Containment of Pattern-Based Queries over Data Trees

Claire David Amélie Gheerbrant
Université Paris-Est Marne-la-Vallee University of Edinburgh
claire.david@univ-miv.fr agheerbr@inf.ed.ac.uk
Leonid Libkin Wim Martens
University of Edinburgh) University of Bayreuth
libkin@inf.ed.ac.uk wim.martens@uni-bayreuth.de
ABSTRACT Categories and Subject Descriptors

We study static analysis, in particular the containmenbpro H.2.3 [Database management Languages—Query Lan-
lem, for analogs of conjunctive queries over XML docu- guages F.2 [Analysis of algorithms and problem com-
ments. The problem has been studied for queries based omlexity]: General
arbitrary patterns, not necessarily following the treeictr
ture of documents. However, many applications force the
syntactic shape of queries to be tree-like, as they are lmased
proper tree patterns. This renders previous results, atyci)
based on having non-tree-like features, inapplicable.sThu Algorithms, Theory
we investigate static analysis of queries based on proper
tree patterns. We go beyond simple navigational conjunc-1 INTRODUCTION
tive queries in two ways: we look at unions and Boolean
combinations of such queries as well and, crucially, all our
queries handle data stored in documents, i.e., we deal with Static analysis of queries and specifications has been ac-
containment over data trees. tively investigated in the context of XML, not only due to
. its importance in tasks such as query optimization but also

We start by giving a general;, upper bound on the con- que t0 a very different nature of the results brought to the
tainment of conjunctive queries and Boolean combinations {5re by the hierarchical structure of XML documents [1, 3,
for patterns that involve all types of navigation througlcdo 7,10,13, 14, 16, 17, 18, 19, 28, 30, 33, 35]. Typical reason-
uments. We then show matching hardness for conjunctivejng problems include consistency of queries or constraints
queries WI.th all navigation, orlthellr Boolean combinations ith respect to schema information, typechecking of trans-
with the simplest form of navigation. . After that we look formations, security of views, and crucially, query contai
at cases when containment can be witnessed by homomorment, with or without schema information. The latter is the
phisms of analogs of tableaux. These include conjunctive problem we deal with. Starting from the relational case, we
queries and their unions over child and next-sibling axes; xnow that query containment is often the technical core of
hc_)wever, we show that not all cases of containmen_t can bemany query optimization [15]. In recent years query con-
witnessed by homomorphisms. We look at extending tree iginment found multiple applications not only in query an-

patterns used in queries in three possible ways: with wild- swering and optimization, but also in data integration, ex-

card, with schema information, and with data value compar- change, and provenance among others [22, 23, 27].

isons. The first one is relatively harmless, the second one

tends to increase complexity by an exponential, and the last Already in the relational case, we know that, by and

one quickly leads to undecidability. large, containment is decidable for conjunctive queries an
relatives, and undecidable for expressive queries, such as
those coming from the full relational algebra. In the XML
case, static analysis of queries has been largely restricte
queries in various fragments of XPath [35] and analogs of
conjunctive queries [10, 11, 21], primarily describing the
structure of documents. The latter classified the complex-

Permission to make digital or hard copies of part or all o§ twork for ity Of_ q_uery Conta_mmem deDend'ng on the list of used axes,

personal or classroom use is granted without fee providatcttipies are not providing a seemingly complete picture.

made or distributed for profit or commercial advantage aati¢chpies bear . . .

this notice and the full citation on the first page. Copyrigiar components Nonetheless, the picture depicted by [10, 11, 21] is not

of this work owned by others than ACM must be honored. Abtitrigavith as complete as it seems. Firstly, this work basically took

credit is permitted. To copy otherwise, to republish, totpwsservers or to relational conjunctive queriesn top of XML documents,

Eggg}%éef?lgs’ta;a“'{gs_ ggozroslpg‘?cg':n%‘i”l‘t';f;.“d/ar afee. and considered containment problems for them. Queries like

Copyright 2013 ACM 978-1-4503-1598-2/13/03 $15.00. that in a way do not follow tree patterns. An example of such

General Terms

a query is one saying that we have two noslaads’, so that value. This is also sufficient to model XML documents
s’ is a descendant of, and we have other nodss, . . ., s, whose nodes may have multiple attributes, simply by cre-
so that each; is a descendant afand an ancestor af. This ating an extra child of a node for each attribute name.

says that thes;s appear in some order on the unique path

from s ands’. But note that the query itself is DAG-shaped X 1 :
rather than tree-shaped (i.e., if we consider its tableag, i 2'¢ based. The simplest are patterns based on child navi-

a DAG rather than a tree). Secondly, results in those papersgatilor_]' gnbe;(ample is ”;]e patt_eatl)ila:)[b(x), c(y)] tg_at Wed
mainly concentrated on navigational features and much less*P'ained belore. Note that variables corresponding ta dat
on the data that documents carry. For instance, containment/@/ues are free: we view this patternzas:,), returning all

of queries with data values remained practically unexplore P&irs(z,y) such that a match occurs withandy being the
(as these papers concentrated on satisfiability).

We start by defining tree patterns upon which our queries

data values witnessing it. We can add horizontal navigation
too, for instance we can have a pattefn)[b(z) — c(vy)],

And yet many applications demand prop@L conjunc- stating that thes-witness is the sibling that follows thie
tive querieswhich are tree-based and can return data. Suchwitness. More generally, we can have transitive closure axe
queries are naturally induced ML patternswhich ap- too: for instancex(x)[c(z)]//[b(x) —* c(y)] says that the

pear in multiple applications including XML data exchange, a-node has a-child with the same data value and two de-
data integration, and query optimization [4, 5, 6, 8, 9, 24]. scendants, with labelsandc and data values andy, so
Such patterns are given by grammars or formation rules thatthat they are siblings and tHenode occurs earlier in the
naturally induce a tree structure. As a simple example, we sibling order. These types of patterns occur, for instance,

can say that a label is a pattern, and if, . .., m, are pat- in integration and exchange tasks for defining XML schema
terns, theru[m,...,m,] is a pattern. It will be matched by mappings [4, 6, 8] or in descriptions of XML with incom-
ana-labeled node that has (not necessarily distinct) chil- pleteness features [2, 9].

dren matchingry,...,m,. Such patterns (and more com-

plex ones including other axes) form the basis for desagibin Based on SL_’Ch patterns, we de_fme conjunctive queries
XML schema mappings and incompleteness in XML docu- (CQS) by closing them under conjunction and existential
ments. And yet they cannot generate the DAG-like “conflu- duantification, i.e., as queriggr) = 3y A, mi(z,y). We
ence” behavior explained earlier; because for any two nodes/0CK at unions of conjunctive queries, or UCQs, which are
appearing on a descendant path, it is always specified which®f the formU, ¢;(z), where eachy;(z) is a CQ, and their
one appears first. But it is precisely this behavior that is be B00l€an combinations, or BCCQs, obtained by applying op-

hind many of the complexity results applied to graph-based €"ationsz N ¢’,¢ U ¢', andg — ¢’ to CQs.

pattern queries in XML. We present a general upper bound showing that contain-
ment of BCCQs that use all the axes id1§. We show two
matching lower bounds: either for BCCQs with the simplest
navigation (only child relation), or CQs with all the axes.

So our question is: what are the costs of static analysis
problems for propetree-based pattern queries

A key feature of the main applications of such patterns . . .
is that they are not purely about trstructure of docu- In the relational case, cQ czg)ntalnment is tested by
ments, but they also colledata For instance, a pattern t@bléaux homomorphisms. TH&,-hardness for general

a(z)[b(z), ¢(y)] collects values andy of data so thatadoc- ~ CQS precludes the possibility of such a test in general, but
ument has an-node with valuer. that in turn has a-child we show that with restricted sets of axes it is still possible

with the same value: and ac-child with valuey. Thus (in fact we just have to exclude the horizontal relation).

queries return sets of tuples, rather just a yes/no answer fo \e then look at adding features to patterns and queries.
the existence of a purely structural match. First, we add wildcard and show that th&-upper bound

Furthermore, we do not look solely at analogs of conjunc- continues to hold. We also ShO_W that, for some classes of
tive queries. In the relational case, it is well known thatco ~ 9u€ries, the complexity of containment can jump from NP-
tainment of both conjunctive queries and their unions has complete toll,-complete if V\‘nldca}rd is added 1o patterns.
the same complexity, namely NP-complete [15, 34], and the Furthermore, we identify a ‘safe’ case of using wildcard,
complexity of containment of arbitrary Boolean combina- Namely everywhere exceptat roots of patterns, that preserv
tions of conjunctive queries moves one level up in the poly- NPmMomorphism characterizations of containment.

nomial hierarchy tdI;-complete. So we deal with analogs ~ The next addition we consider is containment under
of such queries too, built from tree-based patterns. schema information (abstracted as a tree automaton, which
+ capture many schema formalisms for XML). Here we show
that the upper bound increases to double-exponential, and
a matching lower bound can be shown for CQs with all
axes. Finally, we look at adding data-value comparisons to
queries, in particular the disequalit¢) comparisons. This
addition has a much more dramatic effect on the complexity
Overview of the results. As an abstraction of XML docu- of containment: it becomes undecidable for BCCQs, and for
ments with data values we use, as is comnuaata trees CQs when both comparisons and schemas are present (even
In those trees, each node carries both a label and a datavith severe restrictions on available navigation).

Thus, our revised goal is to investigate the containmen
problems for analogs of conjunctive queries and relatives
(unions, Boolean combinations) based on tree-based XML
patterns over both structural information and data that XML
documents carry.

Comparison with non-tree pattern queries.As we already Data trees are a standard abstraction of XML documents
mentioned, a number of results exist on CQs based on graphwhen one deals with both structural properties and data.
shaped, rather than tree-shaped patterns [10, 11, 21]. Non&uppose we have a domdnof data valuessuch as strings,

of those results extend to handle unions and differences ofnumbers, etc. Alata treeis a structuré = (D, |, —, A, p),
queries (i.e., UCQs and BCCQs) and they handle data valuesvhere (D, |, —, \) is an unranked tree, and: D — D

in a very limited way. Below we contrast them with our assigns each node a data value. In XML documents, nodes
results. may have multiple attributes, but this is easily modeledhwit

: . data trees. For instance, to model a node with attributes
For CQs that may contain arbitrary graph patterngnﬁle ai,-..,a, having values, ..., v,, we pick special labels

upper bound continues to hold, but hardness requires Iesszg10,, and create extra children labelef,. ¢, car-

for instance, purely navigational queries with non-tree pa ryfng \;aﬁ.]’eSUl v e

terns are alreadyl5-complete for vertical navigation [11] T

(for tree patterns they stay in NP, as we show). Under Patterns. As already explained, the patterns that we use are

schema, containment of CQs jumps to doubly-exponential naturally tree-shaped. To explain how they are introduced,

too [10]. With £ comparisons, even CQ containment be- let us consider the reducts of data trees to the child relatio

comes undecidable [10]. i.e., structuregD, |, A, p). Trees of this form can be defined

by recursion. That is, a node labeled witte £ and carry-

Those reSL_JIts cover only a part_of the _Iandscape that Weing a data value € D is a data tree, and ff, ..., 1, are

study here (i.e., CQs, concentrating mainly on pure navi- yrees we can form a new tree by making them children of a

gation), and, crucially, under different assumptions o& th 0 4e with labek and data value.

shape of queries. Such assumptions make most existing

proofs inapplicable for us (as they often rely heavily on-hon In patterns we use also variables; the intention for them is

tree features, such as the confluence, explained earligr, anto match data values in data trees. Thus, they are essgntiall

the bidirectionality of axes). partial tree descriptions with variables appearing in @latc

some data values. We assume a countable infinit®’ sét

Organization. We give key definitions in Section 2. The Va”ab.les' d'.sjo'm ff_o_”.‘ the _doma_ln of valugs S_o_t_he pre-

I1% upper bound for BCCQs is shown in Section 3. In Sec- vious inductive definition gives rise to the definition of the

tion 4 we prove two matching lower bounds. In Section 5 simplest patterns we consider here:

we investigate cases when containment can be witnessed by 7 :=a(x)[n,..., 7 (1)

the homomorphism of tableaux. Section 6 studies the effect .

of adding wildcard to queries. In Section 7 we investigate With a € £ andz € V UD. Here the sequence in. |

static analysis under schema constraints. Adding dataeval could be empty. In other words, if;, ..., 7, is a sequence
comparison is studied in Section 8. Concluding remarks are Of patterns (perhaps empty), € £ andz € V U D, then
given in Section 9. Due to space limitations, proofs are only @(z)[71,...,m] is a pattern. Itz is the list of all the vari-
sketched. ables used in a pattern we writer ().
We denote patterns from this classHy/). The seman-
2. TREES, PATTERNS, AND QUERIES tics of 7(z) is defined with respect to a data tree- (D, |,
—, A\, p), anodes € D, and a valuation : z — D as
follows: (¢, s,v) = a(z)[m1(Z1), - . ., 7n(Zy)] iff

Unranked trees and data trees.We start with the standard

definitions of unranked finite trees which serve as an abstrac L

tion of XML documents when one deals with their structural ~ ® A(8) = a (the label ofs is a);
properties. A finite unranked tree domain is a non-empty, v(z) if zisavariable
prefix-closed finite subsé? of N* (words oveiN) such that ° pls) = {x if = is a data value
s-i € Dimpliess-j € Dforall j < iands € N*. We refer '

to elements of finite unranked tree domainshasles We » there exist not necessarily distinct childreni,, ...,
assume a countably infinite sétof possible labels that can s iy Of s sothat(t, s - ij, v) |= m;(z;) foreachj < n_
be used to label tree nodes. An unranked tree is a structure (recall thatn could be0, in which case this last item is
(D, |, —,\), where not needed).
e D is afinite unranked tree domain, We write (¢, v) = n(z) if there is a node so that(t, s, v) =
e | is the child relations | s-ifors-i € D, m(Z) (i.e., a pattern is matched somewhere in the tree). Also
e — is the next-sibling relations - i — s - (i 4 1) for if 0 = v(z), we writet |= 7 (0) instead oft, v) = 7(z).
s-(i+1)e D, and A natural extension for these simple patterns is to include
e)\ : D — Listhe labeling function assigning a label to both vertical and horizontal navigation. Again the intoiiti
each node. comes from defining data trees as follows: a node labeled
with ¢ € £ and carrying a data value € D is a data tree,
We denote the reflexive-transitive closure pfby |* and ift,, ..., t, are trees, we can form a new tree by making

(descendant-or-self), and the reflexive-transitive alesaf them children of a node with labeland data value, so that
— by —* (following-sibling-or-self). their roots are connected in the order— t2 — ... — t,,.

This leads to the definition of patterns in the cl&bg,, —): ShorthandsWe shall be using standard shorthand notations:
a(z)/m stands fou(z)|r], whilea(z)//m denotesi(z) //[7],
m=a(@)lm = ...] (2) agld)c{(:c) J7) ol gom(x)[w](//)[{r/']. i
with ¢ € L andz € V U D. Again the sequence ip.]
could be empty. In other words, 4, . . . , 7, iS a sequence
of patterns (perhaps empty), € £ andz € V U D, then
a(x)[m1 — m — ... = m,] is a pattern. The last clause
in the definition of the semantics ®f(|) is modified as fol-
lows:

Conjunctive queries, their unions, and Boolean combina-
tions. Pattern-based conjunctive XML queries are obtained
by closing patterns by conjunction and existential quantifi
cation. Since we have different classes of patt&is), for
o beingy, or |, —, or |}, or ||, =, we have different classes
of conjunctive queries denoted by G£). More precisely,
)) CQ(o) queries are of the form:
o there exists a child-i of s sothat(t, s-i,v) = m1(Z;), N
(t,s-(i+1),v) Em(Z2),..., (t, s (i+n—1),v) E N o .
7 (Z). In other words, it is consecutive children that q(z) = /\ mi(Zi))
witness the satisfaction of subpatterns. =t
where eachr; is all(c) pattern, and each is contained in
Z,y. The semantics is standard; v) = ¢(z) if there is an
extension/ of valuationv to variablegj such tha(¢, ') =
m;(Z;) for everyi < n.

Patterns inII(}) and II({,—) completely specify the
structure of a tree (depending on the available axes) and, in
particular, only express local properties of trees. Weeher
fore also consider their more expressive versions with-tran As is standard, we also write = ¢(9) if (¢,v) = q(z)

sitive closure axe$* (descendant) anek* (following sib- with v(z) = ©.
ling). More precisely, following [4, 20], we define general
patterns by the rules: Of course conjunctive queries are closed under conjunc-
tion. Standard ways of enriching their power include consid
m = al@)ps /s pl 3) ering unions of conjunctive queries (GICQs, which, in the
U = Tl e T

relational case, capture the positive fragment of relation

Herea,z andr are as before, and stands for sequence algebra) and more generally, Boolean combinations of con-
i.e., a forest such that the roots of its trees are sequentialunctive queries (0BCCQs, which, while possessing some
siblings in a tree, and eaeh is either— or —*. form of negation, still retain many nice properties thatirel
tional algebra as a whole loses).
The class of such patterns is denoted b}, =), with |

we use both types of downward navigatigrad, *) and= Formally, a query fromUCQ(c) is of the formg(z) =
meaning that we use both types of horizontal navigatien (¢1(%) U ... U g (Z), where eachy;(z) is a CQo) query. It
and—*). The semantics is extended as follows. returns the union of answers to thgs, i.e., (t,v) |= q(2)
iff (¢,v) = ¢:(Z) for somei < m.
o (t,s,v) E m ~ ... ~ m, if there is a sequence Queries in the clasBCCQ are obtained as follows: take

s = s1,...,5y Of nodes so thatt, s;,v) = m; for some querlesl_(:f),_. ooy Gm (T) frpm CQ(o) and consider a

eachi < m ands; — s;+1 whenever théth ~» is —, Boolean combination of them, i.e., close them under opera-

ands; —* s;,1 whenever théth ~» is —*. tionsq N ¢, qU ¢, andqg — ¢’. The semantics is extended

naturally, with those interpreted as intersection, unemg

, P .
o Lo v) =al@lim, .o mnl// i,] i the satis set difference, respectively.

faction ofa(z) in nodes is as before, and there exist

n not necessarily distinct childres,, s, of s such The answer to a queryz), from any of the above classes,
that (¢,s;,v) |= p; for eachi < n, and there exist on a data tree s defined ag(t) = {1 (Z) | (t,v) = ¢(T)}.
k not necessarily distinct descendasfs. . ., s, of s Note that our definitions of query classes ensure ¢hatis
such that(t, s, v) = u; for eachi < k. always finite.
))) Containment. The main problem we study here is the con-
Notice that the semantics of patterns allows differento tainment problem. Given two querie$z), ¢'(z') with tu-
be mapped into the same nodes in a tree. ples of free variables of the same length, we wyitg ¢’ iff

Finally, we consider a clasd(}) of patterns which is a 4(t) S ¢'(?) for every data tree. So the problem we look at

restriction of the most general patterns to downward naviga 'S the following.
tion only. These are defined by the grammar

PrROBLEM: C
r=a(@)m,. 7). @) lo) ___
where each of the sequences of patterns can be empty. That I(IQ\ILT;ST'.I'ION' g”eges‘!é“’)’ ¢(#)In CQ(o);
. f I) : q<q"
is, a pattermu(z)[m1, ..., m]//[7], ..., 7] iS witnessed in
an a-labeled node assigning its data valueatdf it has _ o o
n children (not necessarily distinct) witnessing, . . ., 7, Ifinstead of queries in C(F) we use queries iNCQ(o),

andk descendants (again not necessarily distinct) witness-we refer to the problemfyCQc (o) and, if we use queries
ingmy,...,m,. fromBCCQ(o), we refer to the probleBCCQc (o).

