A Complexity Approach to Tree Algebras:

the Polynomial Case

Arthur Jaquard

joint work with Thomas Colcombet
Université de Paris, CNRS, IRIF, F-75006, Paris, France

September 17, Highlights 2021

] °
| "1 F
INSTITUT
DE RECHERCHE

EN INFORMATIQUE Université de Paris
FONDAMENTALE

@

Infinitely sorted tree algebras

The free tree algebra has as carrier (Tx)x finite Where the X's are finite
sets of variables.

Tx = {trees in which all the variables of X appear on the leaves}

Infinitely sorted tree algebras

The free tree algebra has as carrier (Tx)x finite Where the X's are finite
sets of variables.

Tx = {trees in which all the variables of X appear on the leaves}
Objects
a a
IN€Ty /1 \ET(my
c X T

a
/ NET 2
oy

Infinitely sorted tree algebras

The free tree algebra has as carrier (Tx)x finite Where the X's are finite
sets of variables.

Tx = {trees in which all the variables of X appear on the leaves}

Objects Substitution
a a
INETy /1 \ETwy S e /a\ =
b ¢ T T Y b c G

a
/ NET 2 b o
oy

Infinitely sorted tree algebras

The free tree algebra has as carrier (Tx)x finite Where the X's are finite
sets of variables.

Tx = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming
a a J— —
/ \ET@ / \ET{T} /a\ ‘x /a\ = /a\ O’(:L‘) - O-(y) =T
C X x xT Yy b ¢ a Y a é a
a I\
I \E T ayy boe 7\ /\

z Yy T Y x x

Infinitely sorted tree algebras

The free tree algebra has as carrier (Tx)x finite Where the X's are finite
sets of variables.

Tx = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming
a a J— —
/ \ET@ / \ET{T} /a\ ‘x /a\ = /a\ O’(:L‘) - O-(y) =T
c r Z T Y b c a Yy a N a
SNET oy N /\ / N\
T Yy i Yy x i

A tree algebra A = (Ax)x finite is finite if all the sorts Ax are finite.

Infinitely sorted tree algebras

The free tree algebra has as carrier (Tx)x finite Where the X's are finite
sets of variables.

Tx = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming
a a J— —
/ \ET@)/ \ET{T} /CL\ ‘x /a\ = /a\ O'(Ll]‘) - U(y) =T
c r Z T Y b c a Yy a N a
/€Ty b SRR
Ty ' r Yy x x

A tree algebra A = (Ax)x finite is finite if all the sorts Ax are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite tree algebra A
if it is the inverse image of a subset of Ay under a morphism from the free
tree algebra to A.

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite tree algebra A
if it is the inverse image of a subset of Ay under a morphism from the free

tree algebra to A.

Example L = trees without b's on the leftmost branch

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite tree algebra A
if it is the inverse image of a subset of Ay under a morphism from the free

tree algebra to A.

Example L = trees without b's on the leftmost branch

a % {a, b, c} s a N = ({a}, %),

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite tree algebra A
if it is the inverse image of a subset of Ay under a morphism from the free

tree algebra to A.

Example L = trees without b's on the leftmost branch

a e a a
VRN — {a, b, c} /N = ({a}, x),

b a a a

/ 0\ /\

c c y Yy

Ax = 2% W (2% x X) |Ax| = 2I*1 4 2I%1|X] is linear in | X|.

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite tree algebra A
if it is the inverse image of a subset of Ay under a morphism from the free
tree algebra to A.

Example L = trees without b's on the leftmost branch

a a
VRN & {‘37 b7 C} 7\ 'i> ({a},x),
b a a a
/7 \ /\ / N\ / N\
c ¢ y y X ¢ y Yy
Ax = 2% W (2% x X) |Ax| = 2I*1 4 2I%1|X] is linear in | X|.

Definition (Complexity)
Given a finite FTx-algebra A with carrier (Ax)x finite its complexity map is
ca(|X[) = |Ax|.

Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier (Ax)x finite its complexity map is
ca(|X[) = |Ax|.

Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier (Ax)x finite its complexity map is
ca(|X[) = |Ax|.

2-EXP

EXP

Polynomial

Bounded

Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier (Ax)x finite its complexity map is
ca(|X[) = |Ax|.

2-EXP Regular languages

EXP
Polynomial

Bounded

Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier (Ax)x finite its complexity map is
ca(|X[) = |Ax|.

2-EXP Regular languages

EXP
Polynomial

Bounded

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier (Ax)x finite its complexity map is
ca(|X[) = |Ax|.

2-EXP Regular languages
EXP
Polynomial
Bounded [Colcombet & J. 2021]

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier (Ax)x finite its complexity map is
ca(|X[) = |Ax|.

2-EXP Regular languages
EXP
Polynomial [This talk]
Bounded [Colcombet & J. 2021]

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier (Ax)x finite its complexity map is
ca(|X[) = |Ax|.

2_EXP Regular languages
EXP [Future work]
Polynomial [This talk]
Bounded [Colcombet & J. 2021]

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

The corresponding automaton model

How to build the following tree ?

/\
/\

The corresponding automaton model

How to build the following tree ?

