
Craig Interpolation for Linear Temporal

Languages�
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Abstract. We study Craig interpolation for fragments and extensions
of propositional linear temporal logic (PLTL). We consider various frag-
ments of PLTL obtained by restricting the set of temporal connectives
and, for each of these fragments, we identify its smallest extension that
has Craig interpolation. Depending on the underlying set of temporal
operators, this extension turns out to be one of the following three log-
ics: the fragment of PLTL having only the Next operator; the extension
of PLTL with a fixpoint operator μ (known as linear time μ-calculus);
the fixpoint extension of the “Until-only” fragment of PLTL.
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1 Introduction

Craig’s interpolation theorem in classical model theory dates back from the late
fifties [7]. It states that if a first-order formula φ (semantically) entails another
first-order formula ψ, then there is an interpolant first-order formula θ, such that
every non-logical symbol in θ occurs both in φ and ψ, φ entails θ and θ entails
ψ. The key idea of the Craig interpolation theorem is to relate different logical
theories via their common non-logical vocabulary. In his original paper, Craig
presents his work as a generalization of Beth’s definability theorem, according
to which implicit (semantic) definability is equivalent to explicit (syntactic) de-
finability. Indeed, Beth’s definability theorem follows from Craig’s interpolation
theorem, but the latter is more general.

From the point of view of applications in computer science, interpolation is
often a desirable property of a logic. For instance, in fields such as automatic
reasoning and software development, interpolation is related to modularization
[1, 10], a property which allows systems or specifications to be developed effi-
ciently by first building component subsystems (or modules). Interpolation for
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Fig. 1. Hierarchy of temporal languages

temporal logics is also an increasingly important topic. Temporal logics in gen-
eral are widely used in systems and software verification, and interpolation has
proven to be useful for building efficient model-checkers [8]. This is particularly
true of a strong form of Craig interpolation known as uniform interpolation,
which is quite rare in modal logic, but that the modal μ-calculus satisfies (see
[9]), whereas most temporal logics lack even Craig interpolation (see [17]).

We study Craig interpolation for fragments and extensions of propositional lin-
ear temporal logic (PLTL). We use the framework of [4] and work with a general
notion of abstract temporal language which allows us to consider a general notion
of extension of such languages. We consider different sets of temporal connectives
and, for each, identify the smallest extension of the fragment of PLTL with these
temporal connectives that has Craig interpolation. Depending on the set of tem-
poral connectives, the resulting logic turns out to be either the fragment of PLTL
with only the Next operator, or the extension of PLTL with a fixpoint operator
μ (known as linear time μ-calculus), or the fixpoint extension of the fragment of
PLTL with only the Until operator (which is the stutter-invariant fragment of lin-
ear time μ-calculus). The diagram in Figure 1 summarises our results. A simple
arrow linking two languages means that the first one is an extension of the second
one and a double arrow means that, furthermore, every extension of the first one
having Craig interpolation is an extension of the second one. Temporal languages
with Craig interpolation (in fact, uniform interpolation) are represented in a dou-
ble frame. Thus we have for instance that μTL(U) is the least expressive extension
of PLTL(F) with Craig interpolation.

Outline of the paper: In Section 2, we introduce a general notion of abstract
temporal language. We then introduce PLTL, some of its natural fragments and
its fixpoint extension known as linear time μ-calculus (μTL).

Section 3 contains some technical results that are used in subsequent sections.
One of these relates projective definability in PLTL to definability in the fixpoint
extension μTL. Another result relates in a similar way PLTL(U) and μTL(U).
Along the way, we show that μTL(U) is the stutter invariant fragment of μTL.
Stutter-invariance is a property that is argued by some authors [16] to be natural
and desirable for a temporal logic. Roughly, a temporal logic is stutter-invariant
if it cannot detect the addition of identical copies of a state.
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In Section 4, we give three positive interpolation results. Among the fragments
of PLTL obtained by restricting the set of temporal operators, we show that only
one (the “Next-only” fragment) has Craig interpolation. In fact, this fragment
satisfies a stronger form of interpolation, called uniform interpolation. The logics
μTL and μTL(U) also have uniform interpolation.

Section 5 completes the picture by showing that μTL and μTL(U) are the least
extensions of PLTL(F ) and PLTL(F<), respectively, with Craig interpolation.

2 Preliminaries

2.1 Abstract Temporal Languages

We will be dealing with a variety of temporal languages. They are all inter-
preted in structures consisting of a set of worlds (or, time points), a binary
relation intuitively representing temporal precedence, and a valuation of propo-
sition letters. In this section, we give an abstract model theoretic definition of
temporal languages.

A flow of time, or frame, is a structure T = (W,<), where W is a non-empty
set of worlds and < is a binary relation on W . We will focus here on Tω, the
class of linear orders of order type ω, i.e., frames (D,<) that are isomorphic to
(N, <), where N is the set of natural numbers with the natural ordering. We will
also freely use ≤ to denote the reflexive closure of <.