In therelational case, these problems are among the basic
problems of database theory. The complexity of Cénd
UCQc over relational databases is NP-complete [15, 34]

LOWER BOUNDS FOR CONTAIN-
MENT

4.

(under the representation of UCQs that we use here), and

the complexity ofBCCQ_ is IT5-complete [34].

3. AN UPPER BOUND

A priori, there is no upper bound that is immediate for the
containment problem. In fact, in the presence of negation
(even a limited form of it) combined with XML hierarchical
structure, some reasoning problems can become undecidabl
(see, e.g., [17, 4]). In the relational case, we know that con
tainment for BCCQs i$l5-complete, but this does not imply

Now that we know that all the containment problems are in
I1%, it is natural to ask when we have matching lower bounds.
Note that in all the variations of containment problems, we
have two parameters: the class of queries (going from the
simplest, CQs, to UCQs, and to BCCQs), and the set of axes
(again, starting with the simplest, just and then going to
more complex,, —, as well ag} and|}, =).

What we show in this section is that each of the combi-
eation simplest/hardest leads f-hardness. That is, the
containment problem with the simplest of axes, jists
I15-complete if we allow Boolean combinations of queries.

the same bounds for XML pattern-based queries, especiallylf we have just CQs, the containment becorfi§scomplete

those that might use transitive closure axesand|*.

Nevertheless, we can show that for all such queries, the
containment problem remains not only decidable, but the up-
per bound on its complexity continues to match that for the
simplest relational queries. In fact we show the following.

THEOREM 3.1. The problemBCCQc (I}, =) is decid-
able inIL5.

In other words, for each of the classes of queries — CQ,

when we have all the axes, i.e.l*, —, and—*.

Note that the first result on the surface is rather similar to
I15-completeness of containment of relational BCCQs [34].
Indeed, the standard representation of relations in XMl onl
needs the, axis, and shallow documents. However, the re-
sult does not follow from the results in [34], as we demand
containment over all XML documents, not only those that
properly represent relational databases of a given schema.
In particular, if we have two relational BCCQsandq’, and
their natural XML codings aBCCQ(/,) queriesgxm. and
G » thengxme C ¢&u impliesq C ¢’ (as each relational

UCQ, BCCQ— and for each of the classes of patterns seengatabase can be coded as an XML tree), but under the same

so far, the containment problem isiif§, as all of these prob-
lems are subsumed by the containment problem of BCCQs
with TI({, =)-patterns.

Proof sketch Checking whetheg; C ¢, is the same as
checkingg; — g2 = 0, so it will suffice to give &% algorithm
for checking if a BCCQy returns a nonempty result on some
data tree. We assume thgs a Boolean combination of CQs
q1, - - -, qm- FOr the sketch we assume they are Boolean (free
variables do not change anything). To check satisfiability i
suffices to guess an assignmgnt{1,...,m} — {0,1} so
that for

¢ = N{ai | x(i) =1} andq” = \/{q; | x(j) = 0}

we have a tree such thaty'(¢) is true andqg”(¢) is false.
Note thaty’ is a CQ, andy” is a UCQ. The idea of the proof

is to turn this into a certain answer problem in XML data ex-
change [8]. We let schemas of XML documents be arbitrary
and the mapping consist of a single rules ¢/, forcing the
patterns ofg’ in every target tree. Then we check whether
the certain answer tg’ is false: this happens iff there is a
tree satisfying,’ and the negation af”.

The latter requires two steps in the proof. One is a modifi-
cation of the proof of the oNP datacomplexity of certain
answers in [8]. The problem is that the latter proof produces
a witnessing tree whose size is exponentiaj/inwhich is
too large for our purposes. So we show how to encode the
exponential witness by a data structure whose size is poly-
nomial ing’, ¢ and which allows checking for satisfiability

codingq C ¢’ need notimplygxmr C ¢ -

Even though we cannot use results on [34], we can modify
reductions to apply to all XML documents and obtain the
following.

THEOREM 4.1. The problem BCCQc({)
complete. -

i 14
is II5-

Next, we move to the other extreme case: CQs with all
the axes. Of course relational containment of CQs is NP-
complete, so to get hardness for a larger class, one has,to use
in an essential way, the hierarchical structure of XML. In
fact we provide a rather elaborate reduction showing theat th
navigational abilities of all the axes are sufficient to ewse
the complexity even of conjunctive query containment.

THEOREM 4.2. The problem CQ({,=) is
complete. B

-

Proof sketch The upper bound was shown in the pre-
vious section. To show hardness, we proceed by re-
duction from Y33CNF. Given such a formula
Vp1...Vp3ry ... drp, /\1(611 V b V &3), where the&-js
could be positive or negative literals, we associate with it
two Boolean queries, ¢’ € CQ({}, =) such thaty is true if
and only if¢ C ¢'.

We constructy andq’ so that for every possible valuation
v of thep;s, two conditions hold. First, there exists a ttge

of UCQs. The second step is making sure that all the guessesatisfyingqg which encodes. Second, such a treég satisfies

are combined in the right order to yield3 algorithm. O

¢’ iff there is a valuation’™ extendingv to ther;s and for

which ¢ evaluates to true. The key idea behind the construc-

tion is encoding possible valuations for quantified vaeabl
and we explain it now. The encoding of the CNF formula
itself is standard.

In order to encode every possible valuation of the us-
ing one single query, we associate a variable to each
p; and then take full advantage of navigational features

tableaux? And even before answering this question, we need
to ask: what are the tableaux of XML-based CQs?

Since tableaux for relational queries are essentiallyrimco
plete databases (more precisely, naive tables with a distin
guished row of variables), it is natural to define tableaux of
XML CQs as incomplete XML trees. Indeed, patterns form-
ing a query are essentially incompletely specified trees, so

to model assignments. Specifically, we use a tree patternwe can view each query as an incomplete tree (more pre-

V(2)/[Val(0) — Val(1),Val(z1),...,Val(xz;)]. Its root has
[+ 2 children, among which the ordering is specified for two
(Val(0) — Val(1)). The remaining children carry the;s,
but note that their exact positions as children of the2)
node are not specified. This is illustrated below:

V(2)

Val(0) — Val(1) Val(zq) ... Val(x;)
Now on every complete treewitnessing this pattern via
some homomorphisit, the image of every; will either be

on the left, or on the right di, i.e., either
t =V (2)[Val(h(x;)) =™ Val(0)],
or
t = V(2)[Val(0) —* Val(h(x;))].
This allows us to associate a valuationf thep;s to any

tree satisfying this pattern by lettingp;) be false if the im-
age ofz; occurs on the left o¥al(0), and by lettingv(p;)

be true otherwise. The rest of the encoding consists of the

standard encoding of a CNF formula, and ensuring gfor
that the extended valuation makes that formula true. O

Remark Note that letting one omit a complete specification
of the sibling ordering has the effect of encodiffgpossible
valuations withn different nodes. This is similar to the effect
of using “confluence” features in [11]. In both cases, such
a concise encoding of exponentially many valuations led to
1% lower bounds.

5. CONTAINMENT VIA° HOMOMOR-
PHISMS

cisely, a forest). The theory of incompleteness of XML has
been developed [2, 9] and thus we can borrow a notion of an
incomplete tree.

Incomplete trees and homomorphismAn incomplete tree
is defined as a structure = (N,V,],1*, =, ="\, p),
where

e N andV are disjoint finite sets of the nodestadnd its
data values, respectively; we assume that DUV,
i.e., values could be either data values or variables;

e all of |, |*, —, —™ are binary relations oV;

e \is a partial function fromV to £; and

e pis afunction fromV to V.

Note that in an incomplete tree, the relatigng*, —, —*

may be interpreted arbitrarily. In particular, some incom-
plete trees cannot be extended to a complete tree. The issue
is discussed in details in [9]. The labeling function is par-
tial, reflecting the fact that labels of some nodes may not be
known. The data assigning functignis not partial since
some data values could be variables, just like in patterns.

Giventwo incomplete tregs= (N, V, |, |*, —, —=* A, p)
andt’ = (N', V',], 1% —,—=* XN, p), ahomomorphism
fromttot’ isamaph: NUV — N’ UV’ such that:

e h(N) C N’ andh(V) CV;

if wRw' in ¢, with w,w’ € N andR one of the rela-
tions], |*, —, =%, thenh(w)Rh(w') in t/;

if A(w) is defined irt, then\ (h(w)) = Aw);

h is the identity on elements @; and

h(p(w)) = p'(h(w)) forall w € N.

Note that each tree can be viewed as an incomplete tree
(with the natural interpretations of the binary relatioasyl

A classical result of relational database theory says thatthus it makes sense to speak of a homomorphism from an

containment of relational CQs is NP-complete and contain-
ment is witnessed by the existence ofi@momorphisnof
tableaux: ifT; is the tableau of a query, fori = 1,2, then
q1 C qo iff there is a homomorphism fror, to 77 [15].
However, the results of the previous section indicate that

such a characterization of containment via homomorphisms

incomplete tree to a complete tree.

Our plan is now as follows. We show how to associate, to
a CQgq, an incomplete treg,. If ¢ is a Boolean query, then
t = ¢ iff there is a homomorphism from), into ¢. If ¢ has
free variableg;, thent |= ¢(v) iff there is a homomorphism

fromt,.z) tot that sends: to v.

cannot be extended to all classes of CQs we consider here.
Indeed, testing for the existence of a homomorphism is a We then show that, for some classesf axes and queries
classical NP-complete problem and we saw in Theorem 4.2¢, ¢’ € CQ(c), we havey C ¢’ iff there is a homomorphism
that containment of CQl, =) queries idI5-complete. from thes-restriction oft, to theo-restriction oft,.

So the question is: for what types of queries, if any, can Incomplete trees of CQs.We now define analogs of
we characterize containments via homomorphisms of their tableaux of relational CQs; these will be incomplete trees.

We first define an incomplete tregfor each pattermr. To
carry the inductive construction, we shall need to definé bot
treest, andt, for sequenceg. Note that even though we

iff there is a homomorphism from the tableaugdf) to D
that sends to o. The same is true here. The result is very
similar to one in [9], adapted to the definitions given here.

use the name ‘incomplete tree’, such a structure need not be

atree (due to incompleteness); in fags will be forest-like.
Each incomplete treeof the form¢, or ¢, will have a set
RT(t) of roots associated with it in such a way that(R;) is
always a singleton. The inductive construction is as faflow

b If ™= a(x), thentﬂ' = <{S}7 {$}, \La J/*v *>7 H*v >‘a p>!
wheres is a single node, all the binary relations are
empty, A(s) = a and p(s) x. Furthermore,
RT(t:) = {s}.

o Letm = a(x)[pi,. .., wal// 1, - - -5 145]. Suppose we
already have,,,s andt%s defined. LetV; andV; be
the sets of nodes and valuestins and N, and V}
be the sets of nodes and vaIuest;;gls. By renaming

ProPOSITION 5.1. Lett be a data tree, and(z) a query
from CQ{, =). Thent |= ¢(v) iff there is a homomorphism
h:tqy — tsothath(z) = o.

Containment and homomorphisms. We already men-
tioned that a classical result of relational database theor
states that relational CQ containmentC ¢’ holds iff
the tableau ofy’ can be homomorphically mapped into the
tableau ofq. Furthermore, an analog of this cannot possi-
bly hold for queries in CQ|, =) unless some complexity
classes collapse. Nonetheless, it will work for queries$ tha
do not use all the axes.

Suppose we have a quepfrom CQ(J). Then its incom-

. . 1 1 *
nodes in those incomplete trees, we may assume that?/ete treet, records no information aboyt’, —, and—".

all the setsV;s ande’-s are disjoint. Then
tTr = (Na Va \1/7 \L*7 _>7 _>*7)‘1 p)

whereN = {s} UlJ; N; UU; N}, with s being a new
node, andv = |J;V; UU; V/. The binary relations
are the unions of those relations in thes andt,,s.
In addition, we put:

— s ¢ foreachs’ € RT(u;), fori < n;and
— s |* &' foreachs’ € RT(uj), for j < k.

The functions\ andp are the same as in thg,s and
tsiin addition\(s) = a andp(s) = z. Furthermore,
RT(t;) = {s}.

e lety =m ~ ...~ m,. Lett, be anincomplete
tree (N;, Vi, |, 1%, —, =% i, pi). As before, assume
that by renaming nodes, all thg;s are disjoint. Let
RT(t:,) = {si}

Thent, (N,V, 1, 1%, =, =" A\ p), whereN =
U; Ni andV = |, V;; the binary relations are unions
of those in the ., s, and in addition we put:

— 8; — 8;41 If p containsr; — m;41; and
- S; —* Sit1 if M ContaiHSm- —* 41

The functions\ andp coincide with\; andp; on N;.
Moreover, R(u) = {s1,...,8n}

With a query
q(Z) =301 ... Wnm1 (T, 1) Ao AT (T, Yn)
we associate an incomplete data tree
ty=(N,V, 1,15 =, ="\ p)

which is the node-disjoint union of all the;s; that is, we re-
name nodes so that their sets are disjoint (but not the Values
and take the union of structures , ..., tr, .

The incomplete treefs, indeed play the role of tableaux of
CQs. Recall that in the relational case, we haveé= ¢(v)

So for two such queriegandq’, a homomorphism of the-
reducts oft, andt, (that only keep information aboyt A,
andp) is the same as a homomorphiggmandt, . Hence,
even for queries that use reduced sets of axes, e.g.{)CQ
or CQ(J,—), we can still meaningfully talk about homo-
morphisms of their incomplete trees, in place of homomor-
phisms of reducts of incomplete trees.

We next show that without transitive closure axes, we have
an analog of relational containment.

THEOREM 5.2. Let¢(z) and¢’(z") be two queries from
either CQ), or CQ({, —). Theng C ¢ iff there is a homo-
morphismh : ¢, — t, so thath(z') = .

Since testing homomorphism existence is done in NP, and
NP-hardness bound for relational CQs trivially applies to
CQ(J) queries, we obtain the following.

COROLLARY 5.3. The containment problems for GQ)
and CQl,—), i.e,, CQ-({) and CQ-(},—), are NP-
complete. - -

In fact, we prove an even more general result, that shows
the applicability of the homomorphism technique to queries
in CQ({, —), i.e., queries using all forms of vertical naviga-
tion, but only the next-sibling form of horizontal navigai
Formally, they are CQs based on patterns fidi}, —) de-
fined as

™

. ®)

That is, they extendI(],—) patterns by allowing descen-
dants, and prohibiting only»*.

a(@)[p, -, m /1, 1]
m™— ... —>T

Given a query; € CQ({, —), we define an incomplete
tree(¢,)* by replacing the interpretation of in ¢, by the
reflexive-transitive closure of the union ¢fand]* in ¢,.

Then containment can be tested by the existence of homo-
morphisms between such extended tableaux. As an example,
consider querieg C ¢/, whereg = 3z a(z) //b(z)[c(x)] and

¢’ = 3z a(x)//c(x). While there is no homomorphism from

ty 10 tg, there is one fronft,)* to (t4)*. Indeed, in both here), and now give just a couple of examples. One is the
structures there is a descendant axis going fromlabeled containmeny C ¢’ for any of the classes QQ), CQ({, —),
node to the-labeled node. and CQJ, —) if the queryq’ is fixed. The other is contain-
) ment for the classes QQ) and CQ|, —) wheng’ mentions

THEOREM 5.4. Letq(z) andq’(z’) be two queries from gach variable at most once (since in this case containment
CQ(U,—). Theng C ¢’ iff there is a homomorphisth : can be reduced to the combined complexity of evaluating
(tg)" — (tg)" so thath(z') = z. conjunctive queries of fixed treewidth). More results witl b

provided in the full version.

Proof sketchThe right to left direction of the equivalence is
immediate. To show the other direction, we assunie ¢’

and we turn the fores, into some “canonical” complete
tree’l’ such that there is a natural one to one homomorphism
hi : (ty)* — T and such that for allv, w’ € (¢,)*, for all

R € {—,!,}*}, we havewRw' iff hy(w)Rhi(w"). To this
end, we create new nodes labeled with a fresh I&bahd a
fresh data valué. One of these nodes becomes the common
parent of each of the roots of the tree patterns,iand thus
becomes the root df. We also define a recursive procedure
replacing descendant axis |* wy occurring int, by child
pathsw; | ws | wq, wherews is one of the new nodes la-
beledQ(#). We proceed in a similar way with sequences of Note that we have defined XML queriestiiCQ(o) to be
siblings which are given as mere unions. We order them ar- syntactically of the formy;, U ... U ¢,,,, Where eachy; is a
bitrarily using the next-sibling relation, but we alway&e¢a CQ(o)-query. It turns out that for the classes which permit
care of inserting one of the neW(#)-labeled nodes in be- testing containment by means of homomorphisms between
tween two siblings which were not previously related by a incomplete trees,, a similar extension to unions continues
—-arrow. We finally substitute fresh distinct constants for to be true.

every distinct variable, thus obtaining a complete treentr

g C ¢, we then infer that there exists another homomor- PROPOSITION 5.7. Queries inUCQ(]) andUCQ({, —)

Extension to unions of CQs A classical result in relational
theory says that for unions of relational conjunctive geri
¢g=qU...Ugnand¢ =qjU...Ugq,, we havey C ¢ iff

for everyi < m, there existg < k so thatg; C ¢; [34]. We

call this theSY-criterion(for Sagiv/Yannakakis) for contain-
ment of UCQs. In particular, the SY-criterion implies that
the complexity of containment of relational UCQs remains
NP-complete (assuming, of course, that they are repratente
in the above way, as unions of CQs; for other syntactic repre-
sentations, in which the union is not the outermost opematio
the complexity iSlT5-complete [34]).

phismh, : t — T'. Relying on the special propertiesiof, satisfy the SY-criterion for containment.
we finally construct the homomorphisin: (t,/)* — (¢4)*
from hy andh, by lettingh(z) = Ay (ha(z)). = This immediately gives us the following.

