CNRS Concours 06/02

Logique Monadique du Second Ordre et

> BEAUX PRÉORDRES POUR LES MÉTHODES FORMELLES

> > Aliaume Lopez Université de Varsovie

> > > à Paris le 2025-03-14

2025-03-14 [Paris] Aliaume Lopez

Parcours Académique

ENS Paris-Saclay (2015 - 2019)LMF & IRIF (2019 - 2023)Varsovie (2023 - 2025)Thèse sous la direction de Postdoctorat Agrégation de Mathématiques Mikołaj Bojańczyk GOUBAULT-LARRECQ & SCHMITZ Stages de L3 et M1 à Birmingham et Ljubljana 2 Prix de Thèse Co-organisation Autobóz 2024 Ackermann Award & Stage M2 au LSV Membre du comité de programme E. W. Beth Dissertation Prize de CSL'26 GOUBAULT-LARRECQ & SCHMITZ Césure (1 an) Co-encadrement de 2 stagiaires Autorité de Sûreté Nucléaire

Confinences (dont on earl autour)

« Théorèmes de préservation pour la logique au premier ordre : localité, topologie et constructions limites. »

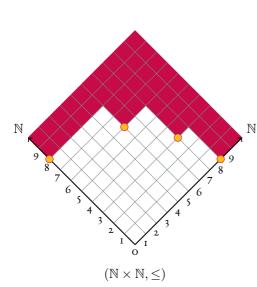
Conférences 8 (dont 4 en seul auteur)

Journaux 2

Soumissions 2

AUTOMATES

ORDRES



Logique

GRAPHES ALGÈBRE

ROBERTSON & SEYMOUR HILBERT /

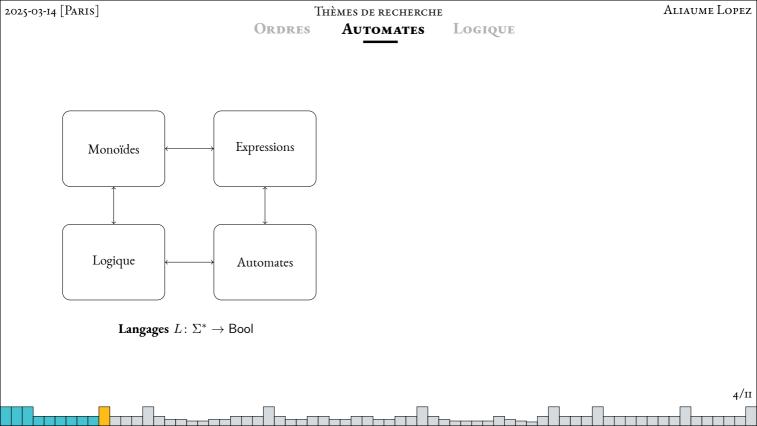
Mineurs de graphes

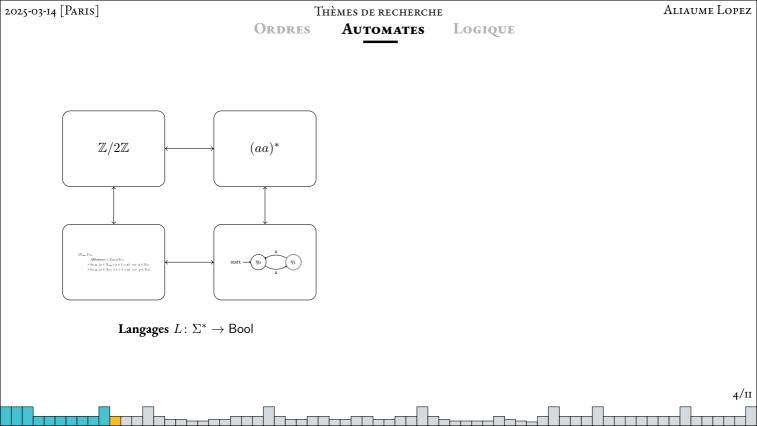
Hilbert / Gröbner Calcul symbolique

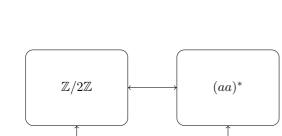
Vérification

Systèmes de transition bien structurés (WSTS)

 $(\mathbb{N}^k, \to, \leq) \rightsquigarrow$ réseau de Pétri







Langages
$$L \colon \Sigma^* \to \mathsf{Bool}$$

$f \colon \Sigma^* \to \mathbb{N}$

DÉCIDABILITÉ

Équivalence? FO-définissabilité? etc.

QUALITATIF

 $f\colon \Sigma^*\to \Gamma^*$

Fonctions (poly)régulières

4/II

QUANTITATIF

 $\textbf{Langages}\ L\colon \Sigma^*\to \mathsf{Bool}$

2025-03-14 [PARIS] Thèmes de recherche Aliaume Lopez **Ordres AUTOMATES** Logique 5/11 Thèmes de recherche
ORDRES
AUTOMATES
LOGIQUE

GRAPHES

ALIAUME LOPEZ

ALIAUME LOPEZ

ORDRES

AUTOMATES
LOGIQUE

Graphes
$$\varphi = \ll \text{contient un chemin induit de longueur 2} \gg$$

$$\varphi =$$
 « contient un chemin **induit** de longueur $2 \gg \exists x,y,z,E(x,y) \land E(y,z) \land \neg E(x,z)$

Thèmes de recherche

 $\varphi = \text{$\ll$ contient un chemin } \textbf{induit} \text{ de longueur } 2 \gg \\ \exists x,y,z,E(x,y) \land E(y,z) \land \neg E(x,z)$

