras.

The corresponding automaton model

How to build the following tree ?

八

The corresponding automaton model

How to build the following tree ?
0

The corresponding automaton model

How to build the following tree ?

$$
[0 \leftarrow a(1,2)]
$$

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]}
\end{aligned}
$$

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

The corresponding automaton model

How to build the following tree ?
This is a word over an orbit-finite alphabet

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

...

Finite deterministic automaton \mathcal{A} with k registers that store integers

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

\mathcal{A} accepts $t(u)$ if it accepts u

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If $t(u)=t(v)$ then \mathcal{A} accepts u iff \mathcal{A} accepts v

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

\mathcal{A} accepts $t(u)$ if it accepts u

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If $t(u)=t(v)$ then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)
\mathcal{A} accepts $t(u)$ if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If $t(u)=t(v)$ then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)
\mathcal{A} accepts $t(u)$ if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

Example: no b on the leftmost branch

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If $t(u)=t(v)$ then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)
\mathcal{A} accepts $t(u)$ if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

Example: no b on the leftmost branch
0

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If $t(u)=t(v)$ then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)
\mathcal{A} accepts $t(u)$ if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

Example: no b on the leftmost branch

$(\{a\}, 1)$

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If $t(u)=t(v)$ then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)
\mathcal{A} accepts $t(u)$ if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

Example: no b on the leftmost branch

The corresponding automaton model

How to build the following tree ?

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If $t(u)=t(v)$ then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)
\mathcal{A} accepts $t(u)$ if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

Example: no b on the leftmost branch

The corresponding automaton model

How to build the following tree ?

$$
34
$$

$$
\begin{aligned}
& {[0 \leftarrow a(1,2)]} \\
& {[1 \leftarrow b(3,4)]} \\
& {[2 \leftarrow c]}
\end{aligned}
$$

Finite deterministic automaton \mathcal{A} with k registers that store integers

- If $t(u)=t(v)$ then \mathcal{A} accepts u iff \mathcal{A} accepts v
- Minor syntactic constraints (see poster for details)
\mathcal{A} accepts $t(u)$ if it accepts u

This is a word over an orbit-finite alphabet

Note that two words u and v can denote the same tree

$$
(t(u)=t(v))
$$

Example: no b on the leftmost branch

Same expressive power as algebras of polynomial complexity.

Theorem on permutation groups

Theorem 5.2A. Let $A:=\operatorname{Alt}(\Omega)$ where $n:=|\Omega| \geq 5$, , and let r be an integer with $1 \leq r \leq n / 2$. Suppose that $G \leq A$ has index $|A: G|<\binom{n}{r}$. Then one of the following holds:
(i) for some $\Delta \subseteq \Omega$ with $|\Delta|<r$ we have $A_{(\Delta)} \leq G \leq A_{\{\Delta\}}$;
(ii) $n=2 m$ is even, G is imprimitive with two blocks of size m, and $|A: G|=\frac{1}{2}\binom{n}{m}$; or
(iii) one of six exceptional cases hold where:
(a) G is imprimitive on Ω and $(n, r,|A: G|)=(6,3,15)$;
(b) G is primitive on Ω and $(n, r,|A: G|, G)=(5,2,6,5: 2)$, $\left(6,2,6, P S L_{2}(5)\right),\left(7,2,15, P S L_{3}(2)\right),\left(8,2,15, A G L_{3}(2)\right)$, or (9,4,120, $\left.P \Gamma L_{2}(8)\right)$.
[DIXON, MORTIMER, Permutation groups. Springer Science \& Business Media, 1996]

Theorem on permutation groups

Theorem 5.2A. Let $A:=\operatorname{Alt}(\Omega)$ where $n:=|\Omega| \geq 5$,, and let r be an integer with $1 \leq r \leq n / 2$. Suppose that $G \leq A$ has index $|A: G|<\binom{n}{r}$. Then one of the following holds:
(i) for some $\Delta \subseteq \Omega$ with $|\Delta|<r$ we have $A_{(\Delta)} \leq G \leq A_{\{\Delta\}}$;
(ii) $n=2 m$ is even, G is imprimitive with two blocks of size m, and $|A: G|=\frac{1}{2}\binom{n}{m}$; or
(iii) one of six exceptional cases hold where:
(a) G is imprimitive on Ω and $(n, r,|A: G|)=(6,3,15)$;
(b) G is primitive on Ω and $(n, r,|A: G|, G)=(5,2,6,5: 2)$, ($\left.6,2,6, P S L_{2}(5)\right),\left(7,2,15, P S L_{3}(2)\right),\left(8,2,15, A G L_{3}(2)\right)$, or (9,4,120, $\left.P \Gamma L_{2}(8)\right)$.
[DIXON, MORTIMER, Permutation groups. Springer Science \& Business Media, 1996]

Corollary: existence of small pseudo-support

Fix $k \in \mathbb{N}$, and let $\operatorname{Sym}(n)$ act transitively on A with $|A| \leq n^{k}$. If n is large enough then, for every $a \in A$, there is some $\Delta \subseteq n$ with $|\Delta| \leq k$ such that $\operatorname{Alt}(n \backslash \Delta) \subseteq \operatorname{Stabilizer}(a)$