As before, we immediately obtain the following. COROLLARY 5.8.The problems UCQ.()) and
. . g

COROLLARY 5.5. The problem CQ({,—) is NP- UCQc({,—) are NP-complete.
complete. -

Indeed, for querieg = ¢; U ... U gy, andq = ¢ U
.. U ¢), we simultaneously guess a mgp {1,...,m} —
1,...,k}, andm mapsh; from t‘?}m tot,, for eachi < m,
and check, in polynomial time, if the;s satisfy conditions

COROLLARY 5.6. Assume that there is a polynomial- of Theorem5.2.
time algorithm that associates with each quegy €
CQ(l},=) an incomplete tree(q) so thatq C ¢ iff there

As mentioned earlier, replacing: by = and obtaining
an analog of Theorem 5.4 is impossible without an unlikely {
collapse of complexity classes.

is a homomorphisnt(q’) — t(g). ThenNP =coNP. 6. THE EFFECT OF WILDCARD

Indeed, since containment of CQR =) is I15-hard and A standard feature of most XML formalisms is the use
testing homomorphism existence is NP-complete, the exis-of wildcard, i.e., a special symbol in place of a label that
tence of such a containment test would imfy C NP from matches every label in a tree. We normally use _ for wild-
which NP =coNP follows easily. card. So patterns can be extended in the following way: in-

o o) stead of a pattern that starts witfi), we can have a pattern
Polynomial-time cases. Our characterization of contain- that starts with (). It will be witnessed in a node of a
ment via homomorphisms immediately shows how to ob- gata tree even if we drop the requirement that labels match.

tain polynomial-time cases of containment. Indeed, since \wWhen we deal with classes of pattedi§o) extended with
containment is now reduced to the existence of homomor-yildcard, we writeII(o,)

phisms, it is effectively cast as a constraint satisfac{imm

conjunctive query evaluation) problem. Thus, we can use Forinstance, patterns ¥(],_) are given by

multiple known results classifying tractqble cases of ¢hos r=al@)m,... 1], acLU{}, zeVUD. (7)
and apply them to structures representing incomplete data
trees. As all of these are quite routine, we leave the com- The semantics is extended, compared to (1), as follows.
plete treatment to the full version (due to space limitation For a data tree¢ = (D,],—,\,p), a nodes € D,

and a valuationvr : & — D, we have(t,s,v) E or h(z;) = 1, i.e.,t encodes one particular valuation of the
a(x)[m (jl)v s 77Tn(jn)] iff piS. O

:] Since wildcard can lead to an increase in complexity of the
* Ms)=aifacl; containment problem, it is natural to ask then when we can
e p(s)isv(zx) if x is a variable, and: if 2 is a constant match the previously established complexity results in the

data value; presence of wildcard. Fdi(]) andII({,—) patterns the
o there exist not necessarily distinct childreni,, answer to this is surprisingly simple: we can allow Wlldcaro_l
s-in Of s SO that(t, s-i;,v) k= m;(z;) for eachj < n. everywhere except at the root of the pattern. Recall that in

Section 5 we associated with each patteran incomplete
treet, with a unique root. The requirement is basically that
the label of the root of . is a € L; other nodes of,. can be
labeled either by, € £ orby .

Likewise we define all other classes of patterns extended
with wildcard, e.g.JI({,—,_) andII({},=,_), and classes
of CQs, UCQs, and BCCQs based on them. For those
queries we define the containment problem: for instance, For instance, the following rules define such patterns
BCCQc-({},=,_) is the problem of checking containment based on child-only navigation:
of BCCQs based on patterns frdm({, =, _).
!

8
The question is then whether the use of wildcard increases ™ a(@)[r’,....7"] aeLU{} ®)

the cost of testing containment. The first instance of that 1,4 is, ther's define patterns that can use wildcard, and

question is whether we can preservetHeupper bound for s the top-level pattern, whose root label comes flm
all containment cases. The answer to this is positive. In

fact, our proof of Theorem 3.1 already shows how to handle When we have this restriction on patterns with wildcard,

™
/

a(x)[x',...;7'] a€eL

wildcard. we write II(o, _-r), Whereo, as before, is a set of axes.
o Likewise we define classes of queries — e.g.(£Q>, _—r)
PROPOSITION 6.1. The problemBCCQc (I, =,_) isiin — and containment problems — e.g., €Q, —,).
5. -

Obviously the addition of wildcard preserves lower
] . bounds. We have already seen that containment of BCCQs
Hence, all other containment problems arelifiin the with wildcard is inII%, and hence all three versions of BCCQ
presence of wildcard. containment —BCCQc({,=), BCCQc({},=,_), and

What does change, however, is the lower bounds. Re-BCCQc({, =, _-r) — arellj-complete.

call that we saw in Corollary 5.8 thafCQc (I, =) isin Now we show that the NP bounds established via homo-
NP. The presence of wildcard makes the complexity jump: moyphisms are also preserved when wildcard is used every-
adding wildcards tdI(|, —) patterns makes the complexity \\here except the root.

of containment of UCQSI%-hard, rather than being in NP.
PROPOSITION 6.3. The problems CQ(,_-r) and

complete. =

Proof sketchWe adapt the proof of the corresponding result
Proof sketchTo show hardness, we adapt the lower bound in Section 5. We now turtg into a complete tree using

proof of Theorem 4.2 by constructing queriggid, grigiq iN- a slightly different procedure. We just add to it one new
stead ofg, ¢’. Recall that the query was encoding all the root node labele® () and we decide arbitrarily on a sibling
possible valuations of thg;s using a special pattern over ordering when none is specified. We finally substitute fresh
I1({,=). Additionally we used another patternrto en- distinct constants for every distinct variable, thus afitag
code the clauses ip. We did not describe this pattern in a complete tre@'. The remainder of the proof is almost as
the sketch of Theorem 4.2, but it is enough for the current before. Whenever the next sibling relation is available, we
sketch to note that it can alternatively be represented as aonly need to notice that the homomorphigm: tg: — T

I1(|, —)-patternt,. We defineggq by adding tor,, two cannot map any node iy to the root ofl’. As tree patterns
new nodes as first and second child of its root. These neware rooted, this entails that nothing can be saithinabout
nodes are respectively label¥dl(0) andVal(1). Let7)' be the relative sibling orderings of the preimages of the ahitd
the resulting pattern. For evety< i < [, we also create of the root ofT". o

a single node pattern label&l(z;) and we formgyigia by
existentially quantifying the;;'s and taking the conjunction

of thesel + 1 patterns. Now we defing/;4 as a disjunc-
tion whose first member slightly adapts while its second
memberr- is the disjunction of all1(|,, —) patterns extend-
ing = with one single node labeled with wildcard and with
a fresh variable over data values. The key idea is now that
if a complete tree does not satisfyr— but satisfiesyigiq via
some homomorphisif, then for every;, eitherh(z;) = 0, Similarly, the method cannot be applied to queries in

Note that such a procedure would not work when both
unions of siblings and next sibling are allowed. For
instance, letg = 3Jz,y,z a(x)[a(y),b(z)] and ¢ =
Jz,y, 2z a(z)[_(y) — _(2)] with a # b. Obviouslyq C ¢,
asq forces the tree to have anlabeled node with at least
two children. On the other hand, it is easy to see that there
is no homomorphism fromy,, to t,,.

CQ(l},_-r). Considerq = 3Fz,y a(x)//b(y) andq’ = over X-labeled trees is a tupld = (Q, X, 0, F'), where@
Jz,y,z a(x)/_(2)//by) A Jz,y, z a(x)//_(z)/b(y), with is a finite set of stated” C () is the set of final states, and

a # b. Againg C ¢, asq forces the tree to have anrlabeled §: Q x % — 2@ js a transition function. We require
node which has at least one child anétlabeled descendant that thed(q, a)’s be regular languages ovérfor all ¢ € Q

which has a parent. But here again, it is obvious that there isanda € . When we deal with complexity results involving

no homomorphism fromy to (¢4)*. automata, we assume that these regular languages are repre-
sented by NFAs (or by regular expressions, since those can

Observe finally that by allowing wildcard to appear ev- pa ~onverted into NFAS in polynomial time).

erywhere in patterns we also lose the homomorphism cri-
terion that let us establish the NP upper bound. For in- A run of A over a treet with domain D and labeling
stance, ley = Jx,y (a(x) A b(y)), with a # b, and let function A is a functionr4 : D — @ such that for each

¢ = 3z,y (_(z)/_(y)). Sinceq forces each tree to have at node s with n childrens - 0,...,s - (n — 1), the word
least two nodes, we have the containment ¢’; however rA(s:0)---ra(s-(n—1))isinthe languagé(r 4(s), A(s)).
there is no homomorphism frofy to ¢,. So, for a leafs labeleda this means that could be assigned

)) .. stateq iff the empty worde is in §(g, a). A run is accepting
As the last result of this section, we show that combining o, treet if the root oft is assigned an accepting state (for-
unions of queries even with the restricted use of wildcard mally, 7 4(€) € F. A treet is accepted by if there exists
can increase the complexity of containment. an accepting run afl ont. The set of all trees accepted by

PrROPOSITION 6.4. Containment of UCQs that use Als denoted by’(A).
downward navigation and wildcard except at the root, i.e., We then define the containment problem under schemas
the problenUCQc (|}, _-r), is IT5-complete. as follows. LetQ be one of the classes CQ, UCQ, or BCCQ,
- ando a set of axes.

Proof sketch We adapt the proof of Theorem 4.2 along
the same lines as in the proof of Theorem 6.2. We de- | PRoBLEM: Qc (o) under schemas
fine queriesyy, ¢ as follows. We keep all th¢ paths pat- - — — —— -
terns which were actually used into encode the clauses | INPUT querlescq(:c/), q/f(fﬂl) in Q(o) 2”;11 '\,')TAA:
of ¢, but we now encode the valuation of thgs using QUESTION isq(t) € ¢'(t) for everyt € L(A)*

a patternmy/.../m where for eachl < i < [, m; =

Val(0)//Val(z;) //Val(1). We can now construafy almost A general upper bound. We show that all the versions
as in the proof of Theorem 6.2, except that we replace ¢ Qc (o) remain decidable under schemas, but the upper
with a CQ3zy ... Jx41Val(0)/_(z1)/ ... /_(z2141). O bound is one exponent higher than it was without schemas.

THEOREM 7.1. BCCQc({},=,_) under schemas is

7. THE EFFECT OF SCHEMAS 2EXPTIME-complete.

So far we have not assumed any schema information, such proof sketch The idea is to prove that we can reduce
as a DTD ora more general schema description, under whichgccq (|, =,) under schemas to a similar problem over
we pe_rform stati_c analysis of queries. However, such as- gqite alphabets and that we can encode a£@>,) into
sumptions are falrly common, as many XML documentsare 5, exponential-size unranked tree automaton. ,_ThEPQE
required to satisfy schema descriptions. Schemas are veryr,,,- upper bound then follows from tree automata tech-

well known to affect static analysis of XML. Infact contain- iq,es The lower bound is immediate from Theorem 7.2.
ment of queries can easily behave differently under schemas

even such simple ones as specifying the label of the root of Lower bounds. SinceBCCQc (I}, =,_) without the pres-

a document. For instance,df= 3z,y (a(z) Ab(y)) and ence of schemas is i, (and therefore in single-exponential
¢ = 3x,y (c(z)/_(y)), then in generay Z ¢, but if we time), it is natural to ask to whether the jump to double-
state that roots must be labelgdheng C ¢'. exponential time is unavoidable. It turns out that it is,reve

.) for conjunctive queries, as we can prove the following.
In addition, the presence of schemas is known to affect the

complexity of static reasoning tasks, generally by indreas THEOREM 7.2. CQ-({},=) under schemas is
it, sometimes even making it undecidable [7, 10, 17, 18, 21, 2ExPTIME-complete.”

33, 35]. The main observation of this section is that under
schema information, we preserve decidability of query con-

tainment for those classes we have encountered so far, but a}erF;]rgO{ s_lr_ﬁtecTo;,I'vZ? ggﬁr?(; ?Soggga;ﬁé?mﬁgggrzmggixe
the cost of an exponential blow-up. o pS-

show that we can transfer lower bounds I0€Q ({},=)
Abstraction of XML schemas. There are many formalisms under schemas to lower bounds for €@,=-) under

for describing XML schemas (see, e.g., [29] for a survey), schemas by adapting a technique from [31]. Then we prove
but most of them are subsumed by the notion of an unrankedthe lower bound forUCQ.({},=-) by a reduction from
tree automaton. To define it, fix a finite alphabett £. A the acceptance problem for alternating exponential space
non-deterministic unranked tree automaton (NT29, 36] bounded Turing machines. This is done by adapting the

proof of the 2ExPTIME lower bound for query containment
from Theorem 6 in [10]. Two difficulties arise as that proof

used queries with node equalities and wildcards. We handle

node equalities by using data value equality constraints in
our setting. We show how we can enforce all nodes from a

tree to have different data values and then we simulate node

equality by data equality. We further provide a modification
of the encoding that avoids the use of wildcard. o

We do not yet have a complete classification of what hap-

pens for all of the classes of queries under schemas, but™

we do have an indication very little is needed to make their
complexity considerably higher than in the schema-less sce
nario. In fact one can use results from [12] to prove that even
for very simple classes of queries (child relation only; no
branching), containment under schenpaisvably requires
exponential time.

8. THE EFFECT OF DATA VALUE COM-
PARISONS

The last feature we are going to consider is data value

comparisons, specifically disequalitigs This is a standard

the variablesu andv come fromz andy. For instance,
q(x) = Jy (a[b(x), c(y)] A x # y) is such a query.

The class of such queries will be denoted by (@Q-)
(using the common XML literature notation ef for data
value comparisons). We then define the claéX) (o, ~) as
unions of queriesin C(@, ~), andBCCQ(o, ~) as Boolean
combinations of such queries.

Before we present our results, notice that in (9), the for-
ula « allows explicit equalities. Normally in CQs these
can be avoided simply by collapsing two variables. How-
ever, in the case of pattern-based queries, we may actually
need explicit equalities, at least for UCQs. Consider, for e
ample, a Boolean query(z,y) = a(x) A a(y). Then this
query implies the following UCQ'(z,y) = (x = y) vV _/_
Indeed, if¢(x,y) is witnessed by two data values that are
different, then they must occur in different nodes and hence
the _/_patternis true.

Containment without schemasWithout schemas, the con-
tainment problem for BCCQs behaves drastically diffegentl
from the relation case, as we show below.

THEOREM 8.1. Containment of BCCQs with data com-
parisons, i.e., the probleBCCQc ({, =, _, ~), is undecid-

addition that has been considered in the study of relational able.

conjunctive queries. In fact it is one of the mildest ways of
adding a limited form of negation to positive queries in a way
that preserves their nice properties, such as the dedigabil

of static analysis. The other such extension, also coresider

here, is allowing Boolean combinations of CQs.

The relational case of CQs with comparisons has been
settled in [25, 26, 37]: the containment problemII$-

complete. From this we can derive some hardness results

for instance, containment of GQ) with disequalities under
schema id15-hard (note that the schema assumption is nec-

essary here to ensure documents code relational database

as was already explained in Section 4). As for upper bounds
for relational BCCQs, even with disequalities, containinen

is decidable. In fact it is easily seen that such containment

reduces to the complement of satisfiability for the Bernays-
Schonfinkel class.

However, relational results do not give us aagper
bounds on the containment problem for XML queries. We
show in this section that there is a reason for it: such prob-
lems are, by and largeindecidable In fact we show two
undecidability results: for XML BCCQs with data compar-

isons, and even for CQs in the presence of schema informa

tion.

Queries with data comparisons.We now formally define
classes of queries witk and+# data comparisons. Suppose
we start with a clas$I(o) of patterns. Thel€Qs with data
comparison®vero are defined as

where all ther;s are patterns froriI(c) and« is a con-
junction of formulae of the form: = v andu # v, where

In fact one needs either, |*, — or |, —, —* to establish
undecidability.

Proof sketch The proof shows that satisfiability for a
BCCQ is undecidable by reduction from Post’s Correspon-
dence Problem (PCP). The proof is rather technical. It may
be tempting to think that, sindlBCCQ({}, =, _, ~) can ex-

press certain key constraints, one can simulate the node

equality tests from [10] in our setting by data equalities] a
then we can adapt undecidability results from there as well.
Blowever, under such a key constraint, it is not clear at all

'how then the data equalities and inequalities from [10] can

be correctly simulated. The reduction from PCP consists of
a series of encoding steps that state that (1) all treegysatis
ing the BCCQ must be string-shaped and of a certain form;
and (2) that they somehow encode a PCP solution. The proof
can be done in two flavors: either we say that the tree does
not branch, in which case we need the negation of-the
predicate to express (1) as well as bgtland |* for (2).
Alternatively, we say that the root has no grandchildren, in
which case we neefdfor (1) and— and—* for (2). |

“Containment with schemasAs in the previous section, for

each containment problem of the for@c (o, ~), with Q
being CQ, or UCQ, or BCCQ, we can associate an analogous
containment problemander schemashich, in addition, will

take as an input a schema, represented as an automaton.

The combination of data value comparisons and schemas
has an even more severe effect on the complexity of the con-
tainment problem: it becomes undecidable already for CQs
using only downward navigation.

THEOREM 8.2. The containment problem for G@Q, ~)
gueries under schema is undecidable.

