
On the Decidability of the Reachability Problem

for Planar Differential Inclusions ?

E. Asarin ??, G. Schneider ? ? ?, and S. Yovine

VERIMAG
2, Ave de Vignate

38610 - Gières, France
{Eugene.Asarin, Gerardo.Schneider, Sergio.Yovine}@imag.fr

Abstract. In this paper we develop an algorithm for solving the reach-
ability problem of two-dimensional piece-wise rectangular differential in-
clusions. Our procedure is not based on the computation of the reach-set
but rather on the computation of the limit of individual trajectories. A
key idea is the use of one-dimensional affine Poincar maps for which we
can easily compute the fixpoints. As a first step, we show that between
any two points linked by an arbitrary trajectory there always exists a
trajectory without self-crossings. Thus, solving the reachability problem
requires considering only those. We prove that, indeed, there are only
finitely many “qualitative types” of those trajectories. The last step con-
sists in giving a decision procedure for each of them. These procedures
are essentially based on the analysis of the limits of extreme trajectories.
We illustrate our algorithm on a simple model of a swimmer spinning
around a whirlpool.

1 Introduction

One of the main research areas in hybrid systems is reachability analysis. It
comprises two (closely related) issues, namely, the study of decidability and the
development of algorithms. Most of the proved decidability results are based
on the existence of a finite and computable partition of the state space into
classes of states which are equivalent with respect to reachability. This is the
case for timed automata [2], and classes of rectangular automata [12] and hybrid
automata with linear vector fields [15]. Except for timed automata, these results
rely on stringent hypothesis such as the resetting of variables along transitions.

Although analysis techniques based on the construction of a finite partition
have been proposed [7], mainly all implemented computational procedures resort
to (forward or backward) propagation of constraints, typically (unions of convex)
polyhedra or ellipsoids [1,3,6,9,11,14]. In general, these techniques provide semi-
decision procedures, that is, if the given final set of states is reachable, they will

? This work was partially supported by Projet IMAG MASH “Modélisation et Analyse
de Systèmes Hybrides”.

?? Partially supported by the NATO under grant CRG-961115.
? ? ? Supported by ESPRIT-LTR Project 26270 VHS “Verification of Hybrid Systems”.

terminate, otherwise they may fail to. This is a property of the techniques, not
of the problem, that is, it does not imply that the reachability problem itself is
undecidable, but only that they do not implement a decision procedure for it. In
other words, these algorithms may be unsuccessful (i.e., not terminate) for cer-
tain classes of systems for which the reachability problem is indeed decidable (by
other means). Nevertheless, they provide tools for computing (approximations
of) the reach-set for large classes of hybrid systems with linear and non-linear
vector fields.

Maybe the major drawback of set-propagation, reach-set approximation pro-
cedures is that they pay little attention to the geometric properties of the specific
(class of) systems under analysis. To our knowledge, in the context of hybrid sys-
tems there are two lines of work in the direction of developing more “geometric”
approaches. One is based on the existence of (enough) integrals and the ability
to compute them all [7,10]. These methods, however, do not necessarily result
in decision procedures (they are actually not meant to). The other, applica-
ble to two-dimensional dynamical systems, relies on the topological properties
of the plane, and explicitly focuses on decidability issues. This approach has
been proposed in [16]. There, it is shown that the reachability problem for two-
dimensional systems with piece-wise constant derivatives (PCD) is decidable.
This result has been extended in [8] for planar piece-wise Hamiltonian systems.
In [4] it has been shown that the reachability problem for PCD is undecidable
for dimensions higher than two.

In this paper we develop an algorithm for solving the reachability problem
of two-dimensional piece-wise rectangular differential inclusions. As in [16], our
procedure is not based on the computation of the reach-set but rather on the
computation of the limit of individual trajectories. A key idea is the use of one-
dimensional affine Poincar maps for which we can easily compute the fixpoints.
The decidability result of [16] fundamentally relies on the determinism of PCD
which implies that planar trajectories do not intersect themselves. This property
is no longer true for differential inclusions. As a first step, we show that between
any two points linked by an arbitrary trajectory there always exists a trajectory
without self-crossings. Thus, solving the reachability problem requires consider-
ing only those. We prove that, indeed, there are only finitely many “qualitative
types” of those trajectories. The last step consists in giving a decision procedure
for each of them. These procedures are essentially based on the analysis of the
limits of extreme trajectories (which do not cut themselves).

