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Abstract—We present a general model-theoretic technique
that we developed and used in [3], [4] to obtain complete
axiomatizations of fragments of MSO on finite trees. There is
much interest in studying logics on finite trees, and many logics
of interest are fragments of MSO. Previously FO axiomatizations
were known. To produce axiomatizations beyond FO, we had
to develop a new technique that combines classical tools from
infinite model theory (Henkin semantics for higher-order logics)
with those more typical in finite model theory (Ehrenfeucht-
Fraı̈ssé games, and their composition). The key idea behind the
technique is to analyze infinite Henkin models of our axioms,
and use games to show that they are elementarily equivalent to
finite trees.

Given the general interest in the LICS community in logics on
finite trees, and a new set of tools developed by us (that combine
classical and finite model theory), we believe that a brief account
of this work will be of interest to the LICS audience.

I. INTRODUCTION

Recently there has been much interest in studying logics
over ordered unranked trees, mainly due to connections with
XML research, since labeled unranked trees serve as a standard
abstraction of XML documents. Logics are used to describe the
structure of XML documents, and to query data they contain,
and absolute majority of those used in this context happen to
be fragments of MSO (see [8]).

The goal of this work is to obtain complete axiomatizations
of MSO and its fragments on finite node-labeled sibling-
ordered trees. Such axiomatizations have previously been
presented for FO-theories [5] but extending the work to
MSO presents a number of challenges. We address those
by developing a new model-theoretic technique by which we
obtain complete axiomatizations not only of MSO but also of
some of its fragments, such as monadic transitive closure logic
and monadic least fixed-point logic.

The new tools we developed combine traditional model-
theoretic techniques used to show completeness, with tech-
niques more common in finite model theory, namely
Ehrenfeucht-Fraı̈ssé games as well as techniques for compos-
ing games. These results have not been presented in the forums
traditionally attended by LICS attendees: the conference ver-
sion appeared in [3] (the journal version is to appear in [4]).
As this work addresses traditional LICS topics via using a new
set of techniques, we believe that the LICS community could
be interested in a short presentation of this work.

To give a flavor of our results and techniques, below we
describe the approach for MSO. We give a brief account of the
key ingredients: Henkin completeness and Feferman-Vaught
theorems, that we need to obtain our results. References [3],
[4] can be consulted for details, as well as for extensions to
various MSO fragments.

II. HENKIN COMPLETENESS

It is well known that MSO is highly undecidable on arbi-
trary standard structures and hence not recursively enumerable.
However, Henkin [7] formulated a non-standard semantics
for logics of even higher order, and showed that under this
interpretation, they can be completely axiomatized. In the case
of MSO, the procedure amounts to allowing “non-standard”
or “Henkin” interpretations of MSO-formulas in addition to
their standard interpretations. In such non standard structures,
the set quantifier is interpreted as ranging not over the whole
powerset of the domain, but over one of its explicitly given
subsets, required to satisfy some good closure conditions.
This means that each Henkin structure is given as a pair,
containing a usual relational structure together with a subset of
the powerset of its domain. A point of particular interest to us
is that on finite structures, the mandatory closure conditions
are only satisfied by the whole powerset of the domain. It
follows that finite Henkin structures are always equivalent to
standard structures. This point matters here for the following
reason. As a first step of our proof, we show that our axioms
are complete on the class of their Henkin models, but the
problematic thing at this stage is that some of these models
might not be finite trees. However, it is straightforward to
infer from our axioms that a finite structure satisfies them if
and only if it is a tree. Hence, if there are Henkin models of
our axioms which are not finite trees, they have to be infinite.
In what remains, we need to show that such infinite models
can be “dismissed”.

III. FEFERMAN-VAUGHT THEOREMS

Even though our main completeness result concerns finite
trees, inside the proof we need to consider infinite Henkin
structures. In this context even such basic notions as sub-
structures, as well as methods for forming new structures
out of existing ones have to be redefined carefully. There
is a whole range of model-theoretic methods to form new



structures out of existing ones [6], [9]. Familiar constructions
like disjoint unions are redefined as particular cases of a notion
of generalized product of FO-structures and abstract properties
of such products are studied. Results telling how theories
of complex structures can be obtained from theories of the
components they are built from are known as Feferman-Vaught
theorems (who proved the first such result in [6]).