Proof sketch As in the proof of Theorem 7.2, we first [6] M. Arenas, P. Barceld, L. Libkin, F. MurlalRelational and XML

notice that we can transfer lower bounds Q- (I}, ~) - 'aat: EXChaC\??:MorgLarl _f; I(C_laxgo?# 2010. xity of verihg
r . Arenas, W. Fan, L. LIbKIn. On the compiexity or veri
under schemas_to 'C_’Wef bounds for gQ’ N)' Af_ter that consistency of XML specification§IAM J. Comput38(3): 841-880
we prove undecidability fou CQc ({, ~) by reduction from (2008).
the halting problem of two-counter machines. O [8] M. Arenas, L. Libkin. XML data exchange: consistency anary

answeringJ. ACM55(2): (2008).

We conclude with the following remark. We noticed ear- [9] P. Barcelo, L. Libkin, A. Poggi, C. Sirangelo. XML with @mplete
lier that relational results give ugh-hardness for contain- (10] ::‘f(g_’gfktl'ggal Vccmaighls(io}s(l)ﬁwemick Ontimizinamianciive
r_nent of Cq_i’ N) que_”es under_SChemaS (tO enforce rela- qurJies over’treés using écﬁema informétM%CS’Oag;;gges
tional encoding). While the precise complexity of the prob- 132-143.
lem CQ-({, ~) remains open (see concluding remarks), we [11] H.Bjérklund, W. Martens, and T. Schwentick. Conjumetiquery

can at least eliminate the need for schemas from the hardness _ containment over treedCSS77(3): 450-472 (2011).

result. i.e.. we can prove the followin [12] H. Bjorklund, W. Martens, T. Schwentick. Validity ofge pattern
v p g queries with respect to schema information. Unpublisheduseript.
PROPOSITION 8.3. The problem CcQ (i N) is H’Q’-hard [13] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, Le§oufin.
3. 2 .

Two-variable logic on words with data. IiCS’06, pages 7-16.
[14] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vard
Regular XPath: constraints, query containment and vieseda
9. CONCLUSION answering for XML documents. |bID’08.
[15] A. Chandra and P. Merlin. Optimal implementation of gorctive
. queries in relational data bases 3MOC 1977pages 77-90.
We have analyzed the containment problem for three [16] C. David. Complexity of data tree patterns over XML dowmnts.

classes of queries — CQs, UCQs, and BCCQs — based on MFCS'08 pages 278-289.

various classes of tree patterns (includidg|), II(}, —) (7] W. Fan, L'Eb"i&g ”3)2,%“ igée(gzrg)cl)zc)onsuamts i theesence of
. ’ ' DTDs.J. ACM49(3): 368—4 .
H(lL), andl‘[(i}, ;s)), also in the presence of extra features 18] D. Figueira. Satisfiability of downward XPath with daquality

such as wildcard, schemas, and disequality comparisons. testsPODS’'09 197-206.

. . L. [19] P. Genevés and N. Layaida. A system for the static aisabfsXPath.
Overall, this gives us 96 cases of possible variations of the ~ Acm ToIS24 (2006), 475-502.

containment problem, and our results, although not generat [20] A. Gheerbrant, L. Libkin, and T. Tan. On the complexifyopiery

ing the full set of 96 complexity bounds, have provided an- answering over incomplete XML document€DT 2012 169-181.

swers to the majority of them. Nonetheless, there are a few!?% f AGCol\t/ng,(zcdogcgég._%gulz. Conjunctive queries oirees.

questions left open, that we would like to address. These 5o T 7 Green. Containment of conjunctive queries on tatad

concern the cases when we have some of the extra features relations.Theory Comput. Syst9(2): 429-459 (2011).

(Wildcard, schemas, inequalities) present. [23] A. Halevy. Answering queries using views: A surv&}.DB J.
10(4):270-294 (2001).

With wildcard, without any restrictions, we do not yet [24] B. Kimelfeld, Y. Sagiv. Revisiting redundancy and nimzation in
have the precise complexity of containment for four classes 25 Z”éiatrg;agg?]?u”n'iﬁv? ?Jiﬁ:sgggn?;iﬁii- ki), ACM
CQ(J,),CQ(, =,), CQY,_), and UCQ({,_). With 35(1): 146160 (1988). 9 INequEas
schemas, we do not yet know whether containment for [26] p. Kolaitis, D. Martin, M. Thakur. On the complexity die
CQs and UCQs without transitive closure axes is single- containment problem for conjunctive queries with builigiredicates.
exponential or double-exponential. And with disequality In PODS 1998pages 197-204.

: : : : : [27] M. Lenzerini. Data integration: a theoretical pergpec In
comparisons, we do not know if containment without transi PODS'02 pages 233-246.

tive closure axes is decidable. Based on our investigations 2g) |, Libkin, C. Sirangelo. Reasoning about XML with tentablogics
all these problems appear to be rather nontrivial. We plan to and automatal. Applied Logi¢ 8:2, 210-232 (2010).
address them in the future. [29] W. Martens, F. Neven, T. Schwentick. Simple off the §hel
abstractions for XML schem&IGMOD Record6(3): 15-22 (2007).
[30] S. Maneth, T. Perst, H. Seidl. Exact XML type checking in

: polynomial time. INICDT 2007, pages 254—-268.
ACknOWI.edgmentThls Wor'.(was supported by the FET- [31] G. Miklau and D. Suciu. Containment and equivalenceaffnragment
Open project FoX (Foundations of XML), grant agreement of XPath.J. ACM 51(1): 245, 2004.

FP7-1CT-233599, by EPSRC grant G049165, and by DFG [32] F. Neven. Automata, logic, and XML. IBSL 2002 pages 2—26.
grant MA 4938/2-1. [33] F. Neven, T. Schwentick. On the complexity of XPath eamtent in
the presence of disjunction, DTDs, and variablddCS 2(3):
(2006).
[34] Y. Sagiv, M. Yannakakis. Equivalences among relati@x@ressions
10. REFERENCES with the union and difference operatods ACM27(4): 633-655
(1980).
[1] S. Abiteboul, B. Cautis, T. Milo. Reasoning about XML el [35] Th. Schwentick. XPath query containmeBtGMOD Recor®3(1):
constraints. IlPODS’07 pages 195-204. 101-109 (2004).
[2] S. Abiteboul, L. Segoufin, and V. Vianu. Representing godrying [36] J.W. Thatcher. Characterizing derivation trees oftesifree
XML with incomplete information ACM TODS 31(1):208-254, grammars through a generalization of finite automata the@gSL
2006. (1967), 317-322.
[3] N. Alon, T. Milo, F. Neven, D. Suciu, V. Vianu. XML with dat [37] R.van der Meyden. The complexity of querying indefirdtga about
values: typechecking revisitedCSS66(4): 688-727 (2003). linearly ordered domaingCSS64(1): 113-135 (1997).
[4] S. Amano, L. Libkin, F. Murlak. XML schema mappings. In [38] V. Vianu. A web Odyssey: from Codd to XML. IRODS'0], pages
PODS’'09 pages 33-42. 1-15.

[5] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. SrivastavaeTrattern
query minimizationVLDB J.11(4): 315-331 (2002).

APPENDIX

A. THE PROOF FROM SECTION 3

In this section we add a single result, namely FHeupper bound for the containment of BCCQs that use all the. akies
actually show a more general upper bound for queries thatsis wildcard, i.e., we prove that the problBGCQ (|, =, _)
isin I15.

We assume for now that a query is Boolean, i.e. does not hagevériables. We do so for keeping the notation simple. The

proof with free variables is essentially the same, and wé skplain the minor changes that need to be made to incotpora
free variables at the end.

Note thaty C ¢’ holds iff ¢ — ¢’ always return the empty set (i.e., is not satisfiable in thel&mn case). Sincg— ¢’ is a
BCCQ if so are; and¢/, all we need to do is to provideX) algorithm for checking satisfiability d8CCQ({}, =, _) queries.
Towards such an algorithm, assume that we are given a guehych is a Boolean combination of querigs . . . , ¢.,,. For it
to be satisfiable, we must have a functipn{1,...,m} — {0,1} and a tree so that:

1. t = ¢, for eachi with x(¢) = 1, and
2. t = —g; for eachj with x(j) = 0, and
3. setting eachy; with x(¢) = 1 to true andy; with x(j) = 0 to false makes the Boolean combination evaluate to true.

This functiony will actually become a part of the existential guess in Bfialgorithm. Let

ax = \/ q;-

x(5)=0

Then item 2 above can be restatedtas: —q,, whereg, is a UCQ. So our problem boils down to solving the following
problem that we call SATQ, ¢'):

e given a collection® of CQs, and a UCQ/, is there a tree that satisfies every query i@ and does not satisfy ?

Upon a correct guess af, we would just need to solve this problem f@r= {g; | x(¢) = 1} and¢’ = g,.

We now recast SATQ, ¢’) as the problem of computing certain answers in XML data emgkd8], to apply (or, rather,
adapt) upper bounds established there. For each qlieryQ, define a source-to-target constraint> ¢/, wherer is a label,
and letX o be the set of all such constraints. We assume that schemasaiextchange come with no restrictions whatsoever
(i.e., they may be given by fixed automata accepting all ttaesupper bounds of [8] apply in such a case). Recall thaaicer
answers in data exchangeertain: (t, q) (for a Boolean query) return true ifg is true in every target tree, for a given soutce
and mapping:. This, in particular, tells us, that for a tréeconsisting of a single node labeledwe have:

e certain, (t,,q') returns false iff SATQ, ¢’) returns true.

So we reduced the problem to checking certain answers in X8& exchange. The problem was studied with respect to data
complexity, which per se is not of interest to us, as the sotnee is fixed. However, by analyzing the proof in [8] one can
observe the following. If there is a target tresuch thay/'(¢) is false (i.e, ifcertain:, (¢, ¢') returns false), then there is such

a target tree, satisfying the following conditions:

e the size oft; is polynomial int,. and Q;

o the size oft, is 20(4'1), where|q'| measures the size of (technically, for these two items, what we mean is that tiere
a concrete polynomial and a concrete linear functighso that the size ofy is bounded by(|¢.| + |Q|) as well as by

2/(17); these functions are calculated in [8]);
o the only witnesses to the exponential sizéofin |¢’|) are two types of paths:

— a vertical path between two fixed nodes such that the degremnthing for each internal node of the path g.e.,
there is no branching), and such that each of the dependeneieg” can be witnessed outside such a path (i.e., the
image of the homomaorphism from the tree representatiagff @fito ¢, has empty intersection with such a path); and

— a horizontal path between two fixed nodes such that eacalteode of the path is a leaf, and such that again each
of the dependencies— ¢” can be witnessed outside such a path (we remark that the, pogifven in [8], only talks
about vertical paths, but adding horizontal paths chang#sny at all, see, e.qg., [9]).

In [8], where data complexity was considered, this was defiicto prove that falsity of certain answers is in NP. Now we
need to deal with combined complexity, so we cannot guesseanith exponentially long paths. But we can do two things.

First, we pick a label € L that is not present in any of the queries, and relabel interodes of those exponential paths
by ¢. Furthermore, we assign to them distinct data values tieahar used elsewhere tp and not used as constants in the
queries inQ and ing’ (in particular, no two such nodes would have the same datee)al et the resulting tree bg. It then
immediately follows that], still satisfies all the;”’s from Q, and still does not satisfy’, as the changes could not turn any
pattern from@ into satisfiable one, and all th&'s were witnessed outside of exponential paths.

Second, we také,, and turn it into a polynomial-size data structure catted€t,) as follows. LetN be the set of special
nodes inty, i.e., endpoints of the exponential-length paths. Tteauet(,) contains all the information abotfj except it does
not keep the exponential paths. However, for every two sppaodes:, »’ it records the following: whether’ is a descendant
or a following-sibling ofn. such that there is no other special node on the unique patlebst(i.e., they are consecutive special
nodes, in the vertical or horizontal ordering), and in tteetes the length of the path betweeandr’, encoded in binary. Given
the bounds on the paths, we need at ni®§t’|) bits to encode the lengths of such paths, so the ectidet(,) now becomes
polynomial ing’.

We next need to show that for each G we can useoddt() to verify whethert| = ¢o. and the complexity of this
checking is still in NP, even with exponentially more suctirepresentation. Normally one would check for the existerf
a homomorphism from,,, the tableau ofy, into ¢;,. Instead, we define semi-homomorphisth : ¢,, — codgt;) just as a
homomorphism, except that each node gfis mapped into either:

e anode ofcod€ty)), or

e a pair of special nodes, n’ such that.’ is either a descendant afor a following sibling ofn. with no other special nodes
between them, and a numberrepresented in binary, with at mast|qo|) bits.

Such a magh naturally gives rise to a malg : t,, — t;,: in the second case, the node is mapped’bipto thekth successor

of n on the unique — vertical or horizontal — path frento n’. We then callh a semi-homomorphism iff the map is a
usual homomorphism from,, to t;,. A key observation is that for a mdp: t,, — coddt() one can check if it is a semi-
homomorphism in polynomial time. Indeed, the informationrmdes and offsets is sufficient for checking all the retetio
1, —, 1%, —*, and since data values on the exponential paths have bergezhave know that any data value on such a path
is different from any other data value in the document.

To sum up, for checking whetheertain:, (¢, ¢’) returns false, it suffices to find a counterexantgiehich can be encoded
by a polynomial-size data structucedd;), and then for ally;s comprising;’ check that there iso semi-homomorphism
fromt,, into coddt;). At the same time, we have to check that there is a semi-homghism fromt, to codet;) for each
q" € Q, to ensure that; is a solution.

Putting this together, we haveX® algorithm for BCCQ satisfiability:

1. In the existential step, we guess:
e amapy : {1,...,m} = {0,1};
e adata structuré of the formcodd;) of polynomial size;
e semi-homomorphisms; : t,, — .S for x (i) = 1.
2. In the universal step, we consider all
e semi-homomorphismg; : ¢,, — S for x(j) = 0.
3. Then, in polynomial time, we check:
e thatS is of the formcodét;) (that is, it is a tree structure, and an offset is associaidtlavery pair of consecutive
special nodes in the horizontal or vertical ordering);
o that all theh;s andy;s are semi-homomorphisms (which we know can be done in potjaidime).

This completes the description of the algorithm in the Banlease. With free variables= (z1,...,z,) in the query,
we take just a few small changes. We shall also need to guegsestsatisfying a query. Its data values can in general be
arbitrary, so the only thing we guess is the equality pattéth respect to the constants used in the query (i.e., wesgukih
free variables are assigned the same data values, and wigshace assigned constants used in queries). For instappesse
the queries mentioned constants. ., k, and we have free variablesy, z,u. Then an example of an equality pattern that
we may guess is that = y while z andwu is different, andz = 1, while other variables are assigned values not present in
gueries. Then we shall assign values- 1 to z andy, 1 to z, andk + 2 to u to satisfy the equality pattern. Note that the
values that are not constants present in queries can beaaybliut we can always choose them so that the size of thesgues
is polynomial (in fact, linear). This guess will be addedhe existential guessing stage in the algorithm. The conssrin

the data exchange setting will be changed[tqz;) — a(x2) — ... = a(x,)] — ¢"(21,...,2z,). Thatis, the input tree
has rootr andn children labeled:, holding values of the free variables. Finally, given thesgiof equality patterns, and a
corresponding tuple of valugs= (v4, ..., v,), the input tree will be[a(vi) — a(ve) — ... — a(v,)]. The rest of the proof
then applies verbatim. This completes the proof of TheordnaBd Proposition 6.1, since all the bounds we used apphein t
case of wildcard.

B. PROOFS FROM SECTION 4

Theorem 4.1 The problenBCCQc (|) is IT5-complete.

PROOF We proceed by reduction froWd3C'N F'. An instance of this problem is given as follows by a fully gtified
Boolean formulap in prenex conjunctive normal form:

Y = Vpl .. .Vpﬁlle . E'pm /\ (lzl V li2 V lig),

1<i<n

where eachi;; is a literal over thep;’s (i.e., an atom or a negation of atom). Given as input sudbr@adlay, the problem
of deciding whether there exists for each truth assignmetite, . . ., p;’s, a truth assignment of the 1, . . ., p»,'s which
makes the Boolean formu}algign(lﬂ V 12 V 1;3) true, is known to bél5-complete.

We follow the exact same strategy as in [34] and take full athge of the fact that there are exactly three literals parsg
in our input formulas. As the argument is just a straightfamdvadaptation of the one in [34], we only sketch it. Giverhsac
formula

Y = Vpl .. .Vpﬁlle . E'pm /\ (lzl V li2 V lig),
1<i<n

we use the alphab¢C1, Lit} and construct queriegsccq, ¢pccq € BCCQ() such that:

p listrue ifandonlyif ggccg C quCCQ.

We let:

gpcog = [\ (I VII})
1<i<l

q%CCQ = 31‘1 . 31‘m HLP
We start by explaining how to construidt, as a simple encoding of the quantifier-free part of the foegulTo each propo-
sitional variablep; occurring ing we associate the variabte. Now if the*" clause inp is over the variable$p;, px., pi } we
code it (regardless of the fact that variables appear pekjtor negatively in it) using the following pattern:
Cl(c;)/Lit(x;)/ Lit(zy)/ Lit(x;)
We finally constructl, as the conjunction of all the patterns obtained in this way.

We now explain how to construct the disjunctiifi \/ IT}, for eachl < i < [. First observe that for any clause containing
three literals, there are seven valuations over the vasatxtcurring in the clause which make the clause evaluatesa@and
only one which makes it evaluates to false. E.g.{tgtv —p, V p3) be thei” clause ofp, the only valuation for which this
clause evaluates to falsejis = 0, p2 = 1, p3 = 0. We want to represent all the valuations over the varialldisé clause, but
this one (as we are interestedgnbeing true). So if the'" clause ofyp is of the form(p; vV —p2 V p3), we encode it as the
following conjunction of seven patterns:

Cl(c;)/Lit(0)/ Lit(0)/Lit(0)
A\

Cl(c;)/Lit(1)/Lit(1)/Lit(1)

A

Cl(c;)/ Lit(1)/Lit(1)/ Lit(0)
A

Cl(c;)/ Lit(0)/Lit(0)/ Lit(1)
A

Cl(c;)/ Lit(0)/Lit(1)/ Lit(1)
A

Cl(c;)/ Lit(1)/Lit(0)/ Lit(1)
A

Cl(c;)/Lit(0)/Lit(0)/Lit(1)

We now defindl,;; as the set, for every clausedn of all the so-obtained patterns. Finally, for edck i < [, 1Y andII} are
obtained from the two component partitionl®f;;, where the first component contains the patterns represgthié valuations
where the variablg; has been set to false, while the second component contaipatterns representing the valuations where
the variablep; has been set to true. We constrli¢tas the conjunction of all the patterns in the first componétitepartition
andII} as the conjunction of all the patterns in its second compbnen

To illustrate the construction let

@ = Vp1Ip23p3(p1 V —p2 V p3)

We obtain
gpccq = (Cl(e1)/Lit(0)/Lit(0)/ Lit(0) (Cl(er)/Lit(1)/ Lit(0)/ Lit(1)

A Vv A

Cl(ey)/Lit(0)/Lit(0)/ Lit(1) Cl(ey)/Lit(1)/Lit(1)/ Lit(1)
A A

Cl(ey)/Lit(0)/Lit(1)/ Lit(1) Cl(cl)/Lz‘t(l)/Lz‘t(l)/Lz‘t(O))
A

Cl(c1)/Lit(0)/ Lit(0)/ Lit(1))

dpoco = 3r13we3ws Cl(cr)/Lit(xy)/ Lit(x2)/ Lit(xs)

Notice thaty is a true formula and that indee@ccq C quCCQ.

