A Complexity Approach to Tree Algebras: the Bounded Case

Arthur Jaquard joint work with Thomas Colcombet

Université de Paris, CNRS, IRIF, F-75006, Paris, France

ICALP 2021 (Track B)

Algebras are used to characterize classes of languages

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Schützenberger, 1965

A regular language *L* is star-free if and only if its syntactic monoid is aperiodic.

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Infinitely sorted algebras

 $(A_n)_{n\in\mathbb{N}}\ (A_X)_X$ finite

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Infinitely sorted algebras

 $(A_n)_{n\in\mathbb{N}}\ (A_X)_X$ finite

Problem: Hard to derive characterizations with infinitely sorted algebras

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Infinitely sorted algebras

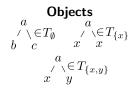
 $(A_n)_{n\in\mathbb{N}}\ (A_X)_X$ finite

Problem: Hard to derive characterizations with infinitely sorted algebras

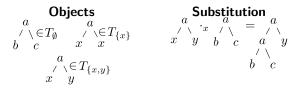
Objective: characterize classes that can be naturally defined using infinitely sorted algebras

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

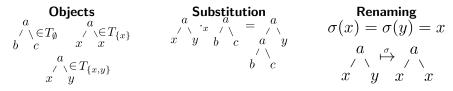
Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.



Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

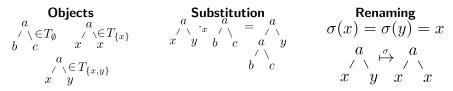


Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.



Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$



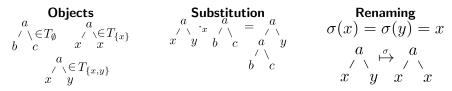
Definition (Finite Tree algebras)

A finite FT_{Σ} -algebra \mathcal{A} consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_x^{\mathcal{A}} \colon A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and $x \in X$, **Renaming.** rename $\mathcal{A}[\sigma] \colon A_X \to A_Y$ for all surjective maps $\sigma \colon X \to Y$.

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{$ trees in which all the variables of X appear on the leaves $\}$



Definition (Finite Tree algebras)

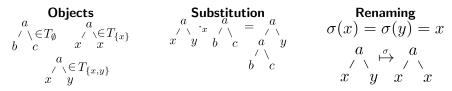
A finite FT_{Σ} -algebra \mathcal{A} consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_x^{\mathcal{A}} : A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and $x \in X$, **Renaming.** rename $\mathcal{A}[\sigma] : A_X \to A_Y$ for all surjective maps $\sigma : X \to Y$.

Identities? $a(x, y) \cdot_y b$ $a(x, z) \cdot_z b$ We also define morphisms, congruences...

Let Σ be a ranked alphabet. The free FT_{Σ} -algebra has as carrier $(T_X)_X$ finite where the X's are finite sets of variables.

 $T_X = \{ \text{trees in which all the variables of } X \text{ appear on the leaves} \}$



Definition (Finite Tree algebras)

A finite FT_{Σ} -algebra \mathcal{A} consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_x^{\mathcal{A}} \colon A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and $x \in X$, **Renaming.** rename^{\mathcal{A}}[σ]: $A_X \to A_Y$ for all surjective maps $\sigma \colon X \to Y$.

Given a finite FT_{Σ} -algebra \mathcal{A} , there is a unique morphism from the free algebra to \mathcal{A} . It is called the evaluation morphism of \mathcal{A} .

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

$$x \xrightarrow{a} \{a\} \in A_{\{x\}} x x$$

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

$$A_{X} = 2^{\Sigma} \text{ for all } X \qquad |A_{X}| = 2^{|\Sigma|} \text{ is bounded (it does not depend on |X|).}$$

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Example L = The language of all trees that only contain *a*'s and *b*'s

 $\begin{array}{ccc} a & & \\ & A_{\{x\}} & & A_{X} = 2^{\Sigma} \text{ for all } X & & |A_{X}| = 2^{|\Sigma|} \text{ is} \\ & x & x & & \\ & & A \cdot_{x} B = A \cup B & & \text{depend on } |X|). \end{array}$

Example L = trees without b's on the leftmost branch

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Example L = The language of all trees that only contain *a*'s and *b*'s