Logique

GRAPHES

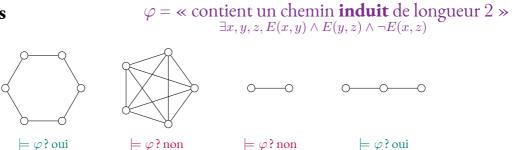
ALIAUME LOPEZ

Thèmes de recherche

ALIAUME LOPEZ

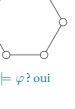
Logique

GRAPHES



Thèmes de recherche

ALIAUME LOPEZ

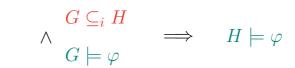


ORDRES

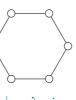
Logique

$$\models \varphi$$
? oui

$$\models \varphi$$
? non



GRAPHES



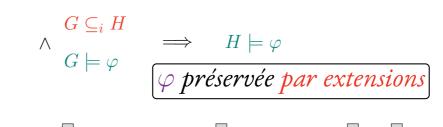
Thèmes de recherche

Logique

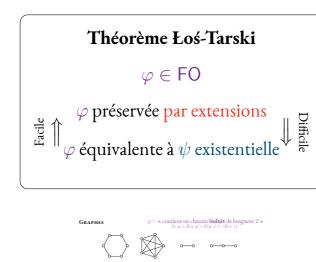
$$\models \varphi$$
? oui

$$\models \varphi$$
? non

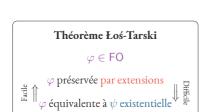
$$\models \varphi$$
 ? oui



ALIAUME LOPEZ



AUTOMATES



ORDRES

Bases de données

Structures relationnelles \leadsto bases de données Bases incomplètes \leadsto préservation par homomorphisme

Théorie des modèles finis

Statut des théorèmes dans le cas fini? Décompositions structurelles

Logique

φ préservée par extensions

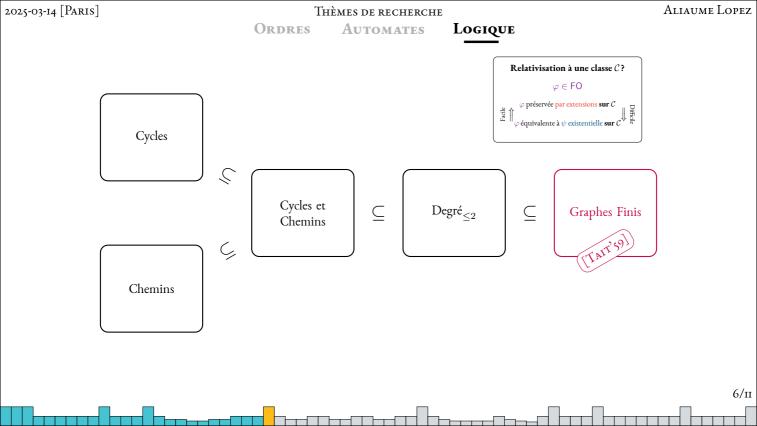
Bases de données

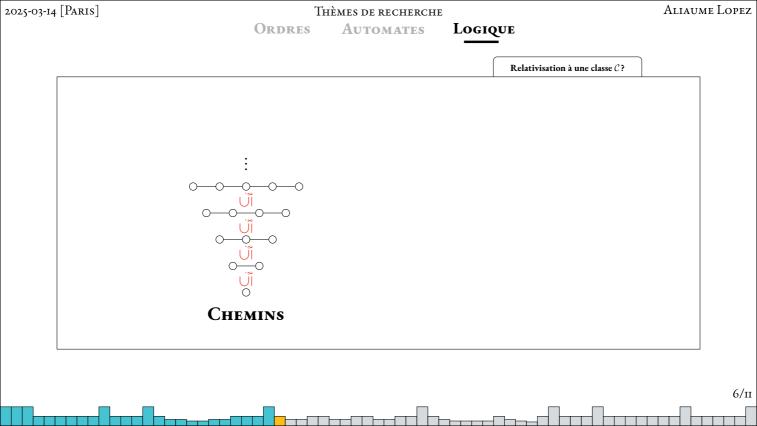
Structures relationnelles \rightsquigarrow bases de données Bases incomplètes \rightsquigarrow préservation par homomorphisme

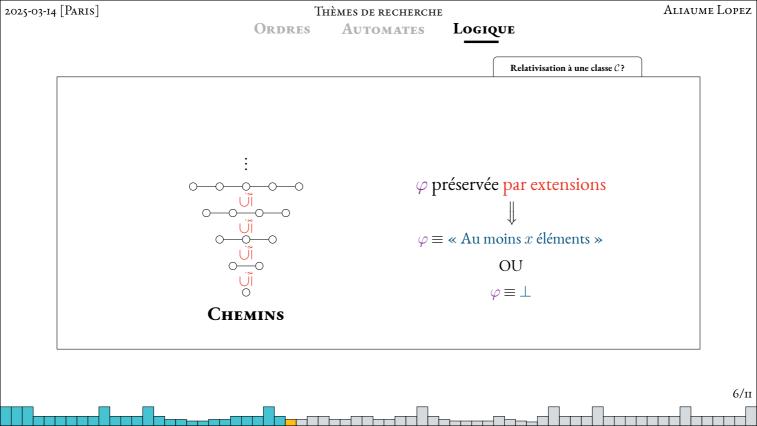
CSL'21: topologie de la préservation LICS'22: localité et préservation

