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ABSTRACT

We study static analysis, in particular the containment prob-
lem, for analogs of conjunctive queries over XML docu-
ments. The problem has been studied for queries based on
arbitrary patterns, not necessarily following the tree struc-
ture of documents. However, many applications force the
syntactic shape of queries to be tree-like, as they are basedon
proper tree patterns. This renders previous results, crucially
based on having non-tree-like features, inapplicable. Thus,
we investigate static analysis of queries based on proper
tree patterns. We go beyond simple navigational conjunc-
tive queries in two ways: we look at unions and Boolean
combinations of such queries as well and, crucially, all our
queries handle data stored in documents, i.e., we deal with
containment over data trees.

We start by giving a generalΠp
2 upper bound on the con-

tainment of conjunctive queries and Boolean combinations
for patterns that involve all types of navigation through doc-
uments. We then show matching hardness for conjunctive
queries with all navigation, or their Boolean combinations
with the simplest form of navigation. After that we look
at cases when containment can be witnessed by homomor-
phisms of analogs of tableaux. These include conjunctive
queries and their unions over child and next-sibling axes;
however, we show that not all cases of containment can be
witnessed by homomorphisms. We look at extending tree
patterns used in queries in three possible ways: with wild-
card, with schema information, and with data value compar-
isons. The first one is relatively harmless, the second one
tends to increase complexity by an exponential, and the last
one quickly leads to undecidability.
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H.2.3 [Database management]: Languages—Query Lan-
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Algorithms, Theory

1. INTRODUCTION

Static analysis of queries and specifications has been ac-
tively investigated in the context of XML, not only due to
its importance in tasks such as query optimization but also
due to a very different nature of the results brought to the
fore by the hierarchical structure of XML documents [1, 3,
7, 10, 13, 14, 16, 17, 18, 19, 28, 30, 33, 35]. Typical reason-
ing problems include consistency of queries or constraints
with respect to schema information, typechecking of trans-
formations, security of views, and crucially, query contain-
ment, with or without schema information. The latter is the
problem we deal with. Starting from the relational case, we
know that query containment is often the technical core of
many query optimization [15]. In recent years query con-
tainment found multiple applications not only in query an-
swering and optimization, but also in data integration, ex-
change, and provenance among others [22, 23, 27].

Already in the relational case, we know that, by and
large, containment is decidable for conjunctive queries and
relatives, and undecidable for expressive queries, such as
those coming from the full relational algebra. In the XML
case, static analysis of queries has been largely restricted to
queries in various fragments of XPath [35] and analogs of
conjunctive queries [10, 11, 21], primarily describing the
structure of documents. The latter classified the complex-
ity of query containment depending on the list of used axes,
providing a seemingly complete picture.

Nonetheless, the picture depicted by [10, 11, 21] is not
as complete as it seems. Firstly, this work basically took
relational conjunctive querieson top of XML documents,
and considered containment problems for them. Queries like
that in a way do not follow tree patterns. An example of such



a query is one saying that we have two nodess ands′, so that
s′ is a descendant ofs, and we have other nodess1, . . . , sn
so that eachsi is a descendant ofs and an ancestor ofs′. This
says that thesis appear in some order on the unique path
from s ands′. But note that the query itself is DAG-shaped
rather than tree-shaped (i.e., if we consider its tableau, it is
a DAG rather than a tree). Secondly, results in those papers
mainly concentrated on navigational features and much less
on the data that documents carry. For instance, containment
of queries with data values remained practically unexplored
(as these papers concentrated on satisfiability).

And yet many applications demand properXML conjunc-
tive querieswhich are tree-based and can return data. Such
queries are naturally induced byXML patternswhich ap-
pear in multiple applications including XML data exchange,
data integration, and query optimization [4, 5, 6, 8, 9, 24].
Such patterns are given by grammars or formation rules that
naturally induce a tree structure. As a simple example, we
can say that a labela is a pattern, and ifπ1, . . . , πn are pat-
terns, thena[π1, . . . , πn] is a pattern. It will be matched by
ana-labeled node that hasn (not necessarily distinct) chil-
dren matchingπ1, . . . , πn. Such patterns (and more com-
plex ones including other axes) form the basis for describing
XML schema mappings and incompleteness in XML docu-
ments. And yet they cannot generate the DAG-like “conflu-
ence” behavior explained earlier; because for any two nodes
appearing on a descendant path, it is always specified which
one appears first. But it is precisely this behavior that is be-
hind many of the complexity results applied to graph-based
pattern queries in XML.

So our question is: what are the costs of static analysis
problems for propertree-based pattern queries?

A key feature of the main applications of such patterns
is that they are not purely about thestructure of docu-
ments, but they also collectdata. For instance, a pattern
a(x)[b(x), c(y)] collects valuesx andy of data so that a doc-
ument has ana-node with valuex, that in turn has ab-child
with the same valuex and ac-child with valuey. Thus,
queries return sets of tuples, rather just a yes/no answer for
the existence of a purely structural match.

Furthermore, we do not look solely at analogs of conjunc-
tive queries. In the relational case, it is well known that con-
tainment of both conjunctive queries and their unions has
the same complexity, namely NP-complete [15, 34], and the
complexity of containment of arbitrary Boolean combina-
tions of conjunctive queries moves one level up in the poly-
nomial hierarchy toΠp

2-complete. So we deal with analogs
of such queries too, built from tree-based patterns.

Thus, our revised goal is to investigate the containment
problems for analogs of conjunctive queries and relatives
(unions, Boolean combinations) based on tree-based XML
patterns over both structural information and data that XML
documents carry.

Overview of the results. As an abstraction of XML docu-
ments with data values we use, as is common,data trees.
In those trees, each node carries both a label and a data

value. This is also sufficient to model XML documents
whose nodes may have multiple attributes, simply by cre-
ating an extra child of a node for each attribute name.

We start by defining tree patterns upon which our queries
are based. The simplest are patterns based on child navi-
gation. An example is the patterna(x)[b(x), c(y)] that we
explained before. Note that variables corresponding to data
values are free: we view this pattern asπ(x, y), returning all
pairs(x, y) such that a match occurs withx andy being the
data values witnessing it. We can add horizontal navigation
too, for instance we can have a patterna(x)[b(x) → c(y)],
stating that thec-witness is the sibling that follows theb-
witness. More generally, we can have transitive closure axes
too: for instancea(x)[c(x)]//[b(x) →∗ c(y)] says that the
a-node has ac-child with the same data value and two de-
scendants, with labelsb andc and data valuesx andy, so
that they are siblings and theb-node occurs earlier in the
sibling order. These types of patterns occur, for instance,
in integration and exchange tasks for defining XML schema
mappings [4, 6, 8] or in descriptions of XML with incom-
pleteness features [2, 9].

Based on such patterns, we define conjunctive queries
(CQs) by closing them under conjunction and existential
quantification, i.e., as queriesq(x̄) = ∃ȳ

∧

i πi(x̄, ȳ). We
look at unions of conjunctive queries, or UCQs, which are
of the form

⋃

i qi(x̄), where eachqi(x̄) is a CQ, and their
Boolean combinations, or BCCQs, obtained by applying op-
erationsq ∩ q′, q ∪ q′, andq − q′ to CQs.

We present a general upper bound showing that contain-
ment of BCCQs that use all the axes is inΠp

2. We show two
matching lower bounds: either for BCCQs with the simplest
navigation (only child relation), or CQs with all the axes.

In the relational case, CQ containment is tested by
tableaux homomorphisms. TheΠp

2-hardness for general
CQs precludes the possibility of such a test in general, but
we show that with restricted sets of axes it is still possible
(in fact we just have to exclude the horizontal→∗ relation).

We then look at adding features to patterns and queries.
First, we add wildcard and show that theΠp

2-upper bound
continues to hold. We also show that, for some classes of
queries, the complexity of containment can jump from NP-
complete toΠp

2-complete if wildcard is added to patterns.
Furthermore, we identify a ‘safe’ case of using wildcard,
namely everywhere except at roots of patterns, that preserves
homomorphism characterizations of containment.

The next addition we consider is containment under
schema information (abstracted as a tree automaton, which
capture many schema formalisms for XML). Here we show
that the upper bound increases to double-exponential, and
a matching lower bound can be shown for CQs with all
axes. Finally, we look at adding data-value comparisons to
queries, in particular the disequality (6=) comparisons. This
addition has a much more dramatic effect on the complexity
of containment: it becomes undecidable for BCCQs, and for
CQs when both comparisons and schemas are present (even
with severe restrictions on available navigation).



Comparison with non-tree pattern queries.As we already
mentioned, a number of results exist on CQs based on graph-
shaped, rather than tree-shaped patterns [10, 11, 21]. None
of those results extend to handle unions and differences of
queries (i.e., UCQs and BCCQs) and they handle data values
in a very limited way. Below we contrast them with our
results.

For CQs that may contain arbitrary graph patterns, theΠp
2

upper bound continues to hold, but hardness requires less:
for instance, purely navigational queries with non-tree pat-
terns are alreadyΠp

2-complete for vertical navigation [11]
(for tree patterns they stay in NP, as we show). Under
schema, containment of CQs jumps to doubly-exponential
too [10]. With 6= comparisons, even CQ containment be-
comes undecidable [10].

Those results cover only a part of the landscape that we
study here (i.e., CQs, concentrating mainly on pure navi-
gation), and, crucially, under different assumptions on the
shape of queries. Such assumptions make most existing
proofs inapplicable for us (as they often rely heavily on non-
tree features, such as the confluence, explained earlier, and
the bidirectionality of axes).

Organization. We give key definitions in Section 2. The
Πp

2 upper bound for BCCQs is shown in Section 3. In Sec-
tion 4 we prove two matching lower bounds. In Section 5
we investigate cases when containment can be witnessed by
the homomorphism of tableaux. Section 6 studies the effect
of adding wildcard to queries. In Section 7 we investigate
static analysis under schema constraints. Adding data-value
comparison is studied in Section 8. Concluding remarks are
given in Section 9. Due to space limitations, proofs are only
sketched.

2. TREES, PATTERNS, AND QUERIES

Unranked trees and data trees.We start with the standard
definitions of unranked finite trees which serve as an abstrac-
tion of XML documents when one deals with their structural
properties. A finite unranked tree domain is a non-empty,
prefix-closed finite subsetD of N∗ (words overN) such that
s · i ∈ D impliess ·j ∈ D for all j < i ands ∈ N

∗. We refer
to elements of finite unranked tree domains asnodes. We
assume a countably infinite setL of possible labels that can
be used to label tree nodes. An unranked tree is a structure
〈D, ↓,→, λ〉, where

• D is a finite unranked tree domain,
• ↓ is the child relation:s ↓ s · i for s · i ∈ D,
• → is the next-sibling relation:s · i → s · (i + 1) for
s · (i+ 1) ∈ D, and

• λ : D → L is the labeling function assigning a label to
each node.

We denote the reflexive-transitive closure of↓ by ↓∗

(descendant-or-self), and the reflexive-transitive closure of
→ by→∗ (following-sibling-or-self).

Data trees are a standard abstraction of XML documents
when one deals with both structural properties and data.
Suppose we have a domainD of data values, such as strings,
numbers, etc. Adata treeis a structuret = 〈D, ↓,→, λ, ρ〉,
where〈D, ↓,→, λ〉 is an unranked tree, andρ : D → D
assigns each node a data value. In XML documents, nodes
may have multiple attributes, but this is easily modeled with
data trees. For instance, to model a node with attributes
a1, . . . , an having valuesv1, . . . , vn, we pick special labels
ℓ1, . . . , ℓn, and createn extra children labeledℓ1, . . . , ℓn car-
rying valuesv1, . . . , vn.

Patterns.As already explained, the patterns that we use are
naturally tree-shaped. To explain how they are introduced,
let us consider the reducts of data trees to the child relation,
i.e., structures〈D, ↓, λ, ρ〉. Trees of this form can be defined
by recursion. That is, a node labeled witha ∈ L and carry-
ing a data valuev ∈ D is a data tree, and ift1, . . . , tn are
trees, we can form a new tree by making them children of a
node with labela and data valuev.

In patterns we use also variables; the intention for them is
to match data values in data trees. Thus, they are essentially
partial tree descriptions with variables appearing in place of
some data values. We assume a countable infinite setV of
variables, disjoint from the domain of valuesD. So the pre-
vious inductive definition gives rise to the definition of the
simplest patterns we consider here:

π := a(x)[π, . . . , π] (1)

with a ∈ L andx ∈ V ∪ D. Here the sequence in[. . .]
could be empty. In other words, ifπ1, . . . , πn is a sequence
of patterns (perhaps empty),a ∈ L andx ∈ V ∪ D, then
a(x)[π1, . . . , πn] is a pattern. If̄x is the list of all the vari-
ables used in a patternπ, we writeπ(x̄).

We denote patterns from this class byΠ(↓). The seman-
tics ofπ(x̄) is defined with respect to a data treet = 〈D, ↓,
→, λ, ρ〉, a nodes ∈ D, and a valuationν : x̄ → D as
follows: (t, s, ν) |= a(x)[π1(x̄1), . . . , πn(x̄n)] iff

• λ(s) = a (the label ofs is a);

• ρ(s) =

{

ν(x) if x is a variable
x if x is a data value;

• there exist not necessarily distinct childrens · i1, . . . ,
s · in of s so that(t, s · ij, ν) |= πj(x̄j) for eachj ≤ n
(recall thatn could be0, in which case this last item is
not needed).

We write(t, ν) |= π(x̄) if there is a nodes so that(t, s, ν) |=
π(x̄) (i.e., a pattern is matched somewhere in the tree). Also
if v̄ = ν(x̄), we writet |= π(v̄) instead of(t, ν) |= π(x̄).

A natural extension for these simple patterns is to include
both vertical and horizontal navigation. Again the intuition
comes from defining data trees as follows: a node labeled
with a ∈ L and carrying a data valuev ∈ D is a data tree,
and ift1, . . . , tn are trees, we can form a new tree by making
them children of a node with labela and data valuev, so that
their roots are connected in the ordert1 → t2 → . . . → tn.



This leads to the definition of patterns in the classΠ(↓,→):

π := a(x)[π → . . . → π] (2)

with a ∈ L andx ∈ V ∪ D. Again the sequence in[. . .]
could be empty. In other words, ifπ1, . . . , πn is a sequence
of patterns (perhaps empty),a ∈ L andx ∈ V ∪ D, then
a(x)[π1 → π2 → . . . → πn] is a pattern. The last clause
in the definition of the semantics ofΠ(↓) is modified as fol-
lows:

• there exists a childs·i of s so that(t, s·i, ν) |= π1(x̄j),
(t, s · (i+1), ν) |= π2(x̄2), . . ., (t, s · (i+n−1), ν) |=
πn(x̄n). In other words, it is consecutive children that
witness the satisfaction of subpatterns.

Patterns inΠ(↓) and Π(↓,→) completely specify the
structure of a tree (depending on the available axes) and, in
particular, only express local properties of trees. We there-
fore also consider their more expressive versions with tran-
sitive closure axes↓∗ (descendant) and→∗ (following sib-
ling). More precisely, following [4, 20], we define general
patterns by the rules:

π := a(x)[µ, . . . , µ]//[µ, . . . , µ]
µ := π ; . . . ; π

(3)

Herea, x andπ are as before, andµ stands for asequence,
i.e., a forest such that the roots of its trees are sequential
siblings in a tree, and each; is either→ or→∗.

The class of such patterns is denoted byΠ(⇓,⇒), with ⇓
we use both types of downward navigation (↓ and↓∗) and⇒
meaning that we use both types of horizontal navigation (→
and→∗). The semantics is extended as follows.

• (t, s, ν) |= π1 ; . . . ; πm if there is a sequence
s = s1, . . . , sm of nodes so that(t, si, ν) |= πi for
eachi ≤ m andsi → si+1 whenever theith ; is →,
andsi →∗ si+1 whenever theith; is→∗.

• (t, s, ν) |= a(x)[µ1, . . . , µn]//[µ
′
1, . . . , µ

′
k] if the satis-

faction ofa(x) in nodes is as before, and there exist
n not necessarily distinct childrens1, . . . , sn of s such
that (t, si, ν) |= µi for eachi ≤ n, and there exist
k not necessarily distinct descendantss′1, . . . , s

′
k of s

such that(t, s′i, ν) |= µ′
i for eachi ≤ k.

Notice that the semantics of patterns allows differentµi to
be mapped into the same nodes in a tree.

Finally, we consider a classΠ(⇓) of patterns which is a
restriction of the most general patterns to downward naviga-
tion only. These are defined by the grammar

π := a(x)[π, . . . , π]//[π, . . . , π] (4)

where each of the sequences of patterns can be empty. That
is, a patterna(x)[π1, . . . , πn]//[π

′
1, . . . , π

′
k] is witnessed in

an a-labeled node assigning its data value tox if it has
n children (not necessarily distinct) witnessingπ1, . . . , πn

andk descendants (again not necessarily distinct) witness-
ing π′

1, . . . , π
′
k.

Shorthands.We shall be using standard shorthand notations:
a(x)/π stands fora(x)[π], whilea(x)//π denotesa(x)//[π],
anda(x)/π//π′ stands fora(x)[π]//[π′].

Conjunctive queries, their unions, and Boolean combina-
tions. Pattern-based conjunctive XML queries are obtained
by closing patterns by conjunction and existential quantifi-
cation. Since we have different classes of patternsΠ(σ), for
σ being↓, or ↓,→, or ⇓, or ⇓,⇒, we have different classes
of conjunctive queries denoted by CQ(σ). More precisely,
CQ(σ) queries are of the form:

q(x̄) = ∃ȳ
n
∧

i=1

πi(z̄i) (5)

where eachπi is aΠ(σ) pattern, and each̄zi is contained in
x̄, ȳ. The semantics is standard:(t, ν) |= q(x̄) if there is an
extensionν′ of valuationν to variables̄y such that(t, ν′) |=
πi(z̄i) for everyi ≤ n.

As is standard, we also writet |= q(v̄) if (t, ν) |= q(x̄)
with ν(x̄) = v̄.

Of course conjunctive queries are closed under conjunc-
tion. Standard ways of enriching their power include consid-
ering unions of conjunctive queries (orUCQs, which, in the
relational case, capture the positive fragment of relational
algebra) and more generally, Boolean combinations of con-
junctive queries (orBCCQs, which, while possessing some
form of negation, still retain many nice properties that rela-
tional algebra as a whole loses).

Formally, a query fromUCQ(σ) is of the formq(x̄) =
q1(x̄) ∪ . . . ∪ qm(x̄), where eachqi(x̄) is a CQ(σ) query. It
returns the union of answers to theqi’s, i.e., (t, ν) |= q(x̄)
iff (t, ν) |= qi(x̄) for somei ≤ m.

Queries in the classBCCQ are obtained as follows: take
some queriesq1(x̄), . . . , qm(x̄) from CQ(σ) and consider a
Boolean combination of them, i.e., close them under opera-
tionsq ∩ q′, q ∪ q′, andq − q′. The semantics is extended
naturally, with those interpreted as intersection, union,and
set difference, respectively.

The answer to a queryq(x̄), from any of the above classes,
on a data treet is defined asq(t) = {ν(x̄) | (t, ν) |= q(x̄)}.
Note that our definitions of query classes ensure thatq(t) is
always finite.

Containment. The main problem we study here is the con-
tainment problem. Given two queriesq(x̄), q′(x̄′) with tu-
ples of free variables of the same length, we writeq ⊆ q′ iff
q(t) ⊆ q′(t) for every data treet. So the problem we look at
is the following.

PROBLEM: CQ⊆(σ)

INPUT: queriesq(x̄), q′(x̄′) in CQ(σ);
QUESTION: is q ⊆ q′?

