
A Complexity Approach to Tree Algebras: the
Exponential Case (ongoing work)

Arthur Jaquard

joint work with Thomas Colcombet

Université Paris Cité, CNRS, IRIF

Highlights 2022 | July 1, 2021

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables.
The free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 8

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables.
The free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}

Objects

Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 8

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables.
The free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}

Objects Substitution

Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 8

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables.
The free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 8

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables.
The free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 8

Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables.
The free tree algebra has as carrier sets the (TX)X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming

A tree algebra A = (AX)X finite is finite if all the sorts AX are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra A
if it is the inverse image of a subset of A∅ under a morphism from the free
tree algebra to A.

1 / 8

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ ⊤ a

a

x c

a

y y

α7−→ (⊥, x),

AX = {⊤,⊥} ⊎ ({⊤,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 8

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ ⊤ a

a

x c

a

y y

α7−→ (⊥, x),

AX = {⊤,⊥} ⊎ ({⊤,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 8

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ ⊤ a

a

x c

a

y y

α7−→ (⊥, x),

AX = {⊤,⊥} ⊎ ({⊤,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 8

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ ⊤ a

a

x c

a

y y

α7−→ (⊥, x),

AX = {⊤,⊥} ⊎ ({⊤,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 8

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ ⊤ a

a

x c

a

y y

α7−→ (⊥, x),

AX = {⊤,⊥} ⊎ ({⊤,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.

This algebra has linear complexity.

2 / 8

Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite algebra A if
there is a set P ⊆ A∅ such that L = α−1(P) in which α is the evaluation
morphism of A.

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ ⊤ a

a

x c

a

y y

α7−→ (⊥, x),

AX = {⊤,⊥} ⊎ ({⊤,⊥}× X) |AX | = 2 + 2|X | is linear in |X |.
This algebra has linear complexity.

2 / 8

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity To appear at MFCS 2022

Exponential complexity This talk (ongoing)
...

...

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 8

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity To appear at MFCS 2022

Exponential complexity This talk (ongoing)
...

...

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 8

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity To appear at MFCS 2022

Exponential complexity This talk (ongoing)
...

...

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 8

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity To appear at MFCS 2022

Exponential complexity This talk (ongoing)
...

...

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras.

3 / 8

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of |AX | as a
function of |X |.

All regular languages are recognized by algebras of doubly-exponential
complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity To appear at MFCS 2022

Exponential complexity This talk (ongoing)
...

...

Doubly-exponential complexity All regular languages

The objective is to identify new classes of languages and to gain a
better understanding of tree algebras. 3 / 8

Tree algebras of exponential complexity

Exponential complexity:

|AX | = Poly(2|X |) |AX | = 2Poly(|X |)

Poly(2|X |) is the smallest algebra complexity class closed under Boolean
operations that contains 2|X |.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:

a. Being recognized by a finite tree algebra of exponential complexity.

b. Being recognized by a color tree automaton.

What is a color tree automaton?

4 / 8

Tree algebras of exponential complexity

Exponential complexity:

|AX | = Poly(2|X |) |AX | = 2Poly(|X |)

Poly(2|X |) is the smallest algebra complexity class closed under Boolean
operations that contains 2|X |.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:

a. Being recognized by a finite tree algebra of exponential complexity.

b. Being recognized by a color tree automaton.

What is a color tree automaton?

4 / 8

Tree algebras of exponential complexity

Exponential complexity:

|AX | = Poly(2|X |) |AX | = 2Poly(|X |)

Poly(2|X |) is the smallest algebra complexity class closed under Boolean
operations that contains 2|X |.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:

a. Being recognized by a finite tree algebra of exponential complexity.

b. Being recognized by a color tree automaton.

What is a color tree automaton?

4 / 8

Tree algebras of exponential complexity

Exponential complexity:

|AX | = Poly(2|X |) |AX | = 2Poly(|X |)

Poly(2|X |) is the smallest algebra complexity class closed under Boolean
operations that contains 2|X |.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:

a. Being recognized by a finite tree algebra of exponential complexity.

b. Being recognized by a color tree automaton.