We now show that for eactd3C N F-instance

Y = Vpl .. .Vpﬁlle . E'pm /\ (lzl V li2 V lig),
1<i<n

© istrue ifandonlyif gpccq C droco-

For the first direction, we assungeis true and show tha, ., (TI? V IT}) € 3z; ... 3z, IT,.. So letT be a data tree with
T = Njcije; (2 VII}). It follows that there is at least one mappimg {1, ...,1} — {0, 1} with

TE A WY

1<i<i

Pick one suchr arbitrarily and consider the valuation of the variab{es, . .., p;} to Booleans given by; = o(i). As ¢
is true,o can be extended to a valuatierf : {1,...,m} — {0,1} such that the quantifier free part gfis true when each
variablep; occurring in it is interpreted by (i). By construction of\, ., ., (IIY v II}), this valuation is encoded by some of
; o (i) ; ; e /
the tree patterns i\, _,, II;"" and so there is a homomorphidm : ¢, — t/\lgigl 7 (asqpccq Was constructed

as an encoding af).! AsT = A, ..., H?(i), there is also a homomorphisis : th o — T'. Homomorphisms being
RS 1<i<t

preserved by compositiohy o hs : tq%CCQ — T is also a homomorphism and go= quCCQ.

For the other direction, assumgccq C ¢pcog and leto : {p1,....p} — {0,1} be some arbitrary assignment. We
want to show that extends to some™ : {p1,...,pm} — {0,1} which makes the quantifier free part oftrue. So let
T Nyeie, TI7% then alsdl = A, <<, (TI9 v I1Y) and asjpecg C {pcogs alsoT = 3y ... Az, T,. The values of the
;’s under whichiT,, evaluates to true give the desired (i.e., we can set eaah’ (p;) (with i > I) to the value ofz;). O

Theorem 4.2 The problem CQ({, =) is TI5-complete.

PROOF We also proceed by reduction frov/l3C' N F'. However, the idea behind the reduction is quite differemtfthe
one used in the proof of Theorem 4.1. Let us note also that welynastrict to3C N F' for notational convenience and that
the reduction would also apply to anyC' N F-formula (i.e., where there is no constraint on the numbétexhls in a clause).

We show that for eacti33C' N F-instance
Y = Vpl ...VplEIql Eqm /\ (111 \/lig \/lig),
1<i<n

there exist querieg, ¢’ € CQ({}, =) such that:

/

@ istrue ifandonlyif ¢ Cq'.

We use the following alphabet of node labels:

{Val,V,Cl, Lit,Oc,Q, P}.

Now recall thatl is the number of universally quantified propositional valés, m the number of existentially quantified
propositional variables andthe number of clauses (or conjuncts)inwe let

q:ﬂxl...xl(/\ Hij/\HVal)

B

and

qd =1 ... Jym(/\ Val(y;)

1<i<m

A

/\ 3z12223(Cl(c;)/L(21)/P(22)/Oc(0)

1<j<n
!For the definition of incomplete treg of a queryg, see Section 5.

A
V(©2)/[Val(zs) —* Val(0)]
A\
Cl(e;)/L(21)/P(z3)/Oc(1)
A\
V(2)/[Val(l) —* Val(zs)]
A

/\ Cl(cj)/L(21)/Q(qr)/Oc(yr))

1<k<m

where thell;;'s andIly; are constructed as follows. For each litdgalin ¢ (wherel;; is thej*" literal of thei'” clause),
we buildIL;; as follows:

1. Whenever the variable, occurring inl;; is universally quantified igp, we buildII;; as the conjunction of the following
patterns:

o foreveryl < <m,

Cl(ci)/L(lij)/Q(q)/Oc(0) andCl(c;) / L(Lij)/ Q@) / Oc(1);
e whenevel;; := py,

Cl(ci)/L(lij)/P(0)/Oc(0) andCl(c;)/ L(li5) / P () / Oc(1);
e whenevel;; := —py,

Cl(c:)/L(l)/ P(1)/0c(0) andCl(c;)/L(li;) / P(1)/ Oc(1).

2. Whenever the variablg, occurring inl;; is existentially quantified i, we buildll;; as the conjunction of the following
patterns:

o Cl(c;)/L(li;)/P(0)/0c(0) andCl(c;)/L(l:;)/ P(1)/Oc(1);
e whenevel;; := gy,

Cl(ci)/L(li;)/Q(qr)/Oc(1)
and for everyl <[< m such thay # i,
Cl(ci)/L(lij)/Q(q1)/ Oc(0) andCl(c;) / L(li;)/ Q(q1) / Oc(1);
e whenevel;; := g,
Cl(ci)/L(li;)/Q(gqr)/ Oc(0)
and for everyl <[< m such thay # i,

Cl(e;)/L(li;)/Q(q)/Oc(0) andCl(c;) / L(li5)/ Q(qi) / Oc(1).

We finally constructly ., as the following pattern:

V(2)/[Val(0) = Val(1),Val(z1), ..., Val(x))

This pattern can also be seen as follows: V(2)

Val(()dal({ V\al(zl\/al(zl)

Observe that we slightly abused notations and that, strgieaking, the query is not a conjunctive query as it contains
nested existential quantification. However, it is easy ®tbat by renaming variableg, can be put in prenex normal form

without increasing the size of the formula, i.e., it can bevested into another equivalent formula of the same sizelwis a
conjunctive query.

Let us now give an example of our encoding applied to soméfspput formula. As we already pointed out, the reduction
actually also applies to arsdC N F-formula where clauses may contain some arbitrary numbéeadls. Our encoding being
quite heavy, for clarity we will only show here how to encolde very simple trug3C' N F-formulaVp; 3¢1 (p1 V¢1) containing
one single clause with two literals. In this particular cage can write the query as follows:

Fr1 V(2 Aol A cl) N ciy N iy N ci) AN ci() A o)
L(1) L) L) L) L2 L2 L2
Px1) P0O) Q@) Q@) PO) P1) Qa)
Oc(1) Oc(0) Oc(0) Oc(l) Oc(0) Oc(l) Oc(l)
In this simple case, one can easily verify that for every t@&T", if T |= ¢, thenT = ¢’. Indeed for any such treg, there

is a homomorphism : ¢, — T such that eithe?” = V' (2)[Val(h(z1)) =* Val(0)], or T = V(2)[Val(1l) =* Val(h(z1))].
But in both cased]" |= ¢'.

Val(0) — Val(1) Val(zy)

We now show that given som&3C N F-instance

@ :=Vp1...Yp3q1 ... Iqm /\ (lix V12 V 1i3)

1<i<n

p istrue ifandonlyif ¢ C¢.

For the first direction assumeis true. Now take some arbitrary data tfEesuch thafl’ = ¢. So there is a homomorphism
h : ty — T andT can naturally be associated to a valuationf the p;'s such thatv(p;) = 0 whenever there is iT" a
V(h(z;))-labeled node which is a child of a V(2)-labeled node and edigling of aVal(0)-labeled node and(p;) = 1
otherwise. Observe that in such a case, there is alw&¥:.&x;))-labeled node which is a child of a V(2)-labeled node and a
right sibling of aV al(1)-labeled node. Ag is true, the valuatiom can be extended to a valuation of all the propositional
variables inp such that the quantifier-free part ofis true whenever thg;’s andg;’s are interpreted according to". We now
show thatl" = ¢’ by interpreting each existentially quantified variajplén ¢’ by v* (q;). Firstly, notice that the value assigned
by v™ to eachy; is either0 or 1 and consequently for evety< i < m, T = Val(v™(g;)). Hence, the first big conjunction in
¢’ holds for the values of thg;’s that we considered. Secondly, let us pick grauch thatl < j < n. Consider now thg*"
clause ofp. By assumption there is a literal in this clause which is farethe valuatiorv™. Assume it is the:*" literal. We
will show thatT satisfies the remaining conjunctsgfwherez, is interpreted by, and eachy; is interpreted iff” by v (g¢;).

There are two cases (we lgf, stand for that literal):

1. the variable, in [;;, was universally quantified ip:

o T = N (Cl(c;) /L) /Qar)/Oc(vt (qi))) by construction of; and by the fact thak is a homomorphism,
whatever the value af " (¢;) is (that is, eithef or 1),

e whenevetl;, = p,, T = Cl(c;)/L(lx)/P(22)/0c(0) AV (2)/[Val(z2) —* Val(0)] holds by construction of
and by the fact that is a homomorphism, with; interpreted irl” by 0. Also T" |= Cl(c;)/lit(lx)/ P(23)/Oc(1) A
V(2)/[Val(1) —* Val(z3)] because as*(z,) = 1, this means that there ista(i(z..))-labeled node which is a
child of a V(2)-labeled node and a right sibling oVal(1)-labeled node, so we can takér,.) as a value fors;

e whenevetj, := —p,, T = Cl(c;)/L(Ljx)/P(z3)/O0c(1) ANV (2)/[Val(l) = Val(z3)] holds by construction of
and by the fact thalt is a homomorphism, withs interpreted inl” by 1. Also T = Cl(c;)/L(lx)/P(22)/Oc(0) A
V(2)/[Val(z2) —* Val(0)] because as™(z,) = 0, this means that there ista(h(x..))-labeled node which is a
child of a V(2)-labeled node and a left sibling oVa:l(0)-labeled node, so we can takér,.) as a value foes.

2. the variabley, in [was existentially quantified ig:

e T £ Cl(¢j)/Lllu)/P(22)/0c(0) A V(2)/[Val(zs) —* Val(0)] A Cle;)/L(lx)/P(z2)/Oc(1) N
V(2)/[Val(l) —=* Val(zs3)] AN V(2)/[Val(l) —* Val(z3)] holds with0 as a value for, and1 as a value for
z3, by construction of) and by the fact that is a homomorphism;

o T = N (Cl(cj)/L(Lik)/Q(ar)/Oc(vt (qr))) holds whatever are the values assigned to eddl;,), by con-
struction ofg and by the fact that is a homomorphism. This holds for evefywith i # » because for every such
T = Cl(e;)/L(lik)/Q(q:)/Oc(0) A Cl(cj)/L(Lix)/Q(g:)/Oc(l). Whenevei;, := g, this holds in the case af-

because as™ (¢,) = 1, we also assumed that is evaluated byi. Finally whenevet;;, := —¢,, this holds because
asv™(q,) = 0, we also assumed that is evaluated by.

Now for the converse direction assume the following forntalbe false

@ :=Vp1...Yp3q1 ... Iqm /\ (lix V12 V 1i3)

1<i<n

l.e., the following formula is true:

= le - Equl - qu \/ (ﬁlil A=l A ﬁli3)

1<i<n
then there is a valuatiomof thep;’s such that for every extensiart of v to theg;’s, Vi<icn(5lin A=lia A —lj3) evaluates to

true whenever the;’s, ¢;'s are interpreted according t0". Now letT" = ¢ with & : ¢, —s T an onto homomorphism, where
for everyp;, h(z;) = 0 whenevew(p;) = 0 andh(x;) = 1 otherwise. Let also assume tifahas only one singl® (2)-labeled
node which has only two children, the first one labéléd (0) and its next sibling labeletal(1). Assumel” |= ¢’. As0 and

1 are the only two data valuéssuch thafl” = Val(d), there is a mapping of the existentially quantified variablegs, . . . , y,,
to {0, 1} such that

TE /\ Jz12023(Cl(cj)/L(z1)/P(z2)/0c(0)

A
V(2)/[Val(z2) —=* Val(0)]
A
Cl(c;)/L(z1)/P(23)/ Oc(1)
A
V(2)/[Val(1) —=* Val(z3)]
A
/\ Cl(d;)/L(21)/Qlar) [Oc(o (y1))

This means that for each data valyeoccurring in7’, there exists some such that the remaining of the formula holdsBn
whenever; is interpreted by;;, (suchl;;, values being the only ones to which we can set this existgngjaantified variable).
Now asc is a mapping to Boolean values, there exists an extensioof v such that for every < i < m, o(y;) = v*(g).
By assumptionV/, ., ., (=li1 A =li2 A =l;3) holds undew™, so there is some < j < n such that-i;; A —lj2 A —l;3 evaluates
to true undew™ and by construction df, it follows that for all1 < k < 3:

T W 32223(Cl(cj)/L(Lx) | P(22)/Oc(0)
A
V(2)/[Val(zs) —* Val(0)]
A

Cl(ej)/Lljk)/ P(23)/ Oc(1)

AN
V(2)/[Val(1) =" Val(z3)]
A

A\ CUd)/ L) [Qlar)/Oc(o ()

1<k<I

But this is a contradiction, s& [~ ¢'. As the size of; and¢’ is polynomial in the size op, this completes the proof of the
reduction. O

C. PROOFS FROM SECTION 5

In this appendix we provide a proof of Theorem 5.4. Withousslof generality we proceed as in the proof of Theorem
3.1 and restrict to Boolean queries. The idea behind thefmrbthe NP upper bound is as follows. Given two queries
¢,¢ € CQ,—), we show thay C ¢ if and only if there is a homomorphisi : ¢,, — (t,)*. To prove this, we first
construct out of, some “canonical” complete trée such that there is a natural one to one homomorphism(t,)* — 7.
Assumingg C ¢, we then infer that there exists another homomorpliismt,, — T'. We finally construct the homomorphism

h from hy andhy, by lettingh(x) = kit (ha(z)).

DEFINITION C.1 (RGIDIFICATION OF A CONJUNCTIVE QUERY). Letgq € CQ({},—) and let®© € L be a label and
t € D a data value which both have no occurrenceifwe defing”*¢ by induction as follows: .

For ¢ := 3y A_, mi(2;) we defing™ := 35 O(4)/[(m1(21))F = Q) = ... = Q) = (7n(2,))"9];

For m(2) := (a(@) 1, - .-y i)/ /115, - - -5 12]])7%, we definer(z)™9 as

a(@)[(p)™ = Q) = ... = Q) = (k)" = QD[(1)™] = ... = QE ()™]};

Finally for p := 71 — ... — m,, we defingu™9 := (7)™ — ... — (mn)"%.

The following drawings may help the reader to understandigfimition ofg"*9.

EIyA/\---/\A

The queryy

a(x)
//\,*\,
P o e T

A patternr(z) The treer(2)"
NN
An ordered forest of patterng z) The treeu(z)™

DEFINITION C.2. Letg € CQ({,—). There is a “natural” homomorphism™ : ¢, — (t,)"% that can be defined as
follows. First constructyy out ofq by replacing every distinct occurrence of evérye £ by a fresh label.,,, wheren € N.
There is only one homomorphigifi? : ¢, — tyria and it maps each node ify, to the only node irtqéa which carries the

N

same label. Now if we remove indexes on labeling symbolspéppingh”* : t, — ¢, remains a homomorphism.

DerINITION C.3. Lett be anincomplete tree. We defitfeénductively out ot by adding in/* every pair of nodes which is
in the reflexive transitive closure ¢fu |* in ¢.

PrROPOSITION C.4. Letq € CQ({}, —) and letT" be a data tree obtained fromy-:; by uniformly substituting fresh distinct
constants for distinct nulls using a mappirfg Thenf o A" : (t,)* — T is a one-to-one homomorphism and for all
w,w' € (ty)* forall R € {{,1*,—}, wRw' ifand only if f o A" (w)Rf o A" (w').

The incomplete treé,)* The incomplete treét,)*

ﬁ@ h AAA
AA

hl i h2

Thetree T

THEOREM C.5. The problem CQ({, —) isin NP.

PROOF Letq,q € CQ({, —), we show that the following are equivalent:

1. there is a homomorphisin: (¢,/)* — (t4)*;
2. ¢ C ¢, i.e., forevery data tre€, if there is a homomorphisiy : ¢, — T, then there is a homomorphisim : t,, — T.

As 1. can be tested in NP, the result follows.

1 — 2 Assume a homomorphisim: (t4/)* — (t4)*. Now letT' |= ¢, so there exists a homomorphigm: (¢,)* — 7. We want
to showT" |= ¢/, so we need to find a homomorphism : t,, — T. Homomorphisms being preserved by composition,
by transitivity we can simply putz(x) = hy(h(z)).

2—1 Letq,¢ € CQxu. ({,,—) and assume C ¢/, i.e., for every data tre®, T |= ¢ impliesT E ¢’. We assume without
loss of generality that the lab&l and the data valugdo not occur neither ig nor ing” and we first construdt,,i,)* out
of ¢. By uniformly substituting nulls with fresh distinct arlary data values frorfi using some suitable mappinfg we
now obtain a structure which is isomorphic to some datafreech that, by Proposition C.4; = ¢ and there exists an
injective homomorphism; : (¢,)* — T, whereh; = f o h"*. Now by 2., there exists a homomorphiém: t,, — T
and it follows from the definition oft,/)* thaths : (t,)* — T is also a homomorphism. L& be the domain of . As
Im(h1) ={neD|AXn)#Q}U{ce C|ne D,An)#Q,pn)=c}and? andt occur nowhere i/, it follows
thatIm(he) C Im(hq). The homomorphism; being one-to-one, we can now construct a mappindt,)* — (t4)*,
whereh(z) is the unique element ih; * (ho(x)) (Such a set is indeed always a singleton that we identify Wtteits
unique element). Now we claim thatis a homomorphism, as it satisfies the following properties:

(@) IfwRw' in (tg)*, thenh(w)Rh(w') in (t4)*, whenR is one of|, —, |.
LetwRw' in (ty)* for someR € {|,|*, —}. As hy is @ homomorphism, it follows thdt;(w)Rhe(w') € T. As
QO does not occur irft,)*, we know that\(ha(w)) # @ andA(he(w')) # . But this implies that botth,(w) and
hs(w') have a pre-image by; in (¢,)* and by Proposition C.4 aldo; ' (he(w))Rhy * (ha(w')) € (t,)*.