 $\begin{array}{ccc} a & & & & & \\ A_X & \searrow^{\alpha} \{a\} \in A_{\{x\}} & & & A_X = 2^{\Sigma} \text{ for all } X & & & |A_X| = 2^{|\Sigma|} \text{ is bounded (it does not } \\ x & x & & & & \\ A \cdot_x B = A \cup B & & & \text{depend on } |X|). \end{array}$

Example L = trees without b's on the leftmost branch

Definition (Language recognized by an algebra)

A language L of finite trees over Σ is recognized by a finite FT_{Σ} -algebra \mathcal{A} if there is a set $P \subseteq A_{\emptyset}$ such that $L = \alpha^{-1}(P)$ in which α is the evaluation morphism of \mathcal{A} .

Example L = The language of all trees that only contain *a*'s and *b*'s

 $\begin{array}{ccc} a & & & & & \\ A_X & \searrow^{\alpha} \{a\} \in A_{\{x\}} & & & A_X = 2^{\Sigma} \text{ for all } X & & & |A_X| = 2^{|\Sigma|} \text{ is bounded (it does not } \\ x & x & & & & \\ A \cdot_x B = A \cup B & & & \text{depend on } |X|). \end{array}$

Example L = trees without b's on the leftmost branch

$$A_{X} = 2^{\Sigma} \uplus (2^{\Sigma} \times X) \qquad |A_{X}| = 2^{|\Sigma|} + 2^{|\Sigma|} |X| \text{ is linear in } |X|.$$

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier

 $(A_X)_X$ finite, all A_X finite

its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$. $(|X| = |Y| \text{ implies } |A_X| = |A_Y|)$

Definition (Complexity)

Given a finite FT_{Σ} -algebra \mathcal{A} with carrier

 $(A_X)_X$ finite, all A_X finite

its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$. $(|X| = |Y| \text{ implies } |A_X| = |A_Y|)$

$$A_X = 2^{\Sigma}$$
$$|A_X| = 2^{|\Sigma|}$$

Bounded complexity

Definition (Complexity)

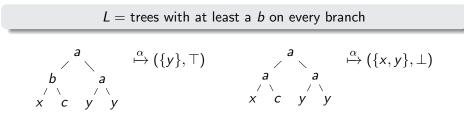
Given a finite FT_{Σ} -algebra \mathcal{A} with carrier

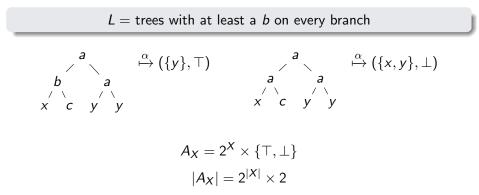
 $(A_X)_X$ finite, all A_X finite

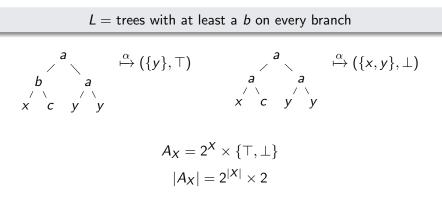
its complexity map is $c_{\mathcal{A}}(|X|) = |A_X|$. $(|X| = |Y| \text{ implies } |A_X| = |A_Y|)$

$A_X = 2^{\Sigma}$	$A_X = 2^\Sigma \uplus (2^\Sigma \times X)$
$ A_X = 2^{ \Sigma }$	$ A_X = 2^{ \Sigma } + 2^{ \Sigma } X $
Bounded complexity	Linear complexity

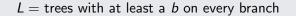
L = trees with at least a b on every branch

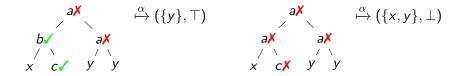






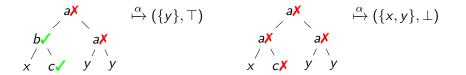
This algebra has exponential complexity.





$$A_X = 2^X \times \{\top, \bot\}$$
$$|A_X| = 2^{|X|} \times 2$$

This algebra has exponential complexity.



$$A_X = 2^X \times \{\top, \bot\}$$
$$|A_X| = 2^{|X|} \times 2$$

This algebra has exponential complexity.

Languages recognized by top-down deterministic automata

All languages recognized by top-down deterministic automata are recognized by FT_{Σ} -algebras of exponential complexity.

The algebra does not remember anything about the variables. $A_X \rightsquigarrow$ the variables that appear in the tree are exactly X.

