
PhD Defense

First Order Preservation Theorems in Finite Model Theory: Locality, Topology,

and Limit Constructions

Aliaume Lopez

September 12, 2023, IRIF, France

Under the supervision of Jean Goubault-Larrecq, and Sylvain Schmitz.



Introduction

A Nuclear Question



Velo Trip Time

© schoella, panoramio

Now Then

2 Reactors

2660 MWe

3 Reactors

4290 MWe

1/42



Velo Trip Time

© schoella, panoramio

Now Then

2 Reactors

2660 MWe

3 Reactors

4290 MWe

1/42



Velo Trip Time

© schoella, panoramio

Now Then

2 Reactors

2660 MWe

3 Reactors

4290 MWe

1/42



Velo Trip Time

© schoella, panoramio

Now Then

2 Reactors

2660 MWe

3 Reactors

4290 MWe

1/42



“Is the maximal installed power obtained with the highest

number of reactors?”
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“What about the new ones?”
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Our theorem might become false!
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Possible Scenarii (and extensions)
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Possible Scenarii Map (and extensions)

3620MWe

1830MWe

2660MWe

5320MWe

2660MWe

3560MWe
5460MWe

2620MWe

2620MWe

3000MWe

5200MWe

1760MWe

3580MWe

2670MWe

3660MWe

3660MWe

2620MWe

3640MWe

2990MWe

4 Reactors

2 Reactors

2 Reactors

4 Reactors

2 Reactors

4 Reactors
6 Reactors

2 Reactors

2 Reactors

2 Reactors

4 Reactors

4 Reactors

4 Reactors

2 Reactors

4 Reactors

4 Reactors

2 Reactors

4 Reactors

2 Reactors

3620MWe

1830MWe

2660MWe

5320MWe

2660MWe

3560MWe
5460MWe

2620MWe

2620MWe

3000MWe

5200MWe

1760MWe

3580MWe

2670MWe

3660MWe

3660MWe

2620MWe

3640MWe

2990MWe

4 Reactors

2 Reactors

2 Reactors

4 Reactors

2 Reactors

4 Reactors
6 Reactors

2 Reactors

2 Reactors

2 Reactors

4 Reactors

4 Reactors

4 Reactors

2 Reactors

4 Reactors

4 Reactors

2 Reactors

4 Reactors

2 Reactors

7000MWe

1 Reactors

3620MWe

1830MWe

2660MWe

5320MWe

2660MWe

3560MWe
5460MWe

2620MWe

2620MWe

3000MWe

5200MWe

1760MWe

3580MWe

2670MWe

3660MWe

3660MWe

2620MWe

3640MWe

2990MWe

4 Reactors

2 Reactors

2 Reactors

4 Reactors

2 Reactors

4 Reactors
6 Reactors

2 Reactors

2 Reactors

2 Reactors

4 Reactors

4 Reactors

4 Reactors

2 Reactors

4 Reactors

4 Reactors

2 Reactors

4 Reactors

2 Reactors

8000MWe

22 Reactors

3620MWe

1830MWe

2660MWe

5320MWe

2660MWe

3560MWe
5460MWe

2620MWe

2620MWe

3000MWe

5200MWe

1760MWe

3580MWe

2670MWe

3660MWe

3660MWe

2620MWe

3640MWe

2990MWe

4 Reactors

2 Reactors

2 Reactors

4 Reactors

2 Reactors

4 Reactors
6 Reactors

2 Reactors

2 Reactors

2 Reactors

4 Reactors

4 Reactors

4 Reactors

2 Reactors

4 Reactors

4 Reactors

2 Reactors

4 Reactors

2 Reactors

7000MWe

1 Reactors

8000MWe

22 Reactors

0

A B

C

0

A B

C

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

5/42



Possible Scenarii Map (and extensions)
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Possible Scenarii Map (and extensions)
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Possible Scenarii Map (and extensions)
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Possible Scenarii Map (and extensions)
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Possible Scenarii Map From a Distance

Universe: Struct(σ)

Query result: JϕK

Upward closure: ↑A (cone)

Restricted universe: C
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Do we have to think before tweeting?

6/42



Introduction

Not All Queries are Born Equal



“Does more reactors mean more power?”