(b) If AMw) = Lin (tg)*, thenA(h(w)) = Lin (tg)*.
As hy is @ homomorphism\(hy(w)) = L in T and ash; is a homomorphismy(h =1 (hz(w))) = L.

(c) h(c) =cforallce D.
Let ¢ be a constant occurring ifi. As hs is @ homomorphisntiz(c) = ¢. By construction off’, constants occurring
in T but not inq are fresh, i.e., they occur neithergmor in¢’. Soc occurs also iny. As h; is a homomorphism, it
follows thath; * (ha(c)) = c.

(d) h(p(w)) = p(h(w)) for eachw € t, .
As h, is a onto homomorphism mapping distinct nulls to distinesfr constants, for alb € Im(hy), by (p(w)) =
p(hT (w)). As Im(hy) C Im(hy), it follows thath; * (p(ho(w))) = p(hy ' (ha(w))).

O

D. PROOFS FROM SECTION 6

In the following, we refer for patterns (], —) as “rigid patterns”.
PropPoOsITION D.1. Letw be a rigid pattern, we define- recursively as the disjunction of all rigid patterns extergir

with one single node labeled with wildcard and with a freshialale over data values. The sizemfis polynomial in the size
of .

PROOF Letn be the number of nodes (or sub-patternsj.imhere are no more tham + 1ways of adding one single node
to arigid pattern. The operation can indeed only be perfdrasfollows:

o the new node becomes the parent of the roat,dfe., out ofr we form _(z)/x;

e the new node becomes a child of a noderjnf 7 has no children, then it becomes its only child, otherwigmit only
become either its first child or its last child, i.e., for a qudtterna(y)[my — ... — m,] in 7, we can form either only
a(y)/_(zx) if the sequence of the;’s is empty, ora(y)[_(z) —» 71 — ... = m,] anda(y)[r1 — ... = m — _(2)]
otherwise.

o

ExampLE D.2. Consider the rigid patteri(a)/i(b). We can construgt(a)/1(b))- as the following union of patterns:

—(x)/Ua)/1(b) U U(a)/[I(b) = _(x)] U U(a)/[(z) = 1(b)] U U(a)/I(b)/_(x)

THEOREM D.3. The problenUCQc ({, —,_) is IT5-hard.

PROOF We proceed by reduction frod3C NF. We only need to adapt the proof of Theorem 4.2. Given as iaput
formula

@ :=Vp1...Yp3q1 ... Iqm /\ (lix V12 V 1i3),
1<i<n

we construct querieg.;gid, 4 € UCQ(],—,_) such that:

/
qrigi

¢ istrue ifandonlyif grigia C Grigia-

We constructigid, 4,.,,,4 USINg the same alphabet of node labels as in the proof of Ehedr2 as follows:

Qrigida = 31 ... Eml(/\ Val(xl) AN H)

1<i<i

Grigia = 3r3xy .. 3oy (ID)-
V

Fy1 ... Fym(/\ Val(y;)

1<i<m

A

N 32(Cl(ej)/L(2)/ P(0)/Oc(0)

1<j<n

A

Cl(¢j)/L(2)/P(1)/Oc(1)

A

N\ Cld;)/L(z1)/Q(ar)/Oc(yr))

1<k<m

wherell is a rigid pattern which root is a node label€@!(0) and which has as first child a single node pattern labeled
Val(1). The rest of its children is constituted by the ordered seqeef the rigidIL;;'s patterns defined in the proof of
Theorem 4.2.

The intuition behind the reduction is the following. L&t be a data tree satisfying,;;;¢ and not satisfying
Jr3xy ... 3z (I)-. This means that there is a homomorphism fr@g, .,) to 7" which maps all thé nulls in (¢,,, .,) to
Boolean values. The set of all trees satisfying this prgpsifl thus allow to encode the set of all possible valuatiofishe
pi,S. [l

THEOREM D.4. The problenlUCQc (|, _-r) is IT5-hard.

PrROOF We proceed by reduction frond3C' N F' and just adapt the proof of Theorem 4.2. Given as input a famu

Y = Vpl .. .VplEIql . Eqm /\ (111 \Y lig \Y lig),

1<i<n

P

we construct querieg,, ¢y € UCQ({, _-r) such that:

© istrue ifandonlyif gy Cqj.

We constructyy, g, using the same alphabet of node labels as in the proof of €hedr2 as follows:

qb:Ele...zl(/\ Hij/\H/Val>
1<i<n,1<5<3

qh = 3%1 e 31‘2[+1V&l(0)/_(1‘1)/ e /_($2[+1)

\Y
Eyl...ﬂym(1</§ Val(y;)
.

/\ 32(Cl(e)/L(2)/ P(0)/Oc(0)

N AN

Cl(¢j)/L(2)/P(1)/Oc(1)

A

N CUd;)/L(=1)/Q(ar)/Oclyr))

1<k<m

wherelly, , is a pattern of the following form:

Val(0)//Val(z1)//Val(1)/Val(0)//Val(za)//Val(1)/ ... /Val(0)//Val(xi—1)//Val(1)/Val(0)//Val(z:) //Val(1).

The intuition behind the reduction is the following. L&t be a data tree satisfying; and not satisfying
3y ... F2e111Val(0)/_(21)/ ... /_(x241). This means that there is a homomorphism fri@g)) to 7" which maps all the
nulls in (.,) to Boolean values. The set of all trees satisfying this priypeill thus allow to encode the set of all possible
valuations of they;’s. O

E. PROOFS FROM SECTION 7

In this section we assun¥to be the finite alphabet of the schema.

We first prove the 2EPTIME upper bound (Theorem 7.1). It follows from a translation teeguence of intersection
emptiness problems of non-deterministic unranked treenaata. Before giving the proof, we give a few definitions and
preliminary results.

For a queryy € CQ({},=,_), we define thexssociated incomplete data tregsimilarly as in Section 5. The difference is
thatt, is now also allowed to have nodes labeled with the wildcafd A homomorphism front, to a data tree is now also
allowed to send a node labeled _ to a node labeled with somé&.

Analogously as in Section 5, we have the following propositi

PrROPOSITION E.1. Lett be a data tree, and(z) is a query from CQ|, =, _). Thent = ¢(v) iff there is a homomorphism
h:tqy — tsothath(z) = o.

The proof for the upper bound reduces the problem from datstto (non-data) unranked trees with respect to a certain
querygq. In particular, for a finite alphabét and a query; of sizen = |¢|, we define a finite alphab&l, as follows. Denote
by s; - - - s,, the nodes irty, the alphabek, is of the formX x {d,, ..., d,, *} such that if a node; is associated to a constant
¢ € Din the queryy, then the lettet/; = c¢. We denote the set of (non-data) unranked trees over alphighsy 7.

We define the functiorf.. that maps trees frorfi, to data trees. Given a trée= (D, |, —, \) in T, thenf.(¢) is the data
tree(D, |, —, N, p) which is obtained from as follows

1. If AM(v) = (a,d;), fora € Y andi € {1,...,n}, thenX (v) = a andp(v) = d;, that is, node of f.(t) has labek and
data valuel;.

2. If AM(v) = (a,*), fora € %, then) (v) = a andp(v) is a new data value, that is, nod®f f..(t) has labek and a data
value that does not appear anywhere elsgft).

We now prove the following lemma:

LEMMA E.2. Letg be a queryin CQ|,=-,_). Then one can construct in exponential time an N4 over alphabek,
such that € £(Asin) if and only if f£(t) |= ¢ for eachX,-treet.

PrROOF The proof is similar to a proof in [10]. Let, = (N, V,], 1*,—, =%, A, p) be the incomplete data tree associated
with ¢. Letn be the number of nodes ty. Our aim is to construct the NTAs, that works as follows.

When reading &,-treet, the automatotds, guesses a homomorphism ¢, — ¢ that witnesseg..(¢) = ¢ (cf Proposi-
tion E.1), if it exists. More preciselysn guesses the nodestoivhich are the homomorphic images of nodes,aéind checks
whether the correct relations hold between the guessedsnode

Intuitively, a state of4sn is of the form(X,, X, X4, D), whereD : V — {ds,...,d,, *} is a total function and{,, X,
and X, are subsets aV such that

e X, is the set of nodes iV that A5, guesses to be mapped to #ecestors of the current node
e X isthe set of nodes iV that.4sn guesses to be mapped the current nodeand

e X, is the set of nodes iV that A5, guesses to be mapped dascendants of the current node

SinceAsn guesses a (well-defined) homomorphism, we only guess ogettaonde for every node if¥. Hence, for each state
(Xa, Xn, X4, D), the pairwise intersections d&f,, X, andX, are empty.

In order to definedsn = (Qa, X4, 4, Fla) formally, we specifyl) 4, Fa, andd4:

Qa: The state sef) 4 of Ay, is the maximal subset @ x 2V x 2V x {dy,...,d,, =}V such that the following conditions
hold: For eac X,, Xj, X4, D) € Qa,
(Q1) the pairwise intersections af,, X, and X, are empty,
(Q2) for eachr,y € X}, the labels oft andy are the same or one of them is a wildcard; that is, eittie) = A(y) or
A@) = _orAy) = _,
(Q3) for eachr € X, and eachy € N such thaty | « in t,, we have thay € X,, and
(Q4) for eachr € X, and eacly € N suchthaty |* = in t,, we have thay € X, U X,.
Fy: Astate(X,, Xp, X4, D) of Agin isin Fy if and only if
(F1) X, is empty; and
(F2) X} andX, partitionN, i.e.,N = X}, ¥ X,.
04: contains all transitions of the form

4 ((Xas Xn, X4, D), (a,4)) = L, ()
where
(D1) foreachr € X, D(z) = A;
(D2) foreach(X}, X}, X3, DY) .- (X™ X™, X", D™) € L, we haveD! = ... = D™ = D; and

(Hor) for every string X}, X}, X}, DY) - (X", X;*, X", D™) € L, the following holds:
@ Xe=XW WXrWXiw - WX,
(b) if z € X}, andz | yint, thenthereisan=1,...,mwithy € X};
(c) foreachi =1,...,m, X! = X, U X;; and
(d) foreachi =1,...,m,if x € X} and
o if z — yint, theni < mandy € X;*;
o if z = yint,, thenthere exists f i < j < m suchthat X,Z.

In order to complete the proof of the lemma, we need to proae th

(1) Asin can be constructed fromin exponential time; and
(2) L(Ain) ={t € Tq | f£() = q}

(1): ltis clear that) 4 and F4 can be computed in time exponential|if). Ford4, we prove that we can compute an non-
deterministic finite string automaton (NFAYJ that accepts, for everyX,, X, X4, D) € Q4 and(a, A) € X, the language
L in the rule

((Xa, Xn, X4, D), (a,A)) — L.

As N\ only reads symbols fror§ 4, we don’t need to check anymore that (Q1)—(Q4) hold. Funtinee, (D1) and (D2) also do
not need to be checked Y. These conditions need to be checked by the algorithm thmetiaactsA, when deciding whether
or not to define a transition rule of the forfh). Hence, we only have to enforce (Hor.a)—(Hor.d).

We next describéy/’s accepting condition and the information theltneeds to remember when reading a string. Sikice
only needs to maintain a polynomial amount of informatiorewheading a string, it should be clear thidtneeds only an
exponentially large set of states. A state\dfconsists of X, X7, Y,.s, Y,,..), where the components are defined as follows.
When reading a preﬁﬁ(X;aX}luXévD) e (thzCaX}]vallicaD) of (X;aXfluXévD) e (X;,X}?,X;,D),

° X,:’::X,%U~~~UX;§,

° XCLIJ::XC%U---UXC]IC,

e YV, :={y|z e X}andx — yint,},

o Voo ={y|N<i<kreX,yg X, U---UXFandz —*yint,}.

When reading symbalX**+1, X ¥+1 x*k+1 Dy N checks whether

XN (X} U XY) = 0, to partially ensure (Hor.a);
X5 N (X} U XY) = 0, to partially ensure (Hor.a);
X1 = X, U Xp, to ensure (Hor.c); and

e Y, C X}t to ensure (Hor.d)'s NextSibling-constraint.

and it changes its state (&5, X', Y!.,Y!_.) as follows:

dsr*ns) Tnsk
o X'} =X UXt
o X'y =XJUXith
o V! ={y|zec Xt andzr — yint,};
e V! = YVose — X u{y|ze XFh y g XFH andz —* yint,}.

ns*

Finally, N/ accepts if

e X, = X;]UX/, toensure (R2.a), together with the above conditions otrémsitions;
e foreachrx € X, suchthat: | yint,, z € X}/, to ensure (Hor.b);

e Y, = 0, to ensure (Hor.d)'s+ relations; and

oY, .. C X,’j, to ensure (Hor.d)'s>* relation.

(2): We show that.(A) = {t € T, | f+(t) = ¢}. For the inclusion from left to right, takec L(A). Consider the homo-
morphismh from ¢, to ¢ induced by an accepting run df on¢ by settingh(z) = v if the run assigned stateX,,, X, Xq, D)

to v with € X3, Itis easy to show by induction on treehat the homomorphisrh is a homomorphism from, to f.. (%)
and therefore witnesses that= f(t). Conversely, ifh is a homomorphism from, to f(¢) then the same homomorphism
allows us to construct an accepting rungf, ont. O

The transformatiory.: we defined associates a data tree t6atree. We now define a transformatigp to associate a
Y ,-tree to a data tree satisfying a given query.

More precisely, ley be a CQ|,=,) and lett, = (N,V,|,]*,—, =", A, p) be its associated incomplete data tree with
nodesN = {s1,...,s,} and lett be a data tree such that= ¢. Furthermore, let : t, — ¢ be a homomorphism that
witnesses that = ¢. Then we writeg, (¢, k) for the X ,-tree resulting front as follows.

o If, for somei, h(u;) = v andA” (v) = a, thenv gets labela, d;) wherej is minimal with p(h(u;)) = p(v).
e Otherwisep gets labela,) if \T'(v) = a.

Intuitively, the treeg, (¢, h) is obtained by relabeling the data in the treesing letters fron{ds, . .., d, } for the nodes which
are in the image of the homomorphignand using the lette for all the other nodes.

The following lemma is analogous to a lemma from [10].

LEMMA E.3.Letg,¢ € CQ(},=-,_) wheret, hasn nodes and let be a data tree such that= ¢ butt [~ ¢’. Then the
following hold:

(@) f(gq(t, 1)) = g and
(b) f£(g4(t,h)) I~ 4

PrROOF By definition ofg, and f.., it is straightforward that the same homomorphismwitnesses thaf.:(g,(¢, h)) = g.
This proves (a).
We now prove (b). Towards a contradiction, assufpéy, (¢,)) = ¢'. Leth’ be a homomorphism fromy, to f(g4(t, h)).
By definition of f.. (g, (¢, h)), the only difference betweerand f«(g,(t, 1)) is the data values. Furthermore, for every pair of
nodessy, so i f2(gq(t, h)), if p(s1) = p(s2) in fx(g4(t, h)), then we also have thats,) = p(s2) in t. This implies that’
would also be a homomorphism fratfito ¢ which contradicts that j~= ¢'. O

We can now prove the following upper bound:

Theorem 7.1 The problenBCCQc (I}, =, _) under schemas can be solve®BXPTIME.

PROOF To prove this upper bound, we show that satisfiabilityBé?CQ({}, =, _) queries can be solved in XETIME,
from which the overall upper bound follows. Lebe a query fromMBCCQ({}, =,) that contains the CQg, . . ., gx.

The queryy is satisfiable if and only if there exists a valuatign {1, ..., k} — {true false} and a tree such that,
o the propositional formula obtained fropby replacing each; with x(g;) is true;

and foreveryi =1, ...k,
o t = q;if x(i) =true and t |~ ¢; if x(i) = false.

We say that modelsg undery.

The 2ExPTIME algorithm will iterate through all possible valuatiogsand test whether there exists a ttebat models;
undery. Since there are only exponentially many valuations, itiident to show that we can perform the test for a single,
fixed, valuation in 2KPTIME.

Therefore, fix a valuatiory and letP be the conjunction of alf; such thaty(i) = true. Furthermore, lefq,...,q,,} be
the set of ally; such thaty (i) = false. Letn be the size of of p. According to Lemma E.3, there exists a tiBethat modelsy
undery if and only if there exists a homomorphidirand a tree of the fornf..(gp (T, #)) that models; undery. The latter
means thaf.(gp(Ty, h)) = P andf.(gp(Ty, h)) = q; foreveryi =1,...,m.

According to Lemma E.2, we can build, for the quefy an NTA AL, such thatf.(gp(Ty,h)) = P if and only if
gp(Ty,h) € L(AL). Similarly for every queryy;, we can build an NTAsA{: such thatf.(gp(Ty,h)) = g; if and only
if gp(Ty,h) € L(AL).

The latter implies that it is equivalent to test whether énexists a treé that models; undery and to test whethef (AZ) N
L(A%) ... N L(A%) is non-empty.

fin fin

We still need to discuss how schema information in the forra ttEe automaton can be incorporated. But that is very easy
in the present approach: M is the tree automaton (ov&l) under which we want to test whetheis satisfiable, then letl,
be the tree automaton (ovEy) that accepts &,-tree if and only if its projection on the correspondiigree is accepted by
A. (More formally, for every label of the forrtu, z), the automatod,, simply ignorese and simulatesd.)

As such, we only need to testif(A,) N L(Af) N L(‘1,,11) N---NL(’f;;) is non-empty. The latter test can be performed
in 2EXPTIME by standard techniques on automatal

Theorem 7.2 Containment of CQs under schema2iExPTIME-hard; i.e., the problem CQ({, =) under schemas is
2EXPTIME-complete. -

The upper bound is immediate from Theorem 7.1.

For the lower bound, we first prove theCQc (I}, =) w.r.t. schema constraints is 2BTIME-hard. Then we show how to
transform the proof to obtain the lower bound for €@, =).

PROPOSITION E.4. The problen’UCQg(iL, =) W.r.t. schema constraints BEXPTIME-hard.

PrROOF We show the lower bound by a reduction from the acceptarmalgm for alternating exponential space bounded
Turing machines. We give an encoding of accepting runs df suachines into data trees. Given such a machine and a word
w of lengthn, we explain how to build a regular languaeand a finite unionp of conjunctive queries such that any data
tree satisfying the constraints given ®yand the negation af is the encoding of an accepting run of the machiteon the
word w.