By a propositional signature we mean a finite non-empty set of propositional
letters σ = {pi | i ∈ I}. A pointed σ-structure is a structure M = (T , V, w)
where T = (W,R) is a frame, V : σ → ℘(W ) a valuation and w ∈ W a world.
The class of all pointed σ-structures is denoted by Str[σ] and we call them σ-
structures for short. Furthermore, for any class of frames T, StrT[σ] will denote
the class of σ-structures of which the underlying frame belongs to T. Let σ ⊆ τ
be propositional signatures. Given a τ -structure M = (T , V, w), we define its
σ-reduct M � σ as the σ-structure (T , V � σ,w) where V � σ is the restriction
of the valuation to the propositional letters in σ. We call M a τ-expansion of
M � σ. We also write K � σ for {M � σ | M ∈ K}. Let (T , V, w) be a σ-structure
and A ⊆ W a subset of its domain. By V [A/p], we will refer to the valuation
V extended with V (p) = A (p being a fresh proposition letter). We will refer to
the corresponding σ ∪ {p}-expansion of (T , V, w) by (T , V [A/p], w).

Definition 1 (Abstract temporal language). An abstract temporal lan-
guage (temporal language for short) is a pair L = (L, |=L), where L : σ �→ L[σ] is
a map from propositional signatures to sets of objects that we call formulas and
|=L is a relation between formulas and pointed structures satisfying the following
conditions, for all propositional signatures σ, τ :

1. Expansion property. If σ ⊆ τ then L[σ] ⊆ L[τ ]. Furthermore, for all
φ ∈ L[σ] and M ∈ Str[τ ], M |=L φ iff M � σ |=L φ. If M ∈ Str[σ] and
M |=L φ, then φ ∈ L[σ].
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2. Closure under uniform substitution. For all ψ ∈ L[σ], p /∈ σ and φ ∈
L[σ ∪ {p}], there is a formula of L[σ], which we will denote by φ[p/ψ], such
that for every (T , V, w) ∈ Str[σ] the following holds:

(T , V, w) |=L φ[p/ψ] iff (T , V ′, w) |=L φ

where V ′ = V [{w | (T , V, w) |=L ψ}/p].
3. Negation property. For each φ ∈ L[σ] there is a formula of L[σ], which

we will denote by ¬φ, s.t. for all M ∈ Str[σ], M |=L ¬φ iff M �|=L φ.

For any class of frames T, |=L,T will denote the restriction of |=L to pointed
structures based on T. For φ ∈ L[σ], we will use Modσ(φ) as shorthand for
{M ∈ Str[σ] | M |=L,T φ} and Modσ

T(φ) when restricting to a frame class T.
Whenever this is clear from the context, we will be omitting superscript and
subscripts in Modσ

T(φ) and |=L,T. We say that a class of pointed structures
K ⊆ StrT[σ] is definable in an abstract temporal language L (relative to the
frame class T) if there is a L-formula φ such that for every (T , V, w) ∈ StrT[σ],
(T , V, w) |= φ iff (T , V, w) ∈ K.

Definition 2 (Extension of a temporal language). Let L1 = (L1, |=L1),
L2 = (L2, |=L2) be temporal languages. L2 extends L1 (notation: L1 ⊆ L2) if for
all σ, for all φ ∈ L1[σ], there exists φ∗ ∈ L2[σ] such that Modσ(φ) = Modσ(φ∗).
Also, whenever L1 ⊆ L2, we say that L1 is a fragment of L2. Whenever restricting
attention to a frame class T we write L1 ⊆T L2.

The following notion is related to existential second-order quantification over
propositional letters. Allowing such a form of quantification in a given tempo-
ral language indeed amounts to considering its projective classes. It is a clas-
sical notion in abstract modal theory and it will be useful in the context of
Δ-interpolation (see Definition 15).

Definition 3 (Projective class). Let σ be a propositional signature, T a
frame class and let K ⊆ StrT[σ]. Then K is a projective class of a temporal
language L relative to T if there is a φ ∈ L[τ ] with τ ⊇ σ a propositional
signature, such that K = Mod(φ) � σ.

Lemma 1. Let T be a frame class. If L1 ⊆T L2, then every projective class of
L1 relative to T is also a projective class of L2 relative to T.

Definition 4 (Entailment). Let L be a temporal language, σ a propositional
signature, T a frame class and φ, ψ ∈ L[σ]. We say that φ entails ψ in L over T
and write φ |=L,T ψ if for any (T , V, w) ∈ StrT[σ], whenever (T , V, w) |=L,T φ,
then also (T , V, w) |=L,T ψ.

2.2 Propositional Linear Temporal Logic

Recall that Tω denotes the linear orders of order type ω. We now introduce the
syntax and semantics of PLTL, following the terminology of [11].



