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Abstract
Answering queries over incomplete data is ubiqui-
tous in data management and in many AI applica-
tions that use query rewriting to take advantage of
relational database technology. In these scenarios
one lacks full information on the data but queries
still need to be answered with certainty. The cer-
tainty aspect often makes query answering unfeasi-
ble except for restricted classes, such as unions of
conjunctive queries. In addition often there are no,
or very few, certain answers, thus expensive com-
putation is in vain. Therefore we study a relax-
ation of certain answers called best answers. They
are defined as those answers for which there is no
better one (that is, no answer true in more possi-
ble worlds). When certain answers exist the two
notions coincide. We compare different ways of
casting query answering as a decision problem and
characterise its complexity for first-order queries,
showing significant differences in the behaviour of
best and certain answers. We then restrict attention
to best answers for unions of conjunctive queries
and produce a practical algorithm for finding them
based on query rewriting techniques.

1 Introduction
Answering queries over incomplete databases is crucial in
many different scenarios such as data integration [Lenzerini,
2002], data exchange [Arenas et al., 2014], inconsistency
management [Bertossi, 2011], data cleaning [Geerts et al.,
2013], ontology-based data access (OBDA) [Bienvenu and
Ortiz, 2015], and many others. The common thread run-
ning through all these applications lies in computing cer-
tain answers [Amendola and Libkin, 2018; Libkin, 2018a],
which is the standard way of answering queries over incom-
plete databases. Intuitively this produces answers that can
be obtained from all the possible complete databases a given
incomplete database represents. However, computing such
query answers then relies on sophisticated algorithms that are
often difficult to implement. It is well known that restricting
to unions of conjunctive queries allows to overcome the diffi-
culty by using naı̈ve evaluation [Imieliński and Lipski, 1984].
This amounts to evaluating queries over incomplete databases

as if nulls were usual data values, thus merely using the stan-
dard database query engine to compute certain answers.

In general though it is a common occurrence that few if
any certain answers can be found. If there are no certain an-
swers, it is still useful to provide a user with some answers,
with suitable guarantees. To address this need, a framework
to measure how close an answer is to certainty has recently
been proposed [Libkin, 2018b], setting the foundations to
both a quantitative and a qualitative approach. We focus on
the qualitative notion of best answers. Those are a refinement
of certain answers based on comparing query answers; one
that is supported by a larger set of complete interpretations is
better. Best answers are those answers for which there is no
better one. They always exist and when certain answers exist
the two notions simply coincide.

Best answers is a natural notion, but we still know little
about it. Identifying the set of best answers among some
given family of sets of answers is known to be complete in
data complexity for the class PNP[logn], which is considered
as “mildly” harder than both NP and CONP. However this
very formulation of the decision problem is non standard.
Traditionally, in databases we rather focus on problems stat-
ing that some given result belongs to the set of answers, or
that some given set is the set of answers. Certain answers as a
decision problem is typically formulated in the first way. So
do these variations matter ? We fully answer the question for
both best and certain answers of first-order queries, showing
significant differences in their computational behaviour.

Despite the high complexity of finding best answers in gen-
eral, one gains tractability when restricting to unions of con-
junctive queries. This is a common class of queries, usu-
ally well behaved computationally, even for certain answers.
Finding best answers for them was shown to be tractable in
[Libkin, 2018b] via an adaptation of techniques used in the
context of certain answers [Gheerbrant and Libkin, 2015].
Those are essentially resolution based algorithms for first-
order formulas; this makes them hard to implement in the
database context. To overcome this we develop new query
rewriting techniques. In particular we show that best an-
swers to any union of conjunctive queries can be computed
by issuing a new first-order query directly on the incomplete
database. Query rewritings are standard in the context of, e.g.,
consistent query answering, OBDA, query answering using
views etc., i.e., all contexts where only partial information is



available about the data to be queried [Calvanese et al., 2000;
Calvanese et al., 2007; Calı̀ et al., 2013; Calı̀ et al., 2003b].
First-order rewritings are particularly useful, as they allow to
use the power of standard database query engines. In fact
when they exist, the rewritten queries can be implemented in
any relational query engine by expressing them in SQL, with
no need to implement ad-hoc algorithms.

2 Preliminaries
We represent missing information in relational databases
in the standard way using nulls [Abiteboul et al., 1995;
Imieliński and Lipski, 1984; van der Meyden, 1998].
Databases are populated by constants and nulls, coming re-
spectively from two countably infinite sets Const and Null.
We denote nulls by ⊥, sometimes with sub- or superscript.
We also allow them to repeat, thus adopting the model of
marked nulls, as customary in the context of applications
such as OBDA or data integration and exchange. A relational
schema, or vocabulary σ, is a set of relation names with asso-
ciated arities. A databaseD over σ associates to each relation
name of arity k in σ, a k-ary relation which is a finite subset
of (Const∪Null)k. Sets of constants and nulls occurring inD
are denoted by Const(D) and Null(D). The active domain of
D is adom(D) = Const(D)∪Null(D). A complete database
has no nulls.

A valuation v : Null(D) → Const on a database D is
a map that assigns constant values to nulls occurring in D.
By v(D) [resp. v(ā)] we denote the result of replacing each
null ⊥ by v(⊥) in D [resp. in the tuple ā]. The seman-
tics [[D]] of an incomplete database D is the set {v(D) |
v is a valuation on D} of all complete databases it can rep-
resent. V(D) denotes the set of all valuations defined on D.

An m-ary query of active domain C ⊆ Const is a map that
associates with a database D a subset of (adom(D) ∪ C)m.
The active domain of a query will be denoted as adom(Q).
To answer a query Q over an incomplete database D we fol-
low [Lipski, 1984; Libkin, 2018b] and adopt a slight gener-
alisation of the usual intersection based certain answers no-
tion. We define the set of certain answers to Q over D as
2(Q,D) = {ā over adom(D) ∪ adom(Q) | ∀v : v(ā) ∈
Q(v(D))}. The only difference with the usual notion is that
we allow answers to contain nulls.

Following [Libkin, 2018b], given a query Q, a database D,
and a tuple ā over adom(D) ∪ adom(Q), we let the support
of ā be the set of all valuations that witness it:

Supp(Q,D, ā) = {v ∈ V(D) | v(ā) ∈ Q(v(D))} .

Supports thus measure how close a tuple is to certainty. We
consider one answer to be better than another if it has more
support. That is, given a database D, a k-ary query Q, and
k-tuples ā, b̄ over adom(D) ∪ adom(Q), we let

ā�Q,D b̄ ⇔ Supp(Q,D, ā) ⊂ Supp(Q,D, b̄) .

The set of best answers to Q over D is defined as the set of
answers for which there is no better one : Best(Q,D) = {ā |
¬∃b̄ : ā�Q,D b̄}.

We focus on first-order (FO) queries of vocabulary σ writ-
ten here in the logical notation using Boolean connectives

∧,∨,¬ and quantifiers ∃,∀. We write ϕ(x̄) for an FO-
formula ϕ with free variables x̄. With slight abuse of no-
tation, x̄ will denote both a tuple of variables and the set
of variables occurring in it. The set of constants used by
ϕ is as usual denoted by adom(ϕ), and gives the active do-
main of the associated query. We interpret FO-formulas un-
der active domain semantics, i.e. we consider D as a rela-
tional structure with universe adom(D) ∪ adom(ϕ). Thus
an FO formula ϕ(x̄) represents a query (of active domain
adom(ϕ)) mapping each database D into the set of tuples
{t̄ over adom(D) ∪ adom(ϕ) | D |= ϕ(t̄)}.

To evaluate FO-formulas with free variables we use as-
signments ν from variables to constants in the active domain.
Note that with a little abuse of notation we write D |= ϕ(t̄)
for D |=ν ϕ(x̄) under the assignment ν sending x̄ to t̄.

Here it is important to note that the query associated to
ϕ is a mapping defined on all databases D, possibly with
nulls. If D contains nulls, D |= ϕ(t̄) is to be intended
“naı̈vely”, i.e. nulls of D are treated as new constants
in the domain of D, distinct from each other, and distinct
from all the other constants in D and ϕ. For example the
query ϕ(x, y) = ∃z (R(x, z) ∧ R(z, y)), on the database
D = {R(1,⊥1), R(⊥1,⊥2), R(⊥3, 2)} selects only the tu-
ple (1,⊥2).