The machineM has no accepting run on the woudiff ¢y Cr ¢ wheregy is the trivial query which is always true.
Therefore, our UCQ will look for all possibleerrors that can happen in runs.

In the following, we define precisely the encoding of acaggptiuns into a data trees and explain how to build the language
‘R and the query.

Notice that the encoding of the machine has similaritieh e one used in proof of Theorem 6 in [10]. However, the
present encoding is more complicated due to the fact thajweries are tree-shaped and do not use wildcard.

An alternating Turing machine is a Turing maching = (Q,T', A, qo) whereT is the alphabet of the tape containing a
special blank symbdj, the transition relation\ is a subset of) x T' x T x {left, right, stay} x @, the initial statey is

7 CT f\
/\ s /’ \
- / \
Ca Ca Cc3 A CT S A CT S
/\ /\ ~

/ N\
\
CT
(a) A computation tree. (b) The structure of the corresponding encoding.

Figure 1: The structure of an encoding of a run.

from @, and the finite set of stat&€g is partitioned into a set of universal statgs, a set of existential stat€s, an accepting
state{q,}, and a rejecting statég,.}. A configuration of M is a triple (w,4,q) € T x N x @ wherei < |w|. When

q € Qv, we say that the configuration is universal (similarly foistantial, accepting, and rejecting). We define successor
configurations in the usual way. A computation tree for suofaahine on an input word € I'* consists of a tree labeled with
configurations such that (0) the root is labeled by the initifiguration (that is, the initial state dg, the reading head is at the
first position, and the tape contains the wardollowed by some blank symbol3 (1) every node labelled with an existential
configuration has exactly one child labeled with a succe@@very node labelled with a universal configuratidras a child
labelled with configuration’ for each successor configuratigrof ¢, and (3) all leaves are labelled with accepting or rejecting
configurations. A computation tree is accepting if and ohiyis finite and all leaves labelled with accepting configioas.

Let M be an alternating exponential space bounded Turing macWiitaout loss of generality, we can assume that given
any wordw of sizen the machine never uses more ti28n— 1 tape cells.

The encoding of a computation tree.
Let us now define the finite alphat®t= {s, CT,p,0,1,q0} UAUT.
We encode a computation tréeof the machine into a data tree labeledX®ws follows:

The structure of the tree is described in Figure 1. The trdews the structure of the computation tree where each cor-
responding node is labeled with To each of these nodes is attached both a node labeled CT tedta encoding the
corresponding configuration and the transition that yiédds (the dashed edges in the figure). We note that, althoegéral
subtrees in Figure 1 are labelled the different occurrences of can actually be differently structured subtrees since they
represent different configurations.

We now discuss how a configuration of the computation treemé®eed into a tree.. Let (w,i,q) be a configuration of
the computation tree obtained by applying the transifien A to the parent configuration. Recall that a configuration géva
has length2™. We start the encoding of this configuration with a binargtoé depthn in which each node is labelled by
Because most of the nodes of the encoding will be labeled refer to these nodes as the skeleton nodes. To each skeleton
node but the root, we attach a small tegdor the left children of a skeleton node andfor the right children of a skeleton
node as described in Figure 2. Lastly, we use the skeletvrdda encodéw, i, q) andd. To each skeleton leaf we attach one
node labeled by a letter frof U A U {qo}, such that taken from left to right the firshew leaves are labeled by the fiist
letters fromw; thei + 1** leaf corresponding to the position of the reading headhisl&d by the letted (or, if it is the initial
configuration, simply byj); the2™ — (i + 1) last leaves are labeled by the — (i 4 1) letters ofw.

To complete the description of the encodifigve need to describe the data values attached to each nodes vant to use
the data to identify the nodes in the whole tree, we ask eadh tmhave a different one.

The languageR and the union of queries, ke, and .

We now need to build a regular tree languageising the finite alphabet and a union of querieg such that a data tree

S
/\IO

s
/N
S 1
\

0

(a) The tree, attached to each left child in.

S
s/ \p

/N

S 0

\

1

(b) The tree; attached to each right child in.

Figure 2: The subtrees to distinguish left child from right child in ¢..

Jx a(x)/c1//b(x)

3z co/[c1/ca//a(x) = c5 =" c3/ca//b(x)]

a(z) Co
Jz Ctl / \
h “ dx Cl — C2 —* C3
a(x) b(x)
Figure 3: The queries composingp,okey (Wherea, b, co, . . ., co represent letters fromX)

satisfies the constraints given yand the negation ap iff it is an encoding of an accepting run of the machine.

The languagéR ensures the general structure of the tree, the labelingeohdides. It also ensures that the sequence of
transitions respects the machine’s rules in terms of ssame®f control states, initial, and final configurations.| these
constraints are regular properties of the trees so we cayderthem into a (polynomial-size) non deterministic tre@aaton.

The data value will allow us to identify the nodes in the whinée, we will construct the UC@ such that each node has a
different one.

The union of querie® = p,orey U@ IS Used to ensure the constraints on data valpgs.(,) and the correct evolution of
the content of the tape and the reading head position betemesecutive configurationg). For each query, we give also a
graphical representation that may be easier to parse foetuker.

First we show how to construgt,...,. This query expresses that there are at least two (diffenentes with the same data
value. (So, it expresses that the set of data values is nog.a kK&e queryp, ke, iS the union of the queries presented in
Figure 3. Notice that the number of these small queries ignohial in the size of the alphabgtand each of them is of
constant size (at most 8 nodes). By construction, a datdaibeded by> doesn’t satisfyp,,orey iff all its nodes have different
data values.

We now explain how to construgty. Intuitively o, describes all the behaviour that violates the proper elasiun
between two consecutive configurations, encoded in trgetn particular,o ., will look for errors in the evolution of the
content of the tape and the reading head position betweesecuotive configurations.

The key points to buildo o4 is to be able to check that (1) two nodes correspond to the fsahen two consecutive trees
t. (2) three nodes correspond to two consecutive leaves vathieet.. Using these two properties, we can build queries that
describes bad evolution of triple of consecutive leavesimwben two consecutive treég

Sinceynokey Matches all trees in which at least two nodes have the saraevdlie, we can focus fay,, on encodings in
which each node has a different data value. For this reagenyse data values as a node. IDhis part is rather technical
and, for readability sake, we give drawings of tree pattérstead of pure formula (which would be very hard to parsetier
reader).

In Figure 4 we describe some useful patterns. The conjunciigatternsd® . .(z,y,’,y’) is such that if it satisfied by

same

data valuesd,, d,, d,’, d,), the nodes correspondingd@ andd,, are either both left or right (skeleton) children at levéi

N A
SI\CT l\CT

NN

i+4 nodes
i+5 nodes

1 nodes
S —
S —
>

l l s(y')
(z) s(y)
\S \S
x l\ « l\

(') p () p

1
Figure 4: The conjunction of patternsé:,,... (x,y, z',y').

consecutive.. The first pattern ensures that the nodes correspondihgandd,, are skeleton nodes at levigh consecutive
t; the data valueg, andd; correspond to the respective parents ofitim@de of the subtree of Figure 2 attached tandd,.
The idea is that the tws-nodesd,, andd, are both left or both right children iff their correspondihgodes have a common
ancestor which has distance- 5 from d;, andi + 6 from d;,. This is ensured by the second pattern of the conjunction.

(1) We can now define the conjunction of pattefng,c (x1, y1, 1,4 - - - Tn, Yn,), y,,) SO that, if it is satisfied for some
data(dy,, dy,, dy, dy)i=1.., then thes-nodes corresponding ta,, and dy correspond to the same skeleton leaf of two
consecutive, trees.

o
osame(zlayhxlayl y Lny Yn,s nvyn : /\ oéame xl,yl,zz,yz)
1.

1=1..n

As 1z, and y, correspond to the nodes we want to characterize, we writesk@rt 0y, (2., yn, X) instead of
osame(zla Y1, :rllv yi ceey Ty Yny, ‘T;w y;)

(2) To understand more easily how to identify three congeeskeleton leaves in a tréglet us look at the case of a simple
binary treeT}, of depthn rooted inr and where left nodes are labeled wittand right ones with d&. The nodesi,, ny, n.
are consecutive leavesT if they are placed as in one of the cases presented in FiguteEeirepresents the depth level of
their common ancestor denoted Hyin the Figure. Notice that the nodecan be labeled eithéror 1 so altogether we have 4
different possible cases.

We now come back to our encoding. The pattefy),.; (=, y, z) described in Figure 6 is such that, if it is satisfied for some
data(d., dy, d), then the corresponding nodes are consecutive leaves dfeses. Moreover, the depth level of their common
ancestor ir. is ¢ and the nodes,, d, andd, are placed like in Figure 5(a). The small pattefigsand 7, are the direct
translation of the tree andt; from Figure 2. This pattern’, .., (z,v, 2) is obtained from Figure 5(a) by changing the
A — node into as-node and by plugging, into nodes) and changing this labélinto s and similarly forl nodes.

Using a similar construction, we can define patterf)s ., (=, y, 2) corresponding Figure 5(b).

(1) We now have all the tools to defigey,. As we explained before, this union of queries should enatigessible way
to violate the proper evolution in between two consecutigedt.. We do it looking at triple of consecutive leaves.

The forbidden evolution in two consecutive tregscan be summarized as pairs of triples of letters fiom A U {¢o}
representing forbidden evolution of triple of consecutaaves ot. trees. Assuméuabe, def) is forbidden, we defingapc de
as the union of the following queries for ale {1..n} andj € {1, 2}:

Emav Yby Zcy Tds Yes Zf X esame(maz Xd, X) A ﬂ-zonsj (-raa Yb, Zc) A onnsj (-rda Ye, Zf)

As(zq)/a N s(yp)/bAs(ze)/eNs(za)/d N s(ye)/eNs(zp)] f

r r
/ A \ / A \
NG N
0 0 1 0
| |] |] |
1 : : 0
! i i n-—1 | | | n—a1
: 1 0 1 0 :
i | | | | i
T TR
1(n,) 1(ny) 0(n.) 1(n.) 0(ny) 0(nz)
(a) One possible case. (b) The other possible case.

Figure 5: The nodesn,, n, etn, are consecutive irl}.

S

I\

S/Sp\

A /

\ AN

oA
JZAN

V)

P
}//

ps

l.
S

AQ IS
A A

Figure 6: The pattern 7%, (z,y, 2).

consl

~——

2
S 7(/1«—

3

>

The patternrg(Zo, . . ., Tk) The patternr,, (z;) fori € {0...k}

Figure 7: Patterns used in the proof of Lemma E.5.

The first part of the formula ensure that the nodgsy, 2., x4, ye, 25 represent the same triple of consecutive skeleton leaves
(in the shape correspondingvt@omj) in two consecutive treg.. The second part of the formula ensure thatdhie ¢, d, e, f
are attached to the leaves.

Notice that to cover all cases, we really need to consideuntiien of such queries for alland;.

The formulap A4 is defined as the union @f,. 4y for all forbidden pairs of triples of letteri@be, de f). The size ofppq is
polynomial in the size of the machinef and the lengtt of the wordw. By construction, a data tree satisfies the constraints
given byR and the negation ab,....y U @4 iff it is an encoding of an accepting run of the machine on thedw. O

Notice that, if the class of queries in Proposition E.4 wogdre allowed wildcard, we could have done a brief reduction
from the problem in Theorem 6 from [10] usiggokey. INdeed using wildcard, we can express this validity probie terms
of query containment. More precisely, in this case, we cawghat given a conjunctive queryfrom CQ(Child,Child+) [10]
and a regular languade one can build in polynomial time a conjunctive tree qu@rgo thatg is valid w.r.t. L iff ¢y C1, g:.

The following lemma explains a trick to reduce UCQ containirte CQ containment. Similar lemmas can be found in [31]
and [10]. We adapt it to our purposes.

LEMMA E.5. Let go,q1, - qr € CQ({,=-,~) be conjunctive queries without free variables adda NTA defining a
regular tree language over the finite alphab&tOne can compute in polynomial time two querjeandg” from CQ{}, =, ~)
and a NTAAY over the alphabet w {$, #, ©, #} such that:

G CqaU...Ug, WrtA iff ¢ Cq”wrt. A°

Notice that the proof below only requirdls The same lemma holds for less expressive classes of qassaming they
allows both| and}* navigation. In particular the lemma holds for the classe${8-) and CQl}, ~).

PROOFE Letqo,q1,-..,q € CQ({,~) be conjunctive queries without free variables atié NTA defining a regular tree
language over the finite alphal¥et

Without loss of generality, we can assume that for eattte queryg; is of the form3z; ;(z;). A query consisting in the
conjunction of several patterns can be rewritten into tisgidiction for every lettes in 3 of the query obtained by linking all
patterns below a-node using the relatiofr*.

Moreover, modulo renaming, we can assume that the setsiables used in the queries are all different.

We now explain how to build two queri@sandq” from CQ({}, ~) and a NTAAY over the alphabet v {$, #, O, #} such
that:

o CqaU...UgwrtA iff ¢ Cq”wrt. A
Figure 7 describes some patterns that we will need in thectedu Recall that the labef@ and$ are new and do not occur

in the alphabek. Intuitively the patternr¢ is the conjunction of the patterns to 7, under some special nod€sand§$.
Similarly, each patterm,, is obtained from the patterr; by adding the node® and$ at the root.

The queries/’ andq" are built from the patterns.; andr,, as shown in Figure 8. Again# and & are new labels. The
variables used in the copiesof; andr,, are the one used in figure 7.

The automatom"“ checks the following properties.

The queryy’ The queryg”

#
45 \
o, .

#
AN
j/ %@@y I/ N,
3 Zo, ... T, i/*\‘ T !/ .

Figure 8: Queriesq’ and ¢“ from the proof of Lemma E.5.

. There are exactl9k — 1 nodes with labe# and2k — 1 nodes with label?.
. There are exactly - 2(k — 1) + 1 nodes with labe$.

. The root has labe} and has exactly one child. This child has laiel

. Each#-labeled node, except one, has asdabeled child.

. Eachs-labeled node has exactly one child labeled

. EachQ-labeled node has onB+children. Moreover th&-labeled node that is child of theh #-labeled node, counted
from the root has exactly one child, labeldWe call this thedistinguished?-labeled node.

. Each$-labeled node has exactly one child.
. The tree rooted at the grandchild of the distinguistidldbeled node is accepted by

o Ul A~ WN P

0

It remains to prove that
W CqU...UgwrtA iff ¢ Cq¢”wrt. AY

(=) Assume thaty C ¢; V --- V i W.r.t. A. Consider a data treewhich satisfies the regular constraints givendly and

the queryy’. Let denote by a valuation of the variables = {z, ..., Zx} corresponding to a matching of the quefy Let
S1y.-+,8k,--.,82k—1 be thed-labeled nodes of, ordered by increasing distance from the root. Fer {1,...,2k — 1}, let
t; be thetreerooted in the¥-labeled child ofs;. For eacly € {1,...,2k — 1} — {k}, we note that sincg;, 0, v |= m¢(z), we
also have;,0,v |= g, (z;) foreveryi € {1,...,k}. Let's now look at the subtrelg and denote by, the subtree rooted in
the sole grandchild of the root of. Sincety, 0, v |= 7y, (Zo) we havel], 0 = go. Moreover by definition of4", the tree’} is
recognized by4. We conclude thatj, =¢: vV --- V ¢ i.e. there is € {1,...,k} and a valuation’ of the variables; such
thatt), ' = m;(Z;). This, in turn, means that,, 0, v’ |= pig, (Z;).

We can show construct a matchinggf in ¢. The patternsr,,,...,r, , match respectively im;_;t1,...,tx—1 USing
the valuatiorw, m,, matches irt;, using the valuation’, andn,, ., ..., 7, match respectively i1, ...t2x—; Using the

valuationuv. As the sets of variables; are disjunct and by construction gf, this matching is a witness ofi= ¢“.

(<) Assume, on the other hand, thgtZ ¢, Vv - - - V ¢ W.r.t. A. Letp be a tree which satisfies the regular constraints given
by A, the querygo but does not satisfies V ... V g,. Lett be a tree satisfyingd” and¢’, and defing;, andt), as above.

Replacet, by pin t. 'I_'he re_Sl_JItin_g tree, sti_II satisfiesA_andq’, _sincep is accepted byl andqy is satisfied irp. But since no
¢, fori € {1,...,k} is satisfied irp, there is no matching aof” in t,,. Thusq¢’ Z ¢“ w.r.t. AY. O

F. PROOFS FROM SECTION 8

Theorem 8.1 Containment of BCCQs with data comparisons, i.e., the pobCCQ (I}, =, _, ~), is undecidable.
This theorem is a corollary of the following result:

THEOREM F.1. Satisfiability oBCCQ({, =, _ ~) is undecidable.

PrRoOOF The proof follows that same lines as the proof of Theorem fLBL@] and is by reduction fronPost's Corre-
spondence ProblePCP), which is known to be undecidable. Arstanceof PCP over (finite) alphabet is a sequence

(w1, u1),- .., (wn,uy,) of pairs, whereuv;, u; are non-empty words ovéi, foralli € {1,...,n}. Aninstance has solution
if there exists amn € N andiy, ..., i, € {1,...,n} suchthatw;, ... w;, =u; ... u;,.
Given an instanc® = (wq,u1), ..., (wn, u,) of PCP over alphabét, we can construct a BCCQ that has a solution if

and only if R has a solution.

The present reduction can be done using either only theaest, |*, and— or using only the relationg, —, and—*. We
present the first version here.

Let R = (w1, u1),..., (wn,u,) be an instance of PCP over the alphabet {aq,...,ax}

Encoding of a solution first into a sequence of data and themdata trees.

Letiy,..., i, € {1,...,n} be a solution oR. We denote by the wordw;, ... w;,, = u;, ... u;

m "

We first explain how to encode a solution of a PCP instancedrgjgecial sequence of data values. This is built from several

(all different) data values. We first list and name these dalzes:

e the data valuesg; - - - d,, wheren is the number of different pairs of words in the instaiite

the data values,, 11 - - - d,,+x representing the letters from the alphabet

the dataC’; - - - C,,, wherem is given by number of pairs used to build the solution;

the dataP, - - - P,,| are used to index positions in the ward

o the datad, used as a separator in the encoding.