Craig Interpolation for Linear Temporal Languages 291

Definition 5 (PLTL). Let σ be a propositional signature. The set of formulas
PLTL[σ] is defined inductively, as follows:

φ, ψ := At | 
 | ¬φ | φ ∧ ψ | φ→ ψ | φ ∨ ψ | Xφ | Fφ | F<φ | φUψ

where At ∈ σ. We use G and G< as shorthand for respectively ¬F¬ and ¬F<¬.
The relation |=PLTL between PLTL-formulas and structures (T , V, w) is defined
as follows (we only list the clauses of the temporal operators, the others are as
in the case of classical propositional logic):

– (T , V, w) |=PLTL Xφ iff there exists w′ such that w < w′, there is no w′′ such
that w < w′′ < w′ and (T , V, w′) |= φ

– (T , V, w) |=PLTL Fφ iff there exists w′ such that w ≤ w′ and (T , V, w′) |= φ
– (T , V, w) |=PLTL F<φ iff there exists w′ such that w < w′ and (T , V, w′) |= φ
– (T , V, w) |=PLTL φUψ iff there exists w′ such that w ≤ w′, (T , V, w′) |= ψ

and for all w′′ such that w ≤ w′′ < w′, (T , V, w′′) |= φ

While the above definition in principle applies to arbitrary pointed structures,
the intended semantics will be, of course, in terms of structures based on frames
in Tω, and in what follows we will always restrict attention to such frames.

We define fragments PLTL(O) of PLTL by allowing in their syntax only a
subset O ⊆ {X,F<,F,U} of temporal operators. Note that PLTL(U,X) has the
same expressive power as PLTL, because Fφ can be defined as 
Uφ and F<φ
as X(
Uφ). The same holds of PLTL(F<,X) and PLTL(F<,X,F), as Fφ can be
defined as φ∨F<φ. Nevertheless, it is known (see [15]), that φUψ can be defined
neither in PLTL(F) nor in PLTL(F<,X). Also Xφ and F<φ can be defined neither
in PLTL(U) nor in PLTL(F) (we will see why later on in this paper, once we
introduce the notion of stutter-invariance).

2.3 Linear Time μ-Calculus

A way of increasing the expressive power of temporal languages is to add a
fixpoint operator. On arbitrary structures, adding to PLTL the least fixpoint
operator μ gives the μ-calculus (see for instance [9]). Here, the class of intended
structures for μ-calculus is restricted to those based on Tw and the resulting
restricted temporal language is called μTL (see for instance [14]).

Definition 6 (μTL). Let σ be a propositional signature, and let V =
{x1, x2, . . .} be a disjoint countably infinite stock of propositional variables. We
define μTL[σ] as the set of all formulas without free variables that are generated
by the following inductive definition:

φ, ψ, ξ := At | 
 | ¬φ | φ ∧ ψ | φ→ ψ | φ ∨ ψ | Xφ | Fφ | F<φ | φUψ | μxi.ξ

where At ∈ σ∪V and, in the last clause, xi occurs only positively in ξ (i.e., within
the scope of an even number of negations). We will use νxi.φ(xi) as shorthand for
¬μxi.¬φ(¬xi). The relation |=μTL is defined between μTL-formulas and pointed
structures (T , V, w) where T ∈ Tω. In order to define it inductively, we use an
auxiliary assignment to interpret formulas with free variables. The assignment g
maps each free variable of φ to a set of worlds. We let g[x �→ A] be the assignment
which differ from g only by assigning A to x and we only recall:
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– (T , V, w) |=μPLTL xi [g] iff w ∈ g(xi)
– (T , V, w) |=μPLTL μx.φ [g] iff ∀A ⊆W , if {v | (T , V, v) |=μTL φ [g[x �→ A]]} ⊆
A, then w ∈ A

To understand this, consider a μTL-formula φ(x) and a structure (T , V, w) to-
gether with a valuation g. This formula induces an operator Fφ taking a set
A ⊆ W to the set {v : (T , V, v) |=μTL φ(x) g[x �→ A]}. μTL is concerned
with least fixpoints of such operators. If φ(x) is positive in x, the operator Fφ

is monotone, i.e., x ⊆ y implies Fφ(x) ⊆ Fφ(y). Monotone operators Fφ al-
ways have a least fixpoint, defined as the intersection of all their prefixpoints:⋂
{A ⊆W : {v : (T , V, v) |= φ(x) g[x �→ A]} ⊆ A} (see [3]). The formula μx.φ(x)

denotes this least fixpoint.
It is easy to see that, for formulas without free variables, the assignment

is irrelevant, and therefore |=μTL defines a binary relation between (the set of
sentences of) μTL and pointed structures. In this way, μTL is an abstract modal
language in the sense of Definition 1.

As before, we define a fragment μTL(O) for each O ⊆ {X,F<,F,U}. μTL(X)
already as the full expressive power of TL, since φUψ can be defined by μy.(ψ ∨
(φ ∧ Xy)), F<φ by μy.(Xφ ∨ Xy) and Fφ by μy.(φ ∨ Xy). Another fragment of
particular interest will be μTL(U). In μTL(U), we can still define Fφ in the usual
way by 
Uφ, but we will see that Xφ and F<φ are not definable.

3 Projective Definability versus Definability with
Fixpoints

In this section,wediscuss two results that relateprojectivedefinability in languages
without fixpoint operators to explicit definability in the corresponding language
with fixpoint operators. Along the way, we also show that μTL(U) is the stutter-
invariant fragment of μTL. These results will be put to use in Section 4 and 5.