2 Simple Planar Differential Inclusions

A simple planar differential inclusion system (SPDI) consists of a partition of
the plane into convex polygonal regions, together with a differential inclusion
associated with each region. As an example consider the problem of a swimmer
trying to escape from a whirlpool in a river.

Example. The dynamics ẋ of the swimmer around the whirlpool is approximated
by the piece-wise differential inclusion defined as follows. The zone of the river

nearby the whirlpool is divided into 8 regions R1, . . . , R8. To each region Ri

we associate a pair of vectors (ai,bi) meaning that ẋ belongs to their positive
hull: a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2), a3 = (−1, 11
60) and b3 = (−1,− 1

4),
a4 = b4 = (−1,−1), a5 = b5 = (0,−1), a6 = b6 = (1,−1), a7 = b7 = (1, 0),
a8 = b8 = (1, 1). The corresponding SPDI is illustrated in Fig. 1. ut

���

���
������

� ���	

��

� 	

� �

��� � �

�
 � � ��

�

� �

Fig. 1. The SPDI of the swimmer.

More formally, a SPDI is a pair H = (P, φ), where P is a finite partition of
the plane into convex polyhedral sets, and for each P ∈ P, φ(P), also denoted
by ∠

bP

aP
, is the set of all linear combinations x = α aP + β bP , with α, β ≥ 0,

and α+ β > 0, of two vectors aP and bP , such that âP · bP < 0, where · is the
scalar product and âP = (a2,−a1) is the clockwise rotation of aP by the angle
π
2 (notice that âP · aP = 0).

Let E(P) be the set of edges of P , that is, the set of open segments forming
the boundary of P , and V (P) be the set of vertices in the boundary of P . We
say that e is an entry of P if for all x ∈ e and for all c ∈ φ(P), x + cε ∈ P
for some ε > 0. We say that e is an exit of P if the same condition holds for
some ε < 0. We denote by in(P) ⊆ E(P) the set of all entries of P and by
out(P) ⊆ E(P) the set of all exits of P . In general, E(P) 6= in(P) ∪ out(P).
We say that P is a good region iff all the edges in E(P) are entries or exits,
that is, E(P) = in(P) ∪ out(P). Notice that, if P is a good region, then for all
e ∈ E(P), the director vector of e does not belongs to φ(P) (Fig. 2). Hereinafter,
we assume that all regions are good regions. Let x ∈ V (P) be a common vertex
of two edges e and e′. x is an entry point to P if both e and e′ are entry edges;
it is an exit point if both e and e′ are exit edges. In fact, vertices can be seen as
a particular kind of edges, with exactly one point. In what follows the term edge
will be understood as belonging to the set EV (P) = E(P) ∪ V (P). If needed,
the difference between edge and vertex will be explicitly specified.

A trajectory in some interval [0, T] ⊆ R, with initial condition x = x0, is a
continuous and almost-everywhere (everywhere except on finitely many points)
derivable function ξ(·) such that ξ(0) = x0 and for all t ∈ (0, T), if ξ(t) ∈
P \ EV (P), then ξ̇(t) is defined and ξ̇(t) ∈ φ(P).

The point-to-point reachability problem for H, is the following: Given x,x′ ∈
R2, is there a trajectory ξ and t ≥ 0 such that ξ(0) = x and ξ(t) = x′?. If the

���

���

���
���

���
���

���
���

���

��� ������
�

��
���
�

 "!$# "%&#

�

�
�

�
�
�

Fig. 2. a) A good region. b) A bad region (e5 6∈ in(P) ∪ out(P)).

answer is yes, we say that x′ is reachable from x. The edge-to-edge reachability
problem is the following: Given two edges e and e′ of H, is there x ∈ e and x′ ∈ e′

such that x′ is reachable from x? The region-to-region reachability problem is
defined similarly.

