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A tree algebra A = (Ax)x finite is finite if all the sorts Ax are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite tree algebra A
if it is the inverse image of a subset of Ay under a morphism from the free
tree algebra to A.
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This algebra has linear complexity.
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Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |Ax| as a
function of |X|.

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]
Polynomial complexity To appear at MFCS 2022
Exponential complexity This talk (ongoing)

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras. 3/8
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For a regular language of finite trees, the following are equivalent:
a. Being recognized by a finite tree algebra of exponential complexity.

b. Being recognized by a color tree automaton.

What is a color tree automaton?
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Color tree automaton

How to build the following tree ?
Such a word is called a tree coding.

a
/ [x] A color tree automaton works on a
5 \ [xa(x, y)] tree coding. It is given by
/ \ ‘ [xb(y, ¥)] - Q finite set of states
c ¢ [yc] - K final set of colors.
partial tree t € Tx ~ state and colouring € Q x KX

An automaton accepts a tree if it accepts all of its codings.
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Expressive power of the different types of algebras

Superlinear tree
algebras Ty, ,y

Unrestrained tree
algebras Ty,

x Yy z r Yy
Sublinear tree Linear tree algebras
algebras Ty 2.} Tix,y.2}

x Yy z t T U 2
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Expressive power of the different types of algebras

Superlinear tree

Unrestrained tree .
algebras T, Expressive power

algebras Ty,

If we allow exponential
complexity, the four variants
of tree algebras have the

Yy T Yy same expressive power.
Sublinear tree Linear tree algebras This is not the case for
algebras Ty 2.} Tioyo) )

v bounded complexity and
polynomial complexity.

T Yy z t T U =
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Extensions

- Find an algebraic definition of color tree automata.

Relation to polynomial orbit-complexity.

The Poly(2/X]) algebra complexity class.

Relation to logic.
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