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We also define morphisms, congruences...

Given a finite tree algebra A, there is a unique morphism from the free algebra to
A. It is called the evaluation morphism of A.
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Languages and the size of the algebra

Def. A language L of finite trees over ¥ is recognized by a finite algebra
A if there is a set P C Ay such that L = a~%(P) in which «a is the
evaluation morphism of A.

Prop. Finite tree algebras exactly recognize the regular languages. )

Example L = trees with a b on the leftmost branch

a a
RN =T RN = (L, x),
b a a a
/N / A\ /N /' \
c ¢c y vy X c y y
Ax ={T, L}y ({T, L} x X) |Ax| = 2 +2|X| is linear in | X].

This algebra has linear complexity.
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Complexity

Def. The complexity of a finite algebra A is the asymptotic size of |Ax| as
a function of |X]|.

Prop. All regular languages are recognized by algebras of
doubly-exponential complexity. J

Describe the languages recognized by algebras of bounded / polynomial /
exponential complexity.

Bounded complexity [Colcombet, J, 2021]
Polynomial complexity This talk
Exponential complexity -

Doubly-exponential complexity | All regular languages
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Orbits: ¢, d, a(x,y), a(x, x), a(x, ¢), a(c, x), a(x,*), a(x,x), a(c, c), a(*,*)

This algebra has quadratic complexity and bounded orbit complexity.
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Def. The orbit complexity of a finite algebra A is the asymptotic number
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Prop. All regular languages are recognized by algebras of
doubly-exponential orbit complexity. ’

Another bounded hierarchy of classes.
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Complexity is a measure of the quantity of information the algebra
remembers about the variables:

Bounded complexity
The algebra does not remember anything about the variables.
Ax ~> the variables that appear in the tree are in X.

Polynomial complexity
Ax = X¥ ~ k variables (e.g. k branches)

Exponential complexity
Ax = kX ~ a function from X to k (e.g. a set of variables when k = 2,
or modulo counting if k = Z/qZ)

Doubly exponential complexity
All regular languages.
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Polynomial complexity

What are the languages recognized by algebras of polynomial complexity?
- L = trees with a b on the leftmost branch,
- L = trees with some fixed branch in a fixed regular language,
- Boolean combinations of such languages.
- L = trees whose leftmost branch ends with a(c, ¢).
Common property: at all times, these algebras only keep in memory a
bounded number of branches.

Main theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.
b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Equivalence between a. and b. is not obvious.
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Coding automaton (high level description)

Coding automata are register

How to build the following tree 7
automata that map

a
/ \ [x] coding ¢ — configuration € Qx VR
xal X,y
b« Lalx,y)] They are given by
/\ ['xb(y; ¥)] .
- finite set of states @
c c [yc]

- finite set of registers R
Such a word is called a tree coding.

- transitions and accepting states
A coding automaton describes a tree language L if either
- it accepts all codings for a tree t (then it accepts t)

- it rejects all codings for a tree t (then it rejects t)
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Decidability

Thm. It is decidable whether a regular tree language is recognizable by a
tree algebra of polynomial complexity. J

Fix L. Atree t € Ty is L-sensitive to a leaf x if there exist trees
a,b,ti, ..., t, such that

el ¢ L
NN AN

Lem. A regular language of trees L is described by a coding automaton if
and only if there is a bound on the number of L-sensitive leaves in trees.

The existence of such a bound can be encoded into cost-MSO. Thus, it is
decidable.



Summary

Notions: tree algebra, complexity, orbit complexity, coding, coding
automaton

Main theorem

For a regular language of finite trees, the following properties are
equivalent:

a. Being recognized by a finite tree algebra of polynomial complexity.
b. Being recognized by a finite tree algebra of bounded orbit complexity.

c. Being described by a coding automaton.

Thm. It is decidable whether a regular tree language is recognizable by a
tree algebra of polynomial complexity.
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