In First Order Logic (Theoretical Computer Science)

∃c.∃n.∃p.
IsAPowerplant(c,n,p)∧
(∀c′,n′,p′.

IsAPowerplant(c′,n′,p′)

=⇒ (p′ ≤ p ∧ n′ ≤ n)) .

SQL (Applied Computer Science)

SELECT sc.num_reactor, sc.installed_power

FROM scenario AS sc

WHERE sc.num_reactor =

(SELECT MAX(scm.num_reactor)

FROM scenario AS scm)

AND sc.installed_power =

(SELECT MAX(scm.installed_power)

FROM scenario AS scm)
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Convenient “tweetable” Queries and upwards closed “cones”

Existential Formulas (EFO)

ϕ := > | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬R(x1, ..., xn) | R(x1, ..., xn) | ∃x.ϕ

Lemma (folklore)

These can be evaluated naïvely, in any context: for every existential sentence ϕ,

JϕK = ↑JϕK. Equivalently, JϕK is upwards closed, or ϕ is preserved under extensions (i.e.,

injective strong homomorphisms).
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Are there any other queries that we can answer this way?

Theorem (Łoś-Tarski)

For every first order sentence ϕ, the following are equivalent

1. JϕK = ↑JϕK (JϕK is upwards closed, ϕ is preserved under extensions), and

2. there exists an existential sentence ψ such that JϕK = JψK.

“JFOK + ↑! JEFOK′′
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Warnings

A non-existential query

∃c.∃n.∃p.
IsAPowerplant(c,n,p)∧
(∀c′,n′,p′.

IsAPowerplant(c′,n′,p′)

=⇒ (p′ ≤ p ∧ n′ ≤ n)) .

Łoś-Tarski does not relativise! (e.g., finite models)

• Can be naïvely evaluated in the subclass C: JϕK ∩ C = ↑JϕK ∩ C
• Is equivalent to an existential sentence in the subclass C: JϕK ∩ C = JψK ∩ C.
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Preservation Theorems

Preservation theorems: variations around Łoś-Tarski

• Different possibilities to order structures: ↑,
• Different fragments of FO: EFO,

• Different subsets of interest: C (e.g., finite models).

11/42



Most variants do not relativise to the finite

Preservation Under

Relativises to Fin(σ)

homomorphisms

[Ros08]

injective homomorphisms (Tarski-Lyndon)

[AG94a, Theorem 10.2]

strong injective homomorphisms (Łoś-Tarski)

[Tai59; Gur84; DS21]

surjective homomorphisms (Lyndon)

[AG87a; Sto95]

strong surjective homomorphism

[Cap+20]

∀FO-embeddings (dual Chang-Łoś-Suszko)

[San+12]
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Positive and Negative Results in the Finite

1959

1969

1979

1989

1999

2009

2019

Tait

Ajtai and Gurevich

Ajtai and Gurevich

Dawar and Sankaran

Kuperberg

Chen and Flum

Ding

Atserias, Dawar, and Kolaitis

Atserias, Dawar, and Grohe

Rossman

Daligault, Rao, and Thomassé

Sankaran, Adsul, and Chakraborty
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Why is this theorem useful?

Not used to rewrite queries!

• Better understand Finite Model Theory (compared to Model Theory),

• Provide completeness of proof techniques ([Lib11; DNR08]).
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Understand how and why preservation theorems relativise to

some classes of (finite) structures.

14/42



Diving in

Three Specific Examples Among Classes of

Finite Undirected Graphs



Finite Paths (folklore) Ordering!

Universe: Undirected Graphs

Query: JϕK

Order: extensions

Restriction: Finite Paths (Paths)

The Łoś-Tarski Theorem rela-

tivises to Paths!

P1

P2

P3

P4

P5

...
...

J∃≥3x.>K ∩ Paths = JϕK ∩ Paths
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Finite Cycles (folklore) Logic!

Universe: Undirected Graphs Query: JϕK
Order: extensions Restriction: Finite Cycles (Cycles)

C3 C4 C5 C6 C7Lemma!