What is a color tree automaton?

4 / 8

Tree algebras of exponential complexity

Exponential complexity:

|AX | = Poly(2|X |) |AX | = 2Poly(|X |)

Poly(2|X |) is the smallest algebra complexity class closed under Boolean
operations that contains 2|X |.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:

a. Being recognized by a finite tree algebra of exponential complexity.

b. Being recognized by a color tree automaton.

What is a color tree automaton?

4 / 8

Color tree automaton

How to build the following tree ?

a

b

c c

c

[x]

[·xa(x , y)]
[·xb(y , y)]
[·yc]

Such a word is called a tree coding.
A color tree automaton works on a
tree coding. It is given by

- Q finite set of states

- K final set of colors.

partial tree t ∈ TX ⇝ state and colouring ∈ Q × KX

An automaton accepts a tree if it accepts all of its codings.

5 / 8

Color tree automaton

How to build the following tree ?

x
[x]

[·xa(x , y)]
[·xb(y , y)]
[·yc]

Such a word is called a tree coding.
A color tree automaton works on a
tree coding. It is given by

- Q finite set of states

- K final set of colors.

partial tree t ∈ TX ⇝ state and colouring ∈ Q × KX

An automaton accepts a tree if it accepts all of its codings.

5 / 8

Color tree automaton

How to build the following tree ?

a

x y

[x]

[·xa(x , y)]

[·xb(y , y)]
[·yc]

Such a word is called a tree coding.
A color tree automaton works on a
tree coding. It is given by

- Q finite set of states

- K final set of colors.

partial tree t ∈ TX ⇝ state and colouring ∈ Q × KX

An automaton accepts a tree if it accepts all of its codings.

5 / 8

Color tree automaton

How to build the following tree ?

a

b

y y

y

[x]

[·xa(x , y)]
[·xb(y , y)]

[·yc]

Such a word is called a tree coding.
A color tree automaton works on a
tree coding. It is given by

- Q finite set of states

- K final set of colors.

partial tree t ∈ TX ⇝ state and colouring ∈ Q × KX

An automaton accepts a tree if it accepts all of its codings.

5 / 8

Color tree automaton

How to build the following tree ?

a

b

c c

c

[x]

[·xa(x , y)]
[·xb(y , y)]
[·yc]

Such a word is called a tree coding.
A color tree automaton works on a
tree coding. It is given by

- Q finite set of states

- K final set of colors.

partial tree t ∈ TX ⇝ state and colouring ∈ Q × KX

An automaton accepts a tree if it accepts all of its codings.

5 / 8

Color tree automaton

How to build the following tree ?

a

b

c c

c

[x]

[·xa(x , y)]
[·xb(y , y)]
[·yc]

Such a word is called a tree coding.

A color tree automaton works on a
tree coding. It is given by

- Q finite set of states

- K final set of colors.

partial tree t ∈ TX ⇝ state and colouring ∈ Q × KX

An automaton accepts a tree if it accepts all of its codings.

5 / 8

Color tree automaton

How to build the following tree ?

a

b

c c

c

[x]

[·xa(x , y)]
[·xb(y , y)]
[·yc]

Such a word is called a tree coding.
A color tree automaton works on a
tree coding. It is given by

- Q finite set of states

- K final set of colors.

partial tree t ∈ TX ⇝ state and colouring ∈ Q × KX

An automaton accepts a tree if it accepts all of its codings.

5 / 8

Color tree automaton

How to build the following tree ?

a

b

c c

c

[x]

[·xa(x , y)]
[·xb(y , y)]
[·yc]

Such a word is called a tree coding.
A color tree automaton works on a
tree coding. It is given by

- Q finite set of states

- K final set of colors.

partial tree t ∈ TX ⇝ state and colouring ∈ Q × KX

An automaton accepts a tree if it accepts all of its codings.