Theorem 1. Let σ be a propositional signature. For any K ⊆ StrTω
[σ], the

following are equivalent:

1. K is a projective class of PLTL(F<,X) relative to Tω

2. K is definable by a μTL sentence relative to Tω

Proof (Sketch). One direction follows from the fact that μTL is expressively
complete for MSO on Tω (see [3, 18]). For the other direction, the main idea is
that the existence of an accepting run of a Büchi automaton can be projectively
defined by means of a PLTL-formula using only the F< and X operators (this is
a refinement of a similar result for MSO, see [20]). ��
Below, we will show a similar theorem linking projective definability in PLTL(U)
(which was shown in [12, 19] to be the stutter-invariant fragment of PLTL) to
definability in μTL(U), which we show here to be the stutter-invariant fragment
of linear time μ-calculus. Before stating this second result, we first define stut-
tering. Intuitively, a stuttering of a linearly ordered structure M is a structure
obtained from M by replacing each world by a non-empty finite sequence of
worlds, all satisfying the same proposition letters.
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Definition 7 (Stuttering). Let σ be a propositional signature and M =
((W,<), V, w), M′ = ((W ′, <), V ′, w′) be in StrTω

[σ]. We say that M′ is a stut-
tering of M if and only if there is a surjective function s : W ′ →W such that

1. s(w′) = w
2. for every wi, wj ∈W ′, wi < wj implies s(wi) ≤ s(wj)
3. for every wi ∈W ′ and p ∈ σ,wi ∈ V ′(p) iff s(wi) ∈ V (p)

Some notation will be useful later on. For any w ∈ W , we let s−1(w) = {w′ ∈
W ′ | s(w′) = w}. We also extend s and s−1 to subsets ofW ′ in the followingway: for
anyA′ ⊆W ′, A ∈W , we let s(A′) = {s(v′) | v′ ∈ A′} and s−1(A) =

⋃
v∈A s

−1(v).

Lemma 2. Let M = ((W,<), V, w), M′ = ((W ′, <), V ′, w′) be in StrTω
[σ] and

M′ be a stuttering of M, then the following hold:

1. ∀v′ ∈W ′, ∀A′ ⊆W ′ such that v′ ∈ A′ implies s−1(s(v′)) ⊆ A′:

((W ′, <), V ′[A′/p], v′) is a stuttering of ((W,<), V [s(A′)/p], s(v′))

2. ∀v ∈ W, ∀A ⊆W, ∀v′ ∈ s−1(v):

((W ′, <), V ′[s−1(A)/p], v′) is a stuttering of ((W,<), V [A/p], v)

Definition 8 (Stutter-Invariant Class of Pointed Structures). Let σ be
a propositional signature and K ⊆ StrTω

[σ]. Then K is a stutter-invariant class
relative to Tω iff for every M ⊆ StrTω

[σ] and for every stuttering M′ of M,
M ∈ K ⇔ M′ ∈ K.

Definition 9 (Stutter-free Pointed Structure). We say that a pointed
structure M is stutter-free whenever for all M′ such that M is a stuttering
of M′, M′ is isomorphic to M.

Only stutter-invariant classes of structures in StrTω
[σ] are definable in PLTL(U)

and μTL(U). This is known for PLTL(U) (see [12, 19]), but it also holds for
μTL(U).

Proposition 1. Let σ be a propositional signature. For every μTL(U)-sentence
φ in signature σ, Mod(φ) is stutter-invariant.

Proof. By induction on the sentence complexity. For the sake of the induction,
we can use expanded σ-structures as in classical model theory. Hence we consider
two base cases, one for propositional letters and one for propositional variables.
The propositional letter case is clear. We handle the propositional variable case
xi similarly, except that we use σ-models expanded with the value of xi (i.e.,
models considered together with a partial auxiliary valuation, so that xi can be
seen as a sentence). The induction hypothesis says that for any propositional
signature σ and μTL(U)-sentence φ of complexity n in signature σ, Mod(φ) is a
stutter-invariant invariant class. Now consider the case were φ is of complexity
n+1. We handle the Boolean connectives and the U operator as in the PLTL(U)
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case. Now suppose φ :≈ μx.ψ(x). We want to show that for every M ⊆ StrT[σ]
and for every stuttering M′ of M:

M = ((<,W ), V, w) ∈Mod(μx.ψ(x)) ⇔ M′ = ((<,W ′), V ′, w′) ∈Mod(μx.ψ(x))

For the left to right direction, suppose ((W,<), V, w) |= μx.ψ(x), i.e., ∀A ⊆ W ,
if {v | ((W,<), V [A/p], v) |= ψ(p)} ⊆ A, then w ∈ A. Consider A′ ⊆ W ′ such
that {v | ((W ′, <), V ′[A′/p], v) |= ψ(p)} ⊆ A′. We want to show that w′ ∈ A′.
Let us first show that v′ ∈ A′ implies s−1(s(v′)) ⊆ A′. For every v′ ∈ A′,
we have that ((W ′, <), V ′[A′/p], v′) |= ψ(p). Now by induction hypothesis for
any v ∈ s−1(s(v′)), ((W ′, <), V ′[A′/p], v) |= ψ(p) and by hypothesis on A′,
v ∈ A′. It follows from this property of A′ that M′ being a stuttering of M,
by Lemma 2 for any v′ ∈ W ′, ((<,W ′), V ′[A′/p], v′) is also a stuttering of
((<,W ), V [s(A′)/p], s(v′)) and by induction hypothesis:

((W ′, <), V ′[A′/p], v′) |= ψ(p) iff ((<,W ), V [s(A′)/p], s(v′)) |= ψ(p)

Hence {v | ((W,<), V [s(A′)/p], v) |= ψ(p)} ⊆ s(A′). But M |= μx.ψ(x). It follows
that w ∈ S(A′), so s(w) ∈ A′, i.e., w′ ∈ A′.

