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Definition (Finite Tree algebras)

A finite FTs-algebra A consists of an infinite series of finite carrier sets Ax
indexed by finite sets of variables X, together with operations:
Constants. a(xo, ..., X, 1) € Ao, 1} for all a € X, and variables x;,
Substitution. -7': Ax x Ay — Ax\{xyuy for all finite X, Y and x € X,
Renaming. rename“[o]: Ax — Ay for all surjective maps o: X — Y.

Given a finite FTs-algebra A, there is a unique morphism from the free algebra to
A. It is called the evaluation morphism of A.

—




Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite FTs-algebra A
if there is a set P C Ay such that L = a~1(P) in which « is the evaluation
morphism of A.

Example L = The language of all trees that only contain a's and b’s



Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite FTs-algebra A
if there is a set P C Ay such that L = a~1(P) in which « is the evaluation
morphism of A.

Example L = The language of all trees that only contain a's and b’s

a
T i



Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite FTs-algebra A
if there is a set P C Ay such that L = a~1(P) in which « is the evaluation
morphism of A.

Example L = The language of all trees that only contain a's and b’s

a o
s\ fa} € Ay Ax = 2% for all X

X X
A B=AUB



Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite FTs-algebra A
if there is a set P C Ay such that L = a~1(P) in which « is the evaluation
morphism of A.

Example L = The language of all trees that only contain a's and b’s

a o T
/ A\ {a} € Ay Ax = 2Z for all X ’AX’ = 2| ‘ IS
r x bounded (it does not

A.B=AUB depend on |X|).



Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite FTs-algebra A
if there is a set P C Ay such that L = a~1(P) in which « is the evaluation
morphism of A.

Example L = The language of all trees that only contain a's and b’s

a (6% . z i
/ A\ {a} € Ay Ax = 2Z for all X ’AX’ = 2| ‘ IS
r x bounded (it does not
A,B=AUB depend on |X|).

Example L = trees without b's on the leftmost branch



Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite FTs-algebra A
if there is a set P C Ay such that L = a~1(P) in which « is the evaluation
morphism of A.

Example L = The language of all trees that only contain a's and b’s

a o _ o7 ;
S {a) € A Ax =2 forall X |Ax|=2%is
T T bounded (it does not
A.B=AUB depend on |X|).
Example L = trees without b's on the leftmost branch
a a
7\ & {aa b7 C} 7\ 'i> ({3}7X)7
b 3 a a



Languages and the size of the algebra

Definition (Language recognized by an algebra)

A language L of finite trees over X is recognized by a finite FTs-algebra A
if there is a set P C Ay such that L = a~1(P) in which « is the evaluation
morphism of A.

Example L = The language of all trees that only contain a's and b’s

a o _ o7 ;
S {a) € A Ax =2 forall X |Ax|=2%is
T T bounded (it does not
A.B=AUB depend on |X|).
Example L = trees without b's on the leftmost branch
a a
7\ & {aa b7 C} 7\ 'i> ({3}7X)7
b 3 a a
c ¢c y vy X ¢ y Yy

Ax =25 W (2% x X) |Ax| = 2I%1 4 2I%1|X| is linear in |X|.



Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier
(Ax)x finite, all Ax finite

its complexity map is ca(|X|) = |Ax|. (|X| = Y] implies |Ax| = |Ay|)




Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier
(Ax)x finite, all Ax finite

its complexity map is ca(|X|) = |Ax|. (|X| = Y] implies |Ax| = |Ay|)

Ay = 2%

|Ax| = 2™

Bounded complexity



Complexity

Definition (Complexity)

Given a finite FTx-algebra A with carrier
(Ax)x finite, all Ax finite

its complexity map is ca(|X|) = |Ax|. (|X| = Y] implies |Ax| = |Ay|)

Ax = 2% Ax =251 (2 x X)

|Ax| = 2% |Ax| = 2I* + 2I¥) x

Bounded complexity Linear complexity
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L = trees with at least a b on every branch )
ax a ax «
K S () K S (kL)
b ax aX aX
/ N\ /A / A\ /A
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Ax =2%X x {T, 1}
|Ax| = 2X1 % 2

This algebra has exponential complexity.

Languages recognized by top-down deterministic automata

All languages recognized by top-down deterministic automata are
recognized by FTyx-algebras of exponential complexity.
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What complexity means

Bounded complexity

The algebra does not remember anything about the variables.

Ax ~> the variables that appear in the tree are exactly X.

Polynomial complexity

Ax = Xk ~s k variables (e.g. k branches)

Exponential complexity

Ax = kX ~ a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k =Z/qZ)

Doubly exponential complexity

Regular languages

A top-down nondeterministic automaton can be transformed into a
FTs-algebras of doubly-exponential complexity that recognizes the same
language.

Conversely, any language recognized by a finite FTx-algebra is regular.
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Characterizing bounded complexity

Is complexity meaningful?
What are the languages recognized by FTy-algebras of
bounded complexity?

Consider for all X the group morphism induced by renaming

Yx: Sym(X) — Sym(AX)

o — rename”[o]

Invariance under permutations

A finite syntactic FTx-algebra is of bounded complexity if and only if for
all sufficiently large finite set of variables X, Ker(¢x) = Sym(X).




Main result

Characterization theorem

A language of finite trees is recognized
by an FTs-algebra of bounded
complexity if and only if it is a Boolean
combination of languages of the
following kinds:

a. The language of finite trees with
unary prefix in a given regular
language of words L C ¥7.

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

c. The language of finite trees with
post-branching symbols B, for
BCY.

d. A regular language K of bounded
branching.

Unary prefix: upref () = aab

S — R ——1Q

irst non unary symbol: fnu(t) = d

Post-branching symbols:
pbsymb(¢t) = {a,c, ¢, g}

Bounded branching: Jk all trees
in K have at most k branches
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Conclusion
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Bounded complexity A language of finite trees is recognized
by an FTx-algebra of bounded
complexity if and only if it is a Boolean

Polynomial complexity ?

Exponential complexity ? combination of languages of the
Orbit complexity: renaming yields ~following kinds:
an action of Sym(X) over Ax. a. The language of finite trees with
. unary prefix in a given regular
ca(IX]) = [Ax/Sym(X))| language of words L C Y.

b. The language of finite trees with
first non unary symbol b for a
fixed non unary symbol b.

Ongoing: polynomial complexity,
bounded orbit complexity...

A similar characterization of c. The Ianguage of finite trees with
languages of infinite regular trees as post-branching symbols B, for

Boolean combinations of a.-d. and BCZ.
other languages d. A regular language K of bounded

branching.