5 / 8

Color tree automaton

How to build the following tree ?

a

b

c c

c

[x]

[·xa(x , y)]
[·xb(y , y)]
[·yc]

Such a word is called a tree coding.
A color tree automaton works on a
tree coding. It is given by

- Q finite set of states

- K final set of colors.

partial tree t ∈ TX ⇝ state and colouring ∈ Q × KX

An automaton accepts a tree if it accepts all of its codings.

5 / 8

Example

L = trees in which there is a d below a b, Σ = {(a, 2), (b, 2), (c, 0), (d , 0)}

Q = {⊤,⊥} K = {red, green}

a

b

c d

c

[x][·xa(x , y)][·xb(x , z)][·xc][·zd][·yc]

6 / 8

Example

L = trees in which there is a d below a b, Σ = {(a, 2), (b, 2), (c, 0), (d , 0)}

Q = {⊤,⊥} K = {red, green}

x

⊥, {x}, {}

[x][·xa(x , y)][·xb(x , z)][·xc][·zd][·yc]

6 / 8

Example

L = trees in which there is a d below a b, Σ = {(a, 2), (b, 2), (c, 0), (d , 0)}

Q = {⊤,⊥} K = {red, green}

a

x y ⊥, {x , y}, {}

[x][·xa(x , y)][·xb(x , z)][·xc][·zd][·yc]

6 / 8

Example

L = trees in which there is a d below a b, Σ = {(a, 2), (b, 2), (c, 0), (d , 0)}

Q = {⊤,⊥} K = {red, green}

a

b

x z

y ⊥, {y}, {x , z}

[x][·xa(x , y)][·xb(x , z)][·xc][·zd][·yc]

6 / 8

Example

L = trees in which there is a d below a b, Σ = {(a, 2), (b, 2), (c, 0), (d , 0)}

Q = {⊤,⊥} K = {red, green}

a

b

c z

y ⊥, {y}, {z}

[x][·xa(x , y)][·xb(x , z)][·xc][·zd][·yc]

6 / 8

Example

L = trees in which there is a d below a b, Σ = {(a, 2), (b, 2), (c, 0), (d , 0)}

Q = {⊤,⊥} K = {red, green}

a

b

c d

y ⊤, {y}, {}

[x][·xa(x , y)][·xb(x , z)][·xc][·zd][·yc]

6 / 8

Example

L = trees in which there is a d below a b, Σ = {(a, 2), (b, 2), (c, 0), (d , 0)}

Q = {⊤,⊥} K = {red, green}

a

b

c d

c
⊤, {}, {}

[x][·xa(x , y)][·xb(x , z)][·xc][·zd][·yc]

6 / 8

Expressive power of the different types of algebras

Unrestrained tree
algebras T{x,y,z}

Sublinear tree
algebras T{x,y,z,t}

Superlinear tree
algebras T{x,y}

Linear tree algebras
T{x,y,z}

Expressive power

If we allow exponential
complexity, the four variants
of tree algebras have the
same expressive power.

This is not the case for
bounded complexity and
polynomial complexity.

7 / 8

Expressive power of the different types of algebras

Unrestrained tree
algebras T{x,y,z}

Sublinear tree
algebras T{x,y,z,t}

Superlinear tree
algebras T{x,y}

Linear tree algebras
T{x,y,z}

Expressive power

If we allow exponential
complexity, the four variants
of tree algebras have the
same expressive power.

This is not the case for
bounded complexity and
polynomial complexity.

7 / 8

Extensions

- Find an algebraic definition of color tree automata.

- Relation to polynomial orbit-complexity.

- The Poly(2|X |) algebra complexity class.

- Relation to logic.

Questions?

8 / 8

Extensions

- Find an algebraic definition of color tree automata.

- Relation to polynomial orbit-complexity.

- The Poly(2|X |) algebra complexity class.

- Relation to logic.

Questions?

8 / 8