Now for the right to left direction, suppose ((W ′, <), V ′, w′) |= μx.ψ(x), i.e.,
∀A′ ⊆ W ′, if {v | (W ′, <), V ′[A′/p], v |= ψ(p)} ⊆ A′, then w′ ∈ A′. Consider
A ⊆ W such that {v | (W,<), V [A/p], v |= ψ(p)} ⊆ A. We want to show that
w ∈ A. M′ being a stuttering of M, by Lemma 2, for any v ∈ W , v′ ∈ s−1(v),
((<,W ′), V ′[s−1(A)/p], v′) is also a stuttering of ((<,W ), V [A/p], v) and by
induction hypothesis, for any v ∈ W, v′ ∈ s−1(v):

((W ′, <), V ′[s−1(A)/p], v′) |= ψ(p) iff ((W,<), V [A/p], v) |= ψ(p)

Hence {v | ((W ′, <), V ′[s−1(A)/p], v) |= ψ(p)} ⊆ s−1(A). But M′ |= μx.ψ(x). It
follows that w′ ∈ s−1(A), so s−1(w′) ⊆ A, i.e., w ∈ A. ��

Corollary 1. Let K ⊆ StrTω
[σ] be stutter-invariant and let φ ∈ μTL(U)[σ] be

a sentence such that for each stutter-free M ∈ StrTω
[σ], M |= φ if and only if

M ∈ K. Then φ defines K.

We now show that (over Tω) μTL(U) is the stutter-invariant fragment of μTL.
The proof is a variant of [19], where Peled and Wilke show that stutter-invariant
PLTL properties are expressible without X. We give it in detail, as the construc-
tion procedure below will be useful again later on in the paper.

Lemma 3. Let σ be a modal vocabulary. For every μTL sentence φ in vocabulary
σ, there exists a μTL(U) sentence φ∗ in vocabulary σ that agrees with φ on all
stutter-free σ-structures over Tω:

M |= φ↔ φ∗ for all stutter free pointed structures M ∈ StrTω
[σ]

Proof. Assume σ = {p0, . . . , pn−1}. The proof goes by induction on the structure
of φ. For convenience, we use expanded structures. The base case is clear: p∗ = p
for any propositional variable or letter p. Now as regards the induction step, we
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can set (¬ψ)∗ = ¬ψ∗, (ψ ∧ ξ)∗ = ψ∗ ∧ τ∗, (ψUξ)∗ = ψ∗Uξ∗, (μx.ψ)∗ = μx.ψ∗. If
φ is of the form Xψ, we let B be the set of all possible valuations σ → {⊥,
},
and for each g ∈ B, we let βg be the formula α0 ∧ . . . ∧ αn−1 where αj = pj if
g(pj) = 
 and αj = ¬pj if g(pj) = ⊥. Now observe that if g, g′ ∈ B are such
that g �= g′, then

M, w |= βg ∧ Xβg′ ↔ βgUβg′ for M ∈ StrT[σ] stutter-free

We have M, w |= Xψ if and only if every point in it satisfies the same set
of proposition letters and M, w |= ψ, or the valuation function doesn’t send
the same set of proposition letters to w and to its immediate successor w′ and
M, w′ |= φ. Thus we can set:

(Xψ)∗ =
∨

g∈G

((Gβg ∧ ψ∗) ∨
∨

g �=g′
(βgU(βg′ ∧ ψ∗)))

Theorem 2. Let φ ∈ μTL[σ] be a sentence such that Modσ(φ) is stutter-
invariant. Then there exists φ∗ ∈ μTL(U)[σ] such that Modσ(φ) = Modσ(φ∗).

Proof. Follows from Lemma 3 and Corollary 1.

Following [12], we now introduce a variant of the notion of projective class, that
we call harmonious projective class, which preserves stutter-invariance. Before
we define it, we first introduce the notion of a harmonious expansion. For any
propositional signature σ and worlds w,w′, we write w ≡σ w

′ if w and w′ satisfy
the same propositions in σ.

Definition 10 (Harmonious expansion). Let σ ⊆ τ be propositional signa-
tures and M ∈ StrTω

[τ ]. We say that M is a harmonious expansion of M � σ
whenever ∀w,w′ ∈ W such that w′ is a direct successor of w, w ≡σ w

′ implies
w ≡τ w

′.

Definition 11 (Harmonious projective class). Let σ be a propositional sig-
nature andK ⊆ StrTω

[σ]. ThenK is a harmonious projective class of a temporal
language L relative to Tω whenever there is φ ∈ L[τ ] with τ ⊇ σ such that for
all M ∈ StrTω [σ]: M ∈ K iff there is a harmonious τ -expansion M+ of M such
that M+ |= φ.

