A Complexity Approach to Tree Algebras: the Exponential Case (ongoing work)

Arthur Jaquard

joint work with Thomas Colcombet

Université Paris Cité, CNRS, IRIF

Highlights 2022 | July 1, 2021

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Objects

$$\begin{array}{ccc} a & & a \\ c & & x' \in T_{\{x\}} \\ b & c & & x' \\ a \\ c' & \in & T_{\{x,y\}} \\ x' & x' & y' \\ \end{array}$$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subseteq \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Objects

Substitution

$$\begin{array}{c} a & a \\ x & y \\ x & y \\ b & c \end{array} = \begin{array}{c} a \\ x & y \\ b & c \\ b \\ c \end{array}$$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

A tree algebra $\mathcal{A} = (A_X)_X$ finite is finite if all the sorts A_X are finite.

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

A tree algebra $\mathcal{A} = (A_X)_X$ finite is finite if all the sorts A_X are finite.

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite tree algebra \mathcal{A} if it is the inverse image of a subset of A_{\emptyset} under a morphism from the free tree algebra to \mathcal{A} .

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

A language L of finite trees over Σ is recognized by a finite algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

 $A_X = \{\top, \bot\} \uplus (\{\top, \bot\} \times X) \qquad |A_X| = 2 + 2|X| \text{ is linear in } |X|.$ This algebra has linear complexity.

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra \mathcal{A} is the asymptotic size of $|\mathcal{A}_X|$ as a function of |X|.

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of $|A_X|$ as a function of |X|.

All regular languages are recognized by algebras of doubly-exponential complexity.

Complexity

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of $|A_X|$ as a function of |X|.

All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of $|A_X|$ as a function of |X|.

All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Bounded complexity	[Colcombet, J, 2021]
Polynomial complexity	To appear at MFCS 2022
Exponential complexity	This talk (ongoing)
÷	:
Doubly-exponential complexity	All regular languages

Definition (Complexity of an algebra)

The complexity of a finite algebra A is the asymptotic size of $|A_X|$ as a function of |X|.

All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Bounded complexity	[Colcombet, J, 2021]
Polynomial complexity	To appear at MFCS 2022
Exponential complexity	This talk (ongoing)
÷	
Doubly-exponential complexity	All regular languages

The objective is to identify new classes of languages and to gain a better understanding of tree algebras.

Exponential complexity:

$$|A_X| = \text{Poly}(2^{|X|})$$
 $|A_X| = 2^{\text{Poly}(|X|)}$

Exponential complexity:

$$|A_X| = \text{Poly}(2^{|X|})$$
 $|A_X| = 2^{\text{Poly}(|X|)}$

 $Poly(2^{|X|})$ is the smallest algebra complexity class closed under Boolean operations that contains $2^{|X|}$.

Exponential complexity:

 $|A_X| = \text{Poly}(2^{|X|})$ $|A_X| = 2^{\text{Poly}(|X|)}$

 $Poly(2^{|X|})$ is the smallest algebra complexity class closed under Boolean operations that contains $2^{|X|}$.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:

a. Being recognized by a finite tree algebra of exponential complexity.

Exponential complexity:

 $|A_X| = \text{Poly}(2^{|X|})$ $|A_X| = 2^{\text{Poly}(|X|)}$

 $Poly(2^{|X|})$ is the smallest algebra complexity class closed under Boolean operations that contains $2^{|X|}$.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:

- a. Being recognized by a finite tree algebra of exponential complexity.
- b. Being recognized by a color tree automaton.

Exponential complexity:

 $|A_X| = \text{Poly}(2^{|X|})$ $|A_X| = 2^{\text{Poly}(|X|)}$

 $Poly(2^{|X|})$ is the smallest algebra complexity class closed under Boolean operations that contains $2^{|X|}$.

Equivalence theorem

For a regular language of finite trees, the following are equivalent:

- a. Being recognized by a finite tree algebra of exponential complexity.
- b. Being recognized by a color tree automaton.

What is a color tree automaton?

х

How to build the following tree ?

[x]

$$\begin{array}{c} a & [x] \\ \land & [\cdot_x a(x, y)] \end{array}$$

$$\begin{array}{c} a & [x] \\ & & [\cdot_x a(x, y)] \\ & & b & y & [\cdot_x a(x, y)] \\ & & & [\cdot_x b(y, y)] \\ & & & y & y \end{array}$$

$$\begin{array}{c} a & [x] \\ & & [\cdot_x a(x, y)] \\ & & & [\cdot_x b(y, y)] \\ & & & [\cdot_y c] \end{array}$$

$$\begin{array}{c} a & [x] \\ b & c & [\cdot_x a(x, y)] \\ / & & [\cdot_x b(y, y)] \\ c & c & [\cdot_y c] \end{array}$$

Such a word is called a tree coding.

Such a word is called a tree coding. A color tree automaton works on a tree coding. It is given by

- Q finite set of states
- K final set of colors.

$$\begin{array}{c} a & [x] \\ & & [\cdot_x a(x,y)] \\ & & b & c & [\cdot_x a(x,y)] \\ & & & [\cdot_x b(y,y)] \\ & & & c & [\cdot_y c] \end{array}$$

Such a word is called a tree coding. A color tree automaton works on a tree coding. It is given by

- Q finite set of states
- K final set of colors.

partial tree $t \in T_X$

~→ st

state and colouring $\ \in \ Q imes \ K^X$

Such a word is called a tree coding. A color tree automaton works on a tree coding. It is given by

- Q finite set of states
- K final set of colors.

partial tree $t \in T_X$ \rightsquigarrow state and colouring $\in Q \times K^X$

An automaton accepts a tree if it accepts all of its codings.

$$Q = \{\top, \bot\}$$
 $K = \{\text{red}, green\}$

$$Q = \{\top, \bot\}$$
 $K = \{\text{red}, green\}$

х

 $\perp, \{x\}, \{\}$

$$Q = \{\top, \bot\} \qquad \qquad K = \{\mathsf{red}, \mathsf{green}\}$$

$$Q = \{\top, \bot\} \qquad K = \{\text{red}, \text{green}\}$$

$$A \\ \land \\ b \\ y \\ \land \\ X \\ x \\ z$$

$$Q = \{\top, \bot\} \qquad \qquad K = \{\mathsf{red}, \mathsf{green}\}$$

Unrestrained tree algebras $T_{\{x,y,z\}}$

Sublinear tree algebras $T_{\{x,y,z,t\}}$

Linear tree algebras $T_{\{x,y,z\}}$

Unrestrained tree algebras $T_{\{x,y,z\}}$

Sublinear tree algebras $T_{\{x,y,z,t\}}$

Linear tree algebras $T_{\{x,y,z\}}$

Expressive power

If we allow exponential complexity, the four variants of tree algebras have the same expressive power.

This is not the case for bounded complexity and polynomial complexity.

- Find an algebraic definition of color tree automata.
- Relation to polynomial orbit-complexity.
- The $Poly(2^{|X|})$ algebra complexity class.
- Relation to logic.

- Find an algebraic definition of color tree automata.
- Relation to polynomial orbit-complexity.
- The $Poly(2^{|X|})$ algebra complexity class.
- Relation to logic.

Questions?