We consider the ∃,∧,∨-fragment of FO known as unions
of conjunctive queries and its ∃,∧-fragment known as con-
junctive queries.

Example 2.1. Let Q(x) = ∃y(R(y) ∧ S(y, x)) and D =
{R(⊥1), R(1), S(⊥2,⊥2)}. We have Supp(Q,D,⊥2) =
{v ∈ V(D) | v(⊥2) = 1 or v(⊥1) = v(⊥2)},
Supp(Q,D, 1) = {v ∈ V(D) | v(⊥2) = 1} and
Supp(Q,D,⊥1) = {v ∈ V(D) | v(⊥1) = v(⊥2)}. It
follows that 2(Q,D) = ∅ and Best(Q,D) = {(⊥2)}.

In order to study the complexity of best answer compu-
tation we shall need two classes in the second level of the
polynomial hierarchy. Both of these contain NP and CONP,
and are contained in Σp2 ∩ Πp

2. The class DP consists of lan-
guages L1 ∩L2 where L1 ∈ NP and L2 ∈ CONP. This class
has appeared in database applications [Fagin et al., 2005;
Barceló et al., 2014]. The class PNP[logn] consists of prob-
lems that can be solved in polynomial time with a logarithmic
number of calls to an NP oracle [Eiter and Gottlob, 1997].
Equivalently, it can be described as the class of problems
solved in P with an NP oracle where calls to the oracle are
done in parallel, i.e., independent of each other. This class
has appeared in the context of AI, modal logic, OBDA [Got-
tlob, 1995; Eiter and Gottlob, 1997; Calvanese et al., 2006;
Bienvenu and Bourgaux, 2016], data exchange [Arenas et al.,
2013].

3 Complexity of Best and Certain Answers

A natural way to cast computing best answers as a decision
problem would be to proceed along the lines of certain an-
swers [Imieliński and Lipski, 1984] and ask whether a given
tuple is a best answer :



PROBLEM: BESTANSWER
INPUT: A query Q, a database D,

a tuple ā
QUESTION: Is ā ∈ Best(Q,D)?

Instead, [Libkin, 2018b] considers the following variant of
the problem, asking whether the set of best answers belongs
to a specified family of sets :

PROBLEM: BESTANSWER∈

INPUT: A query Q, a database D,
a family X of sets of tuples

QUESTION: Is Best(Q,D) ∈ X ?

This suggests yet another alternative formulation of the
problem, asking if a given set is the best answer :

PROBLEM: BESTANSWER=

INPUT: A query Q, a database D,
a set X of tuples,

QUESTION: Is Best(Q,D) = X?

BESTANSWER∈ was shown in [Libkin, 2018b] to be
PNP[logn]-complete in data complexity. We show that the
other alternatives are computationally equivalent. Interest-
ingly, the situation is very different with certain answers, as
we show next.

Theorem 3.1. For FO queries the problems
BESTANSWER and BESTANSWER= are PNP[logn]-complete
in data complexity.

Proof (sketch). The upper bound for BESTANSWER= im-
mediately follows from the upper bound for
BESTANSWER∈ (take the family X to be a singleton
{X}). As for BESTANSWER we only need a slight modifica-
tion of the upper bound proof in [Libkin, 2018b]. To check
whether ā ∈ Best(Q,D) we proceed as follows. Since the
query is fixed, and has therefore fixed arity k, in polynomial
time we can enumerate all the k-tuples of adom(D). Then,
using parallel calls to the NP oracle, we can check for each
such tuple b̄ whether Supp(Q,D, ā) ⊆ Supp(Q,D, b̄)
and whether Supp(Q,D, b̄) ⊆ Supp(Q,D, ā). With this
information, in polynomial time we know whether ā �Q,D b̄
for some b̄.

We prove the two remaining lower bounds, reducing from
the same PNP[logn]-complete problem [Wagner, 1990]: given
an undirected graph G, is its chromatic number χ(G) odd?
With each undirected graph G = 〈N,E〉 with nodes N and
edges E, we associate a database DG over binary relations
L,E and unary relations C,O as follows. We use a null ⊥n
in DG for each node n of G. For each edge {n, n′} of G,
we have pairs (⊥n,⊥n′) and (⊥n′ ,⊥n) in the relation E of
DG. In relation C we have m constants {c1, . . . , cm} (intu-
itively representing possible colors), where m is the number
of nodes of G. Relation O of DG is defined as {ci | i is odd}
and L is a linear ordering on them, i.e., (ci, cj) ∈ L iff i ≤ j,
for i, j ≤ m.

Remark that any valuation v of DG that maps each null
into a constant of C represents an assignment of colours in

{c1, . . . , cm} to nodes of G. Then we define a query

ϕ(x) =

C(x)
∧ ∀y, z

(
E(y, z)→ L(y, x)

)
∧ ∀y

(
L(y, x)→ ∃z E(y, z)

)
∧ ¬∃y E(y, y) .

For any valuation v, ϕ(c) holds in v(DG) iff 1) c = cj for
some j = 1..m (ensured by the first conjunct). 2) For such
a cj , the valuation v maps each null into {c1, . . . , cj} (sec-
ond conjunct), i.e. v represents an assignment of colours to
nodes of G, using at most the first j colours. 3) Each color
{c1, . . . , cj} is used by v, i.e. v represents an assignment of
colours to nodes ofG, using precisely the first j colours (third
conjunct). 4) There are no loops in E (fourth conjunct).

Thus, for a valuation v, the formula ϕ(cj) is true in v(DG)
iff v represents a colouring of G using precisely the first j
colours {c1, . . . , cj} (which in the sequel we refer to as an
exact j-colouring of G).

Next we define :
Q(x) = C(x) ∧ ( ϕ(x)∨

∃y (O(y) ∧ L(x, y) ∧ ϕ(y)) )
For a valuation v, we have thatQ(ci) holds in v(DG) iff ei-

ther v represents an exact i-coloring of G; or v represents an
exact j-coloring of G with j odd, and i ≤ j. In other words
valuations representing exact j-colorings, with j even, sup-
port only the maximal color cj ; while valuations representing
exact j-colorings, with j odd, support all colors {c1...cj}.

With this in place we can conclude the reduction for the
BESTANSWER problem :

Claim. c1 ∈ Best(Q,DG) iff the chromatic number of G
is odd.

An adaptation of this encoding can be used to reduce the
odd chromatic number problem to BESTANSWER= as well.

Now that we showed that all three formulations of best
answers actually collapse computationally, another natural
question arises. Does a similar result hold for certain an-
swers ? We obtain the decision problems CERTAINANSWER,
CERTAINANSWER= and CERTAINANSWER∈ by replacing
everywhere in the statements of the above decision problems
BESTANSWER by CERTAINANSWER and Best(Q,D) by
2(Q,D). It is well known that data complexity of CER-
TAINANSWER is CONP-complete for FO-queries [Abiteboul
et al., 1991]. We complete the picture as follows.

Theorem 3.2. For FO queries, CERTAINANSWER= is DP -
complete and CERTAINANSWER∈ is PNP[logn]-complete in
data complexity.

Proof. To prove membership of CERTAINANSWER= in DP ,
notice that for a query Q, this problem is the intersection
of two languages L1 ∩ L2 where L1 = {(D,X) | X ⊆
2(Q,D)} andL2 = {(D,X) |X ⊆ 2(Q,D)}. L1 is known
to be in CONP : we guess a tuple ā ∈ X and a valuation
v ∈ V (D) with v(ā) 6∈ Q(v(D)). Similarly, L2 is in NP :
we guess a tuple b̄ ∈ X and a valuation v′ ∈ V (D) with
v′(b̄) ∈ Q(v(D)).