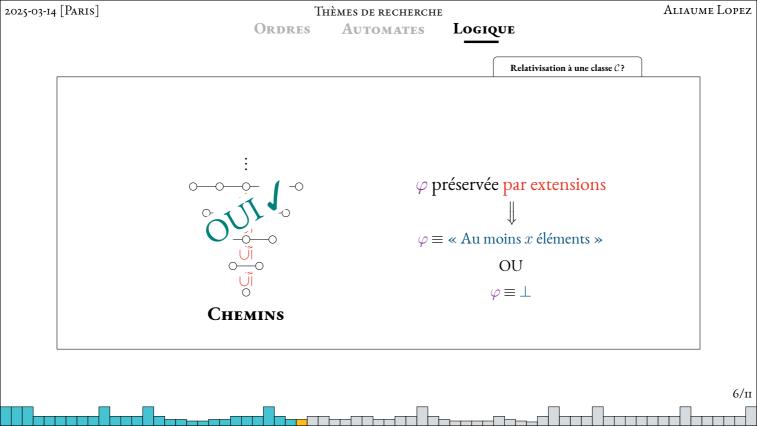
Théorie des modèles finis

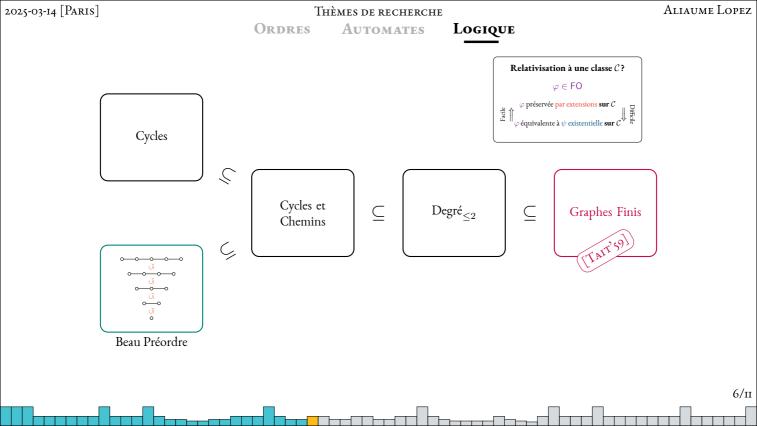
Statut des théorèmes dans le cas fini? Décompositions structurelles

