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Algebras and classes of languages

Algebras are used to
characterize classes

of languages

Schützenberger, 1965

A regular language L is
star-free if and only if its
syntactic monoid is
aperiodic.

Finite words
Monoids, semigroups
Infinite words
Wilke algebras, ω-semigroups,
◦-algebras...
Trees
Deterministic automata, Preclones,
Hyperclones, Operads,...
Graphs
HR-algebras, VR-algebras

Infinitely sorted algebras
(An)n∈N

(AX )X finite

Problem: Hard to derive
characterizations with infinitely
sorted algebras

We study tree algebras under
the angle of asymptotic
complexity
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Infinitely sorted tree algebras

Let Σ be a ranked alphabet and V be a countably infinite set of variables. The
free tree algebra has as carrier sets the (TX )X⊆V finite.

TX = {trees in which all the variables on the leaves are in X}

Objects Substitution Renaming

Def. A finite tree algebra A consists of an infinite series of finite carrier sets AX

indexed by finite sets of variables X , together with operations:
Constants. a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables xi ,

Substitution. ·Ax : AX × AY → AX\{x}∪Y for all finite X ,Y and variable x ,
Renaming. σA : AX → AY for all maps σ : X → Y .
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Languages and the size of the algebra

Def. A language L of finite trees over Σ is recognized by a finite algebra
A if there is a set P ⊆ A∅ such that L = α−1(P) in which α is the
evaluation morphism of A.

Prop. Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

a

b

c c

a

y y

α7−→ > a

a

x c

a

y y

α7−→ (⊥, x),

AX = {>,⊥} ] ({>,⊥}× X ) |AX | = 2 + 2|X | is linear in |X |.

This algebra has linear complexity.
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Complexity

Def. The complexity of a finite algebra A is the asymptotic size of |AX | as
a function of |X |.

Prop. All regular languages are recognized by algebras of
doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]

Polynomial complexity This talk

Exponential complexity -

Doubly-exponential complexity All regular languages
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Another example

L = trees whose leftmost branch ends with a(c , c), where
Σ = {c : 0, d : 0, a : 2}

AX = {c , d} ∪ {a(x , y) | x , y ∈ X ∪ {c , ∗}}

d α7−→ d
a

a

x z

a

y y

α7−→ a(x , z)
a

x a

y y

α7−→ a(x , ∗)

c α7−→ c
a

a

x c

a

y y

α7−→ a(x , c)
a

a

c c

y

α7−→ a(c , c)

Orbits: c , d , a(x , y), a(x , x), a(x , c), a(c , x), a(x , ∗), a(∗, x), a(c , c), a(∗, ∗)

This algebra has quadratic complexity and bounded orbit complexity.
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Orbit complexity

Def. The orbit complexity of a finite algebra A is the asymptotic number
of orbits in AX under the action of Sym(X ) as a function of |X |.

Prop. All regular languages are recognized by algebras of
doubly-exponential orbit complexity.

Another bounded hierarchy of classes.
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What complexity means

Complexity is a measure of the quantity of information the algebra
remembers about the variables:

Bounded complexity
The algebra does not remember anything about the variables.
AX  the variables that appear in the tree are in X .

Polynomial complexity
AX = X k  k variables (e.g. k branches)

Exponential complexity
AX = kX  a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

Doubly exponential complexity
All regular languages.
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Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,

- L = trees with some fixed branch in a fixed regular language,

- Boolean combinations of such languages.

- L = trees whose leftmost branch ends with a(c , c).

Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Main theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Equivalence between a. and b. is not obvious.
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Coding automaton (high level description)

How to build the following tree ?

a

b

c c

c

[x ]

[·xa(x , y)]

[·xb(y , y)]

[·yc]

Such a word is called a tree coding.

Coding automata are register
automata that map

coding c 7−→ configuration ∈ Q×VR

They are given by

- finite set of states Q

- finite set of registers R

- transitions and accepting states

A coding automaton describes a tree language L if either

- it accepts all codings for a tree t (then it accepts t)

- it rejects all codings for a tree t (then it rejects t)
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Coding automaton (example)

L = trees in which the leftmost branch ends with ∗(c , d), where ∗ is any
letter. Σ = {a : 2, b : 2, c : 0, d : 0}

Q = {q0, q1, q12, q1d , qc2,>,⊥}
R = {r1, r2}

a

b

c d

c

q0

r1 := �

r2 := �

[x ][·xa(x , y)][·xb(x , z)][·xc][·zd ][·yc]

[z ][·za(x , y)][·yc][·xb(z , x)][·zc][·xd ]
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Decidability

Thm. It is decidable whether a regular tree language is recognizable by a
tree algebra of polynomial complexity.

Fix L. A tree t ∈ T{•} is L-sensitive to a leaf x if there exist trees
a, b, t1, ..., tn such that

Lem. A regular language of trees L is described by a coding automaton if
and only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is
decidable.
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Summary

Notions: tree algebra, complexity, orbit complexity, coding, coding
automaton

Main theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Thm. It is decidable whether a regular tree language is recognizable by a
tree algebra of polynomial complexity.
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Different types of tree algebras

Unrestrained tree algebras

Affine tree algebras

Relevant tree algebras

Linear tree algebras
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