If instead of queries in CQ(σ) we use queries inUCQ(σ),
we refer to the problemUCQ⊆(σ) and, if we use queries
fromBCCQ(σ), we refer to the problemBCCQ⊆(σ).



In therelationalcase, these problems are among the basic
problems of database theory. The complexity of CQ⊆ and
UCQ⊆ over relational databases is NP-complete [15, 34]
(under the representation of UCQs that we use here), and
the complexity ofBCCQ⊆ isΠp

2-complete [34].

3. AN UPPER BOUND

A priori, there is no upper bound that is immediate for the
containment problem. In fact, in the presence of negation
(even a limited form of it) combined with XML hierarchical
structure, some reasoning problems can become undecidable
(see, e.g., [17, 4]). In the relational case, we know that con-
tainment for BCCQs isΠp

2-complete, but this does not imply
the same bounds for XML pattern-based queries, especially
those that might use transitive closure axes→∗ and↓∗.

Nevertheless, we can show that for all such queries, the
containment problem remains not only decidable, but the up-
per bound on its complexity continues to match that for the
simplest relational queries. In fact we show the following.

THEOREM 3.1. The problemBCCQ⊆(⇓,⇒) is decid-
able inΠp

2.

In other words, for each of the classes of queries — CQ,
UCQ, BCCQ— and for each of the classes of patterns seen
so far, the containment problem is inΠp

2, as all of these prob-
lems are subsumed by the containment problem of BCCQs
with Π(⇓,⇒)-patterns.

Proof sketch. Checking whetherq1 ⊆ q2 is the same as
checkingq1−q2 = ∅, so it will suffice to give aΣp

2 algorithm
for checking if a BCCQq returns a nonempty result on some
data tree. We assume thatq is a Boolean combination of CQs
q1, . . . , qm. For the sketch we assume they are Boolean (free
variables do not change anything). To check satisfiability it
suffices to guess an assignmentχ : {1, . . . ,m} → {0, 1} so
that for

q′ =
∧

{qi | χ(i) = 1} andq′′ =
∨

{qj | χ(j) = 0}

we have a treet such thatq′(t) is true andq′′(t) is false.
Note thatq′ is a CQ, andq′′ is a UCQ. The idea of the proof
is to turn this into a certain answer problem in XML data ex-
change [8]. We let schemas of XML documents be arbitrary
and the mapping consist of a single rule _→ q′, forcing the
patterns ofq′ in every target tree. Then we check whether
the certain answer toq′′ is false: this happens iff there is a
tree satisfyingq′ and the negation ofq′′.

The latter requires two steps in the proof. One is a modifi-
cation of the proof of theCONP datacomplexity of certain
answers in [8]. The problem is that the latter proof produces
a witnessing tree whose size is exponential inq′′, which is
too large for our purposes. So we show how to encode the
exponential witness by a data structure whose size is poly-
nomial inq′, q′′ and which allows checking for satisfiability
of UCQs. The second step is making sure that all the guesses
are combined in the right order to yield aΣp

2 algorithm. 2

4. LOWER BOUNDS FOR CONTAIN-
MENT

Now that we know that all the containment problems are in
Πp

2, it is natural to ask when we have matching lower bounds.
Note that in all the variations of containment problems, we
have two parameters: the class of queries (going from the
simplest, CQs, to UCQs, and to BCCQs), and the set of axes
(again, starting with the simplest, just↓, and then going to
more complex↓,→, as well as⇓ and⇓,⇒).

What we show in this section is that each of the combi-
nation simplest/hardest leads toΠp

2-hardness. That is, the
containment problem with the simplest of axes, just↓, is
Πp

2-complete if we allow Boolean combinations of queries.
If we have just CQs, the containment becomesΠp

2-complete
when we have all the axes, i.e.↓, ↓∗,→, and→∗.

Note that the first result on the surface is rather similar to
Πp

2-completeness of containment of relational BCCQs [34].
Indeed, the standard representation of relations in XML only
needs the↓ axis, and shallow documents. However, the re-
sult does not follow from the results in [34], as we demand
containment over all XML documents, not only those that
properly represent relational databases of a given schema.
In particular, if we have two relational BCCQsq andq′, and
their natural XML codings asBCCQ(↓) queriesqXML and
q′XML , thenqXML ⊆ q′XML impliesq ⊆ q′ (as each relational
database can be coded as an XML tree), but under the same
codingq ⊆ q′ need not implyqXML ⊆ q′XML .

Even though we cannot use results on [34], we can modify
reductions to apply to all XML documents and obtain the
following.

THEOREM 4.1. The problem BCCQ⊆(↓) is Πp
2-

complete.

Next, we move to the other extreme case: CQs with all
the axes. Of course relational containment of CQs is NP-
complete, so to get hardness for a larger class, one has to use,
in an essential way, the hierarchical structure of XML. In
fact we provide a rather elaborate reduction showing that the
navigational abilities of all the axes are sufficient to increase
the complexity even of conjunctive query containment.

THEOREM 4.2. The problem CQ⊆(⇓,⇒) is Πp
2-

complete.

Proof sketch. The upper bound was shown in the pre-
vious section. To show hardness, we proceed by re-
duction from ∀∃3CNF. Given such a formulaϕ :=
∀p1 . . . ∀pl∃r1 . . . ∃rm

∧

i(ℓi1 ∨ ℓi2 ∨ ℓi3), where theℓijs
could be positive or negative literals, we associate with it
two Boolean queriesq, q′ ∈ CQ(⇓,⇒) such thatϕ is true if
and only ifq ⊆ q′.

We constructq andq′ so that for every possible valuation
v of thepis, two conditions hold. First, there exists a treetv
satisfyingq which encodesv. Second, such a treetv satisfies
q′ iff there is a valuationv+ extendingv to theris and for



whichϕ evaluates to true. The key idea behind the construc-
tion is encoding possible valuations for quantified variables,
and we explain it now. The encoding of the CNF formula
itself is standard.

In order to encode every possible valuation of thepis us-
ing one single queryq, we associate a variablexi to each
pi and then take full advantage of navigational features
to model assignments. Specifically, we use a tree pattern
V (2)/[Val(0) → Val(1),Val(x1), . . . ,Val(xl)]. Its root has
l+2 children, among which the ordering is specified for two
(Val(0) → Val(1)). The remainingl children carry thexis,
but note that their exact positions as children of theV (2)
node are not specified. This is illustrated below:

V (2)

Val(0) −→ Val(1) Val(x1) . . . Val(xl)

Now on every complete treet witnessing this pattern via
some homomorphismh, the image of everyxi will either be
on the left, or on the right of0, i.e., either

t |= V (2)[Val(h(xi)) →
∗ Val(0)],

or

t |= V (2)[Val(0) →∗ Val(h(xi))].

This allows us to associate a valuationv of thepis to any
tree satisfying this pattern by lettingv(pi) be false if the im-
age ofxi occurs on the left ofVal(0), and by lettingv(pi)
be true otherwise. The rest of the encoding consists of the
standard encoding of a CNF formula, and ensuring, forq′,
that the extended valuation makes that formula true. 2

Remark Note that letting one omit a complete specification
of the sibling ordering has the effect of encoding2n possible
valuations withn different nodes. This is similar to the effect
of using “confluence” features in [11]. In both cases, such
a concise encoding of exponentially many valuations led to
Πp

2 lower bounds.

5. CONTAINMENT VIA HOMOMOR-
PHISMS

A classical result of relational database theory says that
containment of relational CQs is NP-complete and contain-
ment is witnessed by the existence of ahomomorphismof
tableaux: ifTi is the tableau of a queryqi, for i = 1, 2, then
q1 ⊆ q2 iff there is a homomorphism fromT2 to T1 [15].
However, the results of the previous section indicate that
such a characterization of containment via homomorphisms
cannot be extended to all classes of CQs we consider here.
Indeed, testing for the existence of a homomorphism is a
classical NP-complete problem and we saw in Theorem 4.2
that containment of CQ(⇓,⇒) queries isΠp

2-complete.

So the question is: for what types of queries, if any, can
we characterize containments via homomorphisms of their

tableaux? And even before answering this question, we need
to ask: what are the tableaux of XML-based CQs?

Since tableaux for relational queries are essentially incom-
plete databases (more precisely, naïve tables with a distin-
guished row of variables), it is natural to define tableaux of
XML CQs as incomplete XML trees. Indeed, patterns form-
ing a query are essentially incompletely specified trees, so
we can view each query as an incomplete tree (more pre-
cisely, a forest). The theory of incompleteness of XML has
been developed [2, 9] and thus we can borrow a notion of an
incomplete tree.

Incomplete trees and homomorphism.An incomplete tree
is defined as a structuret = (N, V, ↓, ↓∗, →,→∗, λ, ρ),
where

• N andV are disjoint finite sets of the nodes oft and its
data values, respectively; we assume thatV ⊂ D ∪ V ,
i.e., values could be either data values or variables;

• all of ↓, ↓∗,→,→∗ are binary relations onN ;

• λ is a partial function fromN toL; and

• ρ is a function fromN to V .

Note that in an incomplete tree, the relations↓, ↓∗,→,→∗

may be interpreted arbitrarily. In particular, some incom-
plete trees cannot be extended to a complete tree. The issue
is discussed in details in [9]. The labeling function is par-
tial, reflecting the fact that labels of some nodes may not be
known. The data assigning functionρ is not partial since
some data values could be variables, just like in patterns.

Given two incomplete treest = 〈N, V, ↓, ↓∗,→,→∗, λ, ρ〉
and t′ = 〈N ′, V ′, ↓, ↓∗,→,→∗, λ′, ρ′〉, a homomorphism
from t to t′ is a maph : N ∪ V → N ′ ∪ V ′ such that:

• h(N) ⊆ N ′ andh(V ) ⊆ V ′;

• if wRw′ in t, with w,w′ ∈ N andR one of the rela-
tions↓, ↓∗,→,→∗, thenh(w)Rh(w′) in t′;

• if λ(w) is defined int, thenλ′(h(w)) = λ(w);

• h is the identity on elements ofD; and

• h(ρ(w)) = ρ′(h(w)) for all w ∈ N .

Note that each tree can be viewed as an incomplete tree
(with the natural interpretations of the binary relations)and
thus it makes sense to speak of a homomorphism from an
incomplete tree to a complete tree.

Our plan is now as follows. We show how to associate, to
a CQq, an incomplete treetq. If q is a Boolean query, then
t |= q iff there is a homomorphism fromtq into t. If q has
free variables̄x, thent |= q(v̄) iff there is a homomorphism
from tq(x̄) to t that sends̄x to v̄.

We then show that, for some classesσ of axes and queries
q, q′ ∈ CQ(σ), we haveq ⊆ q′ iff there is a homomorphism
from theσ-restriction oftq′ to theσ-restriction oftq.

Incomplete trees of CQs. We now define analogs of
tableaux of relational CQs; these will be incomplete trees.



We first define an incomplete treetπ for each patternπ. To
carry the inductive construction, we shall need to define both
treestπ andtµ for sequencesµ. Note that even though we
use the name ‘incomplete tree’, such a structure need not be
a tree (due to incompleteness); in facttµs will be forest-like.
Each incomplete treet of the formtπ or tµ will have a set
RT(t) of roots associated with it in such a way that RT(tπ) is
always a singleton. The inductive construction is as follows.

• If π = a(x), thentπ = 〈{s}, {x}, ↓, ↓∗,→,→∗, λ, ρ〉,
wheres is a single node, all the binary relations are
empty, λ(s) = a and ρ(s) = x. Furthermore,
RT(tπ) = {s}.

• Let π = a(x)[µ1, . . . , µn]//[µ
′
1, . . . , µ

′
k]. Suppose we

already havetµi
s andtµ′

j
s defined. LetNi andVi be

the sets of nodes and values intµi
s andN ′

j andV ′
j

be the sets of nodes and values intµ′
j
s. By renaming

nodes in those incomplete trees, we may assume that
all the setsNis andN ′

js are disjoint. Then

tπ = (N, V, ↓, ↓∗,→,→∗, λ, ρ)

whereN = {s} ∪
⋃

iNi ∪
⋃

j N
′
j , with s being a new

node, andV =
⋃

i Vi ∪
⋃

j V
′
j . The binary relations

are the unions of those relations in thetµi
s andtµ′

j
s.

In addition, we put:

– s ↓ s′ for eachs′ ∈ RT(µi), for i ≤ n; and

– s ↓∗ s′ for eachs′ ∈ RT(µ′
j), for j ≤ k.

The functionsλ andρ are the same as in thetµi
s and

tµ′
j
s; in additionλ(s) = a andρ(s) = x. Furthermore,

RT(tπ) = {s}.

• Let µ = π1 ; . . . ; πn. Let tπi
be an incomplete

tree〈Ni, Vi, ↓, ↓∗,→,→∗, λi, ρi〉. As before, assume
that by renaming nodes, all theNis are disjoint. Let
RT(tπi

) = {si}.

Then tµ = 〈N, V, ↓, ↓∗,→,→∗, λ, ρ〉, whereN =
⋃

i Ni andV =
⋃

i Vi; the binary relations are unions
of those in thetπi

s, and in addition we put:

– si → si+1 if µ containsπi → πi+1; and

– si →∗ si+1 if µ containsπi →∗ πi+1.

The functionsλ andρ coincide withλi andρi onNi.
Moreover, RT(µ) = {s1, . . . , sn}.

With a query

q(x̄) = ∃ȳ1 . . . ∃ȳnπ1(x̄, ȳ1) ∧ . . . ∧ πn(x̄, ȳn)

we associate an incomplete data tree

tq = (N, V, ↓, ↓∗,→,→∗, λ, ρ)

which is the node-disjoint union of all thetπi
s; that is, we re-

name nodes so that their sets are disjoint (but not the values),
and take the union of structurestπ1 , . . . , tπn

.

The incomplete treestq indeed play the role of tableaux of
CQs. Recall that in the relational case, we haveD |= q(v̄)

iff there is a homomorphism from the tableau ofq(x̄) to D
that sends̄x to v̄. The same is true here. The result is very
similar to one in [9], adapted to the definitions given here.

PROPOSITION 5.1. Lett be a data tree, andq(x̄) a query
from CQ(⇓,⇒). Thent |= q(v̄) iff there is a homomorphism
h : tq → t so thath(x̄) = v̄.

Containment and homomorphisms. We already men-
tioned that a classical result of relational database theory
states that relational CQ containmentq ⊆ q′ holds iff
the tableau ofq′ can be homomorphically mapped into the
tableau ofq. Furthermore, an analog of this cannot possi-
bly hold for queries in CQ(⇓,⇒) unless some complexity
classes collapse. Nonetheless, it will work for queries that
do not use all the axes.

Suppose we have a queryq from CQ(↓). Then its incom-
plete treetq records no information about↓∗,→, and→∗.
So for two such queriesq andq′, a homomorphism of the↓-
reducts oftq andtq′ (that only keep information about↓, λ,
andρ) is the same as a homomorphismtq andtq′ . Hence,
even for queries that use reduced sets of axes, e.g., CQ(↓)
or CQ(↓,→), we can still meaningfully talk about homo-
morphisms of their incomplete trees, in place of homomor-
phisms of reducts of incomplete trees.

We next show that without transitive closure axes, we have
an analog of relational containment.

THEOREM 5.2. Let q(x̄) andq′(x̄′) be two queries from
either CQ(↓), or CQ(↓,→). Thenq ⊆ q′ iff there is a homo-
morphismh : tq′ → tq so thath(x̄′) = x̄.

Since testing homomorphism existence is done in NP, and
NP-hardness bound for relational CQs trivially applies to
CQ(↓) queries, we obtain the following.

COROLLARY 5.3. The containment problems for CQ(↓)
and CQ(↓,→), i.e., CQ⊆(↓) and CQ⊆(↓,→), are NP-
complete.

In fact, we prove an even more general result, that shows
the applicability of the homomorphism technique to queries
in CQ(⇓,→), i.e., queries using all forms of vertical naviga-
tion, but only the next-sibling form of horizontal navigation.
Formally, they are CQs based on patterns fromΠ(⇓,→) de-
fined as

π := a(x)[µ, . . . , µ]//[µ, . . . , µ]
µ := π → . . . → π

(6)

That is, they extendΠ(↓,→) patterns by allowing descen-
dants, and prohibiting only→∗.

Given a queryq ∈ CQ(⇓,→), we define an incomplete
tree(tq)∗ by replacing the interpretation of↓∗ in tq by the
reflexive-transitive closure of the union of↓ and↓∗ in tq.
Then containment can be tested by the existence of homo-
morphisms between such extended tableaux. As an example,
consider queriesq ⊆ q′, whereq = ∃x a(x)//b(x)[c(x)] and
q′ = ∃x a(x)//c(x). While there is no homomorphism from



tq′ to tq, there is one from(tq′)∗ to (tq)
∗. Indeed, in both

structures there is a descendant axis going from thea-labeled
node to thec-labeled node.

THEOREM 5.4. Let q(x̄) andq′(x̄′) be two queries from
CQ(⇓,→). Thenq ⊆ q′ iff there is a homomorphismh :
(tq′ )

∗ → (tq)
∗ so thath(x̄′) = x̄.

Proof sketch. The right to left direction of the equivalence is
immediate. To show the other direction, we assumeq ⊆ q′

and we turn the foresttq into some “canonical” complete
treeT such that there is a natural one to one homomorphism
h1 : (tq)

∗ → T and such that for allw,w′ ∈ (tq)
∗, for all

R ∈ {→, ↓, ↓∗}, we havewRw′ iff h1(w)Rh1(w
′). To this

end, we create new nodes labeled with a fresh label♥ and a
fresh data value♯. One of these nodes becomes the common
parent of each of the roots of the tree patterns intq and thus
becomes the root ofT . We also define a recursive procedure
replacing descendant axisw1 ↓∗ w2 occurring intq by child
pathsw1 ↓ w3 ↓ w2, wherew3 is one of the new nodes la-
beled♥(♯). We proceed in a similar way with sequences of
siblings which are given as mere unions. We order them ar-
bitrarily using the next-sibling relation, but we always take
care of inserting one of the new♥(♯)-labeled nodes in be-
tween two siblings which were not previously related by a
→-arrow. We finally substitute fresh distinct constants for
every distinct variable, thus obtaining a complete tree. From
q ⊆ q′, we then infer that there exists another homomor-
phismh2 : tq′ → T . Relying on the special properties ofh1,
we finally construct the homomorphismh : (tq′ )

∗ → (tq)
∗

from h1 andh2 by lettingh(x) = h−1
1 (h2(x)). 2

As before, we immediately obtain the following.

COROLLARY 5.5. The problem CQ⊆(⇓,→) is NP-
complete.

As mentioned earlier, replacing→ by ⇒ and obtaining
an analog of Theorem 5.4 is impossible without an unlikely
collapse of complexity classes.

COROLLARY 5.6. Assume that there is a polynomial-
time algorithm that associates with each queryq ∈
CQ(⇓,⇒) an incomplete treet(q) so thatq ⊆ q′ iff there
is a homomorphismt(q′) → t(q). ThenNP =CONP.

Indeed, since containment of CQ(⇓,⇒) is Πp
2-hard and

testing homomorphism existence is NP-complete, the exis-
tence of such a containment test would implyΠp

2 ⊆ NP from
which NP =CONP follows easily.