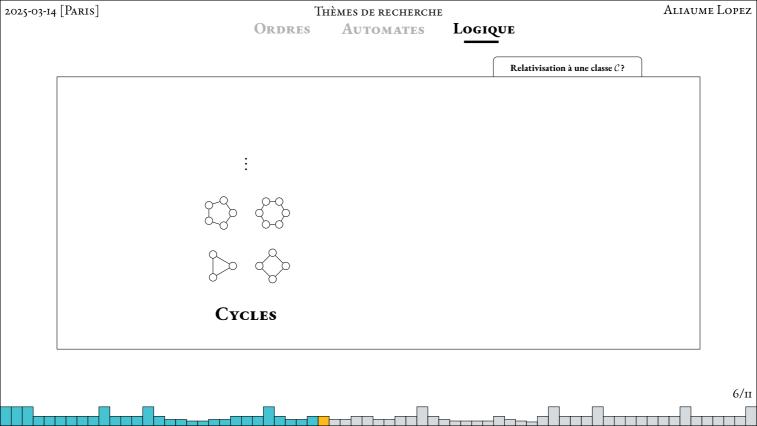


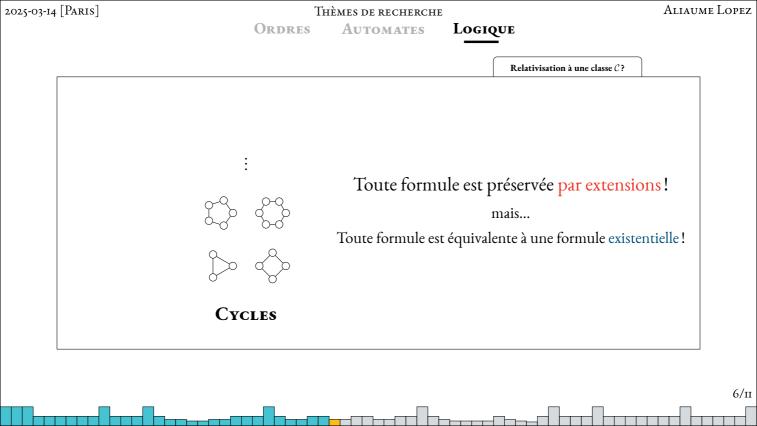


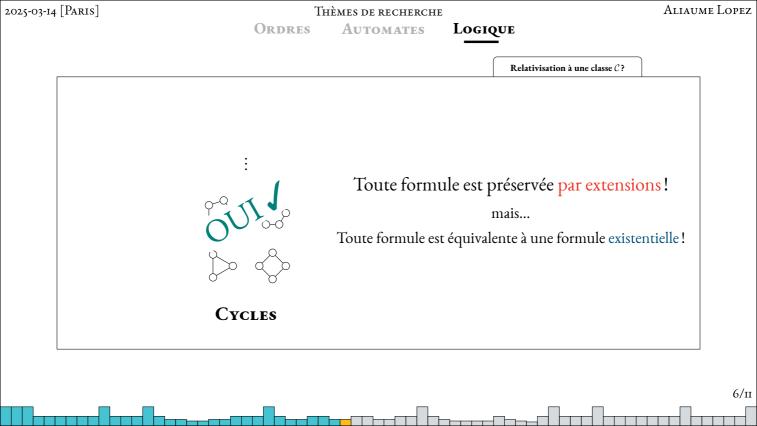


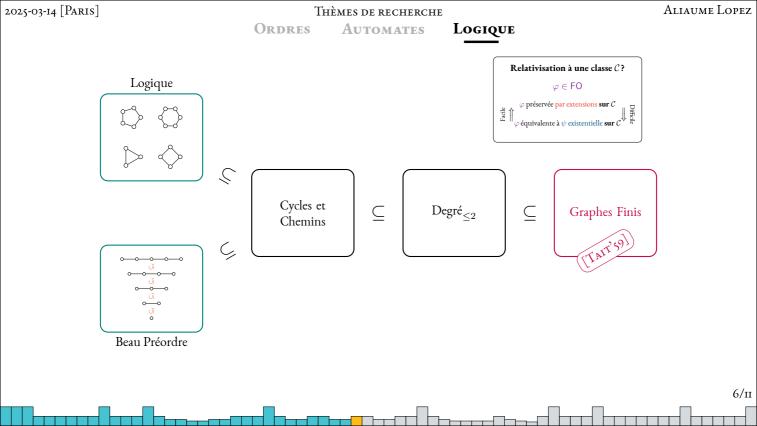


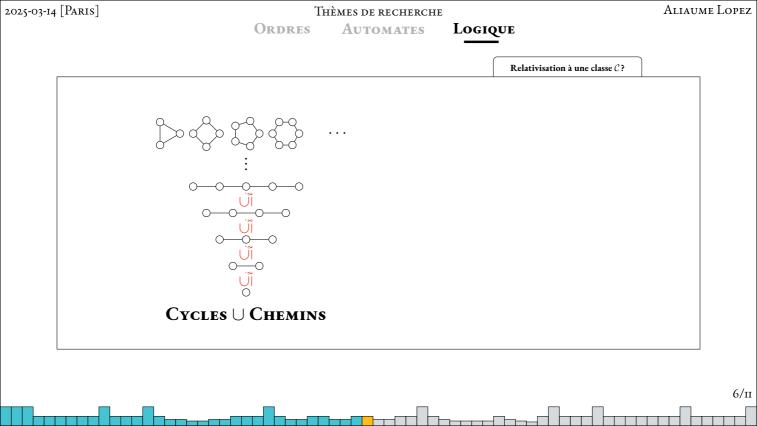


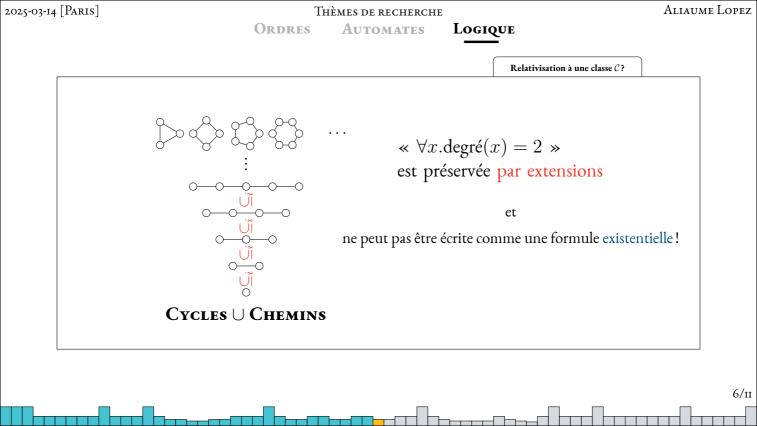


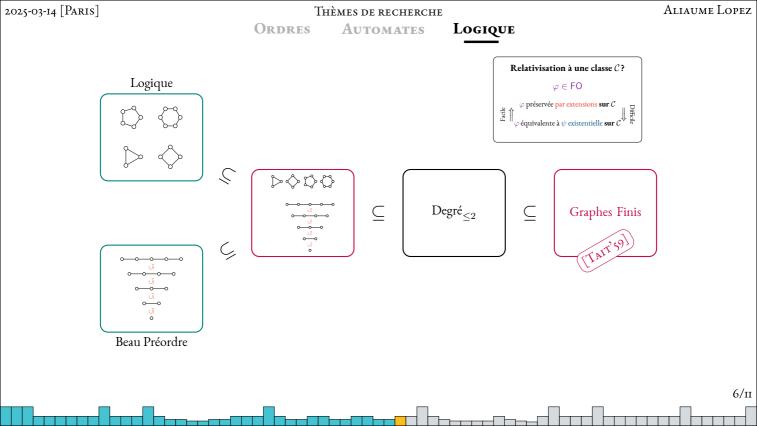


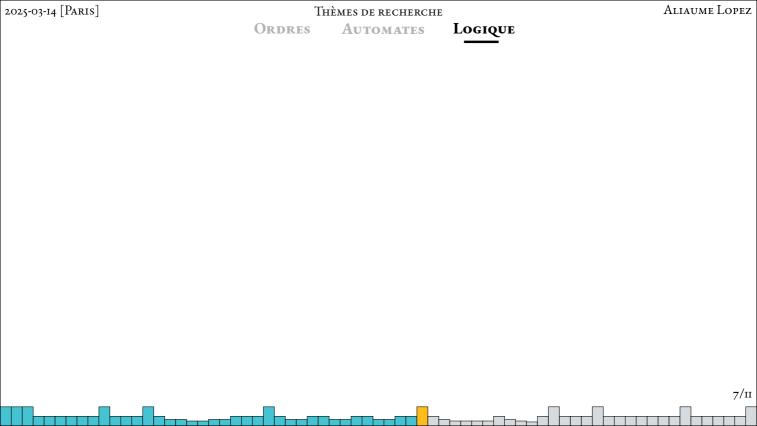












AUTOMATES ORDRES

Logique

Théorème [Lopez, LICS'22]