We will be using the following proposition in order to show Theorem 3. It refers
to the notion of ω-regular language, cf. [20]. We do not define this notion here as
it is not central in this paper. The proof of the proposition in [12] uses a notion
of stutter-invariant automata.

Proposition 2 ([12]). On Tω, harmonious projective classes of PLTL(U) define
exactly the stutter-invariant ω-regular languages.

Now we are able to show the following theorem:

Theorem 3. Let σ be a propositional signature. For any K ⊆ StrT[σ], the
following are equivalent:
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1. K is a harmonious projective class of PLTL(U) relative to Tω

2. K is definable by a μTL(U)-sentence φ relative to Tω

Proof. Follows from Theorem 1 and Proposition 2, because by [12, 19], PLTL(U)
is the stutter-invariant fragment of PLTL and by Theorem 2, μTL(U) is the
stutter-invariant fragment of μTL. ��

4 Temporal Languages with Craig Interpolation

In this section, we show that three of the temporal languages previously discussed
have Craig interpolation.

Definition 12 (Craig interpolation property). Let L be a temporal lan-
guage and T a frame class. Then L has the Craig interpolation property over
T whenever the following holds. Let φ ∈ L[σ], ψ ∈ L[σ′]. Whenever φ |=L,T ψ,
then there exists θ ∈ L[σ ∩ σ′] such that φ |=L,T θ and θ |=L,T ψ.

They even satisfy a stronger form of interpolation, which is called uniform inter-
polation. Intuitively, if a temporal language has uniform interpolation, it means
that the interpolant can be constructed so that it depends only on the signature
of the antecedent and its intersection with the signature of the consequent.

Definition 13 (Uniform Interpolation). Let L be a temporal language and
T a frame class. L has the uniform interpolation property over T if, for all
signatures σ ⊆ τ and for each formula φ ∈ L[τ ] there is a formula θ ∈ L[σ] such
that φ |=L θ and for each formula ψ ∈ L[τ ′] with τ ∩ τ ′ ⊆ σ, if φ |=L ψ then
θ |=L ψ.

Theorem 4. μTL has uniform interpolation over Tω.

Proof. MSO has uniform interpolation (for monadic predicates) on any class of
structures (so in particular on Tω) because it has set quantifiers (see [8]). By
[3, 18], μTL is expressively complete for MSO. Hence μTL uniform interpolants
can always be obtained via translation into MSO. ��

Theorem 5. μTL(U) has uniform interpolation over Tω.

Proof. Let σ ⊆ τ be modal signatures and let φ ∈ μTL(U)[τ ]. By Theorem 4,
there exists θ ∈ μTL[σ] such that φ |= θ and for each formula ψ ∈ μTL[τ ′] with
τ∩τ ′ ⊆ σ, if φ |= ψ, then θ |= ψ. Now let θ∗ ∈ μTL(U) be the formula that agrees
with θ on all stutter-free structures based on Tω (by Lemma 3, such a formula
exists). We want to show that φ |= θ∗ and that for each formula ψ ∈ μTL(U)[τ ′]
with τ ∩ τ ′ ⊆ σ, if φ |= ψ, then θ∗ |= ψ. Let SMod(φ) denote the set of stutter
free structures in Mod(φ). As Mod(φ) ⊆ Mod(θ), SMod(φ) ⊆ SMod(θ). Now
by construction of θ∗ also SMod(φ) ⊆ SMod(θ∗). Mod(φ) and Mod(θ∗) are
both stutter-invariant classes. It follows from Corollary 1 that the closure under
stuttering of SMod(φ) is included in the closure under stuttering of SMod(θ∗),
i.e., Mod(φ) ⊆Mod(θ∗), i.e., φ |= θ∗. The argument for θ∗ |= ψ is similar. ��
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Theorem 6. PLTL(X) has uniform interpolation over Tω.

Proof (Sketch). We will show something much stronger, namely that every pro-
jective class of PLTL(X) is definable by a PLTL(X)-formula.

Let φ ∈ PLTL(X)[σ ∪ {p}]. We will show how to construct a formula ψ ∈
PLTL(X)[σ] that defines the class of σ-reducts of models of φ. Let n be the maxi-
mal nesting depth of X-operators in φ. Intuitively, φ can only talk about the first
n world in the pointed structure (starting from the designated world). We can
represent every valuation of p in these n worlds by a set S ⊆ {0, . . . , n}, where
k ∈ S represents that p is true at the k-th world starting from the designated
world. For each S ⊆ {1, . . . , n} we define φS as follows: we replace each occur-
rence of p in φ that is in the scope k X-operators (k ≤ n) by 
 if k ∈ S and ⊥
otherwise. Then φ and φS are equivalent in all pointed structures in which the
valuation of p is as described by S. This can be shown by a formula induction.
Now, let ψ =

∨
S⊆{0,...,n} φ

S . Then ψ holds in a pointed σ-structure M iff M
has an expansion satisfying φ. ��

5 Interpolation Closure Results for Temporal Languages

In this section, we look at the fragments of PLTL that do not have Craig in-
terpolation, and we address the question how much expressive power must be
added in order to regain interpolation. We will phrase our main results in terms
of the notion of interpolation closure, which we define by taking inspiration from
abstract model theory (see [4]):

Definition 14 (Interpolation Closure). Let T be a frame class. L2 is the
interpolation closure of L1 over T if L1 ⊆T L2, L2 has interpolation over T,
and for every abstract temporal language L3, if L1 ⊆ L3 and L3 has Craig
interpolation on T, then L2 ⊆T L3.