Polynomial-time cases. Our characterization of contain-
ment via homomorphisms immediately shows how to ob-
tain polynomial-time cases of containment. Indeed, since
containment is now reduced to the existence of homomor-
phisms, it is effectively cast as a constraint satisfaction(or
conjunctive query evaluation) problem. Thus, we can use
multiple known results classifying tractable cases of those
and apply them to structures representing incomplete data
trees. As all of these are quite routine, we leave the com-
plete treatment to the full version (due to space limitations

here), and now give just a couple of examples. One is the
containmentq ⊆ q′ for any of the classes CQ(↓),CQ(↓,→),
and CQ(⇓,→) if the queryq′ is fixed. The other is contain-
ment for the classes CQ(↓) and CQ(↓,→) whenq′ mentions
each variable at most once (since in this case containment
can be reduced to the combined complexity of evaluating
conjunctive queries of fixed treewidth). More results will be
provided in the full version.

Extension to unions of CQs.A classical result in relational
theory says that for unions of relational conjunctive queries,
q = q1 ∪ . . .∪ qm andq′ = q′1 ∪ . . .∪ q′k, we haveq ⊆ q′ iff
for everyi ≤ m, there existsj ≤ k so thatqi ⊆ q′j [34]. We
call this theSY-criterion(for Sagiv/Yannakakis) for contain-
ment of UCQs. In particular, the SY-criterion implies that
the complexity of containment of relational UCQs remains
NP-complete (assuming, of course, that they are represented
in the above way, as unions of CQs; for other syntactic repre-
sentations, in which the union is not the outermost operation,
the complexity isΠp

2-complete [34]).

Note that we have defined XML queries inUCQ(σ) to be
syntactically of the formq1 ∪ . . . ∪ qm, where eachqi is a
CQ(σ)-query. It turns out that for the classes which permit
testing containment by means of homomorphisms between
incomplete treestq, a similar extension to unions continues
to be true.

PROPOSITION 5.7. Queries inUCQ(↓) andUCQ(↓,→)
satisfy the SY-criterion for containment.

This immediately gives us the following.

COROLLARY 5.8. The problems UCQ⊆(↓) and
UCQ⊆(↓,→) are NP-complete.

Indeed, for queriesq = q1 ∪ . . . ∪ qm and q′ = q′1 ∪
. . . ∪ q′k we simultaneously guess a mapf : {1, . . . ,m} →
{1, . . . , k}, andm mapshi from tq′

f(i)
to tqi for eachi ≤ m,

and check, in polynomial time, if thehis satisfy conditions
of Theorem 5.2.

6. THE EFFECT OF WILDCARD

A standard feature of most XML formalisms is the use
of wildcard, i.e., a special symbol in place of a label that
matches every label in a tree. We normally use _ for wild-
card. So patterns can be extended in the following way: in-
stead of a pattern that starts witha(x), we can have a pattern
that starts with _(x). It will be witnessed in a nodes of a
data treet even if we drop the requirement that labels match.
When we deal with classes of patternsΠ(σ) extended with
wildcard, we writeΠ(σ, _).

For instance, patterns inΠ(↓, _) are given by

π := a(x)[π, . . . , π], a ∈ L ∪ {_}, x ∈ V ∪ D. (7)

The semantics is extended, compared to (1), as follows.
For a data treet = 〈D, ↓,→, λ, ρ〉, a nodes ∈ D,



and a valuationν : x̄ → D, we have (t, s, ν) |=
a(x)[π1(x̄1), . . . , πn(x̄n)] iff

• λ(s) = a if a ∈ L;

• ρ(s) is ν(x) if x is a variable, andx if x is a constant
data value;

• there exist not necessarily distinct childrens · i1, . . . ,
s · in of s so that(t, s · ij, ν) |= πj(x̄j) for eachj ≤ n.

Likewise we define all other classes of patterns extended
with wildcard, e.g.,Π(↓,→, _) andΠ(⇓,⇒, _), and classes
of CQs, UCQs, and BCCQs based on them. For those
queries we define the containment problem: for instance,
BCCQ⊆(⇓,⇒, _) is the problem of checking containment
of BCCQs based on patterns fromΠ(⇓,⇒, _).

The question is then whether the use of wildcard increases
the cost of testing containment. The first instance of that
question is whether we can preserve theΠp

2 upper bound for
all containment cases. The answer to this is positive. In
fact, our proof of Theorem 3.1 already shows how to handle
wildcard.

PROPOSITION 6.1. The problemBCCQ⊆(⇓,⇒, _) is in
Πp

2.

Hence, all other containment problems are inΠp
2 in the

presence of wildcard.

What does change, however, is the lower bounds. Re-
call that we saw in Corollary 5.8 thatUCQ⊆(↓,→) is in
NP. The presence of wildcard makes the complexity jump:
adding wildcards toΠ(↓,→) patterns makes the complexity
of containment of UCQsΠp

2-hard, rather than being in NP.

THEOREM 6.2. The problemUCQ⊆(↓,→, _) is Πp
2-

complete.

Proof sketch. To show hardness, we adapt the lower bound
proof of Theorem 4.2 by constructing queriesqrigid , q

′
rigid in-

stead ofq, q′. Recall that the queryq was encoding all the
possible valuations of thepis using a special pattern over
Π(⇓,⇒). Additionally we used another pattern inq to en-
code the clauses inϕ. We did not describe this pattern in
the sketch of Theorem 4.2, but it is enough for the current
sketch to note that it can alternatively be represented as a
Π(↓,→)-patternπϕ. We defineqrigid by adding toπϕ two
new nodes as first and second child of its root. These new
nodes are respectively labeledVal(0) andVal(1). Letπ01

ϕ be
the resulting pattern. For every1 ≤ i ≤ l, we also create
a single node pattern labeledVal(xi) and we formqrigid by
existentially quantifying thexi’s and taking the conjunction
of thesel + 1 patterns. Now we defineq′rigid as a disjunc-
tion whose first member slightly adaptsq′, while its second
memberπ_ is the disjunction of allΠ(↓,→) patterns extend-
ing π with one single node labeled with wildcard and with
a fresh variable over data values. The key idea is now that
if a complete treet does not satisfyπ_ but satisfiesqrigid via
some homomorphismh, then for everyxi, eitherh(xi) = 0,

or h(xi) = 1, i.e., t encodes one particular valuation of the
pis. 2

Since wildcard can lead to an increase in complexity of the
containment problem, it is natural to ask then when we can
match the previously established complexity results in the
presence of wildcard. ForΠ(↓) andΠ(↓,→) patterns the
answer to this is surprisingly simple: we can allow wildcard
everywhere except at the root of the pattern. Recall that in
Section 5 we associated with each patternπ an incomplete
treetπ with a unique root. The requirement is basically that
the label of the root oftπ is a ∈ L; other nodes oftπ can be
labeled either bya ∈ L or by _.

For instance, the following rules define such patterns
based on child-only navigation:

π := a(x)[π′, . . . , π′] a ∈ L
π′ := a(x)[π′, . . . , π′] a ∈ L ∪ {_} (8)

That is, theπ′s define patterns that can use wildcard, andπ
is the top-level pattern, whose root label comes fromL.

When we have this restriction on patterns with wildcard,
we write Π(σ, _¬r), whereσ, as before, is a set of axes.
Likewise we define classes of queries – e.g., CQ(↓,→, _¬r)
– and containment problems – e.g., CQ⊆(↓,→, _¬r).

Obviously the addition of wildcard preserves lower
bounds. We have already seen that containment of BCCQs
with wildcard is inΠp

2, and hence all three versions of BCCQ
containment –BCCQ⊆(⇓,⇒), BCCQ⊆(⇓,⇒, _), and
BCCQ⊆(⇓,⇒, _¬r) – areΠp

2-complete.

Now we show that the NP bounds established via homo-
morphisms are also preserved when wildcard is used every-
where except the root.

PROPOSITION 6.3. The problems CQ⊆(↓, _¬r) and
CQ⊆(↓,→, _¬r) are NP-complete.

Proof sketch. We adapt the proof of the corresponding result
in Section 5. We now turntQ into a complete tree using
a slightly different procedure. We just add to it one new
root node labeled♥(♯) and we decide arbitrarily on a sibling
ordering when none is specified. We finally substitute fresh
distinct constants for every distinct variable, thus obtaining
a complete treeT . The remainder of the proof is almost as
before. Whenever the next sibling relation is available, we
only need to notice that the homomorphismh2 : tQ′ → T
cannot map any node intQ′ to the root ofT . As tree patterns
are rooted, this entails that nothing can be said intQ′ about
the relative sibling orderings of the preimages of the children
of the root ofT . 2

Note that such a procedure would not work when both
unions of siblings and next sibling are allowed. For
instance, letq = ∃x, y, z a(x)[a(y), b(z)] and q′ =
∃x, y, z a(x)[_(y) → _(z)] with a 6= b. Obviouslyq ⊆ q′,
asq forces the tree to have ana-labeled node with at least
two children. On the other hand, it is easy to see that there
is no homomorphism fromtq′ to tq.

Similarly, the method cannot be applied to queries in



CQ(⇓, _¬r). Considerq = ∃x, y a(x)//b(y) and q′ =
∃x, y, z a(x)/_(z)//b(y) ∧ ∃x, y, z a(x)//_(z)/b(y), with
a 6= b. Againq ⊆ q′, asq forces the tree to have ana-labeled
node which has at least one child and ab-labeled descendant
which has a parent. But here again, it is obvious that there is
no homomorphism fromtq′ to (tq)

∗.

Observe finally that by allowing wildcard to appear ev-
erywhere in patterns we also lose the homomorphism cri-
terion that let us establish the NP upper bound. For in-
stance, letq = ∃x, y

(

a(x) ∧ b(y)
)

, with a 6= b, and let
q′ = ∃x, y (_(x)/_(y)). Sinceq forces each tree to have at
least two nodes, we have the containmentq ⊆ q′; however
there is no homomorphism fromtq′ to tq.

As the last result of this section, we show that combining
unions of queries even with the restricted use of wildcard
can increase the complexity of containment.

PROPOSITION 6.4. Containment of UCQs that use
downward navigation and wildcard except at the root, i.e.,
the problemUCQ⊆(⇓, _¬r), isΠp

2-complete.

Proof sketch. We adapt the proof of Theorem 4.2 along
the same lines as in the proof of Theorem 6.2. We de-
fine queriesq⇓, q′⇓ as follows. We keep all the↓ paths pat-
terns which were actually used inq to encode the clauses
of ϕ, but we now encode the valuation of thepi’s using
a patternπ1/ . . . /πl where for each1 ≤ i ≤ l, πi =
Val(0)//Val(xi)//Val(1). We can now constructq′⇓ almost
as in the proof of Theorem 6.2, except that we replaceπ_

with a CQ∃x1 . . . ∃x2l+1Val(0)/_(x1)/ . . . /_(x2l+1). 2

7. THE EFFECT OF SCHEMAS

So far we have not assumed any schema information, such
as a DTD or a more general schema description, under which
we perform static analysis of queries. However, such as-
sumptions are fairly common, as many XML documents are
required to satisfy schema descriptions. Schemas are very
well known to affect static analysis of XML. In fact contain-
ment of queries can easily behave differently under schemas,
even such simple ones as specifying the label of the root of
a document. For instance, ifq = ∃x, y

(

a(x) ∧ b(y)
)

and
q′ = ∃x, y

(

c(x)/_(y)
)

, then in generalq 6⊆ q′, but if we
state that roots must be labeledc, thenq ⊆ q′.

In addition, the presence of schemas is known to affect the
complexity of static reasoning tasks, generally by increasing
it, sometimes even making it undecidable [7, 10, 17, 18, 21,
33, 35]. The main observation of this section is that under
schema information, we preserve decidability of query con-
tainment for those classes we have encountered so far, but at
the cost of an exponential blow-up.

Abstraction of XML schemas. There are many formalisms
for describing XML schemas (see, e.g., [29] for a survey),
but most of them are subsumed by the notion of an unranked
tree automaton. To define it, fix a finite alphabetΣ ⊂ L. A
non-deterministic unranked tree automaton (NTA)[32, 36]

overΣ-labeled trees is a tupleA = (Q,Σ, δ, F ), whereQ
is a finite set of states,F ⊆ Q is the set of final states, and
δ : Q × Σ → 2(Q

∗) is a transition function. We require
that theδ(q, a)’s be regular languages overQ for all q ∈ Q
anda ∈ Σ. When we deal with complexity results involving
automata, we assume that these regular languages are repre-
sented by NFAs (or by regular expressions, since those can
be converted into NFAs in polynomial time).

A run of A over a treet with domainD and labeling
functionλ is a functionrA : D → Q such that for each
node s with n children s · 0, . . . , s · (n − 1), the word
rA(s ·0) · · · rA(s ·(n−1)) is in the languageδ(rA(s), λ(s)).
So, for a leafs labeleda this means thats could be assigned
stateq iff the empty wordǫ is in δ(q, a). A run is accepting
on treet if the root of t is assigned an accepting state (for-
mally, rA(ǫ) ∈ F . A treet is accepted byA if there exists
an accepting run ofA on t. The set of all trees accepted by
A is denoted byL(A).

We then define the containment problem under schemas
as follows. LetQ be one of the classes CQ, UCQ, or BCCQ,
andσ a set of axes.

PROBLEM: Q⊆(σ) under schemas

INPUT: queriesq(x̄), q′(x̄′) in Q(σ) and NTAA;
QUESTION: is q(t) ⊆ q′(t) for everyt ∈ L(A)?

A general upper bound. We show that all the versions
of Q⊆(σ) remain decidable under schemas, but the upper
bound is one exponent higher than it was without schemas.

THEOREM 7.1. BCCQ⊆(⇓,⇒, _) under schemas is
2EXPTIME-complete.

Proof sketch. The idea is to prove that we can reduce
BCCQ⊆(⇓,⇒, _) under schemas to a similar problem over
finite alphabets and that we can encode a CQ(⇓,⇒,_) into
an exponential-size unranked tree automaton. The 2EXP-
TIME upper bound then follows from tree automata tech-
niques. The lower bound is immediate from Theorem 7.2.

Lower bounds. SinceBCCQ⊆(⇓,⇒, _) without the pres-
ence of schemas is inΠp

2 (and therefore in single-exponential
time), it is natural to ask to whether the jump to double-
exponential time is unavoidable. It turns out that it is, even
for conjunctive queries, as we can prove the following.

THEOREM 7.2. CQ⊆(⇓,⇒) under schemas is
2EXPTIME-complete.

Proof sketch. The upper bound is immediate from Theo-
rem 7.1. The lower bound is obtained in two steps. First we
show that we can transfer lower bounds forUCQ⊆(⇓,⇒)
under schemas to lower bounds for CQ⊆(⇓,⇒) under
schemas by adapting a technique from [31]. Then we prove
the lower bound forUCQ⊆(⇓,⇒) by a reduction from
the acceptance problem for alternating exponential space
bounded Turing machines. This is done by adapting the



proof of the 2EXPTIME lower bound for query containment
from Theorem 6 in [10]. Two difficulties arise as that proof
used queries with node equalities and wildcards. We handle
node equalities by using data value equality constraints in
our setting. We show how we can enforce all nodes from a
tree to have different data values and then we simulate node
equality by data equality. We further provide a modification
of the encoding that avoids the use of wildcard. 2

We do not yet have a complete classification of what hap-
pens for all of the classes of queries under schemas, but
we do have an indication very little is needed to make their
complexity considerably higher than in the schema-less sce-
nario. In fact one can use results from [12] to prove that even
for very simple classes of queries (child relation only; no
branching), containment under schemasprovably requires
exponential time.

8. THE EFFECT OF DATA VALUE COM-
PARISONS

The last feature we are going to consider is data value
comparisons, specifically disequalities6=. This is a standard
addition that has been considered in the study of relational
conjunctive queries. In fact it is one of the mildest ways of
adding a limited form of negation to positive queries in a way
that preserves their nice properties, such as the decidability
of static analysis. The other such extension, also considered
here, is allowing Boolean combinations of CQs.

The relational case of CQs with6= comparisons has been
settled in [25, 26, 37]: the containment problem isΠp

2-
complete. From this we can derive some hardness results,
for instance, containment of CQ(↓) with disequalities under
schema isΠp

2-hard (note that the schema assumption is nec-
essary here to ensure documents code relational databases,
as was already explained in Section 4). As for upper bounds,
for relational BCCQs, even with disequalities, containment
is decidable. In fact it is easily seen that such containment
reduces to the complement of satisfiability for the Bernays-
Schönfinkel class.

However, relational results do not give us anyupper
bounds on the containment problem for XML queries. We
show in this section that there is a reason for it: such prob-
lems are, by and large,undecidable. In fact we show two
undecidability results: for XML BCCQs with data compar-
isons, and even for CQs in the presence of schema informa-
tion.

Queries with data comparisons.We now formally define
classes of queries with= and 6= data comparisons. Suppose
we start with a classΠ(σ) of patterns. ThenCQs with data
comparisonsoverσ are defined as

q(x̄) = ∃ȳ
(

n
∧

i=1

πi(z̄i) ∧ α(x̄, ȳ)
)

, (9)

where all theπis are patterns fromΠ(σ) andα is a con-
junction of formulae of the formu = v andu 6= v, where

the variablesu and v come fromx̄ and ȳ. For instance,
q(x) = ∃y (a[b(x), c(y)] ∧ x 6= y) is such a query.

The class of such queries will be denoted by CQ(σ,∼)
(using the common XML literature notation of∼ for data
value comparisons). We then define the classUCQ(σ,∼) as
unions of queries in CQ(σ,∼), andBCCQ(σ,∼) as Boolean
combinations of such queries.

Before we present our results, notice that in (9), the for-
mula α allows explicit equalities. Normally in CQs these
can be avoided simply by collapsing two variables. How-
ever, in the case of pattern-based queries, we may actually
need explicit equalities, at least for UCQs. Consider, for ex-
ample, a Boolean queryq(x, y) = a(x) ∧ a(y). Then this
query implies the following UCQq′(x, y) = (x = y)∨ _/_.
Indeed, ifq(x, y) is witnessed by two data values that are
different, then they must occur in different nodes and hence
the _/_ pattern is true.

Containment without schemas.Without schemas, the con-
tainment problem for BCCQs behaves drastically differently
from the relation case, as we show below.

THEOREM 8.1. Containment of BCCQs with data com-
parisons, i.e., the problemBCCQ⊆(⇓,⇒, _,∼), is undecid-
able.

In fact one needs either↓, ↓∗,→ or ↓,→,→∗ to establish
undecidability.

Proof sketch. The proof shows that satisfiability for a
BCCQ is undecidable by reduction from Post’s Correspon-
dence Problem (PCP). The proof is rather technical. It may
be tempting to think that, sinceBCCQ(⇓,⇒, _,∼) can ex-
press certain key constraints, one can simulate the node
equality tests from [10] in our setting by data equalities, and
then we can adapt undecidability results from there as well.
However, under such a key constraint, it is not clear at all
how then the data equalities and inequalities from [10] can
be correctly simulated. The reduction from PCP consists of
a series of encoding steps that state that (1) all trees satisfy-
ing the BCCQ must be string-shaped and of a certain form;
and (2) that they somehow encode a PCP solution. The proof
can be done in two flavors: either we say that the tree does
not branch, in which case we need the negation of the→
predicate to express (1) as well as both↓ and ↓∗ for (2).
Alternatively, we say that the root has no grandchildren, in
which case we need↓ for (1) and→ and→∗ for (2). 2

Containment with schemas.As in the previous section, for
each containment problem of the formQ⊆(σ,∼), with Q
being CQ, or UCQ, or BCCQ, we can associate an analogous
containment problemunder schemaswhich, in addition, will
take as an input a schema, represented as an automaton.

The combination of data value comparisons and schemas
has an even more severe effect on the complexity of the con-
tainment problem: it becomes undecidable already for CQs
using only downward navigation.