Type of problem ā ∈ Answer X = Answer Answer ∈ X
Certain Answer coNP-complete [Abiteboul et al., 1991] DP complete PNP[logn]-complete
Best Answer PNP[logn]-complete PNP[logn]-complete PNP[logn]-complete [Libkin, 2018b]

Figure 1: Summary of data complexity results for FO queries

To prove membership of CERTAINANSWER∈ in PNP[logn],
suppose the query Q is k-ary, and we are given a family of
sets of k-ary tuples X = {X1, . . . , Xn} and a database D.
For each Xi ∈ X , we use the NP oracle to decide in parallel
whether Xi = 2(Q,D) (for each Xi the two calls to the
oracle do not depend on each other and they can also be done
in parallel).

For DP -hardness, we reduce from the problem of check-
ing whether χ(G), the chromatic number of an undirected
graph G, equals 4 [Rothe, 2003] and for PNP[logn] -hardness,
we reduce from the related problem of checking whether
χ(G) is odd. With such a graph G, we associate the same
database DG as in the proof of Theorem 3.1. Using the exact
coloring formula ϕ in the proof of Theorem 3.1, we define a
query

Q(x) := C(x) ∧ ∀y (ϕ(y)→ L(x, y))

We claim that 2(Q,D) = {c1, . . . , cn} iff χ(G) = n,
which entails 2(Q,D) = {c1, . . . , c4} iff χ(G) = 4 and
2(Q,D) ∈ {{c1, . . . , cj} | j is odd and 1 ≤ j ≤ |G|} iff
χ(G) is odd. Recall that v(DG) |= ϕ(ci) iff ci is a color
in {c1, ..., c|G|} and v represents an exact i-coloring of the
graph. Now v(DG) |= Q(cj) iff cj is a color and there is no
i < j such that v represents an exact i-coloring of the graph,
which holds exactly whenever cj ∈ {c1, ..., cχ(G)}.

4 First-Order Rewritings for Best Answers
Considering arbitrary FO-queries brought us an intrinsic in-
tractability result for all variants of best answers. This moti-
vates restricting to unions of conjunctive queries, for which
a polynomial time evaluation algorithm (in data complexity)
already exists [Libkin, 2018b]. The resolution based pro-
cedure is however in sharp contrast with naı̈ve evaluation,
which allows to compute certain answers to unions of con-
junctive queries via usual model checking. We thus initiate a
descriptive complexity analysis of the best answers problem,
showing that for unions of conjunctive queries, it can essen-
tially be reduced - modulo a preprocessing of the query - to
(naı̈ve) evaluation of an FO-formula.

Given a union of conjunctive queries Q, our starting
point towards an FO-rewriting for best answers is finding
an FO-formula Q⊆(x̄, ȳ) encoding the inclusion of sup-
ports, i.e. selecting tuples s̄, t̄ over adom(D) ∪ adom(Q) iff
Supp(Q,D, s̄) ⊆ Supp(Q,D, t̄). From Q⊆ one can easily
define an FO-formula selecting precisely all best answers to
Q on D:

bestQ(x̄) := ∀ȳ(Q⊆(x̄, ȳ)→ Q⊆(ȳ, x̄)) (1)
We start by putting each conjunctive query in a normal

form which eliminates repetition of variables, by introducing
new equality atoms.

Definition 4.1 (NRV normal form). A conjunctive queryQ is
in non repeating variable normal form (NRV normal form) if
it is of the form Q(x̄) = ∃ȳ, z̄ (q(ȳ, z̄) ∧ e(ȳ, z̄) ∧ x̄ = z̄)
where variables in x̄ȳz̄ are pairwise distinct, x̄ and z̄ have
the same length, and:

• q(ȳ, z̄) is a conjunction of relational atoms, where each
free variable in ȳ, z̄ has at most one occurrence in q,

• e(ȳ, z̄) is a conjunction of equality atoms, possibly using
constants.

We say that q(ȳ, z̄) is the relational subquery of Q, and
e(ȳ, z̄) ∧ x̄ = z̄ is the equality subquery of Q.

Example 4.2. The query Q(x) from Example 2.1 is equiva-
lent to ∃y1y2z(R(y1) ∧ S(y2, z) ∧ y1 = y2 ∧ z = x), which
is in NRV normal form.

Clearly every conjunctive query Q is equivalent to a query
in NRV normal form; moreover Q can be easily rewritten in
NRV normal form (in linear time in the size of the query).
Thus in what follows we assume w.l.o.g. that conjunctive
queries are given in NRV normal form. Intuitively the NRV
normal form allows us to separate the two ingredients of a
conjunctive query : the existence of facts in some relations of
the database on the one side, and a set of equality conditions
on data values occurring in these facts, on the other side. The
existence of facts does not depend on the valuation of nulls,
and thus can be directly tested on the incomplete database.
Instead equality atoms in an NRV normal form imply condi-
tions that valuations need to satisfy in order for the query to
hold. We can thus first concentrate on the support of equality
subqueries. This will be encoded in FO and then integrated
in the rewriting of the whole conjunctive query.

We introduce a notion of equivalence of database elements
w.r.t. to a set of equalities. Intuitively equivalent elements
of a tuple t̄ are the ones which should be collapsed into a
single value in order for a valuation of t̄ to satisfy all the given
equalities.

Definition 4.3. Given a database D, a conjunction of equal-
ity atoms γ(ȳ) and an assignment ν : ȳ ∪ adom(γ) →
adom(D)∪adom(γ) preserving constants, we say that u, u′ ∈
adom(D) ∪ adom(γ) are equivalent w.r.t. γ and ν and write
u ≡νγ u′, if either u = u′ or (u, u′) belongs to the reflexive
symmetric transitive closure of {(ν(x), ν(w)) | x = w ∈ γ}.

The relation ≡νγ is clearly an equivalence relation over
adom(D) ∪ adom(γ), where each element outside the range
of ν forms a singleton equivalence class.

Example 4.4. Let γ be x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧
x6 = 1. Let ν assign ⊥i to xi for i ≤ 5, and ⊥5 to x6. The
equivalence classes of ≡νγ are {⊥i | i ≤ 3} and {1,⊥4,⊥5},
plus one singleton for each other domain element.



In what follows we denote by ∼γ the reflexive symmetric
transitive closure of {(x,w) | x = w ∈ γ}. Note that this is
an equivalence relation among variables and constants of γ.

We will be using the following formula to provide a syntac-
tic characterisation of ≡νγ , where m is the number of equiva-
lence classes of ∼γ : 1

equivγ(ȳ, z, z′) := z = z′ ∨∨
u1,v1...um,vm∈ ȳ ∪ adom(γ) |

ui∼γvi for all 1≤i≤m

(z = u1 ∧ z′ = vm ∧
∧

1≤i<m

vi = ui+1)

Proposition 4.5. Given an incomplete database D, a con-
junction of equality atoms γ(ȳ) and an assignment ν(ȳ) = t̄
over adom(D)∪adom(γ), given s, s′ in t̄∪adom(γ), we have
that D |= equivγ(t̄, s, s′) if and only if s ≡νγ s′.

Intuitively this holds because each disjunct of
equivγ(t̄, s, s′) corresponds to a possible derivation of
(s, s′) in the reflexive symmetric transitive closure of
{(ν(x), ν(w)) | x = w ∈ γ}, and one can prove that there is
a bound only depending on γ on the number of steps of this
derivation.
Example 4.6. Let γ := y1 = y2 ∧ z = x be the equality sub-
query of the query Q(x) in Example 4.2. Up to logical equiv-
alence, equivγ(y1, y2, z, x, w,w

′) contains precisely the dis-
juncts w = w′, w = y1 ∧ w′ = y2, w = z ∧ w′ = x,
w = y1 ∧ w′ = x ∧ y2 = z, plus all disjuncts obtained
from them by applying one or more of the following trans-
formations : switch w and w′, switch y1 and y2, switch
x and z. Let D be the database from Example 2.1, then
we have for instance D |= equivγ(1,⊥2,⊥2, 1, a, a

′) and
D |= equivγ(1,⊥2,⊥2,⊥2, a, a

′) for all a, a′ ∈ {1,⊥2}.
Similarly D |= equivγ(⊥1,⊥2,⊥2, 1, a, a

′) for all a, a′ ∈
{1,⊥1,⊥2}.

As a consequence of Proposition 4.5, for fixed γ and t̄,
the relation {(s, s′) | D |= equivγ(t̄, s, s′)} is an equiva-
lence relation over adom(D) ∪ adom(γ) where each element
of adom(D) neither in t̄ nor in adom(γ) forms a singleton
equivalence class.

