A Complexity Approach to Tree Algebras: The Polynomial Case

Arthur Jaquard

joint work with Thomas Colcombet

Université Paris Cité, CNRS, IRIF

MFCS 2022 | August 25, 2022

Algebras are used to characterize classes of languages

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Schützenberger, 1965

A regular language *L* is star-free if and only if its syntactic monoid is aperiodic.

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Infinitely sorted algebras

 $(A_n)_{n\in\mathbb{N}}\ (A_X)_X$ finite

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Infinitely sorted algebras

 $(A_n)_{n\in\mathbb{N}}\ (A_X)_X$ finite

Problem: Hard to derive characterizations with infinitely sorted algebras

Algebras are used to characterize classes of languages

Finite words

Monoids, semigroups

Infinite words

Wilke algebras, ω -semigroups, \circ -algebras...

Trees

Deterministic automata, Preclones,

Hyperclones, Operads,...

Graphs

HR-algebras, VR-algebras

Schützenberger, 1965

A regular language L is star-free if and only if its syntactic monoid is aperiodic.

Infinitely sorted algebras

 $(A_n)_{n\in\mathbb{N}}\ (A_X)_X$ finite

Problem: Hard to derive characterizations with infinitely sorted algebras

We study tree algebras under the angle of asymptotic complexity

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

 $\begin{array}{c} \textbf{Objects} \\ {}^{a} (\searrow C_{\emptyset} & {}^{a} (\searrow C_{\{x\}}) \\ {}^{b} {}^{c} c & {}^{x} (\searrow C_{\{x,y\}}) \\ {}^{a} (\searrow C_{\{x,y\}}) & {}^{a} (\searrow C_{\{x,y\}}) \\ {}^{x} (\searrow C_{\{x,y\}}) & {}^{x} (\bigotimes C_{\{x,y\}}) \end{array}$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Objects	Substitution
$a \qquad a \qquad a \qquad a \qquad f_{x} \\ b \qquad c \qquad x \qquad x \qquad x \\ a \qquad a \qquad f_{x,y} \\ x \qquad x \qquad x \qquad x \qquad x \qquad x \\ x \qquad y \qquad y \qquad x \qquad y \qquad y$	$\begin{array}{c} a & a \\ x & y \\ x & y \\ b & c \\ b & c \end{array} = \begin{array}{c} a \\ x & y \\ y \\ b \\ c \\ b \\ c \end{array}$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

 $\begin{array}{cccc} \textbf{Objects} & \textbf{Substitution} \\ a & a \\ b & c \\ b & c \\ x' & x' \\ x' & x' \\ x' & x' \\ x' & x' \\ x' & y \\ y' & z' \\ x' & y \\ y' & y \\ z' & y \\ y' & z' \\ x' & y \\ y' & y \\ x' & y \\ y' & x' \\ x' & y \\ y' & x' \\ x' & y \\ x'$

Def. A finite tree algebra A consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_{\chi}^{\mathcal{A}} : A_X \times A_Y \to A_{X \setminus \{x\} \cup Y}$ for all finite X, Y and variable x, **Renaming.** $\sigma^{\mathcal{A}} : A_X \to A_Y$ for all maps $\sigma : X \to Y$.

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

 $\begin{array}{cccc} \mathbf{Objects} & \mathbf{Substitution} \\ a & a \\ b & c \\ b & c \\ x' & x' \\ x' & y \\ x' &$

Def. A finite tree algebra A consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_{\chi}^{\mathcal{A}} : A_X \times A_Y \to A_{X \setminus \{\chi\} \cup Y}$ for all finite X, Y and variable x, **Renaming.** $\sigma^{\mathcal{A}} : A_X \to A_Y$ for all maps $\sigma : X \to Y$.

Identities? $a(x, y) \cdot_y b$ $a(x, z) \cdot_z b$ We also define morphisms, congruences...

Let Σ be a ranked alphabet and \mathcal{V} be a countably infinite set of variables. The free tree algebra has as carrier sets the $(T_X)_{X \subset \mathcal{V} \text{ finite}}$.

 $T_X = \{$ trees in which all the variables on the leaves are in $X\}$

Def. A finite tree algebra A consists of an infinite series of finite carrier sets A_X indexed by finite sets of variables X, together with operations:

Constants. $a(x_0, \ldots, x_{n-1})^{\mathcal{A}} \in A_{\{x_0, \ldots, x_{n-1}\}}$ for all $a \in \Sigma_n$ and variables x_i , **Substitution.** $\cdot_{\chi}^{\mathcal{A}} : A_X \times A_Y \to A_{X \setminus \{\chi\} \cup Y}$ for all finite X, Y and variable x, **Renaming.** $\sigma^{\mathcal{A}} : A_X \to A_Y$ for all maps $\sigma : X \to Y$.

Identities? $a(x, y) \cdot_y b$ $a(x, z) \cdot_z b$ We also define morphisms, congruences...

Given a finite tree algebra A, there is a unique morphism from the free algebra to A. It is called the evaluation morphism of A.