THEOREM 8.2. The containment problem for CQ(⇓,∼)
queries under schema is undecidable.



Proof sketch. As in the proof of Theorem 7.2, we first
notice that we can transfer lower bounds forUCQ⊆(⇓,∼)
under schemas to lower bounds for CQ⊆(⇓,∼). After that
we prove undecidability forUCQ⊆(⇓,∼) by reduction from
the halting problem of two-counter machines. 2

We conclude with the following remark. We noticed ear-
lier that relational results give usΠp

2-hardness for contain-
ment of CQ(↓,∼) queries under schemas (to enforce rela-
tional encoding). While the precise complexity of the prob-
lem CQ⊆(↓,∼) remains open (see concluding remarks), we
can at least eliminate the need for schemas from the hardness
result, i.e., we can prove the following.

PROPOSITION 8.3. The problem CQ⊆(↓,∼) isΠp
2-hard.

9. CONCLUSION

We have analyzed the containment problem for three
classes of queries – CQs, UCQs, and BCCQs – based on
various classes of tree patterns (includingΠ(↓), Π(↓,→),
Π(⇓), andΠ(⇓,⇒)), also in the presence of extra features
such as wildcard, schemas, and disequality comparisons.

Overall, this gives us 96 cases of possible variations of the
containment problem, and our results, although not generat-
ing the full set of 96 complexity bounds, have provided an-
swers to the majority of them. Nonetheless, there are a few
questions left open, that we would like to address. These
concern the cases when we have some of the extra features
(wildcard, schemas, inequalities) present.

With wildcard, without any restrictions, we do not yet
have the precise complexity of containment for four classes:
CQ(↓, _),CQ(↓,→, _), CQ(⇓, _), and UCQ(↓, _). With
schemas, we do not yet know whether containment for
CQs and UCQs without transitive closure axes is single-
exponential or double-exponential. And with disequality
comparisons, we do not know if containment without transi-
tive closure axes is decidable. Based on our investigations,
all these problems appear to be rather nontrivial. We plan to
address them in the future.
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APPENDIX

A. THE PROOF FROM SECTION 3

In this section we add a single result, namely theΠp
2 upper bound for the containment of BCCQs that use all the axes. We

actually show a more general upper bound for queries that also use wildcard, i.e., we prove that the problemBCCQ⊆(⇓,⇒, _)
is in Πp

2.

We assume for now that a query is Boolean, i.e. does not have free variables. We do so for keeping the notation simple. The
proof with free variables is essentially the same, and we shall explain the minor changes that need to be made to incorporate
free variables at the end.

Note thatq ⊆ q′ holds iff q − q′ always return the empty set (i.e., is not satisfiable in the Boolean case). Sinceq − q′ is a
BCCQ if so areq andq′, all we need to do is to provide aΣp

2 algorithm for checking satisfiability ofBCCQ(⇓,⇒, _) queries.
Towards such an algorithm, assume that we are given a queryq which is a Boolean combination of queriesq1, . . . , qm. For it
to be satisfiable, we must have a functionχ : {1, . . . ,m} → {0, 1} and a treet so that:

1. t |= qi for eachi with χ(i) = 1, and
2. t |= ¬qj for eachj with χ(j) = 0, and
3. setting eachqi with χ(i) = 1 to true andqj with χ(j) = 0 to false makes the Boolean combination evaluate to true.

This functionχ will actually become a part of the existential guess in ourΣp
2 algorithm. Let

qχ =
∨

χ(j)=0

qj .

Then item 2 above can be restated ast |= ¬qχ, whereqχ is a UCQ. So our problem boils down to solving the following
problem that we call SAT(Q, q′):

• given a collectionQ of CQs, and a UCQq′, is there a treet that satisfies every query inQ and does not satisfyq′?

Upon a correct guess ofχ, we would just need to solve this problem forQ = {qi | χ(i) = 1} andq′ = qχ.

We now recast SAT(Q, q′) as the problem of computing certain answers in XML data exchange [8], to apply (or, rather,
adapt) upper bounds established there. For each queryq′′ ∈ Q, define a source-to-target constraintr → q′′, wherer is a label,
and letΣQ be the set of all such constraints. We assume that schemas in data exchange come with no restrictions whatsoever
(i.e., they may be given by fixed automata accepting all trees; the upper bounds of [8] apply in such a case). Recall that certain
answers in data exchange,certainΣ(t, q) (for a Boolean queryq) return true ifq is true in every target tree, for a given sourcet
and mappingΣ. This, in particular, tells us, that for a treetr consisting of a single node labeledr, we have:

• certainΣQ
(tr, q

′) returns false iff SAT(Q, q′) returns true.

So we reduced the problem to checking certain answers in XML data exchange. The problem was studied with respect to data
complexity, which per se is not of interest to us, as the source tree is fixed. However, by analyzing the proof in [8] one can
observe the following. If there is a target treet such thatq′(t) is false (i.e, ifcertainΣQ

(tr, q
′) returns false), then there is such

a target treet0 satisfying the following conditions:

• the size oft0 is polynomial intr andQ;

• the size oft0 is 2O(|q′|), where|q′| measures the size ofq′ (technically, for these two items, what we mean is that thereis
a concrete polynomialp and a concrete linear functionf so that the size oft0 is bounded byp(|tr| + |Q|) as well as by
2f(|q

′|); these functions are calculated in [8]);

• the only witnesses to the exponential size oft0 (in |q′|) are two types of paths:

– a vertical path between two fixed nodes such that the degree ofbranching for each internal node of the path is1 (i.e.,
there is no branching), and such that each of the dependenciesr → q′′ can be witnessed outside such a path (i.e., the
image of the homomorphism from the tree representation ofq′′ into t0 has empty intersection with such a path); and

– a horizontal path between two fixed nodes such that each internal node of the path is a leaf, and such that again each
of the dependenciesr → q′′ can be witnessed outside such a path (we remark that the proof, as given in [8], only talks
about vertical paths, but adding horizontal paths changes nothing at all, see, e.g., [9]).



In [8], where data complexity was considered, this was sufficient to prove that falsity of certain answers is in NP. Now we
need to deal with combined complexity, so we cannot guess a tree with exponentially long paths. But we can do two things.

First, we pick a labelℓ ∈ L that is not present in any of the queries, and relabel internal nodes of those exponential paths
by ℓ. Furthermore, we assign to them distinct data values that are not used elsewhere int0 and not used as constants in the
queries inQ and inq′ (in particular, no two such nodes would have the same data value). Let the resulting tree bet′0. It then
immediately follows thatt′0 still satisfies all theq′′s fromQ, and still does not satisfyq′, as the changes could not turn any
pattern fromQ into satisfiable one, and all theq′′s were witnessed outside of exponential paths.

Second, we taket′0, and turn it into a polynomial-size data structure calledcode(t′0) as follows. LetN be the set of special
nodes int′0, i.e., endpoints of the exponential-length paths. Thencode(t′0) contains all the information aboutt′0 except it does
not keep the exponential paths. However, for every two special nodesn, n′ it records the following: whethern′ is a descendant
or a following-sibling ofn such that there is no other special node on the unique path between (i.e., they are consecutive special
nodes, in the vertical or horizontal ordering), and in that case, the length of the path betweenn andn′, encoded in binary. Given
the bounds on the paths, we need at mostO(|q′|) bits to encode the lengths of such paths, so the entirecode(t′0) now becomes
polynomial inq′.

We next need to show that for each CQq0, we can usecode(t′0) to verify whethert′0 |= q0, and the complexity of this
checking is still in NP, even with exponentially more succinct representation. Normally one would check for the existence of
a homomorphism fromtq0 , the tableau ofq0, into t′0. Instead, we define asemi-homomorphismh : tq0 → code(t′0) just as a
homomorphism, except that each node oftq0 is mapped into either:

• a node ofcode(t′0), or

• a pair of special nodesn, n′ such thatn′ is either a descendant ofn or a following sibling ofn with no other special nodes
between them, and a numberk, represented in binary, with at mostO(|q0|) bits.

Such a maph naturally gives rise to a maph′ : tq0 → t′0: in the second case, the node is mapped byh′ into thekth successor
of n on the unique – vertical or horizontal – path fromn to n′. We then callh a semi-homomorphism iff the maph′ is a
usual homomorphism fromtq0 to t′0. A key observation is that for a maph : tq0 → code(t′0) one can check if it is a semi-
homomorphism in polynomial time. Indeed, the information on nodes and offsets is sufficient for checking all the relations
↓,→, ↓∗,→∗, and since data values on the exponential paths have been changed, we know that any data value on such a path
is different from any other data value in the document.

To sum up, for checking whethercertainΣQ
(tr, q

′) returns false, it suffices to find a counterexamplet′0 which can be encoded
by a polynomial-size data structurecode(t′0), and then for allqjs comprisingq′ check that there isno semi-homomorphism
from tqj into code(t′0). At the same time, we have to check that there is a semi-homomorphism fromtq′′ to code(t′0) for each
q′′ ∈ Q, to ensure thatt′0 is a solution.

Putting this together, we have aΣp
2 algorithm for BCCQ satisfiability:

1. In the existential step, we guess:

• a mapχ : {1, . . . ,m} → {0, 1};
• a data structureS of the formcode(t′0) of polynomial size;
• semi-homomorphismshi : tqi → S for χ(i) = 1.

2. In the universal step, we consider all

• semi-homomorphismsgj : tqj → S for χ(j) = 0.

3. Then, in polynomial time, we check:

• thatS is of the formcode(t′0) (that is, it is a tree structure, and an offset is associated with every pair of consecutive
special nodes in the horizontal or vertical ordering);

• that all thehis andgjs are semi-homomorphisms (which we know can be done in polynomial time).

This completes the description of the algorithm in the Boolean case. With free variables̄x = (x1, . . . , xn) in the query,
we take just a few small changes. We shall also need to guess a tuple v̄ satisfying a query. Its data values can in general be
arbitrary, so the only thing we guess is the equality patternwith respect to the constants used in the query (i.e., we guess which
free variables are assigned the same data values, and which ones are assigned constants used in queries). For instance, suppose
the queries mentioned constants1, . . . , k, and we have free variablesx, y, z, u. Then an example of an equality pattern that
we may guess is thatx = y while z andu is different, andz = 1, while other variables are assigned values not present in
queries. Then we shall assign valuesk + 1 to x andy, 1 to z, andk + 2 to u to satisfy the equality pattern. Note that the
values that are not constants present in queries can be arbitrary, but we can always choose them so that the size of the guess
is polynomial (in fact, linear). This guess will be added to the existential guessing stage in the algorithm. The constraints in



the data exchange setting will be changed tor[a(x1) → a(x2) → . . . → a(xn)] → q′′(x1, . . . , xn). That is, the input tree
has rootr andn children labeleda, holding values of the free variables. Finally, given the guess of equality patterns, and a
corresponding tuple of values̄v = (v1, . . . , vn), the input tree will ber[a(v1) → a(v2) → . . . → a(vn)]. The rest of the proof
then applies verbatim. This completes the proof of Theorem 3.1 and Proposition 6.1, since all the bounds we used apply in the
case of wildcard.

B. PROOFS FROM SECTION 4

Theorem 4.1. The problemBCCQ⊆(↓) isΠp
2-complete.

PROOF. We proceed by reduction from∀∃3CNF . An instance of this problem is given as follows by a fully quantified
Boolean formulaϕ in prenex conjunctive normal form:

ϕ := ∀p1 . . .∀pl∃pl+1 . . . ∃pm
∧

1≤i≤n

(li1 ∨ li2 ∨ li3),

where eachlij is a literal over thepi’s (i.e., an atom or a negation of atom). Given as input such a formulaϕ, the problem
of deciding whether there exists for each truth assignment of the p1, . . . , pl’s, a truth assignment of thepl+1, . . . , pm’s which
makes the Boolean formula

∧

1≤i≤n(li1 ∨ li2 ∨ li3) true, is known to beΠp
2-complete.

We follow the exact same strategy as in [34] and take full advantage of the fact that there are exactly three literals per clause
in our input formulas. As the argument is just a straightforward adaptation of the one in [34], we only sketch it. Given such a
formula

ϕ := ∀p1 . . .∀pl∃pl+1 . . . ∃pm
∧

1≤i≤n

(li1 ∨ li2 ∨ li3),

we use the alphabet{Cl, Lit} and construct queriesqBCCQ, q
′
BCCQ ∈ BCCQ(↓) such that:

ϕ is true if and only if qBCCQ ⊆ q′BCCQ.

We let:

qBCCQ =
∧

1≤i≤l

(Π0
i ∨ Π1

i )

q′BCCQ = ∃x1 . . . ∃xm Πϕ

We start by explaining how to constructΠϕ as a simple encoding of the quantifier-free part of the formulaϕ. To each propo-
sitional variablepi occurring inϕ we associate the variablexi. Now if the ith clause inϕ is over the variables{pj, pk, pl} we
code it (regardless of the fact that variables appear positively or negatively in it) using the following pattern:

Cl(ci)/Lit(xj)/Lit(xk)/Lit(xl)

We finally constructΠϕ as the conjunction of all then patterns obtained in this way.

We now explain how to construct the disjunctionΠ0
i ∨ Π1

i , for each1 ≤ i ≤ l. First observe that for any clause containing
three literals, there are seven valuations over the variables occurring in the clause which make the clause evaluates totrue and
only one which makes it evaluates to false. E.g., let(p1 ∨ ¬p2 ∨ p3) be theith clause ofϕ, the only valuation for which this
clause evaluates to false isp1 = 0, p2 = 1, p3 = 0. We want to represent all the valuations over the variables in the clause, but
this one (as we are interested inϕ being true). So if theith clause ofϕ is of the form(p1 ∨ ¬p2 ∨ p3), we encode it as the
following conjunction of seven patterns:

Cl(ci)/Lit(0)/Lit(0)/Lit(0)

∧

Cl(ci)/Lit(1)/Lit(1)/Lit(1)



∧

Cl(ci)/Lit(1)/Lit(1)/Lit(0)

∧

Cl(ci)/Lit(0)/Lit(0)/Lit(1)

∧

Cl(ci)/Lit(0)/Lit(1)/Lit(1)

∧

Cl(ci)/Lit(1)/Lit(0)/Lit(1)

∧

Cl(ci)/Lit(0)/Lit(0)/Lit(1)

We now defineΠall as the set, for every clause inϕ, of all the so-obtained patterns. Finally, for each1 ≤ i ≤ l, Π0
i andΠ1

i are
obtained from the two component partition ofΠall, where the first component contains the patterns representing the valuations
where the variablepi has been set to false, while the second component contains the patterns representing the valuations where
the variablepi has been set to true. We constructΠ0

i as the conjunction of all the patterns in the first component of the partition
andΠ1

i as the conjunction of all the patterns in its second component.

To illustrate the construction let

ϕ = ∀p1∃p2∃p3(p1 ∨ ¬p2 ∨ p3)

We obtain

qBCCQ =
(

Cl(c1)/Lit(0)/Lit(0)/Lit(0)
(

Cl(c1)/Lit(1)/Lit(0)/Lit(1)

∧ ∨ ∧

Cl(c1)/Lit(0)/Lit(0)/Lit(1) Cl(c1)/Lit(1)/Lit(1)/Lit(1)

∧ ∧

Cl(c1)/Lit(0)/Lit(1)/Lit(1) Cl(c1)/Lit(1)/Lit(1)/Lit(0)
)

∧

Cl(c1)/Lit(0)/Lit(0)/Lit(1)
)

q′BCCQ = ∃x1∃x2∃x3 Cl(c1)/Lit(x1)/Lit(x2)/Lit(x3)

Notice thatϕ is a true formula and that indeedqBCCQ ⊆ q′BCCQ.

We now show that for each∀∃3CNF -instance

ϕ := ∀p1 . . .∀pl∃pl+1 . . . ∃pm
∧

1≤i≤n

(li1 ∨ li2 ∨ li3),

ϕ is true if and only if qBCCQ ⊆ q′BCCQ.

For the first direction, we assumeϕ is true and show that
∧

1≤i≤l(Π
0
i ∨Π1

i ) ⊆ ∃x1 . . . ∃xm Πϕ. So letT be a data tree with
T |=

∧

1≤i≤l(Π
0
i ∨Π1

i ). It follows that there is at least one mappingσ : {1, . . . , l} → {0, 1} with



T |=
∧

1≤i≤l

Π
σ(i)
i

Pick one suchσ arbitrarily and consider the valuation of the variables{p1, . . . , pl} to Booleans given bypi = σ(i). As ϕ
is true,σ can be extended to a valuationσ+ : {1, . . . ,m} → {0, 1} such that the quantifier free part ofϕ is true when each
variablepi occurring in it is interpreted byσ(i). By construction of

∧

1≤i≤l(Π
0
i ∨ Π1

i ), this valuation is encoded by some of

the tree patterns in
∧

1≤i≤l Π
σ(i)
i and so there is a homomorphismh1 : tq′

BCCQ
→ t∧

1≤i≤l
Π

σ(i)
i

(asq′BCCQ was constructed

as an encoding ofϕ).1 As T |=
∧

1≤i≤l Π
σ(i)
i , there is also a homomorphismh2 : t∧

1≤i≤l Π
σ(i)
i

→ T . Homomorphisms being

preserved by composition,h1 ◦ h2 : tq′
BCCQ

→ T is also a homomorphism and soT |= q′BCCQ.

For the other direction, assumeqBCCQ ⊆ q′BCCQ and letσ : {p1, . . . , pl} → {0, 1} be some arbitrary assignment. We
want to show thatσ extends to someσ+ : {p1, . . . , pm} → {0, 1} which makes the quantifier free part ofϕ true. So let

T |=
∧

1≤i≤l Π
σ(i)
i , then alsoT |=

∧

1≤i≤l(Π
0
i ∨ Π1

i ) and asqBCCQ ⊆ q′BCCQ, alsoT |= ∃x1 . . . ∃xm Πϕ. The values of the
xi’s under whichΠϕ evaluates to true give the desiredσ+ (i.e., we can set eachσ+(pi) (with i ≥ l) to the value ofxi).

Theorem 4.2. The problem CQ⊆(⇓,⇒) isΠp
2-complete.

PROOF. We also proceed by reduction from∀∃3CNF . However, the idea behind the reduction is quite different from the
one used in the proof of Theorem 4.1. Let us note also that we mainly restrict to3CNF for notational convenience and that
the reduction would also apply to any∀∃CNF -formula (i.e., where there is no constraint on the number ofliterals in a clause).

We show that for each∀∃3CNF -instance

ϕ := ∀p1 . . . ∀pl∃q1 . . .∃qm
∧

1≤i≤n

(li1 ∨ li2 ∨ li3),

there exist queriesq, q′ ∈ CQ(⇓,⇒) such that:

ϕ is true if and only if q ⊆ q′.

We use the following alphabet of node labels:

{V al, V, Cl, Lit, Oc,Q, P}.

Now recall thatl is the number of universally quantified propositional variables,m the number of existentially quantified
propositional variables andn the number of clauses (or conjuncts) inϕ, we let

q = ∃x1 . . . xl(
∧

1≤i≤n,1≤j≤3

Πij ∧ ΠV al)

and

q′ = ∃y1 . . . ∃ym(
∧

1≤i≤m

V al(yi)

∧
∧

1≤j≤n

∃z1z2z3(Cl(cj)/L(z1)/P (z2)/Oc(0)

1For the definition of incomplete treetq of a queryq, see Section 5.