· · ·

Lemma (folklore)

For every ϕ ∈ FO, there exists N0, such that for all n,m ≥ N0, Cm ∈ JϕK ⇐⇒ Cn ∈ JϕK.

JϕK ∩ Cycles = J∃=4x.> ∨ ∃≥6x.>K ∩ Cycles
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Bounded Degree Structures Both!

Theorem ([ADG08, Theorem 4.3])

The Łoś-Tarski Theorem relativises to every class C of finite structures such that:

1. There exists a bound d on the maximal degree in the structures

2. The class is hereditary (neither Paths, nor Cycles)

3. The class is closed under disjoint unions (neither Paths, nor Cycles)
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Wrapping up

Three Non Overlapping Internal Approaches

1. Upwards closed subsets are “simple” (Paths) – ↑E where E is finite

2. Definable subsets are “simple” (Cycles) – (complements of) finite subsets

3. The two interact “nicely” ([ADG08])

An external approach?

Is it possible to avoid starting from scratch every time?

• Cycles ∪ Paths? None of the above apply!
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Diving in

Expectations



Contributions of this thesis

External Approach

Logically presented

pre-spectral spaces

Composition theorems

for LPPS

Definability

Local To Global

Łós-Tarski relativisation

Positive

Gaifman Normal Form

Topology

Topology Expanders

for Noetherian spaces

Limit Constructions

of Noetherian spaces
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Local Approach

The locality Theorem



Why locality?

Usage in Finite Model Theory

• It is a combinatorial tool that works in finite classes.

• Abstracts the low-level “game” arguments of first-order logic.

• Already has been used to prove the relativisation of preservation theorems [ADK06;

ADG08, e.g.].
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Locality in a graph

a1

a2

A structure A.A structure A, with 2 selected nodes.A structure A, with 2 selected nodes, and a 1-local neighborhood.NA(a1a2, 1) ⊆i A.
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Local Neighbourhoods of Cycles

C3 C4 C6 C8

Loc31(G)

Loc21(G)

Loc11(G)
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A locality theorem

Theorem ([Gai82])

Every first order sentence (FO) is equivalent to a Boolean combination of basic local

sentences.

Basic Local Sentence

∃≥n
r x.ψ(x)

|= ψ

r

|= ψ

r

|= ψ

r

> 2r
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Locally satisfying a property?

Locrk(C)
def
= {NA(~a, r) | A ∈ C, ~a ∈ Ak }

Localise Bounded Degree

C is of bounded degree if and only if Locrk(C) is finite for all k, r ≥ 0, i.e., locally finite.

Theorem ([ADG08])

The Łoś-Tarski theorem relativises to hereditary classes of finite structures that are

closed under ] and locally finite.
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The local to global theorem

Theorem ([Lop22, Theorem 6.7])

For a hereditary class of finite structures C that is closed under disjoint unions, the

following are equivalent:

1. The Łoś-Tarski Theorem relativises to C.
2. The Łoś-Tarski Theorem locally relativises to C, i.e., Locrk(C) for all r, k ≥ 0.

Full characterisation!
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New Classes Using Locality (hereditary and closed under disjoint unions)

Agrandir les flèches dire que les inclusions sont strictes

finite

finite

bounded

treedepth

bounded

treedepth

wqo

wqo

Łoś-Tarski

relativises

Łoś-Tarski

relativises

Locally

Globally

bounded

degree [Din92]
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Proof Sketch (for the difficult direction)

A Two Step Process

1. ϕ0 + preserved under extensions ϕ1 existential-local

2. ϕ1 existential-local + preserved under extensions ϕ2 existential

Existential local: ∃x1, . . . , xk. ψ(~x)︸︷︷︸
r-local

Existential, Existential Local, and Arbitrary Sentences

• existential local sentences with r = 0 existential sentences

• existential local sentences over C! sentences over Locrk(C).

Core Combinatorial Argument

preserved under extensions minimal models are found in some Locrk(C).
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Could we use the Gaifman Locality Theorem?

The usual approach: use the Gaifman Locality Theorem.

Theorem ([Gai82])

Every first order sentence (FO) is equivalent to a Boolean combination of basic local

sentences.