The formula equivγ is a key ingredient towards a rewriting
of a conjunctive query; in fact, as formalized in the following
lemma, it selects precisely the pairs of elements of a tuple that
a valuation needs to collapse to satisfy a set of equalities.
Lemma 4.7. Let γ(ȳ) be a conjunction of equality atoms, D
a database and ν(ȳ) = t̄ an assignment over adom(D) ∪
adom(γ). Assume v is a valuation of nulls. Then v(D) |=
γ(v(t̄)) if and only if v(s) = v(s′) for all s, s′ such that D |=
equivγ(t̄, s, s′).
Example 4.8. Let γ and ν be as in Example 4.4, then
Lemma 4.7 implies that a valuation v(D) |= γ(v(t̄)) iff
v(⊥i) = v(⊥j) for all i, j = 1..3, and v(⊥i) = 1 for all
i = 4, 5.

Formulas we write in the remainder of this section are over
signature σ ∪ Null, where σ is the database schema. In any

1Queries we write in the sequel can be domain dependent. So it
is important to recall that we always use active domain semantics.

incomplete database D over σ ∪Null, Null is always inter-
preted by the set of nulls occurring in D (in accordance with
the semantics of the SQL construct IS NULL). I.e. we allow
rewritings to test whether a database element is null or not.

For γ(ȳ) a conjunction of equality atoms, using equivγ we
define a new formula compγ(ȳ) stating the existence of a val-
uation that collapses all equivalent elements of a tuple:

compγ(ȳ) :=

∀zz′(equivγ(ȳ, z, z′) ∧ ¬Null(z) ∧ ¬Null(z′)→ z = z′)

Notice that if D |= compγ(t̄) then for each s ∈
adom(D)∪ adom(γ) there exists at most one constant c such
that D |= equivγ(t̄, s, c). In fact if for constants c1 and c2,
D |= equivγ(t̄, s, c1) and D |= equivγ(t̄, s, c2), by transitiv-
ity D |= equivγ(t̄, c1, c2), implying c1 = c2.

Example 4.9. Let D and γ be as in Example 4.6. Con-
sider compγ(y1, y2, z, x). Given the tuples selected by
equivγ in Example 4.6, we can conclude that D |=
compγ(1,⊥2,⊥2, 1).

Proposition 4.10. Let γ(ȳ) be a conjunction of equality
atoms, D a database and ν(ȳ) = t̄ an assignment over
adom(D)∪adom(γ), thenD |= compγ(t̄) if and only if there
exists a valuation v of nulls such that v(D) |= γ(v(t̄)).

We are now ready to define a formula capturing the in-
clusion of supports between two conjunctions of equality
atoms, which will be a crucial ingredient in our rewriting.
Let γ(x̄) and γ′(ȳ) be conjunctions of equality atoms with
adom(γ) = adom(γ′). We define :

implyγ,γ′(x̄, ȳ) :=

∀zz′ (equivγ′(ȳ, z, z′)→ equivγ(x̄, z, z′))

Example 4.11. Let γ and D be as in Example 4.6. Let
γ′ := y′1 = y′2 ∧ z′ = x′, then it follows from Example
4.6 that D |= implyγγ′(⊥1⊥2⊥21, 1⊥2⊥2⊥2) and D |=
implyγγ′(1⊥2⊥21, 1⊥2⊥2⊥2).

Using Proposition 4.10 and Lemma 4.7 we obtain :

Proposition 4.12. Let γ(x̄), γ′(ȳ) be conjunctions of equality
atoms with adom(γ) = adom(γ′), D a database and ν(ȳ) =
t̄, ν′(ȳ) = t̄′ assignments over adom(D) ∪ adom(γ). Then
D |= implyγ,γ′(t̄, t̄′) ∨ ¬compγ(t̄) iff for all valuations v,
v(D) |= γ(v(t̄)) implies v(D) |= γ′(v(t̄′)).

By combining Propositions 4.12 and 4.10 we also get :

Corollary 4.13. Let γ(ȳ), γ′(ȳ) be conjunctions of equality
atoms with adom(γ) = adom(γ′), D a database and ν(ȳ) =
t̄, ν′(ȳ) = t̄′ assignments over adom(D) ∪ adom(γ). If D |=
compγ(t̄) ∧ implyγ,γ′(t̄, t̄′), then D |= compγ′(t̄′).

We now go back to an arbitrary union of conjunctive
queries of vocabulary σ in NRV-normal form :

Q(x̄) :=
∨

1≤i≤n

Qi(x̄)

where each Qi is in NRV-normal form with relational sub-
query qi(ȳi, z̄i) and equality subquery eqi(x̄, ȳi, z̄i).



Lemma 4.14. Let D be a database, v a valuation of D and
Q(x̄) a union of conjunctive queries in NRV-normal form,
then v ∈ Supp(Q,D, r̄) if and only there exists i, s̄ and t̄ such
that D |= qi(s̄, t̄) ∧ compeqi(r̄s̄t̄) and v(D) |= eqi(v(r̄s̄t̄)).

We are now ready to define the FO-formula encoding the
inclusion of supports.

Q⊆(x̄, x̄′) :=
∧

1≤i≤n

(∀ȳz̄((qi(ȳ, z̄) ∧ compeqi(x̄, ȳ, z̄))→∨
1≤j≤n

∃ȳ′z̄′(qj(ȳ′, z̄′) ∧ implyeqi,eqj (x̄ȳz̄, x̄′ȳ′z̄′)) ) )

Combining Lemmas 4.7, 4.14, Propositions 4.10, 4.12 and
Corollary 4.13 we get :
Proposition 4.15. D |= Q⊆(s̄, t̄) iff Supp(Q,D, s̄) ⊆
Supp(Q,D, t̄).

Recall that from Q⊆ one can easily define a first order
rewriting bestQ(x̄) for best answers as in (1).
Theorem 4.16. Given Q a union of conjunctive queries
over schema σ and an incomplete database D, t̄ ∈
Best(Q,D) iff D |= bestQ(t̄).
Example 4.17. For Q,D, γ, γ′ as in Example 2.1 and 4.11 :

Q⊆(x, x′) := ∀y1y2z((R(y1)∧S(y2, z)∧compγ(y1, y2, z, x))

→
∃y′1y′2z′(R(y′1)∧S(y′2, z

′)∧implyγ,γ′(y1y2zx, y
′
1y
′
2z
′x′))).

This allows to derive for instance Supp(Q,D, 1) ⊆
Supp(Q,D,⊥2) (as observed in Example 2.1). In
fact the subquery R(y1) ∧ S(y2, z) ∧ compγ(y1, y2, z, x)
with free variables y1, y2, z, x selects on D tuples
(1,⊥2,⊥2, 1), (⊥1,⊥2,⊥2, 1), and no other tuple with last
element 1. Moreover as shown in Example 4.11

D |= implyγγ′(⊥1⊥2⊥21, 1⊥2⊥2⊥2)

D |= implyγγ′(1⊥2⊥21, 1⊥2⊥2⊥2)

Thus D |= Q⊆(1,⊥2). Similarly one can show D |=
Q⊆(⊥1,⊥2) and therefore D |= bestQ(⊥2).

As a corollary of Theorem 4.16, for a union of conjunc-
tive queries Q one can compute Best(Q,D) by first com-
puting the formula bestQ(x̄) from Q, then evaluating bestQ
on D. Since data complexity of FO query evaluation is
DLOGSPACE (and in particular AC0), this gives the follow-
ing corollary :
Corollary 4.18. For each fixed union of conjunctive queries
Q, the data complexity of BESTANSWER is DLOGSPACE.