∧

V (2)/[V al(z2) →
∗ V al(0)]

∧

Cl(cj)/L(z1)/P (z3)/Oc(1)

∧

V (2)/[V al(1) →∗ V al(z3)]

∧
∧

1≤k≤m

Cl(cj)/L(z1)/Q(qk)/Oc(yk))

where theΠij ’s andΠV al are constructed as follows. For each literallij in ϕ (wherelij is thejth literal of theith clause),
we buildΠij as follows:

1. Whenever the variablepk occurring inlij is universally quantified inϕ, we buildΠij as the conjunction of the following
patterns:

• for every1 ≤ l ≤ m,

Cl(ci)/L(lij)/Q(ql)/Oc(0) andCl(ci)/L(lij)/Q(ql)/Oc(1);

• wheneverlij := pk,

Cl(ci)/L(lij)/P (0)/Oc(0) andCl(ci)/L(lij)/P (xk)/Oc(1);

• wheneverlij := ¬pk,

Cl(ci)/L(lij)/P (xk)/Oc(0) andCl(ci)/L(lij)/P (1)/Oc(1).

2. Whenever the variableqk occurring inlij is existentially quantified inϕ, we buildΠij as the conjunction of the following
patterns:

• Cl(ci)/L(lij)/P (0)/Oc(0) andCl(ci)/L(lij)/P (1)/Oc(1);
• wheneverlij := qk,

Cl(ci)/L(lij)/Q(qk)/Oc(1)

and for every1 ≤ l ≤ m such thatj 6= i,

Cl(ci)/L(lij)/Q(ql)/Oc(0) andCl(ci)/L(lij)/Q(ql)/Oc(1);

• wheneverlij := ¬qk,

Cl(ci)/L(lij)/Q(qk)/Oc(0)

and for every1 ≤ l ≤ m such thatj 6= i,

Cl(ci)/L(lij)/Q(ql)/Oc(0) andCl(ci)/L(lij)/Q(ql)/Oc(1).

We finally constructΠV al as the following pattern:

V (2)/[V al(0) → V al(1), V al(x1), . . . , V al(xl)]

This pattern can also be seen as follows: V (2)

V al(0) −→ V al(1) V al(x1) . . . V al(xl)

Observe that we slightly abused notations and that, strictly speaking, the queryq′ is not a conjunctive query as it contains
nested existential quantification. However, it is easy to see that by renaming variables,q′ can be put in prenex normal form



without increasing the size of the formula, i.e., it can be converted into another equivalent formula of the same size which is a
conjunctive query.

Let us now give an example of our encoding applied to some specific input formula. As we already pointed out, the reduction
actually also applies to any∀∃CNF -formula where clauses may contain some arbitrary number ofliterals. Our encoding being
quite heavy, for clarity we will only show here how to encode the very simple true∀∃CNF -formula∀p1∃q1(p1∨q1) containing
one single clause with two literals. In this particular case, we can write the queryq as follows:

∃x1 V (2)

V al(0) −→ V al(1) V al(x1)

∧ Cl(1)

L(1)

P (x1)

Oc(1)

∧ Cl(1)

L(1)

P (0)

Oc(0)

∧ Cl(1)

L(1)

Q(q1)

Oc(0)

∧ Cl(1)

L(1)

Q(q1)

Oc(1)

∧ Cl(1)

L(2)

P (0)

Oc(0)

∧ Cl(1)

L(2)

P (1)

Oc(1)

∧ Cl(1)

L(2)

Q(q1)

Oc(1)

In this simple case, one can easily verify that for every datatreeT , if T |= q, thenT |= q′. Indeed for any such treeT , there
is a homomorphismh : tq → T such that eitherT |= V (2)[V al(h(x1)) →∗ V al(0)], orT |= V (2)[V al(1) →∗ V al(h(x1))].
But in both cases,T |= q′.

We now show that given some∀∃3CNF -instance

ϕ := ∀p1 . . . ∀pl∃q1 . . . ∃qm
∧

1≤i≤n

(li1 ∨ li2 ∨ li3)

ϕ is true if and only if q ⊆ q′.

For the first direction assumeϕ is true. Now take some arbitrary data treeT such thatT |= q. So there is a homomorphism
h : tq → T andT can naturally be associated to a valuationv of the pi’s such thatv(pi) = 0 whenever there is inT a
V (h(xi))-labeled node which is a child of a V(2)-labeled node and a left sibling of aV al(0)-labeled node andv(pi) = 1
otherwise. Observe that in such a case, there is always aV (h(xi))-labeled node which is a child of a V(2)-labeled node and a
right sibling of aV al(1)-labeled node. Asϕ is true, the valuationv can be extended to a valuationv+ of all the propositional
variables inϕ such that the quantifier-free part ofϕ is true whenever thepi’s andqi’s are interpreted according tov+. We now
show thatT |= q′ by interpreting each existentially quantified variableyi in q′ by v+(qi). Firstly, notice that the value assigned
by v+ to eachqi is either0 or 1 and consequently for every1 ≤ i ≤ m, T |= V al(v+(qi)). Hence, the first big conjunction in
q′ holds for the values of theyi’s that we considered. Secondly, let us pick onej such that1 ≤ j ≤ n. Consider now thejth

clause ofϕ. By assumption there is a literal in this clause which is truefor the valuationv+. Assume it is thekth literal. We
will show thatT satisfies the remaining conjuncts ofq′ wherez1 is interpreted byljk and eachyi is interpreted inT by v+(qi).

There are two cases (we letljk stand for that literal):

1. the variablepr in ljk was universally quantified inϕ:

• T |=
∧

1≤k≤l(Cl(cj)/L(ljk)/Q(qk)/Oc(v+(qk))) by construction ofq and by the fact thath is a homomorphism,
whatever the value ofv+(qi) is (that is, either0 or 1),

• wheneverljk := pr, T |= Cl(cj)/L(ljk)/P (z2)/Oc(0) ∧ V (2)/[V al(z2) →∗ V al(0)] holds by construction ofq
and by the fact thath is a homomorphism, withz2 interpreted inT by 0. AlsoT |= Cl(cj)/lit(ljk)/P (z3)/Oc(1) ∧
V (2)/[V al(1) →∗ V al(z3)] because asv+(xr) = 1, this means that there is aV (h(xr))-labeled node which is a
child of a V(2)-labeled node and a right sibling of aV al(1)-labeled node, so we can takeh(xr) as a value forz3;

• wheneverljk := ¬pr, T |= Cl(cj)/L(ljk)/P (z3)/Oc(1) ∧ V (2)/[V al(1) ⇒ V al(z3)] holds by construction ofq
and by the fact thath is a homomorphism, withz3 interpreted inT by 1. Also T |= Cl(cj)/L(ljk)/P (z2)/Oc(0) ∧
V (2)/[V al(z2) →∗ V al(0)] because asv+(xr) = 0, this means that there is aV (h(xr))-labeled node which is a
child of a V(2)-labeled node and a left sibling of aV al(0)-labeled node, so we can takeh(xr) as a value forz2.

2. the variableqr in l was existentially quantified inϕ:

• T |= Cl(cj)/L(ljk)/P (z2)/Oc(0) ∧ V (2)/[V al(z2) →∗ V al(0)] ∧ Cl(cj)/L(ljk)/P (z2)/Oc(1) ∧
V (2)/[V al(1) →∗ V al(z3)] ∧ V (2)/[V al(1) →∗ V al(z3)] holds with 0 as a value forz2 and1 as a value for
z3, by construction ofQ and by the fact thath is a homomorphism;

• T |=
∧

1≤k≤l(Cl(cj)/L(ljk)/Q(qk)/Oc(v+(qk))) holds whatever are the values assigned to eachv+(qk), by con-
struction ofq and by the fact thath is a homomorphism. This holds for everyqi with i 6= r because for every suchi,
T |= Cl(cj)/L(ljk)/Q(qi)/Oc(0) ∧ Cl(cj)/L(ljk)/Q(qi)/Oc(1). Wheneverljk := qr, this holds in the case ofqr



because asv+(qr) = 1, we also assumed thatxr is evaluated by1. Finally wheneverljk := ¬qr, this holds because
asv+(qr) = 0, we also assumed thatxr is evaluated by0.

Now for the converse direction assume the following formulato be false

ϕ := ∀p1 . . . ∀pl∃q1 . . . ∃qm
∧

1≤i≤n

(li1 ∨ li2 ∨ li3)

I.e., the following formula is true:

¬ϕ := ∃p1 . . .∃pl∀q1 . . . ∀qm
∨

1≤i≤n

(¬li1 ∧ ¬li2 ∧ ¬li3)

then there is a valuationv of thepi’s such that for every extensionv+ of v to theqi’s,
∨

1≤i≤n(¬li1 ∧ ¬li2 ∧¬li3) evaluates to
true whenever thepi’s, qi’s are interpreted according tov+. Now letT |= q with h : tq → T an onto homomorphism, where
for everypi, h(xi) = 0 wheneverv(pi) = 0 andh(xi) = 1 otherwise. Let also assume thatT has only one singleV (2)-labeled
node which has only two children, the first one labeledV al(0) and its next sibling labeledV al(1). AssumeT |= q′. As 0 and
1 are the only two data valuesd such thatT |= V al(d), there is a mappingσ of the existentially quantified variablesy1, . . . , ym
to {0, 1} such that

T |=
∧

1≤j≤n

∃z1z2z3(Cl(cj)/L(z1)/P (z2)/Oc(0)

∧

V (2)/[V al(z2) →
∗ V al(0)]

∧

Cl(cj)/L(z1)/P (z3)/Oc(1)

∧

V (2)/[V al(1) →∗ V al(z3)]

∧
∧

1≤k≤l

Cl(dj)/L(z1)/Q(qk)/Oc(σ(yk)))

This means that for each data valuecj occurring inT , there exists somek such that the remaining of the formula holds onT
wheneverz1 is interpreted byljk (suchljk values being the only ones to which we can set this existentially quantified variable).
Now asσ is a mapping to Boolean values, there exists an extensionv+ of v such that for every1 ≤ i ≤ m, σ(yi) = v+(qi).
By assumption,

∨

1≤i≤n(¬li1 ∧¬li2 ∧¬li3) holds underv+, so there is some1 ≤ j ≤ n such that¬lj1 ∧¬lj2 ∧¬lj3 evaluates
to true underv+ and by construction ofT , it follows that for all1 ≤ k ≤ 3:

T 6|= ∃z2z3(Cl(cj)/L(ljk)/P (z2)/Oc(0)

∧

V (2)/[V al(z2) →
∗ V al(0)]

∧

Cl(cj)/L(ljk)/P (z3)/Oc(1)

∧

V (2)/[V al(1) →∗ V al(z3)]

∧
∧

1≤k≤l

Cl(dj)/L(ljk)/Q(qk)/Oc(σ(yk)))

But this is a contradiction, soT 6|= q′. As the size ofq andq′ is polynomial in the size ofϕ, this completes the proof of the
reduction.



C. PROOFS FROM SECTION 5

In this appendix we provide a proof of Theorem 5.4. Without loss of generality we proceed as in the proof of Theorem
3.1 and restrict to Boolean queries. The idea behind the proof of the NP upper bound is as follows. Given two queries
q, q′ ∈ CQ(⇓,→), we show thatq ⊆ q′ if and only if there is a homomorphismh : tq′ → (tq)

∗. To prove this, we first
construct out oftq some “canonical” complete treeT such that there is a natural one to one homomorphismh1 : (tq)

∗ → T .
Assumingq ⊆ q′, we then infer that there exists another homomorphismh2 : tq′ → T . We finally construct the homomorphism
h from h1 andh2 by lettingh(x) = h−1

1 (h2(x)).

DEFINITION C.1 (RIGIDIFICATION OF A CONJUNCTIVE QUERY). Let q ∈ CQ(⇓,→) and let♥ ∈ L be a label and
♯ ∈ D a data value which both have no occurrence inq. We defineqrig by induction as follows:

For q := ∃ȳ
∧n

i=1 πi(z̄i) we defineqrig := ∃ȳ ♥(♯)/[(π1(z̄1))
R → ♥(♯) → . . . → ♥(♯) → (πn(z̄n))

rig ];
For π(z̄) := (α(x)[µ1, . . . , µk]//[µ

′
1, . . . , µ

′
l])

rig, we defineπ(z̄)rig as

α(x)[(µ1)
rig → ♥(♯) → . . . → ♥(♯) → (µk)

rig → ♥(♯)[(µ′
1)

rig] → . . . → ♥(♯)[(µ′
l)
rig ]];

Finally for µ := π1 → . . . → πm we defineµrig := (π1)
rig → . . . → (πm)rig.

The following drawings may help the reader to understand thedefinition ofqrig.

∃ȳ π1 ∧ · · · ∧ πn ∃ȳ

♥(♯)

πrig
1

−→ ♥(♯) −→

πrig
2

−→ ♥(♯) −→ · · · −→ ♥(♯) −→

πrig
n

The queryq The queryqrig

α(x)

µ1 . . . µk µ′
1

∗
. . . µ′

k

∗

α(x)

µrig
1 →♥(♯)→ · · · →♥(♯)→ µrig

k →♥(♯)

µ′rig
1

→ · · · →♥(♯)

µ′rig
l

A patternπ(z̄) The treeπ(z̄)R

π1 −→ · · · −→ πn

πrig
1

−→ · · · −→ πrig
n

An ordered forest of patternsµ(z̄) The treeµ(z̄)rig

DEFINITION C.2. Let q ∈ CQ(⇓,→). There is a “natural” homomorphismhrig : tq → (tq)
rig that can be defined as

follows. First constructqN out ofq by replacing every distinct occurrence of everyL ∈ L by a fresh labelLn, wheren ∈ N.
There is only one homomorphismhrig : tqN → tqrig

N

and it maps each node intqN to the only node intqR
N

which carries the

same label. Now if we remove indexes on labeling symbols, themappinghrig : tq → tqrig remains a homomorphism.



DEFINITION C.3. Let t be an incomplete tree. We definet∗ inductively out oft by adding in↓∗ every pair of nodes which is
in the reflexive transitive closure of↓ ∪ ↓∗ in t.

PROPOSITION C.4. Let q ∈ CQ(⇓,→) and letT be a data tree obtained fromtqrig by uniformly substituting fresh distinct
constants for distinct nulls using a mappingf . Thenf ◦ hrig : (tq)

∗ → T is a one-to-one homomorphism and for all
w,w′ ∈ (tq)

∗, for all R ∈ {↓, ↓∗,→}, wRw′ if and only iff ◦ hrig(w)Rf ◦ hrig(w′).

The incomplete tree(tq)∗

π1

π2

πn

The incomplete tree(tq′)∗

γ1

γ2

γ3

γk

γ5

T

The tree T

h

h2
h1

THEOREM C.5. The problem CQ⊆(⇓,→) is in NP.

PROOF. Let q, q′ ∈ CQ(⇓,→), we show that the following are equivalent:

1. there is a homomorphismh : (tq′)
∗ → (tq)

∗;

2. q ⊆ q′, i.e., for every data treeT , if there is a homomorphismh1 : tq → T , then there is a homomorphismh2 : tq′ → T .

As 1. can be tested in NP, the result follows.

1 → 2 Assume a homomorphismh : (tq′)
∗ → (tq)

∗. Now letT |= q, so there exists a homomorphismh1 : (tq)
∗ → T . We want

to showT |= q′, so we need to find a homomorphismh2 : tq′ → T . Homomorphisms being preserved by composition,
by transitivity we can simply puth2(x) = h1(h(x)).

2 → 1 Let q, q′ ∈ CQXML (↓,⇓,→) and assumeq ⊆ q′, i.e., for every data treeT , T |= q impliesT |= q′. We assume without
loss of generality that the label♥ and the data value♯ do not occur neither inq nor inq′ and we first construct(tqrig )∗ out
of q. By uniformly substituting nulls with fresh distinct arbitrary data values fromC using some suitable mappingf , we
now obtain a structure which is isomorphic to some data treeT such that, by Proposition C.4,T |= q and there exists an
injective homomorphismh1 : (tq)

∗ → T , whereh1 = f ◦ hrig. Now by 2., there exists a homomorphismh2 : tq′ → T
and it follows from the definition of(tq′)∗ thath2 : (tq′)

∗ → T is also a homomorphism. LetD be the domain ofT . As
Im(h1) = {n ∈ D | λ(n) 6= ♥} ∪ {c ∈ C | n ∈ D,λ(n) 6= ♥, ρ(n) = c} and♥ and♯ occur nowhere inq′, it follows
thatIm(h2) ⊆ Im(h1). The homomorphismh1 being one-to-one, we can now construct a mappingh : (tq′)

∗ → (tq)
∗,

whereh(x) is the unique element inh−1
1 (h2(x)) (such a set is indeed always a singleton that we identify herewith its

unique element). Now we claim thath is a homomorphism, as it satisfies the following properties:

(a) If wRw′ in (tq′)
∗, thenh(w)Rh(w′) in (tq)

∗, whenR is one of↓,→,⇓.
Let wRw′ in (tq′ )

∗ for someR ∈ {↓, ↓∗,→}. As h2 is a homomorphism, it follows thath2(w)Rh2(w
′) ∈ T . As

♥ does not occur in(tq′ )∗, we know thatλ(h2(w)) 6= ♥ andλ(h2(w
′)) 6= ♥. But this implies that bothh2(w) and

h2(w
′) have a pre-image byh1 in (tq)

∗ and by Proposition C.4 alsoh−1
1 (h2(w))Rh−1

1 (h2(w
′)) ∈ (tq)

∗.
(b) If λ(w) = L in (tq′ )

∗, thenλ(h(w)) = L in (tq)
∗.

As h2 is a homomorphism,λ(h2(w)) = L in T and ash1 is a homomorphism,λ(h−1(h2(w))) = L.
(c) h(c) = c for all c ∈ D.

Let c be a constant occurring inq′. As h2 is a homomorphism,h2(c) = c. By construction ofT , constants occurring
in T but not inq are fresh, i.e., they occur neither inq nor in q′. Soc occurs also inq. As h1 is a homomorphism, it
follows thath−1

1 (h2(c)) = c.



(d) h(ρ(w)) = ρ(h(w)) for eachw ∈ tq′ .
As h1 is a onto homomorphism mapping distinct nulls to distinct fresh constants, for allw ∈ Im(h1), h

−1
1 (ρ(w)) =

ρ(h−1
1 (w)). As Im(h2) ⊆ Im(h1), it follows thath−1

1 (ρ(h2(w))) = ρ(h−1
1 (h2(w))).

D. PROOFS FROM SECTION 6

In the following, we refer for patterns inΠ(↓,→) as “rigid patterns”.

PROPOSITION D.1. Let π be a rigid pattern, we defineπ_ recursively as the disjunction of all rigid patterns extending π
with one single node labeled with wildcard and with a fresh variable over data values. The size ofπ_ is polynomial in the size
of π.

PROOF. Letn be the number of nodes (or sub-patterns) inπ. There are no more than2n+1ways of adding one single node
to a rigid pattern. The operation can indeed only be performed as follows:

• the new node becomes the parent of the root ofπ, i.e., out ofπ we form _(x)/π;

• the new node becomes a child of a node inπ, if π has no children, then it becomes its only child, otherwise itcan only
become either its first child or its last child, i.e., for a sub-patterna(y)[π1 → . . . → πn] in π, we can form either only
a(y)/_(x) if the sequence of theπi’s is empty, ora(y)[_(x) → π1 → . . . → πn] anda(y)[π1 → . . . → πn → _(x)]
otherwise.

EXAMPLE D.2. Consider the rigid patternl(a)/l(b). We can construct(l(a)/l(b))_ as the following union of patterns:

_(x)/l(a)/l(b) ∪ l(a)/[l(b) → _(x)] ∪ l(a)/[_(x) → l(b)] ∪ l(a)/l(b)/_(x)

THEOREM D.3. The problemUCQ⊆(↓,→, _) isΠp
2-hard.

