A Complexity Approach to Tree Algebras: the Exponential Case (ongoing work)

Arthur Jaquard joint work with Thomas Colcombet

Université Paris Cité, CNRS, IRIF

Highlights 2022 | July 1, 2021

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $\left(T_{X}\right)_{X \subseteq \mathcal{V}}$ finite.
$T_{X}=\{$ trees in which all the variables on the leaves are in $X\}$

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $\left(T_{X}\right)_{X \subseteq \mathcal{V}}$ finite .
$T_{X}=\{$ trees in which all the variables on the leaves are in $X\}$
Objects

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $\left(T_{X}\right)_{X \subseteq \mathcal{V}}$ finite.
$T_{X}=\{$ trees in which all the variables on the leaves are in $X\}$

Objects

Substitution

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $\left(T_{X}\right)_{X \subseteq \mathcal{V}}$ finite .
$T_{X}=\{$ trees in which all the variables on the leaves are in $X\}$

Objects

Substitution

Renaming

$$
\begin{gathered}
\sigma(x)=\sigma(y)=x \\
\stackrel{a}{/} \backslash \stackrel{\sigma}{\mapsto} / a \\
x \quad y \quad x \quad x
\end{gathered}
$$

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $\left(T_{X}\right)_{X \subseteq \mathcal{V}}$ finite.
$T_{X}=\{$ trees in which all the variables on the leaves are in $X\}$

Objects

Substitution

Renaming

$$
\begin{gathered}
\sigma(x)=\sigma(y)=x \\
\stackrel{a}{/} \backslash \stackrel{\sigma}{\mapsto} / a \\
x \quad y \quad x \quad x
\end{gathered}
$$

A tree algebra $\mathcal{A}=\left(A_{X}\right)_{X}$ finite is finite if all the sorts A_{X} are finite.

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $\left(T_{X}\right)_{X \subseteq \mathcal{V}}$ finite.
$T_{X}=\{$ trees in which all the variables on the leaves are in $X\}$

Objects

Renaming

$$
\begin{aligned}
& \sigma(x)=\sigma(y)=x
\end{aligned}
$$

A tree algebra $\mathcal{A}=\left(A_{X}\right)_{X}$ finite is finite if all the sorts A_{X} are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A}.

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L=\alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A}.

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L=\alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A}.

Finite tree algebras exactly recognize the regular languages.

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L=\alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A}.

Finite tree algebras exactly recognize the regular languages.
Example $L=$ trees with a b on the leftmost branch

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L=\alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A}.

Finite tree algebras exactly recognize the regular languages.
Example $L=$ trees with a b on the leftmost branch

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L=\alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A}.

Finite tree algebras exactly recognize the regular languages.
Example $L=$ trees with a b on the leftmost branch

$A_{X}=\{\top, \perp\} \uplus(\{\top, \perp\} \times X) \quad\left|A_{X}\right|=2+2|X|$ is linear in $|X|$.

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L=\alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A}.

Finite tree algebras exactly recognize the regular languages.
Example $L=$ trees with a b on the leftmost branch

$$
\begin{gathered}
A_{X}=\{\top, \perp\} \uplus(\{\top, \perp\} \times X) \quad\left|A_{X}\right|=2+2|X| \text { is linear in }|X| . \\
\text { This algebra has linear complexity. }
\end{gathered}
$$

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra \mathcal{A} is the asymptotic size of $\left|A_{X}\right|$ as a function of $|X|$.

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra \mathcal{A} is the asymptotic size of $\left|A_{X}\right|$ as a function of $|X|$.

All regular languages are recognized by algebras of doubly-exponential complexity.

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra \mathcal{A} is the asymptotic size of $\left|A_{X}\right|$ as a function of $|X|$.

All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra \mathcal{A} is the asymptotic size of $\left|A_{X}\right|$ as a function of $|X|$.

All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Bounded complexity	[Colcombet, J, 2021]
Polynomial complexity	To appear at MFCS 2022
Exponential complexity	This talk (ongoing)
\vdots	\vdots
Doubly-exponential complexity	All regular languages

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra \mathcal{A} is the asymptotic size of $\left|A_{X}\right|$ as a function of $|X|$.

All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Bounded complexity	[Colcombet, J, 2021]
Polynomial complexity	To appear at MFCS 2022
Exponential complexity	This talk (ongoing)
\vdots	\vdots
Doubly-exponential complexity	All regular languages

The objective is to identify new classes of languages and to gain a better understanding of tree algebras.