Note that it was known from [Libkin, 2018b] that the data
complexity of computing best answers for unions of conjunc-
tive queries is polynomial time. In terms of combined com-
plexity (i.e. when either Q, D and ā are in the input), the
rewriting approach (i.e. the procedure of computing bestQ
fromQ and then evaluating bestQ onD), can be easily shown
to be in PSPACE. In fact it is well known that a first or-
der query ϕ can be evaluated on a database D in space at
most qr(ϕ) log |D| + log|ϕ|, where qr(ϕ) is the quantifier
rank of ϕ. Note that although bestQ has size exponential

in Q, the quantifier rank of bestQ is linear in the size of Q.
Thus whether ā ∈ best(Q,D) can be checked using space
O(|Q|, |D|). Moreover one can easily check that bestQ can
be computed from Q in space polynomial in the size of |Q|.
Since space bounded computations can be composed without
storing the intermediate output, computing bestQ fromQ and
then evaluating bestQ on D can be done overall in PSPACE
in the size of |Q| and |D|. The rewriting approach thus im-
plies a PSPACE upper bound for the combined complexity
of BESTANSWER for unions of conjunctive queries. How-
ever we can show that the problem actually stands in the third
level of the polynomial hierarchy.

Theorem 4.19. For unions of conjunctive queries, combined
complexity of BESTANSWER is Πp

3-complete. Hardness al-
ready holds for conjunctive queries.

Therefore under standard complexity theoretic assump-
tions, our rewriting approach is not optimal in terms of com-
bined complexity, as it is often the case with generic ap-
proaches. However it has the advantage of exploiting stan-
dard FO query evaluation, which despite the PSPACE com-
bined complexity, is highly optimised in database systems
and works well in practice.

5 Future Work
Constraints (e.g., keys and functional dependencies) are
known to raise the complexity of finding certain answers
[Calı̀ et al., 2003a]. They appear in another model of incom-
pleteness - conditional tables [Imieliński and Lipski, 1984]
- that in general leads to higher complexity of query evalu-
ation [Abiteboul et al., 1995] but are nonetheless useful in
several applications [Arenas et al., 2013]. We would like to
explore how our rewriting techniques interact with integrity
constraints.

In another direction, while we focused on FO-rewritings,
we could consider more expressive rewriting languages such
as Datalog or fixed point logics, as it is common in the context
of OBDA, query answering using views, or consistent query
answering [Bienvenu and Ortiz, 2015; Francis et al., 2015;
Bertossi, 2011]. These more expressive logics are likely to
be able to express rewritings of larger classes of queries than
unions of conjunctive queries.

We would also like to investigate how our techniques can
be extended to different semantics of incompleteness. We
used here the closed-world semantics [Abiteboul et al., 1995;
Imieliński and Lipski, 1984; van der Meyden, 1998], in which
data values are the only missing information, but there are
other possible semantics, e.g. needed in order to cope with
data inconsistencies [Calı̀ et al., 2003a], where query rewrit-
ings could still be found.

Finally, we would like to investigate how techniques de-
veloped in this paper could be extended to study rewritings of
certain answers.
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A Proofs
Proof of Theorem 3.1
The upper bound for BESTANSWER= immediately follows from the upper bound for BESTANSWER∈ (take the family X to
be a singleton {X}). As for BESTANSWER we only need a slight modification of the upper bound proof in [Libkin, 2018b]. To
check whether ā ∈ Best(Q,D) we proceed as follows. Since the query is fixed, and has therefore fixed arity k, in polynomial
time we can enumerate all the k-tuples of adom(D). Then, using parallel calls to the NP oracle, we can check for each such
tuple b̄ whether Supp(Q,D, ā) ⊆ Supp(Q,D, b̄) and whether Supp(Q,D, b̄) ⊆ Supp(Q,D, ā). With this information, in
polynomial time we know whether ā�Q,D b̄ for some b̄.

We prove the two remaining lower bounds, reducing from the same PNP[logn]-complete problem [Wagner, 1990]: given an
undirected graph G, is its chromatic number χ(G) odd? With each undirected graph G = 〈N,E〉 with nodes N and edges E,
we associate a database DG over binary relations L,E and unary relations C,O as follows. We use a null ⊥n in DG for each
node n of G. For each edge {n, n′} of G, we have pairs (⊥n,⊥n′) and (⊥n′ ,⊥n) in the relation E of DG. In relation C we
have m constants {c1, . . . , cm} (intuitively representing possible colors), where m is the number of nodes of G. Relation O of
DG is defined as {ci | i is odd} and L is a linear ordering on them, i.e., (ci, cj) ∈ L iff i ≤ j, for i, j ≤ m.

Remark that any valuation v of DG that maps each null into a constant of C represents an assignment of colours in
{c1, . . . , cm} to nodes of G. Then we define a query

ϕ(x) =

C(x)
∧ ∀y, z

(
E(y, z)→ L(y, x)

)
∧ ∀y

(
L(y, x)→ ∃z E(y, z)

)
∧ ¬∃y E(y, y) .

For any valuation v, ϕ(c) holds in v(DG) iff 1) c = cj for some j = 1..m (ensured by the first conjunct); 2) for such a cj , the
valuation v maps each null into {c1, . . . , cj} (second conjunct), i.e. v represents an assignment of colours to nodes of G, using
at most the first j colours. 3) Each color {c1, . . . , cj} is used by v, i.e. v represents an assignment of colours to nodes of G,
using precisely the first j colours (third conjunct). 4) There are no loops in E (fourth conjunct).

Thus, for a valuation v, the formula ϕ(cj) is true in v(DG) iff v represents a colouring of G using precisely the first j colours
{c1, . . . , cj} (which in the sequel we refer to as an exact j-colouring of G).

Next we define :
Q(x) = C(x) ∧ ( ϕ(x)∨

∃y (O(y) ∧ L(x, y) ∧ ϕ(y)) )
For a valuation v, we have that Q(ci) holds in v(DG) iff either v represents an exact i-coloring of G; or v represents an exact

j-coloring of G with j odd, and i ≤ j. In other words valuations representing exact j-colorings, with j even, support only the
maximal color cj ; while valuations representing exact j-colorings, with j odd, support all colors {c1...cj}.

With this in place we can conclude the reduction for the BESTANSWER problem :
Claim. c1 ∈ Best(Q,DG) iff the chromatic number of G is odd.

Proof. . Let χG be the chromatic number of G. Then there exist no exact colorings of G which are prefixes of {c1, . . . cχG},
while {c1, . . . cχG} is an exact coloring of G.

Assume first that χG is even. Then there exist no valuations representing the exact coloring {c1}. Thus the support of c1 is
the set of valuation representing an exact coloring {c1...cj} of G with j odd and j > χG. This support is not maximal, In fact
the support of cχG is :
• the valuations representing the exact coloring {c1...cχG} (there exists at least one);
• the valuations representing an exact coloring {c1...cj} of G with j odd and j > χG.
This support strictly contains the support of c1; in fact valuations in the first item cannot be also in the second.
Assume now that χG is odd. Then the support of c1 is the set of valuations representing an exact coloring {c1...cj} of G with

j odd and j ≥ χG. We show that this set is maximal, i.e. no color ck can have a support strictly containing it.

• if k ≤ χG then the support of ck is the set of valuations representing an exact coloring {c1...cj} of G with j odd, and
j ≥ χG. So same support as c1.
• if k > χG, the support of ck cannot contain the valuations representing {c1, . . . cχG}. There exists at least one such

valuation and it belongs to the support of c1. Thus the support of ck does not contain the support of c1.

We now move to BESTANSWER=. With any undirected graph G we associate a relational structure D′G obtained from DG

by adding a new colour c0 in C with L(c0, ci) for every 0 ≤ i ≤ m. We define a restriction ψ of the original formula ϕ by
disallowing c0 in colourings : to obtain ψ it suffices to replace L(y, x) in ϕ by L(y, x) ∧ y 6= c0, and C(x) by C(x) ∧ x 6= c0.
Thus it is still true that ψ(cj) is true in v(D′G) iff v represents a colouring of G using precisely {c1, . . . , cj}.



We define a new query :

Q′(x) := O(x)∧ (ψ(x) ∨ ∃y (O(y) ∧ L(x, y) ∧ ψ(y))
∨

¬O(x)∧ (ψ(x) ∨ ∃y (O(y) ∧ x+ 2 < y ∧ ψ(y))
∨

¬O(x)∧ ∃y(x 6= y ∧ L(x, y)) ∧ ∀y∀z (E(y, z)
→ (y = c0 ∧ z = c0))

Note that x+ 2 < y is used as a shorthand, as it is definable in our language.