The corresponding encoding the solution is the sequépdér.dy.E,,.dy.E,.dy WhereEg, E,, and E, are defined as
follows.

o Fp:=dy- -dy.dys1 - doyr represents the instance R.

e The wordw;, ...w;, isrepresented by the following sequence of lerigth + 2. |w|:
E, = enc(w;,) ...enc(w;,,)

whereenc(w;,) is a sequence of lengthi- 2. |w;, | starting byd;;.C; and followed by the sequence obtained by replacing
each position ofv;; with the data representing its label followed by the datanfi, . .. P,,| representing the index of
this position in the wordv.

e Similarly, the wordu,, ... u;,, isrepresented as the sequence:
E, :=enc(ui,)...enc(u;,)
whereenc(u;,) is defined the same way asc(uy,).
We extend this encoding to data trees. A data tree is an emgodihe solution iff it has a single branch, the correspogdi
sequence of data is of the form described above, the rootl{edirst occurrence of dat) is labeleds, the second occurrence

of dy is labeled$ and the two last occurrences @ are labeled# and all other nodes are labeled by letters frbm=
L\{s,$,#]} (in particular, the path is labeled By™* $T*#T*#).

We now construct a quer® € BCCQ({, —,_ ~) without free variables such that a data tree satisfies theyqdf it is
an encoding of a solution of the PCP instaifte

The definition of the querg.
In the remainder of the proof, we will construct several $oitsnulas; and? is a conjunction of them.

In the subqueries below, we sometimes simply wiitenstead ofa(x) to improve readability. We do this if we put no
constraints o (i.e., no equality and no inequality). We do this similardy the symbols$, #, and the wildcard _. Similarly,
for the variables:, y, z and their indexed versions, we write) as a shorthand for(z) denoting a node with data value bound
to x. We also often omit square brackets in queries to improweataiity.

We first establish that PCP encodings are string-shapedhi§end we add

~ (=)

to @, which states that no node has more than one child. This isrtlyeplace in the proof where we use the relatien We
now say that there is a special labeéhat occurs exactly once in any tree that mataiese., we add the following conjunction

to Q:
s\ =(s/_//s)

To ensure that occurs at the root we add:

~(/s)
Using similar queries we can enforce the lab&b occur exactly once and the labglto occur exactly twice.

We now add the query

3o Ttk $(x0)/(w1)/ -+ [(@Xnk) /$//#(x0) /_ [/#(x0) A /\ Ti #)

i#5€{0,....n+k}

which fixes the occurrences Bf and+# together and the fact that the+ k nodes belows have pairwise different data values
which are also different from the data @f These datay - - - 2,41 corresponds to the datf - - - d,,, in the definition of the
encoding.

In the remainder of the proof, we say that the path is of thenfek$ P, # P># and usel., P; and P, to refer to the different
part of the path. Also, if a position in a tree is below the né@nd has a data valug with i € T := {1,...n} then we will
interpret it as a position that carries the labdf it has a data value; withi € {n + 1,...,n + k} the we will interpret it as
a position that carries the labe] € X. We refer to the data valuds, . .., x,1x} aslabel values All other data values will
be referred to ason-label values

We now need to ensure the proper structure of the pathed P, which must encode non-empty data strings as explained
in the the definition of the encoding. To this erd, and P, will be of even length; carry a label value on every odd poniti
and carry a non-label value on every even position. To this ee say:

n+k

\/ w1 wngn s/(@1)/ -/ (@ngn) 8/ ()

(the first position ofP; has a label value)

n+k

_\/ ey angr s/(@1)/ - [(@nar) [8//4] (23) [/ #

(the first position ofP, has a label value)

n+k

e, 21 wnak s/(21)] o /(@) 8/ S @) A N @ # @

i=1
(the second position dP, has a non-label value)

n+k

3z, 21 wuen s/(21)/ - /(@) S @)#N N\ @ # @

=1

(the second position df, has a non-label value)

Similarly, we express that the last positionsfgfand P, have non-label values. Furthermore, we add

n+k n+k
A\ = B (s/00) - fonn) 1@ S A Ny ;)

j=1
(if some positiory of P; has a label value then positién+ 2 has a label value)

n+k n+k
A - <ayx+ $/@0)/ - [on) 1))] @) 1A\ y#xj)

i=1 j=1
(if some positior? of P, has a non-label value then positibr- 2 has a non-label value)
Similarly, we add the two above conditions fBs.

So, all solutions td) are of the forms L$ P, # P> # in which P, and P, encode data strings. We now refine our notation for
the remainder of the proof. We define

e IV: the string over alphabéi U I obtained fromP; by considering the concatenatign. . . y,,, of all label values and
replacing eacly; byi € I'if y; € {z1,...,2,} andy; witha; € 2 if y; = z,1;.
e U: obtained fromP, analogously a8l is obtained fromp;.
e For a stringl” over alphabek U I, we denote by, the X-string obtained fronl” by deleting all letters fronT (and
analogously fo/|;).
So, in the new notation, we are looking for trees of the feilifi P, # P, # that satisfy, among other conditions, th; = U|;
andWy, = Uys.

Next in the proof, we want to express that
(LAB): the stringlW #U# should match the regular expression

. . + . .
(i1 i)+ (i) T (i) o (- 0s,)
where eachi; € I and the wordsv;, andu;, are the correct ones from the PCP instance.

+

i

The idea is that we do this by saying that the first positiomfi®, (resp.,) must be a label value € {1,...,n} and by
excluding patterns that are not allowed to occur.

Vo Feran s/@)/ /(@) 18] (2:)
i=1
(the first label value fron®P; is an index from{1,...,n})

\/ Jay--wn s/(wa)/ - /() []8]]4) (23) /] #

(the first label value fron®, is an index from{1, ..., n})
We now say that every indexrom {1, ...,n} in W must be followed byw;. More precisely, we forbid allw for
e w shorter thany; but not a prefix ofw;;
e w = w'# wherew' is a real prefix ofw;; and
e w=w;awitha ¢ {1,...,n,#}.
To this end, we define encodings of words= o - - - 0,,, Over alphabefl,... ,n} U{a1,...,ar} as pattern, that is,

T = (25,)/ /@) [/ - [/ (25,,)

where, for eacld = 1,...m, we have that

o if oy = # thenj, =0,
o ifop=i€{l,...,n}thenj, =, and

o if oy =apthenje,=n+p

Then we express the above conditionsRyras

n

AN Forzuen s/(@)/ [(@nrn) /8//J (wi)] Jmu] JI# 1%

i=1 w
wherew andmr,, are as mentioned above. We express the conditions (LABPfaimilarly.
We show how to put constraints on the “data”-part$pfand P, to ensure the following.
(ENC1): no non-label data value iR, # P, # appears more than twice,
(ENC2): the sequence of non-label values associatédljomatches the sequence of non-label values associatég,to

(ENC3): the sequence of non-label values associatédljtpmatches the sequence of non-label values associatég o
(ENC4): two positions fromiV andU associated to the same non-label values must have the shehediue.

This will enforce thatV|s, = U andW|; = U);.
We enforce (ENC1) by:

n+k
= Fwwywngk (s/_(@1)/ o/ (@ngw) /8] (@))] (@))/ () A\ (@ # 32))
=1
(There do not exist three different nodes with data valtieat does not occur in the, . . ., z,1%.)

(ENC2) We add ta) a query that enforce that the first symbol fréi; has the same associated non-label value as the first
symbol fromU);. Notice that these positions necessarily carry label &fligen 7.

A s//8)_)_(x)//#/_) () /] #
For an/ € N, let dist be the sub-pattern that matches a path of nodes of lgngth,
disty = _/---/_
with ¢ occurrences of _.

Foreach € {1,...,n}, letm; = |w;| andm] = |u,|, and define

/\ - 3zwr gk (/@) -/ (@ngk) /8 /)i) () [diStm, 1/ (1) //# /) (i)) () /diStm 41/ (y2) A y1 # y2)

The above query makes sure that if tdwpositions have the same data value the same holds forltiseiccessors. Altogether
this ensures the condition (ENC2).

(ENC4) We now want to express that, if two positiongin W have the same data value, then they have the same label:
A - Jwwyxngw s/(@1)/ -/ (@ngw) /8] (i) [(2) [/ () ()
i#j€{1,...,n+k}
(Itis not possible that two positions have the same nonkladee and their parents have different label values.)

These last three queries ensure that = U ;.

(ENC3) It remains to define the subqueries that ensure (ENE3), we make sure that the first letterdiy, andU|s; have
the same data value:

Y,y wngn s/(@1)/ - [(@ngn) [/ T W#] W)]]#

Next, we ensure that if positions andy;, taken from the first and the second half of the string, respEyg, have labels
from ¥ and the same data value, and their successors also hawe fiameb:, then the successors have the same data value.
Thus, for each ordered tuple, b, c) € 3, we define

= 3wy z gk (8/(@1)/) /(@) 8/ (a) /(@) () / (W) [/ # 1] () ()] (2) Ny # 2)

We must, however, also allow for the cases that some oEtiedes are followed by a node with a label frdmThus, for
every(a, b, ¢) from X and everyi, j from I, we get

= 3wy, w gk (/(@0)/ /@) /8// (wa) /(@) (@) [(@) [W) [/ 3] ()] (e) [(2) Ny # 2)

(Case ofu-labeled node followed by ai)

= Jzy,z a1 gk (8/(@1)/) [(@ngn) /8] (ma) /(@)) (@0) /W))] #]) (@) (@)] () [(2) Ny # 2)
(Case ofc-labeled node followed by ai)

=y zwwngn (8/(x0)/ o/ (@ngn) /8//(@a) /()] (i) [/ () [) [1##1) (@)) (@5)] S (@) [(2) Ny # 2)

(Case of both nodes followed by an index.)

This concludes the reductiond

Theorem 8.2 The containment problem for G@, ~) queries under schema is undecidable.

We first prove that under schema constralisQc (|}, ~) is undecidable. Using Lemma E.5, we can get the lower bound
for CQ- (I}, ~).

PrROPOSITION F.2. The containment problem f&fCQ({}, ~) queries under schema is undecidable.

We prove this result by adapting the proof of the undecidglidr satisfiability of data tree patterns formulas frometinem 7
in [16]. Also Notice that, for clarity reason, the pattermegented in the proof are using wildcard. We explain how taide
of them at the end of the proof.

PROOF We prove the undecidability by reducing the halting prabte two-counter machines (or Minsky machines) to our
problem. Given a machin#1, we define a regular langua@and a finite union of conjunctive queriessuch that any data
tree satisfying the constraints given Byand the negation af is the encoding of an accepting run of the machine.

The machineM has no accepting run iffy Cr ¢ wheregy is the trivial query which is always true.

In the following, we define precisely the encoding of acagptiuns into a data trees and explain how to build the language
‘R and the query.

A two-counter maching is a finite state machine equipped with two countegsfidr;) initially set to zero. A transition of
the machine non-deterministically increments one of thenters and changes its current state; decrements one ajuh&ecs
and changes its current state (with the restriction thavéhee of a counter cannot be negative); or checks whetheuaten
is zero and changes state depending on the result.

A run of the machine is a sequeng@; ¢, - - - §,,¢,, Where eacly; are configurations of the maching,are transitions and the
evolution of the current state and the counter values isistamt with the transitions along the run. A run is acceptfrig
starts from the initial state with both counters being zerd and up in an accepting state. Deciding whether a two-eount
machine has an accepting run is undecidable.

Let us define the finite alphabBt= {r, ¢, a, b, $} U {J]d represents a transition of the machjin&ithout loss of generality
we can assume that the informationdifior zero-test transitions includes the result of the teghst given suchy, we know
what is the next state of the machine and whether the cheadadter should be zero or strictly positive.

A data tree is an encoding of a rugdc; - - - d,,¢;, iS respect the following constraints:

The global structure of the tree is described in Figure 9fader the root labeled, the tree contains a branch where nodes
are labeled by the transitions, . . . , ¢,, ending with a leaf labelel. Each of these nodes (but the leaf) branches to a subtree
encoding the value of the counters in the corresponding@oaraiion. The root of this subtree is labelednd it is made of
two branches (see Figure 9(b)). If the counter first coundsnialuer,, one branch is a sequencerQf+ 1 nodes labeled
and ends with a findl-leaf. Similarly the other branch is a sequencewof 1 nodes labeled and ends with &-leaf wherer,
is the value of the second counter.

The data values will allow us to control the evolution of tloeioters between consecutive configurations. In order tado s
we need to guarantee a certain structure and continuityeofdlues in the tree. (1) We impose that within arlgranch (resp
b-branch), eacl-node (respb-node) has a different data value. (2) Given two consecutiseanches (resph — branches)
containing respectively, andm nodes withn < m, the sequence of data attached to the firstodes is the same in both
a-branches (resp. b-branche%).

2The only relevant values will be the one danodes and-nodes. In particular, we don’t impose any data-constdimt the other nodes.
Thus we have several possible encodings of one run but we #raiveach accepting run has at least one encoding

/N /\
a b
2 A L
SN a b
AN 2 s
/N $
$
(a) The structure of the tree (b) The structure ofc;.

Figure 9: The structure of an encoding of a run

We now need to build a regular tree langu&geising the finite alphabet and a union of querieg such that a data tree
satisfies the constraints given Byand the negation @ iff it is an encoding of an accepting run of the machine.

The languagéR ensures the general structure of the tree, the labelingeohdides. It also ensures that the sequence of
transitions respects the machine’s rules in terms of sstme®f control states, initial and final configurations. Aaihally,
we encode iR the behaviour of zero-test transitions (a counter is zdrné corresponding branch has exactly aneode
(resp.b-node)). All these constraints are regular properties @ttees so we can encode them into a regular tree automaton.

The union of queriep = ¢, Uy is used to ensure the constraints on data values and theevodution ofa-branch (resp
b-branch) between consecutive configurations (that is tbkigon of the counters along the corresponding run).

We show how to buildp, corresponding to the first counter. The formylacan be constructed similarly. Intuitively,
describes all the behaviour that violates the proper eirdf thea-branches.

The evolution of thei-branches is correct in a data tree that satisfies the reguatraintsR iff:

1. in any configuration tree, the data values in ¢Heranches are all different and if twonodes correspond to the same
position in two successive configuration trees, they shaesame data value;

2. andin between two consecutive configuration trees, tiggteof thea-branches change according to the current transition.

The first item can be enforced by negating the formefg.,, .. := ¢o U gfirst U geont Where each query is defined below.
Forbiddingg, ensures that in any configuration tree, the data values im-tiranches are all different and forbidding the query
qrirst U geont €NSUre the continuity of the sequences of data in betweendwsecutive configuration trees.

For each query, we give also a graphical representation thaay be easier to parse.

|
qo = 3z a(z)/_//a(x) canalso be represented as?v T
(z

Grirst =,y _/[fe/a(x).c/a(y)] A x#y canalsobeseenas Y

Qeont = 37,y,2 _/[_/e//a(x)/a(y),c//a(x)/a(z)] A y# z canalso be seen as Az, y, 2 I 13 withy # »
c a(x)
be)
a(z) a(z)
}
a(y)

The second item can be enforced by forbidding the uniopgofor all transitiond. Recall that the behaviour of zero-test
transitions has already been encoded into the regular ¢yl There are three cases : eithidncrements the first counter,
either it decrements the first counter or it lets it unchanged

First assume thakis a transition that increments the first counter. Forbigdire formulap$:= ¢5=° U ¢3=> defined below

ensures that in between two consecutive configurationsidiy the transition the first counter has been incremented by one.
Intuitively ¢; = is true if the first counter has been decremented or is unetthadg; > is true if the first counter has been

incremented at least twice.

_ T*
m5=0(x) := §/[/e//a(x)/$, ¢//a(x)//3] can also be seen as i a(lm
a(x) $
!
$
)
/\
|«
757 2(2) = 8/ [/ e//a(x) aa/[$, c//a(x)/5] can also be seen as a()

Similarly if ¢ is a transition that decrements the first counter. Forbigithe formulap¢ := ¢3=° U ¢;=> defined below

ensures that in between two consecutive configurationemlitdy the transitiod the first counter has been decremented by
one. Intuitivelyg?=" is true if the first counter has been incremented or is unabadagd;:=" is true if the first counter has

been decremented at least twice.
5= (x) = 8/[/e/fa(x)//$,c/fa(x)/$] and n§=*(x) :=06/[/c//a(x)/$,c//a(x)/a/a//$]
Finally if 4 is a transition that neither increments or decrements tiediiunter, forbidding the formulgg := ¢3="' U g5 ="
defined below ensures that in between two consecutive caafigns driven by the transitiahthe first counter hasn't changed.
Intuitively ¢5=" is true if the first counter has been incremented giid is true if the first counter has been decremented.

3= (2) = 6/[/c//a(x)/a/$,c/fa(x)/5] and m5='(z) :=0/[/c//a(x)/$,c/fa(x)/a/$]

The formulap,, is now defined ag%,,.,.: Us ©5.

The last thing to explain is how to transform this formuleoiat formula where patterns do not use the wildcard. As the
alphabet: of relevant labels in finite, this can be done by taking th@uorior each query that contains wildcard of all possible
gueries obtained by replacing the wildcards with some &fremX.

The formulay;, can be defined the same way as a finite union of queries.

By construction, a data tree satisfies the regular consérgiven byR and doesn’t satisfieg, U ; iff it is an encoding of
an accepting run of the two-counter maching]

Proposition 8.3 The problem CQ({, ~) is II5-hard.

PROOF We proceed by reduction froeH3C N F' and simply adapt the proof of Theorem 4.2.

Given as input a formule := Vp; ... Vp;3q1 ... 3gm N <;<,, (lin V12 V1i3), we construct querieg,, q;é € CQ(J,~) such
that: o

pistrue ifandonlyif gz C q,.

We use the same alphabet of labels and pattHip's as in the proof of Theorem 4.2. The querigs q;é are defined as
follows:

N, LX)

and
e ¢, =3y 3Ym (Nicicm Val(yi) A
Ai<jen 3232 (Clle;)/L(z)/ P(0)/Oc(0)
AN Cl(cj)/L(z)/P(2")/Oc(1) N2' #0
A Ni<i<m CU;)/L(21)/Q(ar)/Oc(yk)))

The reduction is a straightforward adaptation of the prddffteeorem 4.2. As before, any modElof the first query will be
considered to encode a valuation of fh&. This time, the valuation will be defined as followszif is interpreted by in T,
thenv(p;) = 0, otherwisev(p;) = 1. In this way, every possible valuation of thgs will be encoded by a different model of
the first query. O