The algebra does not remember anything about the variables.

 $A_X \rightsquigarrow$ the variables that appear in the tree are exactly X.

Polynomial complexity

 $A_X = X^k \rightsquigarrow k$ variables (e.g. k branches)

The algebra does not remember anything about the variables.

 $A_X \rightsquigarrow$ the variables that appear in the tree are exactly X.

Polynomial complexity

 $A_X = X^k \rightsquigarrow k$ variables (e.g. k branches)

Exponential complexity

 $A_X = k^X \rightsquigarrow$ a function from X to k (e.g. a set of variables when k = 2, or modulo counting if $k = \mathbb{Z}/q\mathbb{Z}$)

The algebra does not remember anything about the variables.

 $A_X \rightsquigarrow$ the variables that appear in the tree are exactly X.

Polynomial complexity

 $A_X = X^k \rightsquigarrow k$ variables (e.g. k branches)

Exponential complexity

 $A_X = k^X \rightsquigarrow$ a function from X to k (e.g. a set of variables when k = 2, or modulo counting if $k = \mathbb{Z}/q\mathbb{Z}$)

Doubly exponential complexity

Regular languages

A top-down nondeterministic automaton can be transformed into a FT_{Σ} -algebras of doubly-exponential complexity that recognizes the same language.

Conversely, any language recognized by a finite FT_{Σ} -algebra is regular.

Is complexity meaningful?

Is complexity meaningful? What are the languages recognized by FT_{Σ} -algebras of bounded complexity?

Is complexity meaningful? What are the languages recognized by FT_{Σ} -algebras of bounded complexity?

Consider for all X the group morphism induced by renaming

$$\varphi_X \colon \mathbf{Sym}(X) \to \mathbf{Sym}(A_X)$$
$$\sigma \mapsto \operatorname{rename}^{\mathcal{A}}[\sigma]$$

Invariance under permutations

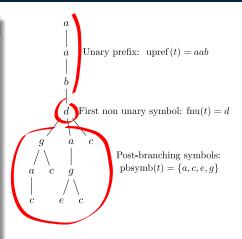
A finite syntactic FT_{Σ} -algebra is of bounded complexity if and only if for all sufficiently large finite set of variables X, $\text{Ker}(\varphi_X) = \text{Sym}(X)$.

Main result

Characterization theorem

A language of finite trees is recognized by an FT_{Σ} -algebra of bounded complexity if and only if it is a Boolean combination of languages of the following kinds:

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol b for a fixed non unary symbol b.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.



Bounded branching: $\exists k$ all trees in K have at most k branches

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$

Bounded complexity 🗸

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols B, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$

Bounded complexity ✓ Polynomial complexity ? Exponential complexity ?

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol b for a fixed non unary symbol b.
- c. The language of finite trees with post-branching symbols B, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$ Bounded complexity \checkmark Polynomial complexity ? Exponential complexity ?

Orbit complexity: renaming yields an action of Sym(X) over A_X .

 $c^\circ_{\mathcal{A}}(|X|) = |A_X/\mathsf{Sym}(X)|$

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols B, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$ Bounded complexity \checkmark Polynomial complexity ?

Exponential complexity ?

Orbit complexity: renaming yields an action of Sym(X) over A_X .

 $c^{\circ}_{\mathcal{A}}(|X|) = |A_X/\mathsf{Sym}(X)|$

Ongoing: polynomial complexity, bounded orbit complexity...

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.

Complexity map: $c_{\mathcal{A}}(|X|) = |A_X|$ Bounded complexity \checkmark Polynomial complexity ?

Exponential complexity ?

Orbit complexity: renaming yields an action of Sym(X) over A_X .

 $c^{\circ}_{\mathcal{A}}(|X|) = |A_X/\mathsf{Sym}(X)|$

Ongoing: polynomial complexity, bounded orbit complexity...

A similar characterization of languages of infinite regular trees as Boolean combinations of a.-d. and other languages

Characterization theorem

- a. The language of finite trees with unary prefix in a given regular language of words $L \subseteq \Sigma_1^*$.
- b. The language of finite trees with first non unary symbol *b* for a fixed non unary symbol *b*.
- c. The language of finite trees with post-branching symbols *B*, for $B \subseteq \Sigma$.
- d. A regular language *K* of bounded branching.