Prop. Finite tree algebras exactly recognize the regular languages.

Prop. Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

Prop. Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

 $A_X = \{\top, \bot\} \uplus (\{\top, \bot\} \times X)$

Prop. Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

 $A_X = \{\top, \bot\} \uplus (\{\top, \bot\} \times X) \qquad |A_X| = 2 + 2|X| \text{ is linear in } |X|.$

Prop. Finite tree algebras exactly recognize the regular languages.

Example L = trees with a b on the leftmost branch

 $A_X = \{\top, \bot\} \uplus (\{\top, \bot\} \times X) \qquad |A_X| = 2 + 2|X| \text{ is linear in } |X|.$

This algebra has linear complexity.

Prop. All regular languages are recognized by algebras of doubly-exponential complexity.

Prop. All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Prop. All regular languages are recognized by algebras of doubly-exponential complexity.

Describe the languages recognized by algebras of bounded / polynomial / exponential complexity.

Bounded complexity	[Colcombet, J, 2021]
Polynomial complexity	This talk
Exponential complexity	-
Doubly-exponential complexity	All regular languages

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{c : 0, d : 0, a : 2\}$

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{c : 0, d : 0, a : 2\}$

 $A_X = \{c, d\} \cup \{a(x, y) \mid x, y \in X \cup \{c, *\}\}$

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{c : 0, d : 0, a : 2\}$

$$A_X = \{c, d\} \cup \{a(x, y) \mid x, y \in X \cup \{c, *\}\}$$

$$d \xrightarrow{\alpha} d \xrightarrow{a} \xrightarrow{\alpha} a(x, z) \xrightarrow{a} \xrightarrow{\alpha} a(x, *)$$

$$x \xrightarrow{z} y \xrightarrow{\gamma} y \xrightarrow{\gamma} y \xrightarrow{\gamma} y$$

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{c : 0, d : 0, a : 2\}$

 $A_{X} = \{c, d\} \cup \{a(x, y) \mid x, y \in X \cup \{c, *\}\}$ $d \xrightarrow{\alpha} d \xrightarrow{a} a \xrightarrow{\alpha} a(x, z) \xrightarrow{a} a \xrightarrow{\alpha} a(x, *)$ $x \xrightarrow{z} y \xrightarrow{\gamma} y \xrightarrow{\gamma} y \xrightarrow{\gamma} y \xrightarrow{\gamma} y$ $c \xrightarrow{\alpha} c \xrightarrow{a} a \xrightarrow{\alpha} a(x, c) \xrightarrow{a} y \xrightarrow{\gamma} a(c, c)$ $x \xrightarrow{z} c \xrightarrow{\gamma} y \xrightarrow{\gamma} y \xrightarrow{\gamma} c \xrightarrow{\gamma} c$

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{c : 0, d : 0, a : 2\}$

Orbits: c, d, a(x, y), a(x, x), a(x, c), a(c, x), a(x, *), a(*, x), a(c, c), a(*, *)

L = trees whose leftmost branch ends with a(c, c), where $\Sigma = \{c : 0, d : 0, a : 2\}$

Orbits: c, d, a(x, y), a(x, x), a(x, c), a(c, x), a(x, *), a(*, x), a(c, c), a(*, *)This algebra has quadratic complexity and bounded orbit complexity.

Def. The orbit complexity of a finite algebra A is the asymptotic number of orbits in A_X under the action of **Sym**(X) as a function of |X|.

Def. The orbit complexity of a finite algebra A is the asymptotic number of orbits in A_X under the action of **Sym**(X) as a function of |X|.

Prop. All regular languages are recognized by algebras of doubly-exponential orbit complexity.

Another bounded hierarchy of classes.

Complexity is a measure of the quantity of information the algebra remembers about the variables:

Bounded complexity

The algebra does not remember anything about the variables. $A_X \rightsquigarrow$ the variables that appear in the tree are in X.

Complexity is a measure of the quantity of information the algebra remembers about the variables:

Bounded complexity

The algebra does not remember anything about the variables. $A_X \rightsquigarrow$ the variables that appear in the tree are in X.

Polynomial complexity

 $A_X = X^k \rightsquigarrow k$ variables (e.g. k branches)

Complexity is a measure of the quantity of information the algebra remembers about the variables:

Bounded complexity

The algebra does not remember anything about the variables. $A_X \rightarrow$ the variables that appear in the tree are in X.

Polynomial complexity

 $A_X = X^k \rightsquigarrow k$ variables (e.g. k branches)

Exponential complexity

 $A_X = k^X \rightsquigarrow$ a function from X to k (e.g. a set of variables when k = 2, or modulo counting if $k = \mathbb{Z}/q\mathbb{Z}$)

Complexity is a measure of the quantity of information the algebra remembers about the variables:

Bounded complexity

The algebra does not remember anything about the variables.

 $A_X \rightsquigarrow$ the variables that appear in the tree are in X.