Soit C close par \subseteq_i et \uplus . Les propriétés suivantes sont équivalentes :

- 1. Łoś-Tarski relativise à C
- 2. Łoś-Tarski relativise à $\operatorname{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

Théorème [Lopez, LICS'22]

Soit \mathcal{C} close $par\subseteq_i$ et \uplus . Les propriétés suivantes sont équivalentes :

- ı. Łoś-Tarski relativise à ${\cal C}$
- 2. Łoś-Tarski relativise à $\operatorname{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

Théorème [Lopez, LICS'22]

Soit \mathcal{C} close par \subseteq_i et \uplus . Les propriétés suivantes sont équivalentes :

- ı. Łoś-Tarski relativise à ${\cal C}$
- 2. Łoś-Tarski relativise à $\operatorname{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

ORDRES

ALIAUME LOPEZ

Théorème [Lopez, LICS'22]

Soit \mathcal{C} close par \subseteq_i et \uplus . Les propriétés suivantes sont équivalentes :

- ı. Łoś-Tarski relativise à ${\cal C}$
- 2. Łoś-Tarski relativise à $\mathrm{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

ORDRES AUTOMATES

Théorème [Lopez, LICS'22]

Soit \mathcal{C} close par \subseteq_i et \uplus . Les propriétés suivantes sont équivalentes :

- 1. Łoś-Tarski relativise à C
- 2. Łoś-Tarski relativise à $\mathrm{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

Théorème [Lopez, LICS'22]

Soit C close par \subseteq_i et \uplus . Les propriétés suivantes sont équivalentes :

- 1. Łoś-Tarski relativise à C
- 2. Łoś-Tarski relativise à $\operatorname{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

$$Loc_{1,1}(Cycles) = \{C_3, P_3\}$$

Théorème [Lopez, LICS'22] Soit C close par \subseteq_i et \uplus . Les propriétés suivantes sont

équivalentes:

- 1. Łoś-Tarski relativise à C
- 2. Łoś-Tarski relativise à $\operatorname{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

 $Loc_{1,1}(Cycles) = \{C_3, P_3\}$

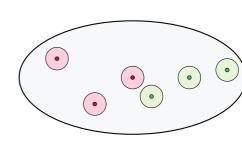
ORDRES

$$\exists_r^{\geq k} x$$

$$\exists_r^{\geq k} x. \psi_{\parallel}$$

Ré-écriture des formules

$$\bigvee \bigwedge (\neg) \exists_r^{\geq k} x. \psi_{|\mathcal{N}(x,r)}(x)$$



équivalentes :

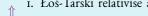
Thèmes de recherche

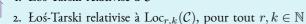
ALIAUME LOPEZ

 (\subseteq_i)

Théorème [Lopez, LICS'22] Soit C close par \subseteq_i et \uplus . Les propriétés suivantes sont

1. Łoś-Tarski relativise à C



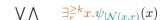


 $Loc_{1,1}(Cycles) = \{C_3, P_3\}$

$\bigvee \bigwedge (\neg) \exists_r^{\geq k} x. \psi_{|\mathcal{N}(x,r)}(x)$

Logique

Ré-écriture des formules



 $\bigvee \bigwedge \qquad \exists_{r}^{\geq k} x. \psi_{|\mathcal{N}(x,r)}(x)$

 $\exists \vec{x}. \, \theta_{|\mathcal{N}(\vec{x},r)}(\vec{x})$

Logique

Théorème [Lopez, LICS'22]

Soit C close par \subseteq_i et \uplus . Les propriétés suivantes sont équivalentes:

- 1. Łoś-Tarski relativise à C

 - 2. Łoś-Tarski relativise à $\operatorname{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

 $Loc_{1,1}(Cycles) = \{C_3, P_3\}$

ALIAUME LOPEZ

Localité

Voisinages

 (\subseteq_i)

ALIAUME LOPEZ

Localité

Voisinages

 $\operatorname{Loc}_{r,|\vec{x}|}(\mathcal{C})$

 (\subseteq_i)

Théorème [Lopez, LICS'22] Soit C close par \subseteq_i et \uplus . Les propriétés suivantes sont

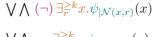
équivalentes:

- 1. Łoś-Tarski relativise à C

 - 2. Łoś-Tarski relativise à $\operatorname{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

 $Loc_{1,1}(Cycles) = \{C_3, P_3\}$

Logique



$$\bigvee \bigwedge \qquad \exists_r^{\geq k} x. \psi_{|\mathcal{N}(x,r)}(x)$$

Ré-écriture des formules

$$\exists_r$$

. . (
$$\vec{a}$$
)

$$\exists \vec{x}.\ \theta_{|\mathcal{N}(\vec{x},r)}(\vec{x})$$

$$\vec{x},r)(x)$$

$$(x,r)(\omega)$$

$$\exists \vec{x}. \, \exists \vec{y}. \, \gamma(\vec{x}, \vec{y})$$

ALIAUME LOPEZ

Localité

Voisinages

 $\operatorname{Loc}_{r,|\vec{x}|}(\mathcal{C})$

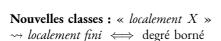
 (\subseteq_i)