3 Properties of Trajectories

W.l.o.g. we will consider in what follows that ξ(0) ∈ e for some edge e. The
trace of a trajectory ξ is the sequence τ(ξ) = x0x1 . . . of the intersection points
of ξ with the set of edges, that is, xi ∈ ξ ∩

⋃
EV (P) for all P ∈ P. The edge

signature of ξ is the sequence σ(ξ) = e0e1 . . . of traversed edges, that is, xi ∈ ei.
The region signature of ξ is the sequence ρ(ξ) = P0P1 . . . of traversed regions,
that is, ei ∈ in(Pi).

Let ξ be a trajectory whose trace is τ(ξ) = x0 . . .xk. Let 0 = t0 < t1 <
. . . < tk be such that ξ(ti) = xi. Since ξ is continuous and derivable in the
interval (ti, ti+1), there exists a unique trajectory ξ′ with ξ′(ti) = ξ(ti) for all
i ∈ [0, k−1], such that the derivative ξ̇′ is constant in the interval (ti, ti+1). That
is,

Proposition 1. For every trajectory ξ there exists a trajectory ξ ′ with the same
initial and final points, and edge and region signatures, such that for each Pi
in the region signature, there exists ci ∈ φ(Pi), such that ξ̇′(t) = ci for all
t ∈ (ti, ti+1).

Hence, in order to solve the reachability problem it is enough to consider trajec-
tories having piecewise constant slopes. Notice that, however, such slopes need
not be the same for each occurrence of the same region in the region signature.
Hereinafter, we use the word “trajectory” to mean trajectories whose derivatives
are piecewise constant.

Consider a region P and let c ∈ φ(P). The mapping Ω : R2 → R, defined
as Ω(x) = x · ĉ, assigns to every x ∈ R2 a value proportional to the length of
the projection of the vector x on the right rotation of c (see [4]). Indeed, the
ordering is given by the direction of ĉ and one can easily see that the relation
¹, defined as x1 ¹ x2 if Ω(x1) ≤ Ω(x2), is a dense linear order on in(P) and
out(P) (Fig. 3). We use ≺ to denote the strict variant of ¹ and say that e1 ≺ e2

iff e1 6= e2 and x1 ¹ x2 for every x1 ∈ e1,x2 ∈ e2. For example, in Fig. 3 we
have e1 ≺ e2 ≺ e3. Notice that the order does not depend on the choice of c.

'() *,+"-/.

0�1�2 +"-/.
3 +5476$.3 +5498:.

(
476

4 8
;�<

; 8; 6

Fig. 3. Ordering: x1 ¹ x2.

We say that a trajectory ξ crosses itself if there exist t 6= t′ such that ξ(t) =
ξ(t′). If a trajectory does not cross itself, the sequence of consecutive intersection
points with in(P) or out(P) is monotone with respect to ¹. That is, for every
three points x1, x2 and x3 (visited in this order), if x1 ≺ x2 ≺ x3 the trajectory
is a “counterclockwise expanding spiral”(Fig. 4(a)) or a “clockwise contracting
spiral” (Fig. 4(b)) and if x3 ≺ x2 ≺ x1, the trajectory is a “counterclockwise
contracting spiral” (Fig. 4(c)) or a “clockwise expanding spiral” (Fig. 4(d)). On
the other hand, if the sequence of intersections points with in(P) or out(P) is
monotone (both increasing or both decreasing), the trajectory does not cross
itself.

Lemma 1. For every trajectory ξ, if ξ does not cross itself, then for every edge
e, the sequence τ(ξ) ∩ e is monotone (with respect to ≺).

(a) (b) (c) (d)

=?>=:@=BA =:>=CA
=,@ =:> =,@D=CA =:@E=BA=:>

Fig. 4. Spirals.