Polynomial complexity

 $A_X = X^k \rightsquigarrow k$ variables (e.g. k branches)

Exponential complexity

 $A_X = k^X \rightsquigarrow$ a function from X to k (e.g. a set of variables when k = 2, or modulo counting if $k = \mathbb{Z}/q\mathbb{Z}$)

Doubly exponential complexity

All regular languages.

What are the languages recognized by algebras of polynomial complexity?

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

Main theorem

For a regular language of finite trees, the following properties are equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

Main theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

Main theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.

Equivalence between a. and b. is not obvious.

What are the languages recognized by algebras of polynomial complexity?

- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, c).

Common property: at all times, these algebras only keep in memory a bounded number of branches.

Main theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.
- c. Being described by a coding automaton.

Equivalence between a. and b. is not obvious.

How to build the following tree ?

x [x]

$$\begin{array}{c} a & [x] \\ / \\ x & y & [\cdot_x a(x, y)] \end{array}$$

$$\begin{array}{c} a & [x] \\ b & y & [\cdot_x a(x, y)] \\ / & & [\cdot_x b(y, y)] \\ y & y \end{array}$$

$$\begin{array}{c} a & [x] \\ & & [\cdot_x a(x, y)] \\ & & & [\cdot_x b(y, y)] \\ & & & [\cdot_y b(y, y)] \\ & & & [\cdot_y c] \end{array}$$

How to build the following tree ?

Such a word is called a tree coding.

How to build the following tree ?

$$\begin{array}{c} a & [x] \\ b & c & [\cdot_x a(x, y)] \\ / & & [\cdot_x b(y, y)] \\ c & c & [\cdot_y c] \end{array}$$

Such a word is called a tree coding.

Coding automata are register automata that map

coding $c \mapsto \text{configuration} \in Q \times \mathcal{V}^R$

They are given by

- finite set of states Q
- finite set of registers R
- transitions and accepting states

How to build the following tree ?

$$\begin{array}{c} a & [x] \\ b & c & [\cdot a(x, y)] \\ / & [\cdot b(y, y)] \\ c & c & [\cdot y c] \end{array}$$

Such a word is called a tree coding.

Coding automata are register automata that map

coding $c \mapsto \text{configuration} \in Q \times \mathcal{V}^R$

They are given by

- finite set of states Q
- finite set of registers R
- transitions and accepting states

A coding automaton describes a tree language L if either

- it accepts all codings for a tree t (then it accepts t)
- it rejects all codings for a tree t (then it rejects t)

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

Х

 q_1 $r_1 := x$ $r_2 := \Box$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

Ζ

 q_1 $r_1 := z$ $r_2 := \Box$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

L = trees in which the leftmost branch ends with *(c, d), where * is any letter. $\Sigma = \{a : 2, b : 2, c : 0, d : 0\}$

$$Q = \{q_0, q_1, q_{12}, q_{1d}, q_{c2}, \top, \bot\}$$
$$R = \{r_1, r_2\}$$

Thm. It is decidable whether a regular tree language is recognizable by a tree algebra of polynomial complexity.

Decidability

Thm. It is decidable whether a regular tree language is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree $t \in T_{\{\bullet\}}$ is L-sensitive to a leaf x if there exist trees $a, b, t_1, ..., t_n$ such that

Decidability

Thm. It is decidable whether a regular tree language is recognizable by a tree algebra of polynomial complexity.

Fix L. A tree $t \in T_{\{\bullet\}}$ is L-sensitive to a leaf x if there exist trees $a, b, t_1, ..., t_n$ such that

Lem. A regular language of trees L is described by a coding automaton if and only if there is a bound on the number of L-sensitive leaves in trees.

Decidability

Thm. It is decidable whether a regular tree language is recognizable by a tree algebra of polynomial complexity.

Fix *L*. A tree $t \in T_{\{\bullet\}}$ is *L*-sensitive to a leaf *x* if there exist trees *a*, *b*, $t_1, ..., t_n$ such that

Lem. A regular language of trees L is described by a coding automaton if and only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is decidable.

Notions: tree algebra, complexity, orbit complexity, coding, coding automaton

Main theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.
- c. Being described by a coding automaton.

Thm. It is decidable whether a regular tree language is recognizable by a tree algebra of polynomial complexity.

Notions: tree algebra, complexity, orbit complexity, coding, coding automaton

Main theorem

For a regular language of finite trees, the following properties are equivalent:

- a. Being recognized by a finite tree algebra of polynomial complexity.
- b. Being recognized by a finite tree algebra of bounded orbit complexity.
- c. Being described by a coding automaton.

Thm. It is decidable whether a regular tree language is recognizable by a tree algebra of polynomial complexity.

Unrestrained tree algebras

Unrestrained tree algebras

Affine tree algebras

Unrestrained tree algebras

 \boldsymbol{z}

Relevant tree algebras

Affine tree algebras

Unrestrained tree algebras

Affine tree algebras

Relevant tree algebras

Linear tree algebras

Unrestrained tree algebras

Affine tree algebras

Relevant tree algebras

Linear tree algebras