Théorème [Lopez, LICS'22] Soit C close par \subseteq_i et \uplus . Les propriétés suivantes sont

équivalentes:

2. Łoś-Tarski relativise à $\operatorname{Loc}_{r,k}(\mathcal{C})$, pour tout $r,k\in\mathbb{N}$

 $Loc_{1,1}(Cycles) = \{C_3, P_3\}$



Logique

$$\bigvee \bigwedge (\neg) \exists_r^{\geq k} x. \psi_{|\mathcal{N}(x,r)}(x)$$

$$\bigvee \bigwedge \exists_r^{\geq k} x. \psi_{|\mathcal{N}(x,r)}(x)$$

$$\exists_r \ \omega$$
.

$$\vec{x}_{(r)}(\vec{x})$$

$$\exists \vec{x}.\ \theta_{|\mathcal{N}(\vec{x},r)}(\vec{x})$$

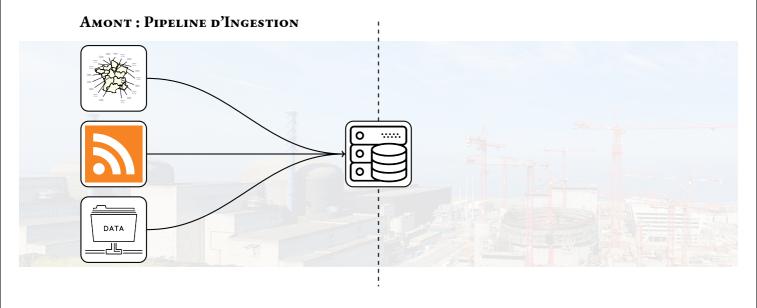
Ré-écriture des formules

$$\exists \vec{x}. \, \exists \vec{y}. \, \gamma(\vec{x}, \vec{y})$$

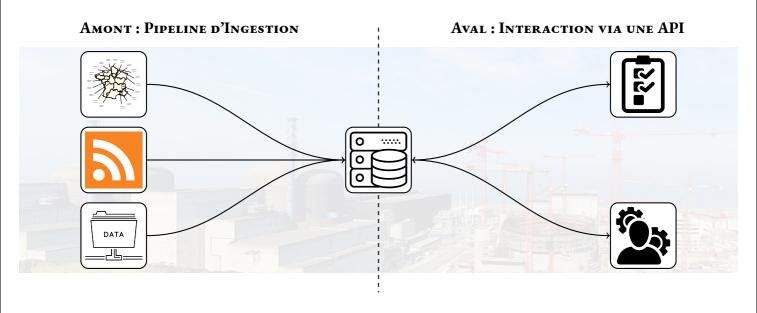
$$(\vec{x}, \vec{u})$$

Un <u>exemple</u> de programme utilisant des données

Un exemple de programme utilisant des données

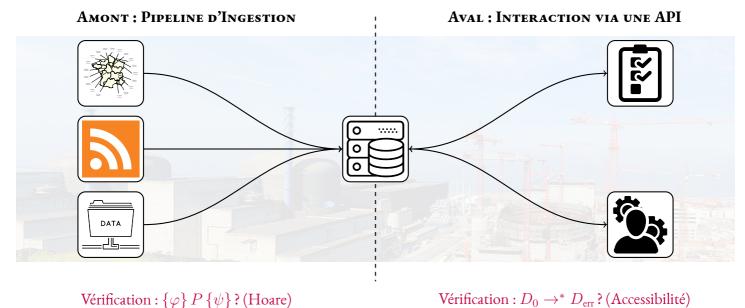


Un exemple de programme utilisant des données



2025-03-14 [PARIS] ALIAUME LOPEZ

Un exemple de programme utilisant des données



Vérification : $D_0 \rightarrow^* D_{\text{err}}$? (Accessibilité)

Cadre : classes de structures relationnelles finies \mathcal{C} avec une relation de transition \rightarrow

Cadre : classes de structures relationnelles finies ${\cal C}$ avec une relation de transition \to

Programmes à états finis

Parti pris :
$$(C, \rightarrow, \subseteq_i)$$

Système de transition bie

$$\mathfrak{A}' - - - \rightarrow \mathfrak{B}'$$

$$\mathfrak{A}' \xrightarrow{---} \mathfrak{B}'$$
 Couvrabilité : $D_0 \xrightarrow{*} D'_i \supseteq D_{\text{err}}$ décidable

$$(Sous hypothèses de calculabilité)$$

$$\mathfrak{A} \longrightarrow$$

ANSITION

Programmes à états finis

Cadre : classes de structures relationnelles finies $\mathcal C$ avec une relation de transition \to

Problème à long terme

Reconnaître les systèmes $(\mathcal{C},
ightharpoonup, \subseteq_i)$ qui sont bien structurés

Parti pris : $(C, \rightarrow, \subseteq_i)$ Système de transition bien structuré

$$\mathfrak{A}' --- \rightarrow \mathfrak{B}'$$
 Couvrabilité:

(Sous hypotheses de *calculabilité*)
$$\mathfrak{A} \longrightarrow \mathfrak{B}$$

ALIAUME LOPEZ

Cadre : classes de structures relationnelles finies \mathcal{C} avec une relation de transition \rightarrow

Problème à long terme

Reconnaître les systèmes $(\mathcal{C}, \rightarrow, \subseteq_i)$ qui sont bien structurés