5.1 The Interpolation Closure of PLTL(F<)

A useful tool for proving interpolation closure results is the following lemma
(see [4]):

Definition 15 (Δ-interpolation property). Let L be a temporal language
and T a frame class. Then L has the Δ-interpolation property over T whenever
the following holds: let σ be a propositional signature and K ⊆ StrT[σ], if both
K and K̄ are projective classes of L relative to T, there is a L-formula φ such
that K = Modσ

T(φ).

Lemma 4. Let L be a temporal language with Craig interpolation on Tω. Then
L has Δ-interpolation over Tω.

The proof of Lemma 4 is similar to the one given in [6] (we only need to remark that
the substitution property assumed here of abstract temporal languages is stronger
thanimplies the renaming property assumed in [6] of abstract modal languages).
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Now we will show that PLTL(F<,X) is contained in the interpolation closure
of PLTL(F<) over Tω. As an intermediate step, we show that in every extension
of PLTL(F<) having Craig interpolation, the property Xp is “definable”. By this,
we mean the following:

Lemma 5. Let L be an extension of PLTL(F<) with Craig-interpolation over
Tω. Then there is ξ ∈ L[{p}] such that Mod(ξ) = Mod(Xp).

Proof. Let q, r be new distinct propositional letters. Consider the two fol-
lowing projective classes of PLTL(F<): Mod(F<(p ∧ q) ∧ ¬F<F<q) � {p} and
Mod((F<(¬p∧ r)∧¬F<F<r)∨G<⊥) � {p}. As PLTL(F<) ⊆ L, these two classes
are also projective classes of L (by Lemma 1). They also complement each other,
as a {p}-structure belongs to the first class exactly when the first node of this
structure has a successor node where p holds and it belongs to the second class
in all other cases. By Δ-interpolation for L on T, it follows that the first class
is definable in L by means of some formula ξ in signature {p}, i.e., there is
ξ ∈ L[{p}] such that Mod(Xp) = Mod(ξ). ��

Theorem 7. Every extension of PLTL(F<) with Craig interpolation over Tω is
an extension of PLTL(F<,X) over Tω.

Proof. Let L be an extension of PLTL(F<) with Craig interpolation over Tω

and σ a propositional signature. We show by induction on the complexity of φ
(number of Boolean and temporal operators in φ) that for all φ ∈ PLTL(F<,X)[σ],
there exists φ′ ∈ L[σ] such that Mod(φ) = Mod(φ′). The base case is clear. The
induction hypothesis says that for all σ, for all φ ∈ PLTL(F<,X)[σ] of complexity
at most n, there exists φ′ ∈ L[σ] such that Mod(φ) = Mod(φ′). Now let φ be
of complexity n+ 1. If φ := Xψ, by induction hypothesis there exists ψ′ ∈ L[σ]
such that Mod(ψ) = Mod(ψ′). Pick any p /∈ σ. By Lemma 5 and the expansion
property we know:

1. There is ξ ∈ L[σ ∪ {p}] such that Mod(Xp) = Mod(ξ).

We will define φ′ as ξ[p/ψ′] ∈ L[σ] (by closure under uniform substitution of L,
such a formula exists). We need to show that Mod(Xψ) = Mod(ξ[p/ψ′]). From
1 we can derive as a particular case:

2. For any (T , V, w) ∈ StrT[σ ∪ {p}] where V (p) = {wi | (F, V, wi) |= ψ′},
(T , V, w) |= ξ iff there exists w′ ∈ D such that w < w′, there is no w′′ such
that w < w′′ < w′ and (T , V, w′) |= p.

Now by closure under uniform substitution of L, 2 is equivalent to the following:

3. For any (T , V, w) ∈ StrT[σ], (F, V, w) |= ξ[p/ψ′] iff there exists w′ ∈ D such
that w < w′, there is no w′′ such that w < w′′ < w′ and (F, V, w′) |= p[p/ψ′].

Finally, ψ′ and p[p/ψ′] holding exactly in the same models, we can replace
p[p/ψ′] by ψ′ in the second member of the equivalence in 3. Hence Mod(Xψ) =
Mod(ξ[p/ψ′]). We can use similar arguments for the operator F< and for Boolean
connectives. ��
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By putting Lemma 4 to use, we now improve Theorem 7 and identify the inter-
polation closure of PLTL(F<).

Theorem 8. μTL is the interpolation closure of PLTL(F<,X) over Tω.