Tree algebras of exponential complexity

Exponential complexity:

$$
\left|A_{X}\right|=\operatorname{Poly}\left(2^{|X|}\right) \quad\left|A_{X}\right|=2^{\operatorname{Poly}(|X|)}
$$

Tree algebras of exponential complexity

Exponential complexity:

$$
\left|A_{X}\right|=\operatorname{Poly}\left(2^{|X|}\right) \quad\left|A_{X}\right|=2^{\operatorname{Poly}(|X|)}
$$

$\operatorname{Poly}\left(2^{|X|}\right)$ is the smallest algebra complexity class closed under Boolean operations that contains $2^{|X|}$.

Tree algebras of exponential complexity

Exponential complexity:

$$
\left|A_{X}\right|=\operatorname{Poly}\left(2^{|X|}\right) \quad\left|A_{X}\right|=2^{\operatorname{Poly}(|X|)}
$$

$\operatorname{Poly}\left(2^{|X|}\right)$ is the smallest algebra complexity class closed under Boolean operations that contains $2^{|X|}$.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:
a. Being recognized by a finite tree algebra of exponential complexity.

Tree algebras of exponential complexity

Exponential complexity:

$$
\left|A_{X}\right|=\operatorname{Poly}\left(2^{|X|}\right) \quad\left|A_{X}\right|=2^{\operatorname{Poly}(|X|)}
$$

$\operatorname{Poly}\left(2^{|X|}\right)$ is the smallest algebra complexity class closed under Boolean operations that contains $2^{|X|}$.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:
a. Being recognized by a finite tree algebra of exponential complexity.
b. Being recognized by a color tree automaton.

Tree algebras of exponential complexity

Exponential complexity:

$$
\left|A_{X}\right|=\operatorname{Poly}\left(2^{|X|}\right) \quad\left|A_{X}\right|=2^{\operatorname{Poly}(|X|)}
$$

$\operatorname{Poly}\left(2^{|X|}\right)$ is the smallest algebra complexity class closed under Boolean operations that contains $2^{|X|}$.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:
a. Being recognized by a finite tree algebra of exponential complexity.
b. Being recognized by a color tree automaton.

What is a color tree automaton?

Color tree automaton

How to build the following tree ?

Color tree automaton

How to build the following tree ?
x
[x]

Color tree automaton

How to build the following tree ?

$$
\left./_{x}^{a}\right\rangle_{y}
$$

[x]

$$
[\cdot x a(x, y)]
$$

Color tree automaton

How to build the following tree ?

[x]
[$\cdot x a(x, y)$]
[$\left.{ }_{x} b(y, y)\right]$

Color tree automaton

How to build the following tree ?

Color tree automaton

How to build the following tree ?
Such a word is called a tree coding.

[x]
[•xa(x,y)]
[$\left.{ }^{x} b(y, y)\right]$
[. $y c$]

Color tree automaton

How to build the following tree ?

[x]
$[\cdot x a(x, y)]$
$[\cdot x b(y, y)]$
[. y c]

Such a word is called a tree coding.
A color tree automaton works on a tree coding. It is given by

- Q finite set of states
- K final set of colors.

Color tree automaton

How to build the following tree ?

$$
\begin{aligned}
& {[x]} \\
& {[\cdot x a(x, y)]} \\
& {[\cdot x b(y, y)]} \\
& {[\cdot y c]}
\end{aligned}
$$

Such a word is called a tree coding.
A color tree automaton works on a tree coding. It is given by

- Q finite set of states
- K final set of colors.
state and colouring $\in Q \times K^{X}$

Color tree automaton

How to build the following tree ?

[x]

[$\cdot x a(x, y)]$
[•xb(y,y)]
[. y c]
Such a word is called a tree coding.
A color tree automaton works on a tree coding. It is given by

- Q finite set of states
- K final set of colors.
partial tree $t \in T_{X} \quad \rightsquigarrow \quad$ state and colouring $\in Q \times K^{X}$

An automaton accepts a tree if it accepts all of its codings.