Dans un premier temps, ignorer
$$ightarrow$$

 $\rightsquigarrow (\mathcal{C}, \subseteq_i)$ est un beau préordre? \rightsquigarrow Ordres totaux $\simeq (\Sigma^*, \leq^*)!$

Parti pris :
$$(C, \rightarrow, \subseteq_i)$$

$$\mathfrak{A}' \xrightarrow{---} \mathfrak{B}'$$
 Couvrabilité : $D_0 \to^* D'_i \supseteq$

$${\mathfrak A} \longrightarrow$$

$$D_0 \to^* D'_i \supseteq D_{\text{err}}$$
 décidable (Sous hypothèses de *calculabilité*)

$$\longrightarrow \mathfrak{B}$$

Cadre : classes de structures relationnelles finies \mathcal{C} avec une relation de transition \rightarrow

Problème à long terme

Reconnaître les systèmes $(\mathcal{C}, \rightarrow, \subseteq_i)$ qui sont bien structurés

Dans un premier temps, ignorer \rightarrow

 $\rightsquigarrow (\mathcal{C}, \subseteq_i)$ est un beau préordre?

 \rightsquigarrow Ordres totaux $\simeq (\Sigma^*, \leq^*)!$

Conjecture [Daligault et al., 2010]:

 (C,\subseteq_i) beau préordre

C a largeur de clique bornée

(représentation arborescente)

PROGRAMMES À ÉTATS FINIS

Parti pris : $(\mathcal{C}, \rightarrow, \subseteq_i)$

$$\mathfrak{A}' - - - \rightarrow \mathfrak{B}'$$
 Couvrabilité:

$$\begin{array}{ccc} & & & \\ &$$

$$\mathfrak{U} \longrightarrow \mathfrak{B}$$

Cadre : classes de structures relationnelles finies \mathcal{C} avec une relation de transition \rightarrow

Problème à long terme

Reconnaître les systèmes $(\mathcal{C}, \rightarrow, \subseteq_i)$ qui sont bien structurés

Dans un premier temps, ignorer \rightarrow

$$\rightsquigarrow (\mathcal{C}, \subseteq_i)$$
 est un beau préordre?

$$\rightsquigarrow$$
 Ordres totaux $\simeq (\Sigma^*, \leq^*)!$

Conjecture [Daligault et al., 2010] :

 (C,\subseteq_i) beau préordre

C a largeur de clique bornée (représentation arborescente)

Différentes représentations

$$\leadsto (\Sigma^*, \leq_{\mathsf{facteur}})$$
 représente les classes $(\mathcal{C}, \subseteq_i)$

PROGRAMMES À ÉTATS FINIS

Parti pris :
$$(C, \rightarrow, \subseteq_i)$$

Système de transition bien structuré

$$\mathfrak{A}' - - - \rightarrow \mathfrak{B}'$$
 Couvrabilité:

$$D_0 \to^* D'_i \supseteq D_{\text{err}}$$
 décidable (Sous hypothèses de *calculabilité*)

$$\mathfrak{A} \longrightarrow$$

Cadre : classes de structures relationnelles finies \mathcal{C} avec une relation de transition \rightarrow

Problème à long terme

Reconnaître les systèmes $(\mathcal{C}, \rightarrow, \subseteq_i)$ qui sont bien structurés

Dans un premier temps, ignorer \rightarrow

$$\sim$$
 $(\mathcal{C},\subseteq_i)$ est un *beau préordre*?

$$\sim$$
 Ordres totaux $\simeq (\Sigma^*, \leq^*)!$

Conjecture [Daligault et al., 2010] :

 (C,\subseteq_i) beau préordre

C a largeur de clique bornée (représentation arborescente)

Différentes représentations

$$\leadsto (\Sigma^*, \leq_{\text{facteur}})$$
 représente les classes $(\mathcal{C}, \subseteq_i)$

→ représentation arborescente

PROGRAMMES À ÉTATS FINIS

Parti pris : $(\mathcal{C}, \rightarrow, \subseteq_i)$

$$\mathfrak{A}' \xrightarrow{---} \mathfrak{B}'$$
 Couvrabilité : $D_0 \to^* D'_i \supseteq D_{\text{err}}$ décidable

Et plus tard...

Systèmes <u>de transition</u>

Cadre : classes de structures relationnelles finies $\mathcal C$ avec une relation de transition \to

Problème à long terme

Reconnaître les systèmes $(\mathcal{C}, \rightarrow, \subseteq_i)$ qui sont bien structurés

Dans un premier temps, ignorer \rightarrow

 \sim (C, \subseteq_i) est un beau préordre?

 \rightsquigarrow Ordres totaux $\simeq (\Sigma^*, \leq^*)!$

Conjecture [Daligault et al., 2010] :

 (C,\subseteq_i) beau préordre

⇒ C a largeur de clique bornée (représentation arborescente)

Différentes représentations

 $\leadsto (\Sigma^*, \leq_{\text{facteur}})$ représente les classes $(\mathcal{C}, \subseteq_i)$

→ représentation arborescente

Programmes à états finis

Parti pris : $(\mathcal{C}, \rightarrow, \subseteq_i)$

Système de transition bien structuré

$$\mathfrak{A}' - - - \rightarrow \mathfrak{B}'$$
 Couvrabilité : $D_0 \to^* D'_i \supseteq D_{\text{err}}$ décidable

→ homomorphismes
 → relations →

Une ouverture sur les bases de données

Algorithmes de type *Chase* D_0 base de donnée, Δ contraintes, q requête

« toute complétion de D_0 vérifiant Δ satisfait q?»