PROOF. We proceed by reduction from∀∃3CNF . We only need to adapt the proof of Theorem 4.2. Given as inputa
formula

ϕ := ∀p1 . . . ∀pl∃q1 . . .∃qm
∧

1≤i≤n

(li1 ∨ li2 ∨ li3),

we construct queriesqrigid, q′rigid ∈ UCQ(↓,→, _) such that:

ϕ is true if and only if qrigid ⊆ q′rigid.

We constructqrigid, q′rigid using the same alphabet of node labels as in the proof of Theorem 4.2 as follows:

qrigid = ∃x1 . . . ∃xl(
∧

1≤i≤l

V al(xi) ∧ Π)

q′rigid = ∃x∃x1 . . . ∃xl(Π)
_

∨

∃y1 . . . ∃ym(
∧

1≤i≤m

V al(yi)



∧
∧

1≤j≤n

∃z(Cl(cj)/L(z)/P (0)/Oc(0)

∧

Cl(cj)/L(z)/P (1)/Oc(1)

∧
∧

1≤k≤m

Cl(dj)/L(z1)/Q(qk)/Oc(yk))

whereΠ is a rigid pattern which root is a node labeledV al(0) and which has as first child a single node pattern labeled
V al(1). The rest of its children is constituted by the ordered sequence of the rigidΠij ’s patterns defined in the proof of
Theorem 4.2.

The intuition behind the reduction is the following. LetT be a data tree satisfyingqrigid and not satisfying
∃x∃x1 . . .∃xl(Π)

_. This means that there is a homomorphism from(tqrigid ) to T which maps all thel nulls in (tqrigid) to
Boolean values. The set of all trees satisfying this property will thus allow to encode the set of all possible valuationsof the
pi’s.

THEOREM D.4. The problemUCQ⊆(⇓, _¬r) isΠp
2-hard.

PROOF. We proceed by reduction from∀∃3CNF and just adapt the proof of Theorem 4.2. Given as input a formula

ϕ := ∀p1 . . . ∀pl∃q1 . . .∃qm
∧

1≤i≤n

(li1 ∨ li2 ∨ li3),

we construct queriesq⇓, q′⇓ ∈ UCQ(⇓, _¬r) such that:

ϕ is true if and only if q⇓ ⊆ q′⇓.

We constructq⇓, q′⇓ using the same alphabet of node labels as in the proof of Theorem 4.2 as follows:

q⇓ = ∃x1 . . . xl(
∧

1≤i≤n,1≤j≤3

Πij ∧ Π′
V al)

q′⇓ = ∃x1 . . . ∃x2l+1V al(0)/_(x1)/ . . . /_(x2l+1)

∨

∃y1 . . . ∃ym(
∧

1≤i≤m

V al(yi)

∧
∧

1≤j≤n

∃z(Cl(cj)/L(z)/P (0)/Oc(0)

∧

Cl(cj)/L(z)/P (1)/Oc(1)

∧



∧

1≤k≤m

Cl(dj)/L(z1)/Q(qk)/Oc(yk))

whereΠ′
V al is a pattern of the following form:

V al(0)//V al(x1)//V al(1)/V al(0)//V al(x2)//V al(1)/ . . . /V al(0)//V al(xl−1)//V al(1)/V al(0)//V al(xl)//V al(1).

The intuition behind the reduction is the following. LetT be a data tree satisfyingq⇓ and not satisfying
∃x1 . . . ∃x2l+1V al(0)/_(x1)/ . . . /_(x2l+1). This means that there is a homomorphism from(tq⇓ ) to T which maps all thel
nulls in (tq⇓) to Boolean values. The set of all trees satisfying this property will thus allow to encode the set of all possible
valuations of thepi’s.

E. PROOFS FROM SECTION 7

In this section we assumeΣ to be the finite alphabet of the schema.

We first prove the 2EXPTIME upper bound (Theorem 7.1). It follows from a translation to asequence of intersection
emptiness problems of non-deterministic unranked tree automata. Before giving the proof, we give a few definitions and
preliminary results.

For a queryq ∈ CQ(⇓,⇒, _), we define theassociated incomplete data treetq similarly as in Section 5. The difference is
thattq is now also allowed to have nodes labeled with the wildcard “_”. A homomorphism fromtq to a data treet is now also
allowed to send a node labeled _ to a node labeled with somea ∈ L.

Analogously as in Section 5, we have the following proposition:

PROPOSITION E.1. Let t be a data tree, andq(x̄) is a query from CQ(⇓,⇒, _). Thent |= q(v̄) iff there is a homomorphism
h : tq → t so thath(x̄) = v̄.

The proof for the upper bound reduces the problem from data trees to (non-data) unranked trees with respect to a certain
queryq. In particular, for a finite alphabetΣ and a queryq of sizen = |q|, we define a finite alphabetΣq as follows. Denote
by s1 · · · sn the nodes intq, the alphabetΣq is of the formΣ×{d1, . . . , dn, ∗} such that if a nodesi is associated to a constant
c ∈ D in the queryq, then the letterdi = c. We denote the set of (non-data) unranked trees over alphabet Σq by Tq.

We define the functionf 6= that maps trees fromTq to data trees. Given a treet = 〈D, ↓,→, λ〉 in Tq, thenf 6=(t) is the data
tree〈D, ↓,→, λ′, ρ〉 which is obtained fromt as follows

1. If λ(v) = (a, di), for a ∈ Σ andi ∈ {1, . . . , n}, thenλ′(v) = a andρ(v) = di, that is, nodev of f 6=(t) has labela and
data valuedi.

2. If λ(v) = (a, ∗), for a ∈ Σ, thenλ′(v) = a andρ(v) is a new data value, that is, nodev of f 6=(t) has labela and a data
value that does not appear anywhere else inf 6=(t).

We now prove the following lemma:

LEMMA E.2. Let q be a query in CQ(⇓,⇒, _). Then one can construct in exponential time an NTAAfin over alphabetΣq

such thatt ∈ L(Afin) if and only iff 6=(t) |= q for eachΣq-treet.

PROOF. The proof is similar to a proof in [10]. Lettq = (N, V, ↓, ↓∗,→,→∗, λ, ρ) be the incomplete data tree associated
with q. Letn be the number of nodes intq. Our aim is to construct the NTAAfin that works as follows.

When reading aΣq-treet, the automatonAfin guesses a homomorphismh : tq → t that witnessesf 6=(t) |= q (cf Proposi-
tion E.1), if it exists. More precisely,Afin guesses the nodes oft which are the homomorphic images of nodes oftq and checks
whether the correct relations hold between the guessed nodes.

Intuitively, a state ofAfin is of the form(Xa, Xh, Xd, D), whereD : V → {d1, . . . , dn, ∗} is a total function andXa, Xh,
andXd are subsets ofN such that

• Xa is the set of nodes inN thatAfin guesses to be mapped to theancestors of the current node,

• Xh is the set of nodes inN thatAfin guesses to be mappedon the current node, and



• Xd is the set of nodes inN thatAfin guesses to be mapped ondescendants of the current node.

SinceAfin guesses a (well-defined) homomorphism, we only guess one target node for every node inN . Hence, for each state
(Xa, Xh, Xd, D), the pairwise intersections ofXa, Xh, andXd are empty.

In order to defineAfin = (QA,Σq, δA, FA) formally, we specifyQA, FA, andδA:

QA: The state setQA of Afin is the maximal subset of2N × 2N × 2N × {d1, . . . , dn, ∗}
V such that the following conditions

hold: For each(Xa, Xh, Xd, D) ∈ QA,

(Q1) the pairwise intersections ofXa, Xh, andXd are empty,
(Q2) for eachx, y ∈ Xh, the labels ofx andy are the same or one of them is a wildcard; that is, eitherλ(x) = λ(y) or

λ(x) = _ orλ(y) = _,
(Q3) for eachx ∈ Xh and eachy ∈ N such thaty ↓ x in tq, we have thaty ∈ Xa, and
(Q4) for eachx ∈ Xh and eachy ∈ N such thaty ↓∗ x in tq, we have thaty ∈ Xh ∪Xa.

FA: A state(Xa, Xh, Xd, D) of Afin is in FA if and only if

(F1) Xa is empty; and
(F2) Xh andXd partitionN , i.e.,N = Xh ⊎Xd.

δA: contains all transitions of the form

δA
(

(Xa, Xh, Xd, D), (a,∆)
)

= L, (†)

where

(D1) for eachx ∈ Xh, D(x) = ∆;
(D2) for each(X1

a , X
1
h, X

1
d , D

1) · · · (Xm
a , Xm

h , Xm
d , Dm) ∈ L, we haveD1 = · · · = Dm = D; and

(Hor) for every string(X1
a , X

1
h, X

1
d , D

1) · · · (Xm
a , Xm

h , Xm
d , Dm) ∈ L, the following holds:

(a) Xd = X1
h ⊎ · · · ⊎Xm

h ⊎X1
d ⊎ · · · ⊎Xm

d ;
(b) if x ∈ Xh andx ↓ y in tq then there is ani = 1, . . . ,m with y ∈ X i

h;
(c) for eachi = 1, . . . ,m, X i

a = Xa ∪Xh; and
(d) for eachi = 1, . . . ,m, if x ∈ X i

h and

• if x → y in tq, theni < m andy ∈ X i+1
h ;

• if x →∗ y in tq, then there exists aj, i ≤ j ≤ m such thaty ∈ Xj
h.

In order to complete the proof of the lemma, we need to prove that

(1) Afin can be constructed fromq in exponential time; and

(2) L(Afin) = {t ∈ Tq | f 6=(t) |= q}

(1): It is clear thatQA andFA can be computed in time exponential in|q|. For δA, we prove that we can compute an non-
deterministic finite string automaton (NFA)N that accepts, for every(Xa, Xh, Xd, D) ∈ QA and(a,∆) ∈ Σq, the language
L in the rule

(

(Xa, Xh, Xd, D), (a,∆)
)

→ L.

AsN only reads symbols fromQA, we don’t need to check anymore that (Q1)–(Q4) hold. Furthermore, (D1) and (D2) also do
not need to be checked byN . These conditions need to be checked by the algorithm that constructsA, when deciding whether
or not to define a transition rule of the form(†). Hence, we only have to enforce (Hor.a)–(Hor.d).

We next describeN ’s accepting condition and the information thatN needs to remember when reading a string. SinceN
only needs to maintain a polynomial amount of information when reading a string, it should be clear thatN needs only an
exponentially large set of states. A state ofN consists of(X∪

h , X
∪
d , Yns, Yns∗), where the components are defined as follows.

When reading a prefix(X1
a , X

1
h, X

1
d , D) · · · (Xk

a , X
k
h , X

k
d , D) of (X1

a , X
1
h, X

1
d , D) · · · (Xn

a , X
n
h , X

n
d , D),

• X∪
h := X1

h ∪ · · · ∪Xk
h ,

• X∪
d := X1

d ∪ · · · ∪Xk
d ,

• Yns := {y | x ∈ Xk
h andx → y in tq},

• Yns∗ := {y | ∃1 ≤ i ≤ k, x ∈ X i
h, y 6∈ X i

h ∪ · · · ∪Xk
h andx →∗ y in tq}.

When reading symbol(Xk+1
a , Xk+1

h , Xk+1
d , D), N checks whether



• Xk+1
h ∩ (X∪

h ∪X∪
d ) = ∅, to partially ensure (Hor.a);

• Xk+1
d ∩ (X∪

h ∪X∪
d ) = ∅, to partially ensure (Hor.a);

• Xk+1
a = Xa ∪Xh, to ensure (Hor.c); and

• Yns ⊆ Xk+1
h , to ensure (Hor.d)’s NextSibling-constraint.

and it changes its state to(X ′∪
h , X

′∪
d , Y

′
ns, Y

′
ns∗) as follows:

• X ′∪
h = X∪

h ∪Xk+1
h ;

• X ′∪
d = X∪

d ∪Xk+1
d ;

• Y ′
ns = {y | x ∈ Xk+1

h andx → y in tq};

• Y ′
ns∗ = (Yns∗ −Xk+1

h ) ∪ {y | x ∈ Xk+1
h , y 6∈ Xk+1

h , andx →∗ y in tq}.

Finally,N accepts if

• Xd = X∪
h ∪X∪

d , to ensure (R2.a), together with the above conditions on thetransitions;

• for eachx ∈ Xh such thatx ↓ y in tq, x ∈ X∪
h , to ensure (Hor.b);

• Yns = ∅, to ensure (Hor.d)’s→ relations; and

• Yns∗ ⊆ Xk
h , to ensure (Hor.d)’s→∗ relation.

(2): We show thatL(A) = {t ∈ Tq | f 6=(t) |= q}. For the inclusion from left to right, taket ∈ L(A). Consider the homo-
morphismh from tq to t induced by an accepting run ofA on t by settingh(x) = v if the run assigned state(Xa, Xh, Xd, D)
to v with x ∈ Xh. It is easy to show by induction on treest that the homomorphismh is a homomorphism fromtq to f 6=(t)
and therefore witnesses thatq |= f 6=(t). Conversely, ifh is a homomorphism fromtq to f 6=(t) then the same homomorphism
allows us to construct an accepting run ofAfin on t.

The transformationf 6= we defined associates a data tree to aΣq-tree. We now define a transformationgq to associate a
Σq-tree to a data tree satisfying a given query.

More precisely, letq be a CQ(⇓,⇒, _) and lettq = 〈N, V, ↓, ↓∗,→,→∗, λ, ρ〉 be its associated incomplete data tree with
nodesN = {s1, . . . , sn} and lett be a data tree such thatt |= q. Furthermore, leth : tq → t be a homomorphism that
witnesses thatt |= q. Then we writegq(t, h) for theΣq-tree resulting fromt as follows.

• If, for somei, h(ui) = v andλT (v) = a, thenv gets label(a, dj) wherej is minimal withρ(h(uj)) = ρ(v).

• Otherwise,v gets label(a, ∗) if λT (v) = a.

Intuitively, the treegq(t, h) is obtained by relabeling the data in the treet using letters from{d1, . . . , dn} for the nodes which
are in the image of the homomorphismh and using the letter∗ for all the other nodes.

The following lemma is analogous to a lemma from [10].

LEMMA E.3. Let q, q′ ∈ CQ(⇓,⇒, _) wheretq hasn nodes and lett be a data tree such thatt |= q but t 6|= q′. Then the
following hold:

(a) f 6=(gq(t, h)) |= q and

(b) f 6=(gq(t, h)) 6|= q′.

PROOF. By definition ofgq andf 6=, it is straightforward that the same homomorphismh witnesses thatf 6=(gq(t, h)) |= q.
This proves (a).
We now prove (b). Towards a contradiction, assumef 6=(gq(t, h)) |= q′. Let h′ be a homomorphism fromtq′ to f 6=(gq(t, h)).
By definition off 6=(gq(t, h)), the only difference betweent andf 6=(gq(t, h)) is the data values. Furthermore, for every pair of
nodess1, s2 in f 6=(gq(t, h)), if ρ(s1) = ρ(s2) in f 6=(gq(t, h)), then we also have thatρ(s1) = ρ(s2) in t. This implies thath′

would also be a homomorphism fromt′q to t which contradicts thatt 6|= q′.

We can now prove the following upper bound:

Theorem 7.1. The problemBCCQ⊆(⇓,⇒, _) under schemas can be solved in2EXPTIME.



PROOF. To prove this upper bound, we show that satisfiability ofBCCQ(⇓,⇒, _) queries can be solved in 2EXPTIME,
from which the overall upper bound follows. Letq be a query fromBCCQ(⇓,⇒, _) that contains the CQsq1, . . . , qk.

The queryq is satisfiable if and only if there exists a valuationχ : {1, . . . , k} → {true, false} and a treet such that,

• the propositional formula obtained fromq by replacing eachqi with χ(qi) is true;

and for everyi = 1, . . . , k,

• t |= qi if χ(i) = true and t 6|= qi if χ(i) = false.

We say thatt modelsq underχ.

The 2EXPTIME algorithm will iterate through all possible valuationsχ and test whether there exists a treet that modelsq
underχ. Since there are only exponentially many valuations, it is sufficient to show that we can perform the test for a single,
fixed, valuation in 2EXPTIME.

Therefore, fix a valuationχ and letP be the conjunction of allqi such thatχ(i) = true. Furthermore, let{q′1, . . . , q
′
m} be

the set of allqi such thatχ(i) = false. Letn be the size of oftP . According to Lemma E.3, there exists a treeTχ that modelsq
underχ if and only if there exists a homomorphismh and a tree of the formf 6=(gP (Tχ, h)) that modelsq underχ. The latter
means thatf 6=(gP (Tχ, h)) |= P andf 6=(gP (Tχ, h)) 6|= q′i for everyi = 1, . . . ,m.

According to Lemma E.2, we can build, for the queryP , an NTA AP
fin such thatf 6=(gP (Tχ, h)) |= P if and only if

gP (Tχ, h) ∈ L(AP
fin). Similarly for every queryq′i, we can build an NTAsAqi

fin such thatf 6=(gP (Tχ, h)) |= qi if and only
if gP (Tχ, h) ∈ L(Aqi

fin).

The latter implies that it is equivalent to test whether there exists a treet that modelsq underχ and to test whetherL(AP
fin)∩

L(A
q′1
fin) ∩ · · · ∩ L(A

q′m
fin ) is non-empty.

We still need to discuss how schema information in the form ofa tree automaton can be incorporated. But that is very easy
in the present approach: IfA is the tree automaton (overΣ) under which we want to test whetherq is satisfiable, then letAq

be the tree automaton (overΣq) that accepts aΣq-tree if and only if its projection on the correspondingΣ-tree is accepted by
A. (More formally, for every label of the form(a, x), the automatonAq simply ignoresx and simulatesA.)

As such, we only need to test ifL(Aq) ∩ L(AP
fin) ∩ L(A

q′1
fin) ∩ · · · ∩ L(A

q′m
fin ) is non-empty. The latter test can be performed

in 2EXPTIME by standard techniques on automata.

Theorem 7.2. Containment of CQs under schemas is2EXPTIME-hard; i.e., the problem CQ⊆(⇓,⇒) under schemas is
2EXPTIME-complete.

The upper bound is immediate from Theorem 7.1.

For the lower bound, we first prove thatUCQ⊆(⇓,⇒) w.r.t. schema constraints is 2EXPTIME-hard. Then we show how to
transform the proof to obtain the lower bound for CQ⊆(⇓,⇒).

PROPOSITION E.4. The problemUCQ⊆(⇓,⇒) w.r.t. schema constraints is2EXPTIME-hard.

PROOF. We show the lower bound by a reduction from the acceptance problem for alternating exponential space bounded
Turing machines. We give an encoding of accepting runs of such machines into data trees. Given such a machine and a word
w of lengthn, we explain how to build a regular languageR and a finite unionϕ of conjunctive queries such that any data
tree satisfying the constraints given byR and the negation ofϕ is the encoding of an accepting run of the machineM on the
wordw.

The machineM has no accepting run on the wordw iff q∅ ⊆R ϕ whereq∅ is the trivial query which is always true.
Therefore, our UCQϕ will look for all possibleerrors that can happen in runs.

In the following, we define precisely the encoding of accepting runs into a data trees and explain how to build the language
R and the queryϕ.

Notice that the encoding of the machine has similarities with the one used in proof of Theorem 6 in [10]. However, the
present encoding is more complicated due to the fact that ourqueries are tree-shaped and do not use wildcard.