Example

$L=$ trees in which there is a d below a $b, \Sigma=\{(a, 2),(b, 2),(c, 0),(d, 0)\}$

$$
Q=\{\top, \perp\} \quad K=\{\text { red }, \text { green }\}
$$

$$
[x]\left[\cdot{ }_{x} a(x, y)\right]\left[\cdot{ }_{x} b(x, z)\right]\left[\cdot{ }_{x} c\right]\left[\cdot{ }_{z} d\right]\left[\cdot{ }_{y} c\right]
$$

Example

$L=$ trees in which there is a d below a $b, \Sigma=\{(a, 2),(b, 2),(c, 0),(d, 0)\}$

$$
Q=\{\top, \perp\} \quad K=\{\text { red, green }\}
$$

X

$$
\perp,\{x\},\{ \}
$$

$$
[x]\left[\cdot{ }_{x} a(x, y)\right]\left[{ }^{\prime} b(x, z)\right]\left[\cdot{ }_{x} c\right]\left[\cdot{ }_{z} d\right]\left[\cdot{ }_{y} c\right]
$$

Example

$L=$ trees in which there is a d below a $b, \Sigma=\{(a, 2),(b, 2),(c, 0),(d, 0)\}$

$$
Q=\{T, \perp\} \quad K=\{\text { red, green }\}
$$

$$
\perp,\{x, y\},\{ \}
$$

$[x]\left[\cdot{ }_{x} a(x, y)\right]\left[\cdot{ }_{x} b(x, z)\right]\left[\cdot{ }_{x} c\right]\left[\cdot{ }_{z} d\right]\left[\cdot{ }_{y} c\right]$

Example

$L=$ trees in which there is a d below a $b, \Sigma=\{(a, 2),(b, 2),(c, 0),(d, 0)\}$

$$
Q=\{T, \perp\} \quad K=\{\text { red, green }\}
$$

$$
\perp,\{y\},\{x, z\}
$$

$$
[x]\left[\cdot{ }_{x} a(x, y)\right]\left[\cdot{ }_{x} b(x, z)\right]\left[\cdot{ }_{x} c\right]\left[\cdot{ }_{z} d\right]\left[\cdot{ }_{y} c\right]
$$

Example

$L=$ trees in which there is a d below a $b, \Sigma=\{(a, 2),(b, 2),(c, 0),(d, 0)\}$

$$
\begin{aligned}
& Q=\{T, \perp\} \quad K=\{\text { red, green }\} \\
& \perp,\{y\},\{z\} \\
& {[x]\left[\cdot{ }_{x} a(x, y)\right]\left[\cdot{ }_{x} b(x, z)\right]\left[{ }^{x} c\right]\left[\cdot{ }_{z} d\right]\left[\cdot{ }_{y} c\right]}
\end{aligned}
$$

Example

$L=$ trees in which there is a d below a $b, \Sigma=\{(a, 2),(b, 2),(c, 0),(d, 0)\}$

$$
\begin{aligned}
& Q=\{\top, \perp\} \quad K=\{\text { red, green }\} \\
& C_{c}^{a} _{d} \\
& {[x][\cdot x a(x, y)][\cdot x b(x, z)]\left[\cdot{ }_{x} c\right]\left[\cdot{ }_{z} d\right]\left[\cdot{ }_{y} c\right]}
\end{aligned}
$$

Example

$L=$ trees in which there is a d below a $b, \Sigma=\{(a, 2),(b, 2),(c, 0),(d, 0)\}$

$$
\begin{aligned}
& Q=\{\top, \perp\} \quad K=\{\text { red, green }\} \\
& /_{c}^{a} _{d} \\
& {[x]\left[\cdot{ }_{x} a(x, y)\right]\left[\cdot{ }_{x} b(x, z)\right]\left[{ }_{x} c\right]\left[\cdot{ }_{z} d\right]\left[\cdot{ }_{y} c\right]}
\end{aligned}
$$

Expressive power of the different types of algebras

Unrestrained tree algebras $T_{\{x, y, z\}}$

z

Sublinear tree algebras $T_{\{x, y, z, t\}}$

Superlinear tree algebras $T_{\{x, y\}}$

Linear tree algebras
$T_{\{x, y, z\}}$

Expressive power of the different types of algebras

Unrestrained tree algebras $T_{\{x, y, z\}}$

z

Sublinear tree algebras $T_{\{x, y, z, t\}}$

Superlinear tree algebras $T_{\{x, y\}}$

Linear tree algebras

$$
T_{\{x, y, z\}}
$$

Expressive power
 If we allow exponential complexity, the four variants of tree algebras have the same expressive power.

This is not the case for bounded complexity and polynomial complexity.

Extensions

- Find an algebraic definition of color tree automata.
- Relation to polynomial orbit-complexity.
- The Poly $\left(2^{|X|}\right)$ algebra complexity class.
- Relation to logic.

Extensions

- Find an algebraic definition of color tree automata.
- Relation to polynomial orbit-complexity.
- The Poly $\left(2^{|X|}\right)$ algebra complexity class.
- Relation to logic.

Questions?