Objet : programmes Python « simples » Point de départ : fonctions polyrégulières

```
def getBetween(l, i, j):
         """ Get elements between i and j """
        for (k, c) in enumerate(1):
            if i <= k and k <= j: (1)
                 yield c (2)
    def containsAB(w):
         """ Contains "ab" as a subsequence """
        seen_a = False (3)
        for (x, c) in enumerate(w):
            if c == "a": 4
                     seen_a = True (5)
12
             elif seen_a and c == "b":
13
                 return True
14
15
        return False
16
    def subwordsWithAB(word):
         """ Get subwords that contain "ab" """
        for (i,c) in enumerate(word): 6
19
            for (j,d) in reversed(enumerate(word)): 0
                 s = getBetween(word, i, j) (6)
21
                 if containsAB(s):
22
                     vield s
23
```

Fig. 1. A small Python program that outputs all subwords of a given word containing ab as a scattered subword

Objet : programmes Python « simples » **Point de départ :** fonctions polyrégulières

```
PROBLEMES THÉORIQUES À LONG TERME
Décider l'équivalence de fonctions
Décider la FO-définissabilité (x := True)
```

Fig. 1. A small Python program that outputs all subwords of a given word containing

Programmes à états finis

Objet : programmes Python « simples » Point de départ : fonctions polyrégulières

```
PROBLEMES THÉORIQUES À LONG TERME

Décider l'équivalence de fonctions

Décider la FO-définissabilité (x := True)

def contains le l'as a subsequence l'as

Dans un premier temps

for (x, t) in enumerate (x)

sorties unaires {a}* \sim \ni

entrées unaires / commutatives?

lien quantitatif / qualitatif?

def subwordsWithAB(word):

""" (at subwords that contain "ab" """

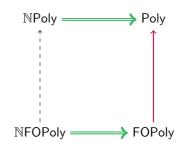
for (i,c) in enumerate (word):

""" (at subwords that contain "ab" """

for (i,c) in enumerate (word):

s = getBetween(word, i, j) @
```

Fig. 1. A small Python program that outputs all subwords of a given word containing



Programmes à états finis

Objet: programmes Python « simples » Point de départ : fonctions polyrégulières

```
PROBLÈMES THÉORIQUES À LONG TERME
```

Décider l'équivalence de fonctions

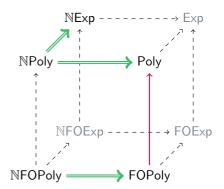
Décider la FO-définissabilité (x := True)

Dans un premier temps

 \leadsto sorties unaires $\{a\}^* \simeq \mathbb{N}$

→ entrées unaires / commutatives ?

→ lien quantitatif / qualitatif?



Programmes à états finis

Objet: programmes Python « simples » Point de départ : fonctions polyrégulières

PROBLÈMES THÉORIQUES À LONG TERME

Décider l'équivalence de fonctions

Décider la FO-définissabilité (x := True)

Dans un premier temps

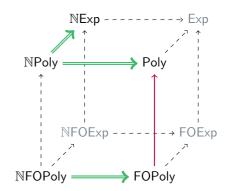
 \leadsto sorties unaires $\{a\}^* \simeq \mathbb{N}$

→ entrées unaires / commutatives ?

→ lien quantitatif / qualitatif?

→ Vérification de triplets de Hoare?

→ Optimisations de programmes?



PROGRAMMES À ÉTATS FINIS

Objet : programmes Python « simples » Point de départ : fonctions polyrégulières

Problèmes Théoriques à long terme

Décider l'équivalence de fonctions

Décider la FO-définissabilité (x := True)

def containsAB(w):

Dans un premier temps

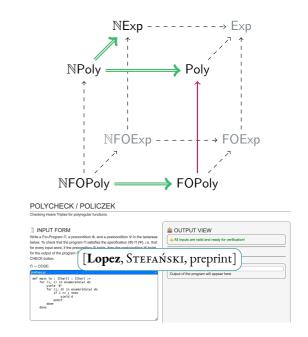
- sorties unaires $\{a\}^* \simeq \mathbb{N}$
- entrées unaires / commutatives?
- ien quantitatif / qualitatif?
- 16 1

IMDIÉMENTATION(S):

- Implémentation(s): ©

 for (j,d) in reversel(enumerate(word)): ⊙
- → Vérification de triplets de Hoare?
- → Optimisations de programmes?

Fig. 1. A small Python program that outputs all subwords of a given word containing



Intégration du projet de recherche

Systèmes de transitions

 $(\mathcal{C},
ightarrow, \subseteq_i)$ système de transition bien strucutré

Programmes à états finis $P \colon \Sigma^* \to \Gamma^*$ polyrégulière

LIS (Marseille)

Nathan Lhote, Pierre-Alain Reynier Benjamin Monmege, Séverine Fratani, Pierre Ohlmann Lê Thành Dũng (Tito) Nguyễn

LIRMM (Montpellier)

Christophe Paul, Dimitrios Thilikos David Carral, Nofar Carmeli

LIGM (Marne-la-Vallée)

Arnaud Carayol, Léo Exibard Victor Marsault, Nadime Francis, Claire David Vincent Jugé, Marie-Pierre Béal

Expertise:

Logique, Beaux préordres, Automates

Co-organisation Autobóz 2024

Comité de programme de CSL'26

Co-encadrement de 2 stagiaires

2 Prix de Thèse

Ackermann Award & E. W. Beth Dissertation Prize

Conférences 8 (dont 4 en seul auteur)

Journaux 2 Soumissions 2