Q′(ci) holds in v(D′G) iff

• either i is odd and v represents an exact j-colouring of G, with j odd and i ≤ j;
• or i is even and :

– either v represents an exact colouring {c1...cj} of G with j odd, and i+ 2 < j;
– or v represents an exact colouring {c1...ci} of G;
– or i < m and v(⊥j) = c0 for all 1 ≤ j ≤ m;

The following claim completes the reduction for BESTANSWER= :
Claim. {ci | i is even} = Best(Q′, D′G) iff χ(G) is even.

Proof. . In the following, we call v0 the unique valuation such that v0(⊥j) = c0 for all 1 ≤ j ≤ m.
First assume that χG is even. For all 0 < i ≤ m odd, Supp(ci) is not maximal as Supp(c0) ⊃ Supp(ci) ∪ {v0}. Hence

Best(Q′, D′G) ⊆ {ci | i is even}, so we show {ci | i is even} ⊆ Best(Q′, D′G). The inclusion holds whenever ci ≥ χ(G),
as Supp(ci) contains all valuations representing exact colorings {c1...ci} of G, while no other Supp(cj) with i 6= j contains
them. Now take ci < χ(G) with i even, then Supp(ci) contains v0 together with all exact odd colourings (if there are any).
First assume that there exists odd exact colourings of G, so there are χ(G) + 1 ones and valuations representing them are not
contained in Supp(χ(G)). Also v0 6∈ Supp(ck) with k odd and k < χ(G). It follows that Supp(ci), which is the union of
v0 and of all valuations representing odd exact colorings is maximal. Now assume that there is no exact odd colouring. This
corresponds to the special case χ(G) = m where Supp(cm) contains only the exact colourings {c1...cm} of G, but not v0 ;
while Supp(cj) = ∅ whenever j odd. In such a case Supp(ci) = {v0} is also maximal.

We assume now χ(G) is odd and show {ci | i is even} 6= Best(Q′, D′G). First notice that Supp(c1) is maximal whenever
χ(G) = 1, as neither Supp(c0), nor any Supp(ci) with i ≥ 2 contain valuations representing the exact {c1} colourings.
So we assume χ(G) ≥ 3, from which it follows that there exists a constant cχ(G)−3 in the active domain which support
contains v0 together with all valuations representing exact odd colourings. As Supp(cχ(G)−1) contains exactly the same set
of valuations, to the exclusion of those representing {c1...cχ(G)} colourings, it follows that Supp(cχ(G)−3) ⊃ Supp(cχ(G)−1)
and so cχ(g)−1 6∈ Best(Q′, D′G).

Proof of Proposition 4.5
Proof. To start with we naturally extend ν to be the identity on adom(γ). Assume first D |= equivγ(t̄, s, s′). If s = s′ then
s ≡νγ s′. Now assume s 6= s′. Then there exist variables and/or constants u1, v1 . . . um, vm ∈ ȳ ∪ adom(γ) with ui ∼γ vi
for all i, such that s = ν(u1), s′ = ν(vm) and ν(vi) = ν(ui+1) for all i < m. Clearly ui ∼γ vi implies ν(ui) ≡νγ ν(vi). Then
ν(ui) ≡νγ ν(ui+1) for all i < m. We conclude by transitivity that s = ν(ui) ≡νγ ν(um) ≡νγ ν(vm) = s′, and therefore s ≡νγ s′.

Assume now that s ≡νγ s′. If s = s′ then clearly D |= equivγ(t̄, s, s′). Thus assume s 6= s′. We proceed by induction on
the number of transitive closure steps needed to derive (s, s′) starting for the base relation {(ν(x), ν(w))|x = w ∈ γ}. In the
base case (s, s′) = (ν(x), ν(w)) for some equality x = w ∈ γ. Then D satisfies the following disjunct of equivγ(t̄, s, s′) :
take u1 = x, v1 = w, ui = vi = w for all i = 2..m (this is a disjunct since ui ∼γ vi for all i = 1..m). The disjunct is satisfied
since s = ν(x) = ν(u1), s′ = ν(w) = ν(vm), and for all i = 1..m− 1, ν(vi) = ν(ui+1) = ν(w).

In the general inductive case, there exists r such that (r, s′) = (ν(x), ν(w)) for some equality x = w (or w = x) ∈ γ, with
s ≡νγ r derived at the previous step. By the induction hypothesis D |= equivγ(t̄, s, r). We can assume s 6= r since otherwise
(s, s′) would be in the base relation. Therefore D satisfies one of the disjuncts of equivγ(t̄, s, r). Then there exists a sequence
of m+ 1 pairs in ȳ ∪ adom(γ)

(u1, v1)(u2, v2) . . . (um, vm)(um+1, vm+1)

such that
• um+1 = x and vm+1 = w,
• ui ∼γ vi, i = 1..m+ 1,



• s = ν(u1), r = ν(vm), s′ = ν(vm+1),
• ν(vi) = ν(ui+1), for all i ≤ m,
We now show that from this sequence of pairs one can construct another one of exactly m pairs, (u′i, v

′
i), i = 1..m still

connecting s ans s′, i.e. such that :
(a) u′i ∼γ v′i, i = 1..m

(b) s = ν(u′1), s′ = ν(v′m)

(c) ν(v′i) = ν(u′i+1), for all i < m.
The idea is to first cut the sequence (ui, vi), i = 1..m+ 1, removing at least one pair, then pad it to size m if necessary.
In order to cut the original sequence, remark that it contains m+ 1 pairs where m is the number of ∼γ equivalence classes.

Thus there exist i < j such that ui ∼γ uj . We remove from the sequence all elements between ui and vj (excluded), the new
sequence is

(u1, v1)...(ui−1, vi−1)(ui, vj)(uj+1, vj+1)...(um+1, vm+1)

Note that this sequence satisfies (a) (b) and (c) above since ui ∼γ uj ∼γ vj . Let the new sequence contain k pairs. We know
k ≤ m because we have removed at least one pair from the original sequence (recall i < j). If k < m we pad the sequence on
the right with m− k pairs (vm+1, vm+1). The new sequence still satisfies (a), (b) and (c), therefore the corresponding disjunct
of equivγ(t̄, s, s′) is satisfied by D.

Proof of Lemma 4.7
Proof. ⇒ Assume v(D) |= γ(v(t̄)) and let s, s′ such that D |= equivγ(t̄, s, s′). By Proposition 4.5, s ≡νγ s′. Hence either
s = s′ and v(s) = v(s′) follows immediately, or there exists a sequence r1 . . . rn of values of ȳ under ν such that r1 = s,
rn = s′ and ∀i < n, ri and ri+1 are values of variables or constants of the same JKγ-equivalence class. We show that ∀i, j,
v(ri) = v(rj). We proceed by induction on i and assume that ∀j > i, v(rj) = v(rn). As ri and ri+1 are values of variables
or constants of the same JKγ-equivalence class, there exist ui1 ∼γ ui2 in ȳc̄ such that ri = ν(ui1) and ri+1 = ν(ui2)). Now as
v(D) |= γ(v(t̄)), by definition of ∼γ , also v(ri) = v(ri+1).
⇐ Assume ∀s, s′, D |= equivγ(t̄, s, s′) implies v(s) = v(s′). We show that ∀y, y′ ∈ ȳc̄ with y ∼γ y′ we have v(ν(y)) =

v(ν(y′)), from which it follows that v(D) |= γ(v(t̄)). Let y, y′ ∈ ȳc̄ with y ∼γ y′ thus ν(y) ≡νγ ν(y′) (here ν is naturally
extended c̄ as the identity). By Proposition 4.5 it follows that D |= equivγ(t̄, ν(y), ν(y′)) and so by assumption v(ν(y)) =
v(ν(y′))

Proof of Proposition 4.10
Proof. ⇒ Assume D |= compγ(t̄). Then ∀c, c′ ∈ t̄ constants, c ≡νγ c′ implies c = c′. As ≡νγ is an equivalence relation,
JK≡νγ -equivalence classes form a partition of t̄c̄. In each JK≡νγ -class there is at most one constant, so we define a valuation
v(t̄c̄) mapping all nulls of a class to the unique constant of that class (or to any constant if the class does not contain any).
We claim that under this valuation v(D) |= γ(v(t̄)). Indeed let w = w′ an equality of γ, then w ∼γ w′, which implies
D |= equivγ(t̄, ν(w), ν(w′)). Then by construction of v, v(ν(w)) = v(ν(w′)), which shows v(D) |= γ(v(t̄, c̄)).
⇐ Assume v(D) |= γ(v(t̄, c̄)). Then partition elements of t̄c̄ according to their v values (all elements of t̄c̄ contained in one

component of the partition having the v same value). Clearly any element of c̄, as well as any constant of t̄ can only belong to
the partition component associated to its value. Therefore in each partition component there is at most one constant value. Now
let s, s′ ∈ t̄ such that D |= equivγ(t̄, s, s′). As v(D) |= γ(v(t̄, c̄)) by Lemma 4.7 we have v(D) |= v(s) = v(s′). Moreover
D |= equivγ(t̄, s, s′) also implies that s and s′ are in the same partition component with respect to v and therefore if s, s′ are
both constants, then s = s′. Hence D |= equivγ(t̄, s, s′) ∧ ¬Null(s′) ∧ ¬Null(s)→ s = s′, i.e., D |= compγ(t̄).