0

The corresponding automaton model

How to build the following tree ?

a

/\ [0 + a(1,2)]
1 2

The corresponding automaton model

How to build the following tree ?

/a\ [0+ a(1,2)]
b 2 1+ b(3,4)]
/\
3 4

The corresponding automaton model

How to build the following tree ?

[1 < b(3,4)]
/ \ [2 « c]
3 4

/a\ [0+ a(1,2)]
b ¢

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0« a(1,2)]
b ¢ [1 < b(3,4)]

/\ [2 « c]
3 4

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0« a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree

/\ [2 + c] (t(u) = t(v))
3 4

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0+ a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree
/\ [2 +] (t(u) = t(v))
3 4

Finite deterministic automaton A with k
registers that store integers

A accepts t(u) if it accepts u

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0+ a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree
/\ [2 +] (t(u) = t(v))
3 4

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

A accepts t(u) if it accepts u

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0+ a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree
/\ [2 +] (t(u) = t(v))
3 4

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0 < a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree
/\ [2 +] (t(u) = t(v))
3 4
Finite deterministic automaton 4 with k Example: no b on the leftmost
registers that store integers branch

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0 < a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree
/\ [2 +] (t(u) = t(v))
3 4
Finite deterministic automaton 4 with k Example: no b on the leftmost
registers that store integers 0 branch

- If t(u) = t(v) then A accepts u iff
A accepts v
(0,0)

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0 < a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree
/\ [2 +] (t(u) = t(v))
3 4
Finite deterministic automaton 4 with k Example: no b on the leftmost
registers that store integers branch
a
- If t(u) = t(v) then A accepts u iff / \
A accepts v
- Minor syntactic constraints (see 1 2 ({a}, 1)

poster for details)

A accepts t(u) if it accepts u

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0 < a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree
/\ [2 +] (t(u) = t(v))
3 4
Finite deterministic automaton 4 with k Example: no b on the leftmost
registers that store integers branch
a
- If t(u) = t(v) then A accepts u iff / \
A accepts v

- Minor syntactic constraints (see b2 ({a, b},3)
poster for details) / \
3 4

A accepts t(u) if it accepts u

The corresponding automaton model

How to build the following tree ? This is a word over an orbit-finite
alphabet
a
/ \ [0 < a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree
/\ [2 +] (t(u) = t(v))
3 4
Finite deterministic automaton 4 with k Example: no b on the leftmost
registers that store integers branch
a
- If t(u) = t(v) then A accepts u iff /
A accepts v \
- Minor syntactic constraints (see b ¢ ({a, b}, 3)
poster for details) / \
3 4

A accepts t(u) if it accepts u

The corresponding automaton model

How to build the following tree 7 This is a word over an orbit-finite
alphabet
a
/ \ [0« a(1,2)] Note that two words v and v can
b ¢ [1 < b(3,4)] denote the same tree
N\ 2 d (t() = ¢(v))
3 4
Finite deterministic automaton A with k Example: no b on the leftmost
registers that store integers branch
a
- If t(u) = t(v) then A accepts u iff /
A accepts v \
- Minor syntactic constraints (see b ¢ ({a, b},3)
poster for details) / \
3 4

A accepts t(u) if it accepts u

Same expressive power as algebras of polynomial complexity. |

Theorem on permutation groups

Theorem 5.2A. Let A := Alt(Q)) where n := || > 5,, and let v be an
integer with 1 < r < n/2. Suppose that G < A has index |A : G| < (7).
Then one of the following holds:
(i) for some A C Q with |A| < r we have Aay £ G < Afpy;
(i) n = 2m zs even, G is imprimitive with two blocks of size m, and
[A:Gl=1("); or
(ili) one of siz efEceptionat cases hold where:
(a) G is imprimitive on Q and (n,r,|A : G|) = (6,8,15) ;
(b) G is primitive on Q and (n,7,|A : G|,G) = (5,2,6,5:2),
(6,2,6,PSLs(5)), (7,2,15,PSLs(2)), (8,2,15,AGLs(2)),
or (9,4,120,PT'L,(8)).

[DIXON, MORTIMER, Permutation groups. Springer Science & Business Media, 1996]

Theorem on permutation groups

Theorem 5.2A. Let A := Alt(Q)) where n := || > 5,, and let v be an
integer with 1 < r < n/2. Suppose that G < A has index |A : G| < (M.
Then one of the following holds:
(i) for some A C Q with |A| < r we have Ay £ G £ Aqpy;
(i) n = 2m zs even, G is imprimitive with two blocks of size m, and
[A:Gl=1("); or
(ili) one of siz ezceptional cases hold where:
(a) G is imprimitive on Q and (n,r,|A : G|) = (6,8,15) ;
(b) G is primitive on Q and (n,7,|A : G|,G) = (5,2,6,5:2),
(6,2,6,PSLy(5)), (7,2,15,PSL(2)), (8,2,15,ACLa(2)).
or (9,4,120,PT'L,(8)).

[DIXON, MORTIMER, Permutation groups. Springer Science & Business Media, 1996]

Corollary: existence of small pseudo-support

Fix k € N, and let Sym(n) act transitively on A with |A| < n¥. If n is large
enough then, for every a € A, there is some A C n with |A| < k such that

Alt(n\ A) C Stabilizer(a)