Theorem ([Lop22, Theorem 1.1])

Let C ⊆ Struct(σ) be a class of structures, and ϕ ∈ FO[σ]. The following are equivalent

1. ϕ is equivalent to an existential-local sentence, and

2. ϕ is equivalent to a positive Boolean combination of basic local sentences.
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Existential local sentences (in the general case)

Gaifman normal

form

Positive Gaifman

normal form

Existential Gaifman

normal form

Local Form

Local elementary

embeddings

Elementary

embeddings

Extensions

Semantic preservation

Arbitrary Sentences

Existential Local

Sentences

Existential Sentences

Syntactic

[Gai82] [CK90]

[GW04] Łoś-Tarski

[Lop22, Theorem 1.2][Lop22, Theorem 1.1]
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Contributions of this thesis

External Approach

Logically presented

pre-spectral spaces

Composition theorems

for LPPS

Definability

Local To Global

Łós-Tarski relativisation

Positive

Gaifman Normal Form

Topology

Topology Expanders

for Noetherian spaces

Limit Constructions

of Noetherian spaces
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Compositional Approach

The right abstraction



What does it mean to compose?

Wishful conjecture

Assume that the Łoś-Tarski relativises to C and C′. Does the Łoś-Tarski theorem

relativise to C ∪ C′?

An external approach?

• Łoś-Tarski relativises to Cycles,

• Łoś-Tarski relativises to Paths,

• Łoś-Tarski does not relativise to Cycles ∪ Paths.

Could we find a subset of preservation theorems that can be composed?
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A reasonable abstraction: LPPS

〈〈C, τ,B〉〉

C is a class of structures

τ is a topology over C

B is a Boolean algebra over C

〈τ ∩ B〉topo = τ

τ ∩ B = K◦(τ)

[Lop21, Definition 3.2]: logically presented pre-spectral space.
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What does K◦(τ) means?

Definition: K◦(τ) = compact open subsets

Typical example of compact open subset: ↑{A1, . . . ,An } (finite union of cones!)

Topological Property of Existential Sentences (in hereditary classes)

They have finitely many minimal models, hence define compact open subsets!
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Why ?

Equation 1: enough subsets are definable and open (logically presented)

〈τ ∩ B〉topo = τ

 cones (↑A) are first order definable!

Equation 2: definable and open subsets are compact open (pre-spectral)

τ ∩ B = K◦(τ)

 sentences preserved under extensions (in C) define compact open subsets.
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A completeness result (specialised to Łoś-Tarski)

Let C ⊆ Fin(σ).

We consider B to be the FO-definable subsets of C, and τ to be the

collection of upwards closed subsets of C (for extensions).

Theorem ([Lop21, Theorem 3.4], specialised to EFO and the finite setting)

1. The Łoś-Tarski Theorem relativises to C,
and existential sentences define compact open subsets.

2. The space 〈〈C, τ,B〉〉 is an LPPS.

Remarks

• LPPS captures a subset of preservation theorems.

• The two coincide on hereditary classes of finite structures.

• LPPS will be stable under composition (finite sums, finite products, etc.)
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LPPS captures “reasonable” preservation theorems.

35/42



Other kinds of topological spaces

Generalises Already Known Spaces

• 〈〈C, τ,P(C)〉〉 is an LPPS! (C, τ) is a Noetherian space (see [Gou13])

• 〈〈C, τ, 〈K◦(τ)〉bool〉〉 is an LPPS! (C, τ) is a Spectral space (see [DST19])

Compositional?

Both spectral and Noetherian spaces can be composed!
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What are the compositions?

LPPS are stable under the following operations

Operation Symbol Extra Hypothesis

sum C + C′ -

product C × C′ -

inner product C ⊗ C′ -

finite words C? -

wreath product C o C′ C is ∞-wqo

Other stability results:

• Surjective continuous and definable maps f : C � C′.

• Boolean combinations of compact open subsets.
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Compositional Approach

A concrete example: The product



What is the product of two spaces?

Let 〈〈C, τ,B〉〉 and 〈〈C′, τ′,B′〉〉 be LPPS.

The elements of C × C′

Pairs (A,A′), with A ∈ C and A′ ∈ C′.

The open subsets of C × C′

Topology generated by subsets U× U′ with U ∈ τ and U′ ∈ τ′.