Proof of Lemma A.2
Before we show Lemma 4.12 we first show that, in order to test inclusion of supports of two equality formulas, one can restrict
to single valuations collapsing just what is needed.
Definition A.1 (Tight valuation). Let γ(ȳ) be a conjunction of equality atoms, D a database and ν(ȳ) = t̄ an assignment over
adom(D)∪adom(γ). A valuation v ofD is called tight for ν and γ if, for all s, s′ ∈ adom(D)∪adom(γ), we have v(s) = v(s′)
iff D |= equivγ(t̄, s, s′).

By Lemma 4.7, any tight valuation v∗ for ν and γ satisfies v∗(D) |= γ(v∗(t̄)). It is also easy to see that a tight valuation
for ν and γ exists whenever there is a valuation v with v(D) |= γ(v(t̄)). In fact if such a v exists, by Proposition 4.10,
D |= compγ(t̄). Then for each s ∈ adom(D) ∪ adom(γ) there is at most one constant c such that D |= equiv(t̄, s, c). In
addition we associate to each equivalence class C of the relation {(s, s′) |D |= equivγ(t̄, s, s′)}, a new fresh constant cC outside
adom(D)∪adom(γ). Then a tight valuation v∗ for t̄ and γ can be defined as follows. For s ∈ adom(D), ifD |= equivγ(t̄, s, c),
for some constant c, then v∗(s) = c; otherwise v∗(s) = cC where C is the equivalence class of s. We can also characterise in
terms of tight valuations the fact that for all valuations v, v(D) |= γ(v(t̄))⇒ v(D) |= γ′(v(t̄′)).



Lemma A.2. LetD be a database, γ(ȳ), γ′(ȳ) conjunctions of equality atoms with adom(γ) = adom(γ′), ν(ȳ) = t̄, ν′(ȳ) = t̄′

assignments over adom(D) ∪ adom(γ) and v∗ a tight valuation of D w.r.t. ν and γ. Then v∗(D) |= γ′(v∗(t̄′)) iff for all
valuations v, v(D) |= γ(v(t̄)) implies v(D) |= γ′(v(t̄′)).

Proof. ⇒Assume v∗(D) |= γ′(v∗(t̄′)) and let v be a valuation such that v(D) |= γ(v(t̄)). We want to show v(D) |= γ′(v(t̄′)).
By Lemma 4.7 it is enough to show that ∀s, s′ ∈ t̄′, D |= equivγ′(t̄′, s, s′) implies v(D) |= v(s) = v(s′). So let s, s′ ∈ t̄′ such
that D |= equivγ′(t̄′, s, s′). As v∗(D) |= γ′(v∗(t̄′)), by Lemma 4.7, v∗(D) |= v∗(s) = v∗(s′). Now v∗ is tight w.r.t. ν and γ,
so D |= equivγ(t̄, s, s′). As v(D) |= γ(v(t̄)), by Lemma 4.7 it follows that v(D) |= v(s) = v(s′).
⇐ Assume for all valuations v, v(D) |= γ(v(t̄)) implies v(D) |= γ′(v(t̄′)). By Lemma 4.7, v∗ being tight for ν and γ, we

have v∗(D) |= γ(v∗(t̄)) and so by our assumption v∗(D) |= γ′(v∗(t̄′)).

Proof of Lemma 4.12
Proof. ⇒ Assume D |= implyγ,γ′(t̄, t̄′) ∨ ¬compγ(t̄). If D |= ¬compγ(t̄) then by Proposition 4.10, there is no valuation v
such that v(D) |= γ(v(t̄)) and so the implication trivially holds. Now assume D |= implyγ,γ′(t̄, t̄′), i.e. :

D |= ∀zz′ (equivγ′(t̄′, z, z′)→ equivγ(t̄, z, z′))

We want to show that for all valuations v of nulls such that v(D) |= γ(v(t̄)), one also has v(D) |= γ′(v(t̄′)). So assume
there is such a valuation, then in particular there is one which is tight w.r.t. γ and ν. By Lemma A.2 it is enough to show
that v∗(D) |= γ′(v∗(t̄′)), where v∗ is a tight valuation of D w.r.t. γ and ν ; which by Lemma 4.7, is equivalent to showing
∀s, s′ ∈ t̄, D |= equivγ′(t̄′, s, s′) implies v∗(D) |= v∗(s) = v∗(s′). So take s, s′ ∈ t̄ with D |= equivγ′(t̄′, s, s′). By our
assumption it follows that D |= equivγ(t̄, s, s′)). Hence by definition of tightness we have v∗(D) |= v∗(s) = v∗(s′).
⇐ Assume for all valuations v of nulls such that v(D) |= γ(v(t̄)), one also has v(D) |= γ′(v(t̄′)). By Proposition 4.10, if

there is no such valuation, then D |= ¬compγ(t̄). So assume now there is one such valuation. This entails that in particular,
there exists v∗ which is tight w.r.t. γ and ν. By Lemma A.2 we thus have v∗(D) |= γ′(v∗(t̄′)). Hence, by Lemma 4.7,
∀s, s′ ∈ t̄, D |= equivγ′(t̄′, s, s′) implies v∗(D) |= v∗(s) = v∗(s′). By definition of tightness ∀s, s′ ∈ t̄, D |= equivγ′(t̄′, s, s′)
implies D |= equivγ(t̄, s, s′) and so D |= implyγ,γ′(t̄, t̄′).

Proof of Corollary 4.13
Proof. Assume D |= compγ(t̄) ∧ implyγ,γ′(t̄, t̄′), i.e., D |= ∀zz′ (equivγ(t̄, z, z′) ∧ ¬Null(z) ∧ ¬Null(z′) → z = z′)
and D |= ∀zz′ (equivγ′(t̄′, z, z′) → equivγ(t̄, z, z′)). Now let s, s′ ∈ adom(D) ∪ adom(γ) with D |= equivγ′(t̄′, s, s′) ∧
¬Null(s) ∧ ¬Null(s′). As D |= implyγ,γ′(t̄, t̄′) it follows that D |= equivγ(t̄, s, s′) and so D |= ¬Null(s) ∧ ¬Null(s′)→
s = s′ now follows from D |= compγ(t̄). Hence D |= compγ′(t̄′).

Proof of Lemma 4.14
Proof. ⇐ Assume ∃is̄t̄ D |= qi(s̄, t̄) ∧ compeqi(r̄s̄t̄) and v(D) |= eqi(v(r̄s̄t̄)). By preservation of qi(s̄, t̄) under homomor-
phism we have v(D) |= qi(v(s̄, t̄)). Thus v(D) |= qi(v(s̄, t̄)) ∧ eqi(v(r̄s̄t̄)), i.e., v ∈ Supp(Q,D, r̄).
⇒ Assume v ∈ Supp(Q,D, r̄), i.e., v(D) |= Q(v(r̄)) and so there exist some Qi(x̄) := qi(ȳ, z̄) ∧ eqi(x̄, ȳ, z̄) and tuples

ā, b̄ ∈ Const such that v(D) |= qi(ā, b̄)∧ eqi(v(r̄), ā, b̄). As eqi(x̄, ȳ, z̄) contains z̄ = x̄, we have v(r̄) = b̄. For each atom α in
qi(ā, b̄), fix an arbitrary tuple β inD with v(β) = α. As all variables occurring in qi(ȳ, z̄) are pairwise distinct, the set of all such
β yields an assignment ν sending ȳ, z̄ to adom(D) with D |= qi(ν(ȳ), ν(z̄)). So there exist s̄ = ν(y), t̄ = ν(z) ∈ adom(D)
with v(s̄) = ā, v(t̄) = b̄ and D |= qi(s̄, t̄). By assumption then v(D) |= eqi(v(r̄, s̄, t̄)) and by Proposition 4.10 it follows that
D |= compeqi(r̄s̄t̄) and so D |= qi(s̄, t̄) ∧ compeqi(r̄s̄t̄).