An alternating Turing machine is a Turing machineM = (Q,Γ,∆, q0) whereΓ is the alphabet of the tape containing a
special blank symbol♮, the transition relation∆ is a subset ofQ × Γ × Γ × {left, right, stay} × Q, the initial stateq0 is
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Figure 1: The structure of an encoding of a run.

fromQ, and the finite set of statesQ is partitioned into a set of universal statesQ∀, a set of existential statesQ∃, an accepting
state{qa}, and a rejecting state{qr}. A configuration ofM is a triple (w, i, q) ∈ Γ∗ × N × Q wherei ≤ |w|. When
q ∈ Q∀, we say that the configuration is universal (similarly for existential, accepting, and rejecting). We define successor
configurations in the usual way. A computation tree for such amachine on an input wordw ∈ Γ∗ consists of a tree labeled with
configurations such that (0) the root is labeled by the initial configuration (that is, the initial state isq0, the reading head is at the
first position, and the tape contains the wordw followed by some blank symbols♮) (1) every node labelled with an existential
configuration has exactly one child labeled with a successor(2) every node labelled with a universal configurationc has a child
labelled with configurationc′ for each successor configurationc′ of c, and (3) all leaves are labelled with accepting or rejecting
configurations. A computation tree is accepting if and only if it is finite and all leaves labelled with accepting configurations.

Let M be an alternating exponential space bounded Turing machine. Without loss of generality, we can assume that given
any wordw of sizen the machine never uses more than2n − 1 tape cells.

The encoding of a computation tree.

Let us now define the finite alphabetΣ = {s, CT, p, 0, 1, q0} ∪∆ ∪ Γ.

We encode a computation treeT of the machine into a data tree labeled byΣ as follows:

The structure of the tree is described in Figure 1. The tree follows the structure of the computation tree where each cor-
responding node is labeled withs. To each of these nodes is attached both a node labeled CT and atree tc encoding the
corresponding configuration and the transition that yieldsto it (the dashed edges in the figure). We note that, although several
subtrees in Figure 1 are labelledtc, the different occurrences oftc can actually be differently structured subtrees since they
represent different configurations.

We now discuss how a configuration of the computation tree is encoded into a treetc. Let (w, i, q) be a configuration of
the computation tree obtained by applying the transitionδ ∈ ∆ to the parent configuration. Recall that a configuration always
has length2n. We start the encoding of this configuration with a binary tree of depthn in which each node is labelled bys.
Because most of the nodes of the encoding will be labeleds, we refer to theses nodes as the skeleton nodes. To each skeleton
node but the root, we attach a small treet0 for the left children of a skeleton node andt1 for the right children of a skeleton
node as described in Figure 2. Lastly, we use the skeleton leaves to encode(w, i, q) andδ. To each skeleton leaf we attach one
node labeled by a letter fromΓ ∪ ∆ ∪ {q0}, such that taken from left to right the firsti new leaves are labeled by the firsti
letters fromw; thei+ 1th leaf corresponding to the position of the reading head, is labeled by the letterδ (or, if it is the initial
configuration, simply byq0); the2n − (i + 1) last leaves are labeled by the2n − (i + 1) letters ofw.

To complete the description of the encodingT we need to describe the data values attached to each node. As we want to use
the data to identify the nodes in the whole tree, we ask each node to have a different one.

The languageR and the union of queriesϕnokey andϕM.

We now need to build a regular tree languageR using the finite alphabetΣ and a union of queriesϕ such that a data tree
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Figure 2: The subtrees to distinguish left child from right child in tc.

∃x a(x)/c1//b(x) ∃x c0/[c1/c2//a(x) → c5 →∗ c3/c4//b(x)]

∃x

a(x)

c1

b(x)
∗ ∃x

c0

c1

a(x)
∗

→ c2 →∗ c3

b(x)
∗

Figure 3: The queries composingϕnokey (wherea, b, c0, . . . , c2 represent letters fromΣ)

satisfies the constraints given byR and the negation ofϕ iff it is an encoding of an accepting run of the machine.

The languageR ensures the general structure of the tree, the labeling of the nodes. It also ensures that the sequence of
transitions respects the machine’s rules in terms of succession of control states, initial, and final configurations. All these
constraints are regular properties of the trees so we can encode them into a (polynomial-size) non deterministic tree automaton.

The data value will allow us to identify the nodes in the wholetree, we will construct the UCQϕ such that each node has a
different one.

The union of queriesϕ = ϕnokey ∪ϕM is used to ensure the constraints on data values (ϕnokey) and the correct evolution of
the content of the tape and the reading head position betweenconsecutive configurations (ϕM). For each query, we give also a
graphical representation that may be easier to parse for thereader.

First we show how to constructϕnokey . This query expresses that there are at least two (different) nodes with the same data
value. (So, it expresses that the set of data values is not a key.) The queryϕnokey is the union of the queries presented in
Figure 3. Notice that the number of these small queries is polynomial in the size of the alphabetΣ and each of them is of
constant size (at most 8 nodes). By construction, a data treelabeled byΣ doesn’t satisfyϕnokey iff all its nodes have different
data values.

We now explain how to constructϕM. Intuitively ϕM describes all the behaviour that violates the proper evolution in
between two consecutive configurations, encoded in treestc. In particular,ϕM will look for errors in the evolution of the
content of the tape and the reading head position between consecutive configurations.

The key points to buildϕM is to be able to check that (1) two nodes correspond to the sameleaf in two consecutive trees
tc (2) three nodes correspond to two consecutive leaves withina treetc. Using these two properties, we can build queries that
describes bad evolution of triple of consecutive leaves in between two consecutive treetc.

Sinceϕnokey matches all trees in which at least two nodes have the same data value, we can focus forϕM on encodings in
which each node has a different data value. For this reason,we use data values as a node ID. This part is rather technical
and, for readability sake, we give drawings of tree patternsinstead of pure formula (which would be very hard to parse forthe
reader).

In Figure 4 we describe some useful patterns. The conjunction of patternsθisame(x, y, x
′, y′) is such that if it satisfied by

data values(dx, dy, dx′ , dy′), the nodes corresponding todx anddy are either both left or right (skeleton) children at leveli in
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Figure 4: The conjunction of patternsθisame(x, y, x
′, y′).

consecutivetc. The first pattern ensures that the nodes corresponding todx anddy are skeleton nodes at leveli in consecutive
tc; the data valuesd′x andd′y correspond to the respective parents of the1 node of the subtree of Figure 2 attached todx anddy.
The idea is that the twos-nodesdx anddy are both left or both right children iff their corresponding1 nodes have a common
ancestor which has distancei+ 5 from d′x andi + 6 from d′y. This is ensured by the second pattern of the conjunction.

(1) We can now define the conjunction of patternsθsame(x1, y1, x
′
1, y

′
1 . . . , xn, yn, x

′
n, y

′
n) so that, if it is satisfied for some

data(dxi
, dyi

, dx′
i
, dy′

i
)i=1..n, then thes-nodes corresponding todxn

anddyn
correspond to the same skeleton leaf of two

consecutivetc trees.

θsame(x1, y1, x
′
1, y

′
1 . . . , xn, yn, x

′
n, y

′
n) :=

∧

i=1..n

θisame(xi, yi, x
′
i, y

′
i)

As xn and yn correspond to the nodes we want to characterize, we write forshort θsame(xn, yn, X̄) instead of
θsame(x1, y1, x

′
1, y

′
1 . . . , xn, yn, x

′
n, y

′
n).

(2) To understand more easily how to identify three consecutive skeleton leaves in a treetc let us look at the case of a simple
binary treeTb of depthn rooted inr and where left nodes are labeled with0 and right ones with a1. The nodesnx, ny, nz

are consecutive leaves inTb if they are placed as in one of the cases presented in Figure 5 wherei represents the depth level of
their common ancestor denoted byA in the Figure. Notice that the nodeA can be labeled either0 or 1 so altogether we have 4
different possible cases.

We now come back to our encoding. The patternπi
cons1(x, y, z) described in Figure 6 is such that, if it is satisfied for some

data(dx, dy, dz), then the corresponding nodes are consecutive leaves of atc trees. Moreover, the depth level of their common
ancestor intc is i and the nodesdx, dy anddz are placed like in Figure 5(a). The small patternsπ0 andπ1 are the direct
translation of the treest0 and t1 from Figure 2. This patternπi

cons1(x, y, z) is obtained from Figure 5(a) by changing the
A− node into as-node and by pluggingπ0 into nodes0 and changing this label0 into s and similarly for1 nodes.
Using a similar construction, we can define patternsπi

cons2(x, y, z) corresponding Figure 5(b).

(ϕM) We now have all the tools to defineϕM. As we explained before, this union of queries should encodeall possible way
to violate the proper evolution in between two consecutive treestc. We do it looking at triple of consecutive leaves.

The forbidden evolution in two consecutive treestc can be summarized as pairs of triples of letters fromΓ ∪ ∆ ∪ {q0}
representing forbidden evolution of triple of consecutiveleaves oftc trees. Assume(abc, def) is forbidden, we defineϕabc,def

as the union of the following queries for alli ∈ {1..n} andj ∈ {1, 2}:

∃xa, yb, zc, xd, ye, zf , X̄ θsame(xa, xd, X̄) ∧ πi
consj(xa, yb, zc) ∧ πi

consj(xd, ye, zf)

∧s(xa)/a ∧ s(yb)/b ∧ s(zc)/c ∧ s(xd)/d ∧ s(ye)/e ∧ s(zf )/f
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The patternπqi(x̄i) for i ∈ {0 . . . k}

Figure 7: Patterns used in the proof of Lemma E.5.

The first part of the formula ensure that the nodesxa, yb, zc, xd, ye, zf represent the same triple of consecutive skeleton leaves
(in the shape corresponding toπi

consj) in two consecutive treetc. The second part of the formula ensure that thea, b, c, d, e, f
are attached to the leaves.

Notice that to cover all cases, we really need to consider theunion of such queries for alli andj.

The formulaϕM is defined as the union ofϕabc,def for all forbidden pairs of triples of letters(abc, def). The size ofϕM is
polynomial in the size of the machineM and the lengthn of the wordw. By construction, a data tree satisfies the constraints
given byR and the negation ofϕnokey ∪ ϕM iff it is an encoding of an accepting run of the machine on the wordw.

Notice that, if the class of queries in Proposition E.4 wouldhave allowed wildcard, we could have done a brief reduction
from the problem in Theorem 6 from [10] usingϕnokey. Indeed using wildcard, we can express this validity problem in terms
of query containment. More precisely, in this case, we can show that given a conjunctive queryq from CQ(Child,Child+) [10]
and a regular languageL, one can build in polynomial time a conjunctive tree queryqt so thatq is valid w.r.t. L iff q∅ ⊆L qt.

The following lemma explains a trick to reduce UCQ containment to CQ containment. Similar lemmas can be found in [31]
and [10]. We adapt it to our purposes.

LEMMA E.5. Let q0, q1, · · · qk ∈ CQ(⇓,⇒,∼) be conjunctive queries without free variables andA a NTA defining a
regular tree language over the finite alphabetΣ. One can compute in polynomial time two queriesq′ andq∪ from CQ(⇓,⇒,∼)
and a NTAA∪ over the alphabetΣ ⊎ {$,#,♥,♠} such that:

q0 ⊆ q1 ∪ . . . ∪ qn w.r.t A iff q′ ⊆ q∪ w.r.t. A∪

Notice that the proof below only requires⇓. The same lemma holds for less expressive classes of queriesassuming they
allows both↓ and↓∗ navigation. In particular the lemma holds for the classes CQ(⇓,⇒) and CQ(⇓,∼).

PROOF. Let q0, q1, . . . , qk ∈ CQ(⇓,∼) be conjunctive queries without free variables andA a NTA defining a regular tree
language over the finite alphabetΣ.

Without loss of generality, we can assume that for eachi the queryqi is of the form∃x̄i πi(x̄i). A query consisting in the
conjunction of several patterns can be rewritten into the disjunction for every lettera in Σ of the query obtained by linking all
patterns below aa-node using the relation↓∗.

Moreover, modulo renaming, we can assume that the sets of variables used in the queries are all different.

We now explain how to build two queriesq′ andq∪ from CQ(⇓,∼) and a NTAA∪ over the alphabetΣ⊎ {$,#,♥,♠} such
that:

q0 ⊆ q1 ∪ . . . ∪ qk w.r.tA iff q′ ⊆ q∪ w.r.t. A∪

Figure 7 describes some patterns that we will need in the reduction. Recall that the labels♥ and$ are new and do not occur
in the alphabetΣ. Intuitively the patternπG is the conjunction of the patternsπ1 to πk under some special nodes♥ and$.
Similarly, each patternπqi is obtained from the patternπi by adding the nodes♥ and$ at the root.

The queriesq′ andq∪ are built from the patternsπG andπqi as shown in Figure 8. Again,# and♠ are new labels. The
variables used in the copies ofπG andπqi are the one used in figure 7.

The automatonA∪ checks the following properties.
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Figure 8: Queriesq′ and q∪ from the proof of Lemma E.5.

1. There are exactly2k − 1 nodes with label♠ and2k − 1 nodes with label♥.

2. There are exactlyk · 2(k − 1) + 1 nodes with label$.

3. The root has label# and has exactly one child. This child has label♠.

4. Each♠-labeled node, except one, has one♠-labeled child.

5. Each♠-labeled node has exactly one child labeled♥.

6. Each♥-labeled node has only$-children. Moreover the♥-labeled node that is child of thekth ♠-labeled node, counted
from the root has exactly one child, labeled$. We call this thedistinguished♥-labeled node.

7. Each$-labeled node has exactly one child.

8. The tree rooted at the grandchild of the distinguished♥-labeled node is accepted byA.

It remains to prove that

q0 ⊆ q1 ∪ . . . ∪ qk w.r.tA iff q′ ⊆ q∪ w.r.t. A∪

(⇒) Assume thatq0 ⊆ q1 ∨ · · · ∨ qk w.r.t.A. Consider a data treet which satisfies the regular constraints given byA∪ and
the queryq′. Let denote byv a valuation of the variables̄x = {x̄0, . . . , x̄k} corresponding to a matching of the queryq′. Let
s1, . . . , sk, . . . , s2k−1 be the♠-labeled nodes oft, ordered by increasing distance from the root. Forj ∈ {1, . . . , 2k − 1}, let
tj be thetreerooted in the♥-labeled child ofsj . For eachj ∈ {1, . . . , 2k− 1}− {k}, we note that sincetj , 0, v |= πG(x̄), we
also havetj , 0, v |= πqi(x̄i) for everyi ∈ {1, . . . , k}. Let’s now look at the subtreetk and denote byt′k the subtree rooted in
the sole grandchild of the root oftk. Sincetk, 0, v |= πq0(x̄0) we havet′k, 0 |= q0. Moreover by definition ofA∪, the treet′k is
recognized byA. We conclude thatt′k |= q1 ∨ · · · ∨ qk i.e. there isi ∈ {1, . . . , k} and a valuationv′ of the variables̄xi such
thatt′k, v

′ |= πi(x̄i). This, in turn, means thattk, 0, v′ |= piqi(x̄i).

We can show construct a matching ofq∪ in t. The patternsπq1 , . . . , πqi−1 match respectively intk−i+1, . . . , tk−1 using
the valuationv, πqi matches intk using the valuationv′, andπqi+1 , . . . , πqk match respectively intk+1, . . . t2k−i using the
valuationv. As the sets of variables̄xj are disjunct and by construction ofq∪, this matching is a witness oft |= q∪.

(⇐) Assume, on the other hand, thatq0 6⊆ q1 ∨ · · · ∨ qk w.r.t.A. Let p be a tree which satisfies the regular constraints given
by A, the queryq0 but does not satisfiesq1 ∨ . . . ∨ qk. Let t be a tree satisfyingA∪ andq′, and definetk andt′k as above.



Replacet′k by p in t. The resulting treetp still satisfiesA andq′, sincep is accepted byA andq0 is satisfied inp. But since no
qi, for i ∈ {1, . . . , k} is satisfied inp, there is no matching ofq∪ in tp. Thusq′ 6⊆ q∪ w.r.t.A∪.



F. PROOFS FROM SECTION 8

Theorem 8.1. Containment of BCCQs with data comparisons, i.e., the problemBCCQ⊆(⇓,⇒, _,∼), is undecidable.

This theorem is a corollary of the following result:

THEOREM F.1. Satisfiability ofBCCQ(⇓,⇒, _ ∼) is undecidable.

PROOF. The proof follows that same lines as the proof of Theorem 15 of [10] and is by reduction fromPost’s Corre-
spondence Problem(PCP), which is known to be undecidable. Aninstanceof PCP over (finite) alphabetΣ is a sequence
(w1, u1), . . . , (wn, un) of pairs, wherewi, ui are non-empty words overΣ+, for all i ∈ {1, . . . , n}. An instance has asolution
if there exists anm ∈ N andi1, . . . , im ∈ {1, . . . , n} such thatwi1 . . . wim = ui1 . . . uim .

Given an instanceR = (w1, u1), . . . , (wn, un) of PCP over alphabetΣ, we can construct a BCCQQ that has a solution if
and only ifR has a solution.

The present reduction can be done using either only the relations↓, ↓∗, and→ or using only the relations↓, →, and→∗. We
present the first version here.

LetR = (w1, u1), . . . , (wn, un) be an instance of PCP over the alphabetΣ = {a1, . . . , ak}

Encoding of a solution first into a sequence of data and then into data trees.

Let i1, . . . , im ∈ {1, . . . , n} be a solution ofR. We denote byw the wordwi1 . . . wim = ui1 . . . uim .

We first explain how to encode a solution of a PCP instance intoa special sequence of data values. This is built from several
(all different) data values. We first list and name these datavalues:

• the data valuesd1 · · · dn wheren is the number of different pairs of words in the instanceR;

• the data valuesdn+1 · · · dn+k representing the letters from the alphabetΣ;

• the dataC1 · · ·Cm wherem is given by number of pairs used to build the solution;

• the dataP1 · · ·P|w| are used to index positions in the wordw;

• the datad0 used as a separator in the encoding.

The corresponding encoding the solution is the sequenced0.ER.d0.Ew.d0.Eu.d0 whereER, Ew andEu are defined as
follows.

• ER := d1 · · · dn.dn+1 · · · dn+k represents the instance R.

• The wordwi1 . . . wim is represented by the following sequence of length2.m+ 2.|w|:

Ew := enc(wi1) . . . enc(wim)

whereenc(wij ) is a sequence of length2+2.|wij | starting bydij .Cj and followed by the sequence obtained by replacing
each position ofwij with the data representing its label followed by the data from P1 . . . P|w| representing the index of
this position in the wordw.

• Similarly, the wordui1 . . . uim is represented as the sequence:

Eu := enc(ui1) . . . enc(uim)

whereenc(uij ) is defined the same way asenc(uij ).

We extend this encoding to data trees. A data tree is an encoding of the solution iff it has a single branch, the corresponding
sequence of data is of the form described above, the root (i.e. the first occurrence of datad0) is labeleds, the second occurrence
of d0 is labeled$ and the two last occurrences ofd0 are labeled# and all other nodes are labeled by letters fromΓ =
L\{s, $,#} (in particular, the path is labeled by$Γ∗$Γ∗#Γ∗# ).

We now construct a queryQ ∈ BCCQ(⇓,→, _ ∼) without free variables such that a data tree satisfies the query Q iff it is
an encoding of a solution of the PCP instanceR.



The definition of the queryQ.

In the remainder of the proof, we will construct several sub-formulas; andQ is a conjunction of them.

In the subqueries below, we sometimes simply writea instead ofa(x) to improve readability. We do this if we put no
constraints onx (i.e., no equality and no inequality). We do this similarly for the symbols$, #, and the wildcard _. Similarly,
for the variablesx, y, z and their indexed versions, we write(x) as a shorthand for _(x) denoting a node with data value bound
to x. We also often omit square brackets in queries to improve readability.