The definable subsets of C × C′ (works for FO!)

Boolean subalgebra generated by subsets D× D′ with D ∈ B and D′ ∈ B′.

Theorem ([Lop21, Proposition 5.8])

〈〈C × C′, τ×,B×〉〉 is an LPPS.
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Theorem ([Lop21, Proposition 5.8])

〈〈C × C′, τ×,B×〉〉 is an LPPS.
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How do they interact?

Let us prove:

τ× ∩ B× ⊆ K◦(τ×) .

Let U ∈ τ× ∩ B×.

U =
⋃⋂

¬?Di × D′
j
. (Use Tychonoff and Zorn)
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Concluding Remarks

Contributions and Open Questions



Contributions of this thesis

External Approach

Logically presented

pre-spectral spaces

Composition theorems

for LPPS

Definability

Local To Global

Łós-Tarski relativisation

Positive

Gaifman Normal Form

Topology

Topology Expanders

for Noetherian spaces

Limit Constructions

of Noetherian spaces
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Conclusion

External Approach

[Lop21]

Logically presented

pre-spectral spaces

Composition theorems

for LPPS

Rossman’s theorem?

Definability

[Lop22]

Local To Global

Łós-Tarski relativisation

Positive

Gaifman Normal Form

Twin-Width? [Bon+20]

Topology

[Lop23]

Topology Expanders

for Noetherian spaces

Limit Constructions

of Noetherian spaces

Beyond Noetherian?
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A simple fixpoint approach

τdisc

τtriv

τ τ· · ·ττ

τ ττ

τ τ...ττ

τ τ

E : Top(X) → Top(X)

With E monotone and fixing Noetherian topologies.



A simple statement

Theorem ([Lop23, Theorem 3.21])

If E is monotone, fixes Noetherian topologies, and respects subsets, then the least fixed

point of E is a Noetherian topology.

Remarks

• The extra condition is needed

• The proof uses a topological minimal bad sequence argument
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Respecting subsets a naturality condition

For all τ , H closed subset of τ ,
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From inductive definition to fixed points

Theorem ([Lop23, Theorem 5.13])

Given an inductively defined space X = F(X), one can derive a generic topology expander

Remarks

• Gives back the previous topologies for finite words and finite trees!

• Correctly generalizes with what is done in the realm of well-quasi-orders, e.g., by

[Has02].



Fixing some r,q, k

Parameters of a local sentence

∃x1, . . . , xk.[Q1y1.Q2y2. . . .Qqyq.θ(~x,~y)]
~x
r

Fixing all parameters...

A sentence ϕ preserved under (r,q, k)-local elementary embeddings is equivalent to an

existential local sentence.



Expanded Cube

k = 1

r = 0 r ≥ 1 r = ∞

q = 0

q ≥ 1

q = ∞

r = 0 r ≥ 1 r = ∞

2 ≤ k

r = 0 r ≥ 1 r = ∞

r = 0 r ≥ 1 r = ∞

q = 0

q ≥ 1

q = ∞

k = ∞

r = 0 r ≥ 1 r = ∞

r = 0 r ≥ 1 r = ∞

q = 0

q ≥ 1

q = ∞

q = 0

q ≥ 1

q = ∞



Representing relations with arity greater than 2.

The Gaifman Graph

→ (x, y)
def
=

∨
(R,n)∈σ

∃z1, . . . , zn,R(z1, . . . , zn) ∧
n∨

1≤i,j≤n

x = zi ∧ y = zj

R

R

0 0 0

0 1 1

0 2 2

1 0 1

1 1 2

1 2 0

2 0 2

2 1 0

2 2 1

0

1

2

Figure 1: From a table to a graph.
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Representing relations with arity greater than 2.

The Gaifman Graph

→ (x, y)
def
=

∨
(R,n)∈σ

∃z1, . . . , zn,R(z1, . . . , zn) ∧
n∨

1≤i,j≤n

x = zi ∧ y = zj

R

R

0 0 0

0 1 1

0 2 2

1 0 1

1 1 2

1 2 0

2 0 2

2 1 0

2 2 1

0

1

2

Figure 1: From a table to a graph.
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