
A Complexity Approach to Tree Algebras:
the Polynomial Case

Arthur Jaquard

joint work with Thomas Colcombet

Université de Paris, CNRS, IRIF, F-75006, Paris, France

September 17, Highlights 2021

Infinitely sorted tree algebras

The free tree algebra has as carrier (TX)X finite where the X ’s are finite
sets of variables.

TX = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 5

Infinitely sorted tree algebras

The free tree algebra has as carrier (TX)X finite where the X ’s are finite
sets of variables.

TX = {trees in which all the variables of X appear on the leaves}

Objects

Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 5

Infinitely sorted tree algebras

The free tree algebra has as carrier (TX)X finite where the X ’s are finite
sets of variables.

TX = {trees in which all the variables of X appear on the leaves}

Objects Substitution

Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 5

Infinitely sorted tree algebras

The free tree algebra has as carrier (TX)X finite where the X ’s are finite
sets of variables.

TX = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 5

Infinitely sorted tree algebras

The free tree algebra has as carrier (TX)X finite where the X ’s are finite
sets of variables.

TX = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 5

Infinitely sorted tree algebras

The free tree algebra has as carrier (TX)X finite where the X ’s are finite
sets of variables.

TX = {trees in which all the variables of X appear on the leaves}

Objects Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 5

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

Example L = trees without b’s on the leftmost branch

a

b

c c

a

y y

α7−→ {a, b, c} a

a

x c

a

y y

α7−→ ({a}, x),

AX = 2Σ] (2Σ × X) |AX | = 2|Σ| + 2|Σ||X | is linear in |X |.

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2 / 5

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

Example L = trees without b’s on the leftmost branch

a

b

c c

a

y y

α7−→ {a, b, c} a

a

x c

a

y y

α7−→ ({a}, x),

AX = 2Σ] (2Σ × X) |AX | = 2|Σ| + 2|Σ||X | is linear in |X |.

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2 / 5

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

Example L = trees without b’s on the leftmost branch

a

b

c c

a

y y

α7−→ {a, b, c} a

a

x c

a

y y

α7−→ ({a}, x),

AX = 2Σ] (2Σ × X) |AX | = 2|Σ| + 2|Σ||X | is linear in |X |.

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2 / 5

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

Example L = trees without b’s on the leftmost branch

a

b

c c

a

y y

α7−→ {a, b, c} a

a

x c

a

y y

α7−→ ({a}, x),

AX = 2Σ] (2Σ × X) |AX | = 2|Σ| + 2|Σ||X | is linear in |X |.

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2 / 5

Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2-EXP

EXP

Polynomial

Bounded

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 5

Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2-EXP

EXP

Polynomial

Bounded

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 5

Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2-EXP

EXP

Polynomial

Bounded

Regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 5

Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2-EXP

EXP

Polynomial

Bounded

Regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 5

Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2-EXP

EXP

Polynomial

Bounded

Regular languages

[Colcombet & J. 2021]

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 5

Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2-EXP

EXP

Polynomial

Bounded

Regular languages

[This talk]

[Colcombet & J. 2021]

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 5

Complexity

Definition (Complexity)

Given a finite FTΣ-algebra A with carrier (AX)X finite its complexity map is
cA(|X |) = |AX |.

2-EXP

EXP

Polynomial

Bounded

Regular languages

[Future work]

[This talk]

[Colcombet & J. 2021]

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 5

The corresponding automaton model

How to build the following tree ?
a

b

...
...

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

4 / 5

The corresponding automaton model

How to build the following tree ?

0

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

4 / 5

The corresponding automaton model

How to build the following tree ?

a

1 2
[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

2

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

This is a word over an orbit-finite
alphabet

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

Example: no b on the leftmost
branch

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

Example: no b on the leftmost
branch

0

(∅, 0)

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

Example: no b on the leftmost
branch

a

1 2
({a}, 1)

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

Example: no b on the leftmost
branch

a

b

3 4

2
({a, b}, 3)

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

Example: no b on the leftmost
branch

a

b

3 4

c
({a, b}, 3)

4 / 5

The corresponding automaton model

How to build the following tree ?

a

b

3 4

c

[0← a(1, 2)]

[1← b(3, 4)]

[2← c]

...

Finite deterministic automaton A with k
registers that store integers

- If t(u) = t(v) then A accepts u iff
A accepts v

- Minor syntactic constraints (see
poster for details)

A accepts t(u) if it accepts u

This is a word over an orbit-finite
alphabet

Note that two words u and v can
denote the same tree

(t(u) = t(v))

Example: no b on the leftmost
branch

a

b

3 4

c
({a, b}, 3)

Same expressive power as algebras of polynomial complexity.
4 / 5

Theorem on permutation groups

[DIXON, MORTIMER, Permutation groups. Springer Science & Business Media, 1996]

Corollary: existence of small pseudo-support

Fix k ∈ N, and let Sym(n) act transitively on A with |A| ≤ nk . If n is large
enough then, for every a ∈ A, there is some ∆ ⊆ n with |∆| ≤ k such that

Alt(n \∆) ⊆ Stabilizer(a)

5 / 5

Theorem on permutation groups

[DIXON, MORTIMER, Permutation groups. Springer Science & Business Media, 1996]

Corollary: existence of small pseudo-support

Fix k ∈ N, and let Sym(n) act transitively on A with |A| ≤ nk . If n is large
enough then, for every a ∈ A, there is some ∆ ⊆ n with |∆| ≤ k such that

Alt(n \∆) ⊆ Stabilizer(a)

5 / 5