Here we are particularly interested in a type of Feferman-
Vaught theorem which establishes that generalized products
of relational structures preserve elementary equivalence. We
show such a result for a particular case of generalized product
of Henkin-structures called fusion. These preservation results
are shown with the crucial help of Ehrenfeucht-Fraı̈ssé games
that are suitable to use on Henkin structures. More precisely,
by combining winning strategies in these games, we show that
for every n ∈ N, the MSO n-theory of the fusion structure
reduces to the MSO n-theories of the components structures
(by MSO n-theory, we mean the restriction of the theory
to MSO-formulas of quantifier depth n). We believe that
such general combination techniques for Henkin structures
have independent interest. We refer to [9] for an extensive
discussion of the question in the more restricted context of
standard structures.

IV. “REAL” COMPLETENESS

With the key ingredients – Henkin models and Feferman-
Vaught theorems - we can obtain complete axiomatizations
for finite trees. We cannot present the entire axiomatization
in this very short abstract. The axioms are roughly subdivided
into three group: “generic” axioms true in well-behaved logics
(e.g., propositional tautologies, properties of substitution), ax-
ioms stating properties of binary predicates defining the trees
(e.g., transitivity of the descendant relation), and, crucially, the
induction scheme.

To use the previous ingredients to obtain completeness, we
define quasi-trees as Henkin models of our axioms. We then
use our Feferman-Vaught results to show that MSO cannot
distinguish quasi-trees from finite trees. Since finiteness is
definable on trees in MSO, it then follows that every model of
our axioms is a finite tree. Note that this is in sharp contrast
with the FO-theory of finite trees, which does have infinite
models.

Let us now briefly sketch the details of our final com-
pleteness argument. In order to proceed inductively, it is
more convenient to consider a stronger version of the result
concerning Henkin substructures of quasi-trees that we call
quasi-forests. To grab some intuition consider a finite tree and
remove the root node; then it is no longer a finite tree. Instead
it is a finite sequence of trees, whose roots stand in a linear
sibling order. It does not have a unique root, but it does have
a unique left-most root: it is a finite forest. Now given a node
a in a quasi-tree T , we let Ta be the Henkin substructure
of T generated by the set of its siblings to the right and
of their descendants. We call Ta a quasi-forest. Using our
game composition results, we finally complete our proof by
showing that for each n and for each node a in a quasi-tree, the

quasi-forest Ta is n-equivalent to a finite forest. The argument
essentially relies on an inductive axiom scheme, which for
simplicity we only give here for the restricted case of MSO
on finite words (ϕ(x) standing here for any definable MSO
property of finite words):

∀x(∀y((x < y → ϕ(y)) → ϕ(x)) → ∀zϕ(z)

Extending our approach to other classes of finite structures
would involve finding comparable induction schemes. This
suggests that other natural candidates would be fragments of
MSO on classes of finite structures for which MSO satisfia-
bility is decidable (e.g., structures of bounded treewidth).

V. CONCLUSION

In [3], [4] we obtained complete axiomatizations not only
for MSO but also for monadic transitive closure and least
fixed point logics on finite trees. The method we developed is
quite uniform and can be used for other logics as well. While
it follows the route used in modal logic, where “canonical
models” are often transformed in order to obtain intended
models [1], its key new element is the use of Henkin seman-
tics: the model we first create is a Henkin model, and then
we modify it to obtain a model that is among our intended
ones. There are related complete axiomatizations on infinite
models [2], [10], [11], where completeness proofs are based
on automata-theoretic techniques, which are probably harder
to adapt to obtain axiomatizations in the finite case. This leads
to an intriguing question whether some of our model-theoretic
techniques could also be used as an alternative to automata,
in order to show other sorts of results, not necessarily related
to complete axiomatizations.
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