We first establish that PCP encodings are string-shaped. To this end we add

¬
(

_[_ → _]
)

to Q, which states that no node has more than one child. This is theonly place in the proof where we use the relation→. We
now say that there is a special labels that occurs exactly once in any tree that matchesQ, i.e., we add the following conjunction
to Q:

s ∧ ¬
(

s/_//s
)

To ensure thats occurs at the root we add:

¬(_/s)

Using similar queries we can enforce the label$ to occur exactly once and the label# to occur exactly twice.

We now add the query

∃x0 · · ·xn+k s(x0)/(x1)/ · · · /(xn+k)/$//#(x0)/_ //#(x0) ∧
∧

i6=j∈{0,...,n+k}

xi 6= xj

which fixes the occurrences of$, and# together and the fact that then+ k nodes belows have pairwise different data values
which are also different from the data ofs. These datax0 · · ·xn+k corresponds to the datad0 · · · dn+k in the definition of the
encoding.

In the remainder of the proof, we say that the path is of the form sL$P1#P2# and useL, P1 andP2 to refer to the different
part of the path. Also, if a position in a tree is below the node$ and has a data valuexi with i ∈ I := {1, . . . n} then we will
interpret it as a position that carries the labeli. If it has a data valuexi with i ∈ {n+ 1, . . . , n+ k} the we will interpret it as
a position that carries the labelai ∈ Σ. We refer to the data values{x1, . . . , xn+k} aslabel values. All other data values will
be referred to asnon-label values.

We now need to ensure the proper structure of the pathsP1 andP2 which must encode non-empty data strings as explained
in the the definition of the encoding. To this end,P1 andP2 will be of even length; carry a label value on every odd position
and carry a non-label value on every even position. To this end, we say:

n+k
∨

i=1

∃x1 · · ·xn+k s/(x1)/ · · · /(xn+k)/$/(xi)

(the first position ofP1 has a label value)

n+k
∨

i=1

∃x1 · · ·xn+k s/(x1)/ · · · /(xn+k)/$//#/(xi)//#

(the first position ofP2 has a label value)

∃x, x1 · · ·xn+k s/(x1)/ · · · /(xn+k)/$/_/(x) ∧
n+k
∧

i=1

x 6= xi

(the second position ofP1 has a non-label value)

∃x, x1 · · ·xn+k s/(x1)/ · · · /(xn+k)/$//#/_/(x)//# ∧
n+k
∧

i=1

x 6= xi

(the second position ofP2 has a non-label value)



Similarly, we express that the last positions ofP1 andP2 have non-label values. Furthermore, we add

n+k
∧

i=1

¬ ∃y, x1 · · ·xn+k

(

s/(x1)/ · · · /(xn+k)/$/_//(xi)/_/(y)//#/_//# ∧
n+k
∧

j=1

y 6= xj

)

(if some positionℓ of P1 has a label value then positionℓ+ 2 has a label value)

n+k
∧

i=1

¬

(

∃y, x1 · · ·xn+k s/(x1)/ · · · /(xn+k)/$/_//(y)/_/(xi)//#/_//# ∧
n+k
∧

j=1

y 6= xj

)

(if some positionℓ of P1 has a non-label value then positionℓ+ 2 has a non-label value)

Similarly, we add the two above conditions forP2.

So, all solutions toQ are of the formsL$P1#P2# in whichP1 andP2 encode data strings. We now refine our notation for
the remainder of the proof. We define

• W : the string over alphabetΣ ∪ I obtained fromP1 by considering the concatenationy1 . . . ym of all label values and
replacing eachyi by i ∈ I if yi ∈ {x1, . . . , xn} andyi with aj ∈ Σ if yi = xn+j .

• U : obtained fromP2 analogously asW is obtained fromP1.

• For a stringV over alphabetΣ ∪ I, we denote byV|Σ theΣ-string obtained fromV by deleting all letters fromI (and
analogously forV|I ).

So, in the new notation, we are looking for trees of the formsL$P1#P2# that satisfy, among other conditions, thatW|I = U|I

andW|Σ = U|Σ.

Next in the proof, we want to express that

(LAB): the stringW#U# should match the regular expression
(

(i1 · wi1) + · · ·+ (in · win)
)+

·# ·
(

(i1 · ui1) + · · ·+ (in · uin)
)+

·#

where eachij ∈ I and the wordswij anduij are the correct ones from the PCP instance.

The idea is that we do this by saying that the first position from P1 (resp.,P2) must be a label valuei ∈ {1, . . . , n} and by
excluding patterns that are not allowed to occur.

n
∨

i=1

∃x1 · · ·xn s/(x1)/ · · · /(xn)//$/(xi)

(the first label value fromP1 is an index from{1, . . . , n})
n
∨

i=1

∃x1 · · ·xn s/(x1)/ · · · /(xn)//$//#/(xi)//#

(the first label value fromP2 is an index from{1, . . . , n})

We now say that every indexi from {1, . . . , n} in W must be followed bywi. More precisely, we forbid alliw for

• w shorter thanwi but not a prefix ofwi;

• w = w′# wherew′ is a real prefix ofwi; and

• w = wia with a /∈ {1, . . . , n,#}.

To this end, we define encodings of wordsw = σ1 · · ·σm over alphabet{1, . . . , n} ∪ {a1, . . . , ak} as pattern, that is,

πw := (xj1)/_/(xj2)/_/ · · · /_/(xjm)

where, for eachℓ = 1, . . .m, we have that

• if σℓ = # thenjℓ = 0,

• if σℓ = i ∈ {1, . . . , n} thenjℓ = i, and



• if σℓ = ap thenjℓ = n+ p

Then we express the above conditions forP1 as
n
∧

i=1

∧

w

¬ ∃x1 · · ·xn+k s/(x1)/ · · · /(xn+k)/$//_/_(xi)/_/πw/_//#_//#

wherew andπw are as mentioned above. We express the conditions (LAB) forP2 similarly.

We show how to put constraints on the “data”-parts ofP1 andP2 to ensure the following.

(ENC1): no non-label data value inP1#P2# appears more than twice,
(ENC2): the sequence of non-label values associated toW|I matches the sequence of non-label values associated toU|I ,
(ENC3): the sequence of non-label values associated toW|Σ matches the sequence of non-label values associated toU|Σ,
(ENC4): two positions fromW andU associated to the same non-label values must have the same label value.

This will enforce thatW|Σ = U|Σ andW|I = U|I .

We enforce (ENC1) by:

¬ ∃x, x1 · · ·xn+k

(

s/_(x1)/ · · · /_(xn+k)/$/_//_(x)//_/_(x)//_/_(x) ∧
n+k
∧

i=1

(x 6= xi)
)

(There do not exist three different nodes with data valuex that does not occur in thex1, . . . , xn+k.)

(ENC2) We add toQ a query that enforce that the first symbol fromW|I has the same associated non-label value as the first
symbol fromU|I . Notice that these positions necessarily carry label values fromI.

∃x s//$/_/_(x)//#/_/_(x)//#

For anℓ ∈ N, let distℓ be the sub-pattern that matches a path of nodes of lengthℓ, i.e.,

distℓ = _/ · · · /_

with ℓ occurrences of _.

For eachi ∈ {1, . . . , n}, letmi = |wi| andm′
i = |ui|, and define

n
∧

i=1

¬ ∃x, x1 · · ·xn+k

(

s/_(x1)/ · · · /_(xn+k)/$//xi/(x)/dist2mi+1/(y1)//#//(xi)/(x)/dist2m′
i
+1/(y2) ∧ y1 6= y2

)

The above query makes sure that if twoI-positions have the same data value the same holds for theirI-successors. Altogether
this ensures the condition (ENC2).

(ENC4) We now want to express that, if two positions inU ·W have the same data value, then they have the same label:
∧

i6=j∈{1,...,n+k}

¬ ∃x, x1 · · ·xn+k s/(x1)/ · · · /(xn+k)/$//(xi)/(x)//(xj)/(x)

(It is not possible that two positions have the same non-label value and their parents have different label values.)

These last three queries ensure thatW|I = U|I .

(ENC3) It remains to define the subqueries that ensure (ENC3). First, we make sure that the first letters inW|Σ andU|Σ have
the same data value:

∃y, x1 · · ·xn+k s/(x1)/ · · · /(xn+k)/$/_/_/_/(y)//#/_/_/_/(y)//#

Next, we ensure that if positionsx1 andy1, taken from the first and the second half of the string, respectively, have labels
from Σ and the same data value, and their successors also have labels fromΣ, then the successors have the same data value.
Thus, for each ordered tuple(a, b, c) ∈ Σ3, we define

¬ ∃x, y, z, x1 · · ·xn+k

(

s/(x1)/ · · · /(xn+k)/$//(xa)/(x)/(xb)/(y)//#//(x)/(xc)/(z) ∧ y 6= z
)

We must, however, also allow for the cases that some of theΣ-nodes are followed by a node with a label fromI. Thus, for
every(a, b, c) fromΣ and everyi, j from I, we get

¬ ∃x, y, z, x1 · · ·xn+k

(

s/(x1)/ · · · /(xn+k)/$//(xa)/(x)/(xi)/_/(xb)/(y)//#//(x)/(xc)/(z) ∧ y 6= z
)



(Case ofa-labeled node followed by ani)

¬ ∃x, y, z, x1 · · ·xn+k

(

s/(x1)/ · · · /(xn+k)/$//(xa)/(x)/(xb)/(y)//#//(x)/(xi)/_/(xc)/(z) ∧ y 6= z
)

(Case ofc-labeled node followed by ani)

¬ ∃x, y, z, x1 · · ·xn+k

(

s/(x1)/ · · · /(xn+k)/$//(xa)/(x)/(xi)/_/(xb)/(y)//#//(x)/(xj)/_/(xc)/(z) ∧ y 6= z
)

(Case of both nodes followed by an index.)

This concludes the reduction.

Theorem 8.2. The containment problem for CQ(⇓,∼) queries under schema is undecidable.

We first prove that under schema constraintsUCQ⊆(⇓,∼) is undecidable. Using Lemma E.5, we can get the lower bound
for CQ⊆(⇓,∼).

PROPOSITION F.2. The containment problem forUCQ(⇓,∼) queries under schema is undecidable.

We prove this result by adapting the proof of the undecidability for satisfiability of data tree patterns formulas from Theorem 7
in [16]. Also Notice that, for clarity reason, the patterns presented in the proof are using wildcard. We explain how to get rid
of them at the end of the proof.

PROOF. We prove the undecidability by reducing the halting problem of two-counter machines (or Minsky machines) to our
problem. Given a machineM, we define a regular languageR and a finite union of conjunctive queriesϕ such that any data
tree satisfying the constraints given byR and the negation ofϕ is the encoding of an accepting run of the machine.

The machineM has no accepting run iffq∅ ⊆R ϕ whereq∅ is the trivial query which is always true.

In the following, we define precisely the encoding of accepting runs into a data trees and explain how to build the language
R and the queryϕ.

A two-counter machineM is a finite state machine equipped with two counters (ra andrb) initially set to zero. A transition of
the machine non-deterministically increments one of the counters and changes its current state; decrements one of the counters
and changes its current state (with the restriction that thevalue of a counter cannot be negative); or checks whether a counter
is zero and changes state depending on the result.
A run of the machine is a sequencec0δ1c1 · · · δncn where eachci are configurations of the machine,δi are transitions and the
evolution of the current state and the counter values is consistent with the transitions along the run. A run is acceptingif it
starts from the initial state with both counters being zero and end up in an accepting state. Deciding whether a two-counter
machine has an accepting run is undecidable.

Let us define the finite alphabetΣ = {r, c, a, b, $} ∪ {δ|δ represents a transition of the machine}. Without loss of generality
we can assume that the information inδ for zero-test transitions includes the result of the test sothat given suchδ, we know
what is the next state of the machine and whether the checked-counter should be zero or strictly positive.

A data tree is an encoding of a runc0δ1c1 · · · δncn is respect the following constraints:

The global structure of the tree is described in Figure 9(a).Under the root labeledr, the tree contains a branch where nodes
are labeled by the transitionsδ1, . . . , δn ending with a leaf labeled$. Each of these nodes (but the leaf) branches to a subtree
encoding the value of the counters in the corresponding configuration. The root of this subtree is labeledc and it is made of
two branches (see Figure 9(b)). If the counter first counter has valuera, one branch is a sequence ofra + 1 nodes labeleda
and ends with a final$-leaf. Similarly the other branch is a sequence ofrb + 1 nodes labeledb and ends with a$-leaf whererb
is the value of the second counter.

The data values will allow us to control the evolution of the counters between consecutive configurations. In order to do so,
we need to guarantee a certain structure and continuity of the values in the tree. (1) We impose that within anya-branch (resp
b-branch), eacha-node (resp.b-node) has a different data value. (2) Given two consecutivea-branches (resp.b − branches)
containing respectivelyn andm nodes withn ≤ m, the sequence of data attached to the firstn nodes is the same in both
a-branches (resp. b-branches).2

2The only relevant values will be the one ina-nodes andb-nodes. In particular, we don’t impose any data-constraints for the other nodes.
Thus we have several possible encodings of one run but we knowthat each accepting run has at least one encoding
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Figure 9: The structure of an encoding of a run

We now need to build a regular tree languageR using the finite alphabetΣ and a union of queriesϕ such that a data tree
satisfies the constraints given byR and the negation ofϕ iff it is an encoding of an accepting run of the machine.

The languageR ensures the general structure of the tree, the labeling of the nodes. It also ensures that the sequence of
transitions respects the machine’s rules in terms of succession of control states, initial and final configurations. Additionally,
we encode inR the behaviour of zero-test transitions (a counter is zero iff the corresponding branch has exactly onea-node
(resp.b-node)). All these constraints are regular properties of the trees so we can encode them into a regular tree automaton.

The union of queriesϕ = ϕa ∪ϕb is used to ensure the constraints on data values and the correct evolution ofa-branch (resp
b-branch) between consecutive configurations (that is the evolution of the counters along the corresponding run).

We show how to buildϕa corresponding to the first counter. The formulaϕb can be constructed similarly. Intuitivelyϕa

describes all the behaviour that violates the proper evolution of thea-branches.

The evolution of thea-branches is correct in a data tree that satisfies the regularconstraintsR iff:

1. in any configuration tree, the data values in thea-branches are all different and if twoa-nodes correspond to the same
position in two successive configuration trees, they share the same data value;

2. and in between two consecutive configuration trees, the length of thea-branches change according to the current transition.

The first item can be enforced by negating the formulaϕa
struct := qa ∪ qfirst ∪ qcont where each query is defined below.

Forbiddingqa ensures that in any configuration tree, the data values in thea-branches are all different and forbidding the query
qfirst ∪ qcont ensure the continuity of the sequences of data in between twoconsecutive configuration trees.

For each query, we give also a graphical representation thatmay be easier to parse.

qa := ∃x a(x)/_//a(x) can also be represented as∃x

a(x)

_

a(x)
∗

qfirst := ∃x, y _/[_/c/a(x), c/a(y)] ∧ x 6= y can also be seen as ∃x, y

_

_

c

a(x)

c

a(y)

with x 6= y



qcont := ∃x, y, z _/[_/c//a(x)/a(y), c//a(x)/a(z)] ∧ y 6= z can also be seen as ∃x, y, z

_

_

c

a(x)
∗

a(y)

c

a(x)
∗

a(z)

with y 6= z

The second item can be enforced by forbidding the union ofϕa
δ for all transitionδ. Recall that the behaviour of zero-test

transitions has already been encoded into the regular languageR. There are three cases : eitherδ increments the first counter,
either it decrements the first counter or it lets it unchanged.

First assume thatδ is a transition that increments the first counter. Forbidding the formulaϕa
δ := qa≤0

δ ∪ qa≥2
δ defined below

ensures that in between two consecutive configurations driven by the transitionδ the first counter has been incremented by one.
Intuitively qa≤0

δ is true if the first counter has been decremented or is unchanged andqa≥2
δ is true if the first counter has been

incremented at least twice.

πa≤0
δ (x) := δ/[_/c//a(x)/$, c//a(x)//$] can also be seen as

δ

_

c

a(x)
∗

$

c

a(x)
∗

$

∗

πa≥2
δ (x) := δ/[_/c//a(x)/a/a//$, c//a(x)/$] can also be seen as

δ

_

c

a(x)
∗

a

a

$

∗

c

a(x)
∗

$

Similarly if δ is a transition that decrements the first counter. Forbidding the formulaϕa
δ := qa≥0

δ ∪ qa≤2
δ defined below

ensures that in between two consecutive configurations driven by the transitionδ the first counter has been decremented by
one. Intuitivelyqa≥0

δ is true if the first counter has been incremented or is unchanged andqa≤0
δ is true if the first counter has

been decremented at least twice.

πa≥0
δ (x) := δ/[_/c//a(x)//$, c//a(x)/$] and πa≤2

δ (x) := δ/[_/c//a(x)/$, c//a(x)/a/a//$]

Finally if δ is a transition that neither increments or decrements the first counter, forbidding the formulaϕa
δ := qa≥1

δ ∪ qa≤1
δ

defined below ensures that in between two consecutive configurations driven by the transitionδ the first counter hasn’t changed.
Intuitively qa≥1

δ is true if the first counter has been incremented andqa≤1
δ is true if the first counter has been decremented.

πa≥1
δ (x) := δ/[_/c//a(x)/a/$, c//a(x)/$] and πa≤1

δ (x) := δ/[_/c//a(x)/$, c//a(x)/a/$]

The formulaϕa is now defined asϕa
struct ∪δ ϕ

a
δ .



The last thing to explain is how to transform this formula into a formula where patterns do not use the wildcard. As the
alphabetΣ of relevant labels in finite, this can be done by taking the union for each query that contains wildcard of all possible
queries obtained by replacing the wildcards with some labels fromΣ.

The formulaϕb can be defined the same way as a finite union of queries.

By construction, a data tree satisfies the regular constraints given byR and doesn’t satisfiesϕa ∪ ϕb iff it is an encoding of
an accepting run of the two-counter machine.

Proposition 8.3. The problem CQ⊆(↓,∼) isΠp
2-hard.

PROOF. We proceed by reduction from∀∃3CNF and simply adapt the proof of Theorem 4.2.

Given as input a formulaϕ := ∀p1 . . . ∀pl∃q1 . . . ∃qm
∧

1≤i≤n(li1 ∨ li2 ∨ li3), we construct queriesq6=, q′6= ∈ CQ(↓,∼) such
that:

ϕ is true if and only if q6= ⊆ q′6=.

We use the same alphabet of labels and patternsΠij ’s as in the proof of Theorem 4.2. The queriesq6=, q
′
6= are defined as

follows:

• q6= := ∃x1 . . . ∃xl(
∧

1≤i≤n,1≤j≤3 Πij ∧ V al(0) ∧ V al(1)
∧

1≤k≤l V al(xk))

and

• q′6= := ∃y1 . . .∃ym (
∧

1≤i≤m V al(yi) ∧
∧

1≤j≤n ∃z∃z′ ( Cl(cj)/L(z)/P (0)/Oc(0)

∧ Cl(cj)/L(z)/P (z′)/Oc(1) ∧ z′ 6= 0

∧
∧

1≤k≤m Cl(dj)/L(z1)/Q(qk)/Oc(yk)))

The reduction is a straightforward adaptation of the proof of Theorem 4.2. As before, any modelT of the first query will be
considered to encode a valuation of thepi’s. This time, the valuation will be defined as follows: ifxi is interpreted by0 in T ,
thenv(pi) = 0, otherwisev(pi) = 1. In this way, every possible valuation of thepi’s will be encoded by a different model of
the first query.