Proof. Let σ be a propositional signature. Now let K ⊆ StrTω
[σ] be definable by

a μTL-sentence φ in signature σ. As μTL is closed under negation, there is a μTL-
sentence ¬φ in signature σ, which defines the complement of K over StrTω

[σ].
It follows by Theorem 1 that both K and its complement are projective classes
of PLTL(F<,X). Now consider a temporal language L ⊇ PLTL(F<,X) with Craig
interpolation over Tω. By Lemma 1, K and its complement are also projective
classes of L and by Lemma 4, it follows that K is definable in L. ��

5.2 The Interpolation Closure of PLTL(F)

For the case of the stutter-invariant languages PLTL(F) and PLTL(U), we need
to refine the notion of Δ-interpolation, by considering harmonious projective
classes.

Definition 16 (Harmonious Δ-interpolation property). Let L be a tem-
poral language. Then L has the harmonious Δ-interpolation property over Tω

whenever the following holds. Let K be a class of L-structures based on Tω. If
both K and K̄ are harmonious projective classes of L relative to Tω, there is a
L-formula φ such that K = ModTω (φ).

Lemma 6. If L1 ⊆ L2, then every harmonious projective class of L1 is also a
harmonious projective class of L2.

Definition 17 (Harmonious temporal language). A temporal language L
is harmonious for Tω if the following holds. For every σ ⊆ τ propositional
signatures, there is a formula φ ∈ L[τ ] such that for every M ∈ StrTω

[τ ], M |= φ
if and only if M is an harmonious expansion of M � σ.

Proposition 3. PLTL(U) and its extensions are harmonious for Tω.

Proof. Fix σ ⊆ τ with |σ| = n, |τ\σ| = m. We can represent any valuation over
σ by a finite conjunction of atoms and negations of atoms. Let {σi | i ∈ 2n} be
the set of all such conjunctions. Also, for each σi, we define the corresponding
set {τ i

j | j ∈ 2m} as the set of conjunctions representing all possible ways of
extending to τ the valuation represented by σi. Now for every M ∈ StrT[τ ],

M |=
∧

i,j∈2n

(σiUσj →
∨

k,l∈2m

τ i
kUτ j

l )

if and and only if M is an harmonious expansion of M � σ, i.e., PLTL(U) is
harmonious. It is immediate from definition 2 that every extension of a temporal
language which is harmonious for Tω is also harmonious for Tω. ��

Lemma 7. Let L be a temporal language which has Craig interpolation and is
harmonious for Tω. Then L has harmonious Δ-interpolation over Tω.
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L being harmonious, we can use the formula φ in Definition 17 and appeal for
the proof of Lemma 7 to the same classical argument as for Lemma 4.

Theorem 9. Every extension of PLTL(F) with Craig interpolation over Tω is
an extension of PLTL(U) over Tω.

Proof. The reasoning is similar as in the case of Lemma 7 and Theorem 7, but
we consider Mod(pUq) = Mod(G(Fr → r) ∧ F(q ∧ r) ∧ G((r ∧ ¬q) → p)) � {p, q}
and Mod(¬pUq) = Mod(Fq → (F(¬p ∧ r) ∧ G(Fr → ¬q))) � {p, q}. ��

Theorem 10. μTL(U) is the interpolation closure of PLTL(U) over Tω.

Proof. Let σ be a modal signature. Now let K ⊆ StrTω [σ] be definable by a
μTL(U)-sentence φ in signature σ. As μTL(U) is closed under negation, there is a
μTL(U)-sentence ¬φ in signature σ, which defines the complement K̄ ⊆ StrTω

[σ]
of K over StrTω [σ]. By Theorem 3, both K and K̄ are harmonious projective
classes of PLTL(U). Now consider a temporal language L ⊇ PLTL(U) with Craig
interpolation over T. By Lemma 6, K and K̄ are also harmonious projective
classes of L. By Proposition 3, L is harmonious and by Lemma 7, it follows that
K is definable in L, i.e., L ⊇ μTL(U). ��

6 Finite Linear Orders

We restricted our attention to the frame class Tω, but our results easily extend
to finite linear orders. Let Tfin be the class of frames (D,<) where D is a finite
set and < is a strict linear order on D. All the definitions and results that we
gave relative to Tω also apply to Tfin. An analogous of Theorem 1 for Tfin can be
obtained by considering automata on finite words. The proof of Proposition 2 can
similarly be adapted by considering stutter-invariant automata on finite words.
In the proof of Lemma 3, we can define (Xψ)∗ as

∨
g �=g′ (βgU(βg′ ∧ ψ∗)) (i.e., we

keep only the second disjoint, as no finite stutter free linear order exhibits two
successor points satisfying the same set of proposition letters). The remaining of
our arguments do not need any further adjustment.

7 Conclusions and Future Work

In this paper, we studied the temporal fragments of linear time μ-calculus satis-
fying Craig interpolation, showing essentially that there are only three distinct
such fragments: μTL itself, μTL(U), and PLTL(X). These results reconfirm the
robustness of (linear time) μ-calculus as compared to less expressive temporal
logics. We are currently working on extending our results to other flows of time
such as finite trees, infinite trees, and infinite linear orders other than the natu-
ral numbers (as in [5]). There are some important differences in these settings.
For example, it is known (see [2]) that the branching time temporal logic with
only Since and Until has Craig interpolation, while linear time fails to have this
property. Also there is still no definitive consensus on the appropriate notion of
stuttering for infinite branching time (see [13]).
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