Proof of Lemma 4.15
Proof. ⇒ Assume D |= Q⊆(s̄, t̄) and let v ∈ Supp(Q,D, s̄) be a valuation of D. By Lemma 4.14 ∃iāb̄ D |=
qi(āb̄) ∧ compeqi(s̄āb̄) and v(D) |= eqi(v(s̄āb̄)). So by our assumption there exists j, ā′b̄′ with D |= qj(ā

′b̄′) ∧
implyeqi,eqj (s̄āb̄, t̄ā

′b̄′) and by Corollary 4.13 D |= compeqj (t̄ā
′b̄′). Now let t1, t2 such that D |= equiveqj (t̄ā

′b̄′, t1, t2).
By D |= implyeqi,eqj (s̄āb̄, t̄ā

′b̄′) we have D |= equiveqi(s̄āb̄, t1, t2) and by Lemma 4.7, v(t1) = v(t2). But then, again by
Lemma 4.7, v(D) |= eqi(v(t̄ā′b̄′)) and by Lemma 4.14 it follows that v ∈ Supp(Q,D, t̄).
⇐ Assume Supp(Q,D, s̄) ⊆ Supp(Q,D, t̄) and let i, ā, b̄ with D |= qi(ā, b̄) ∧ compeqi(s̄, ā, b̄). By Proposition 4.10

there exists a valuation v (that we assume w.l.o.g. to be tight) such that v(D) |= eqi(v(s̄āb̄)) and so by Lemma 4.14 v ∈
Supp(Q,D, s̄). Hence by our assumption we also have v ∈ Supp(Q,D, t̄) and so by Lemma 4.14 there exists j, ā′b̄′ with
D |= qj(ā

′b̄′)∧compeqj (t̄ā′b̄′) and v(D) |= eqj(v(t̄ā′b̄′)). As v is tight, by Lemma A.2 it follows from v(D) |= eqj(v(t̄ā′b̄′))

that ∀v with v(D) |= eqi(v(s̄āb̄)), also v(D) |= eqi(v(t̄ā′b̄′)). Now by Proposition 4.12 D |= implyeqi,eqj (s̄āb̄, t̄ā
′b̄′) ∨

¬compeqi(s̄, ā, b̄). But D |= compeqi(s̄, ā, b̄), so D |= ∃ȳz̄( qj(ȳ, z̄) ∧ implyeqi,eqj (s̄āb̄, t̄ȳz̄)).



Proof of Theorem 4.16
Proof. By Proposition 4.15 D |= bestQ(t̄) if and only if ∀sSupp(Q,D, t̄) ⊆ Supp(Q,D, s̄) implies Supp(Q,D, s̄) ⊆
Supp(Q,D, t̄). Notice that this holds exactly whenever ¬∃s̄ with Supp(Q,D, t̄) ⊂ Supp(Q,D, s̄), i.e., whenever t̄ ∈
Best(Q,D).

Proof of Theorem 4.19 (Sketch)
Proof. For membership, first note that one can check in Πp

2 whether Supp(Q,D, ā) ⊆ Supp(Q,D, b̄) on input given by a
database D, a UCQ Q, and tuples ā and b̄. In fact in order to check Supp(Q,D, ā) * Supp(Q,D, b̄) one guesses a valuation
v of D, then calls an NP oracle to check v(ā) ∈ Q(v(D)) and v(b̄) /∈ Q(v(D)).

On input given by a database D, a UCQ Q, and a tuple ā one can check ā /∈ Best(Q,D) as follows. First guess a tuple b̄
over adom(D) of the same arity as ā; then, using two calls to a Σp2 oracle, check that Supp(Q,D, ā) ⊆ Supp(Q,D, b̄) and
Supp(Q,D, b̄) * Supp(Q,D, ā).

For hardness, we reduce from ∀∃∀3DNF , which is known to be Πp
3-complete. We take as input a ∀∃∀3DNF -formula of

the form

F := ∀z1, . . . zl∃x1 . . . xk∀y1 . . . yp

n∨
i=1

conji

where the each conji is a conjunction of 3 (not necessarily distinct) literals over variables z1, . . . zl, x1, . . . , xk, y1, . . . , yp.
We construct a database DF with adom(DF ) = {0, 1, good, bad} ∪ {i, ī,⊥i, ⊥̄i, |i = 1..k}, and a conjunctive query

QF (z1, ..zl, z) such that (0̄, good) ∈ Best(QF , DF ) if and only if F is true.
DF is of signature {S4, C2, A2, B3} as follows :
• The extension of S and A and B are fixed and do not depend on F :

– S contains tuple (1, 1, 1, good), and tuples (b1, b2, b3, good) and (b1, b2, b3, bad) for every b1, b2, b3 ∈ {0, 1} with
(b1, b2, b3) 6= (1, 1, 1). Intuitively S encodes the possible truth assignment of each disjunct of F. Note that only the
satisfying assigment (i.e. (1,1,1)) appears together with the only constant good, all the others appear both with good
and bad.

– A contains only two tuples : (0, 1) and (1, 0). Intuitively A will be used to encode truth values for pairs of literals
(w,¬w), w ∈ y1, . . . yp, z1, . . . zl.

– B contains tuples (0, 0, bad), (1, 1, bad) and tuples (b1, b2, good) and (b1, b2, bad) for every b1, b2 ∈ {0, 1}, b1 6= b2.
Intuitively B encodes assignments for pairs of literals (w,¬w), w ∈ {x1, . . . xk}. Note that here inconsistent pairs
(i.e. same truth value) are possible, but these are the only ones which do not appear together with constant good.

• The extension of C depends on F and contains tuples {(⊥i, i)|i = 1..k} and {(⊥̄i, ī)|i = 1..k}. Intuitively a valuation
(b, i) (resp. (b, ī)) of one of these tuples, with b ∈ {0, 1}, will encode truth value b for the literal xi (resp, ¬xi) of F .

QF is defined as follows. For each variable w of F , the conjunctive query QF will use variables w and w̄ (either quantified
or free). For a literal α of F the corresponding variable of QF will be denoted as enc(α). More precisely if α = w is a positive
literal then enc(α) := w, otherwise if α = ¬w then enc(α) := w̄.

QF (z1, . . . zl, z) := ∃x1, . . . xk, x̄1, . . . x̄k, y1, . . . yp, ȳ1, . . . ȳp, z̄1, . . . z̄p∧
i=1,..k B(xi, x̄i, z) ∧

∧
i=1,..pA(yi, ȳi) ∧

∧
i=1,..lA(zi, z̄i) ∧∧

i=1,..k(C(xi, i) ∧ C(x̄i, ī)) ∧∧
(α1∧α2∧α3)∈F S(enc(α1), enc(α2), enc(α3), z)

We can prove that all tuples of the form (t̄, good) (which we refer to as good tuples) have the same support. This is given by
the set of all consistent boolean valuations (i.e. valuations of ⊥i, ⊥̄i in {0, 1} such that v(⊥i) 6= v(⊥̄i) for all i). Moreover
we can prove that if there exists a (t̄, bad) whose support contains all consistent boolean valuations then the support of (t̄, bad)
strictly contains the support of good tuples. Therefore any good tuple (including (0̄, good)) is a best answer iff for all tuples t̄
there exists a consistent boolean valuation which is not in the support of (t̄, bad). We can finally show that the last holds iff F
is true.
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