Now suppose that the trajectory ξ with trace τ(ξ) = x0 . . .xf crosses itself once
inside the region P . Let e1, e2 ∈ in(P) be the input edges and e′1, e

′

2 ∈ out(P) be
the output ones. Let x = xi ∈ e1 and y = xj ∈ e2, with i < j, be the points in
τ(ξ) the first and the second times ξ enters P , and let x′ = xi+1 ∈ e′2 and y′ =
xj+1 ∈ e′1 be the corresponding output points. Let cx, cy ∈ φ(P) = ∠

b
a be the

derivatives of ξ in the time intervals (ti, ti+1) and (tj , tj+1), respectively. Indeed,

cx and cy are the director vectors of the segments xx′ and yy′, respectively
(Fig. 5(a)).

Consider now the segment xy′. Notice that the director vector c′x of this
segment can be obtained as a positive combination of the vectors cx and cy.
Thus, c′x ∈ φ(P). Hence, there exists a trajectory ξ′ that does not cross itself in
P having a trace τ(ξ′) = x0 . . .xy

′ . . .xf (Fig. 5(b)). Notice that the result also
works for the degenerate case when the trajectory crosses itself at an edge (or
vertex).

(a) (b) (c)

F�G F�G

F�HG F HG F HGF�H I F�H I F�H I

F I F I F I
JLK JMKJLK

J7N J9N J N

J J J

O H O7H O7HJMH J H J H

P HQ P Q
RS

P:T

O
F G

O O

Fig. 5. Obtaining a non-crossing trajectory

If the trajectory ξ crosses itself more than once in region P , then the number
of times the trajectory ξ′, obtained by cutting away the loop (Fig. 5(c)), crosses
itself in P is strictly smaller than the number of times ξ does it (see Fig. 6).
After replacing xx′ and yy′ by xy′, the intersection q of xx′ and yy′ disappears.
If the new segment of line xy′ crosses another segment zz′ (say at a point t),
then zz′ necessarily crosses either xx′ (at r) or yy′ (at s) -or both-, before the
transformation. The above is due to the fact that if zz′ crosses one side of the
triangle xy′q then it must also cross one of the other sides of the triangle, say
at r. Thus, no new crossing can appear and the number of crossings in the new
configuration is always less than in the old one.

UCVWLV

U W

X

Y

Y�V

Z5[�\

]
^

UCVWLV

U W Y

Y�V

Z _,\

`

Fig. 6. The number of crossings decreases: (a) Before (3 crossings); (b) After (1
crossing).

Lemma 2. For every trajectory ξ that crosses itself at least once, there exists
a trajectory ξ′ with the same initial and final points of ξ having a number of
self-crossings strictly smaller.

The above result follows from a straightforward inductive reasoning, as well as
the following one.

Proposition 2. If there exists an arbitrary trajectory from points x0 ∈ e0 to
xf ∈ ef then there always exists a non-crossing trajectory between them.

Hence, in order to solve the reachability problem we only need to consider non-
crossing trajectories with piecewise constant derivatives. In what follows, we only
deal with trajectories of this kind.

4 Properties of Edge Signatures

Let ξ be a trajectory with trace τ(ξ) = x0 . . .xp, edge signature σ(ξ) = e0 . . . ep,
and region signature ρ(ξ) = P0 . . . Pp. An edge e is said to be abandoned by
ξ after position i, if ei = e and for some j, k, i ≤ j < k, Pj . . . Pk forms a
region cycle and e 6∈ {ei+1, . . . , ek}. Since trajectories are finite we should add
the trivial case when e 6= ej for all j > i.

Lemma 3 (Claim 2 in [4]). For every trajectory ξ and edge e, if e is abandoned
by ξ after position i, e will not appear in σ(ξ) at any position j > i.

Given a sequence s, we use notations first(s) and last(s) for the first and last
elements of the sequence respectively. ε denotes the empty sequence An edge
signature σ(ξ) can be canonically expressed as a sequence of edges and cycles of
the form σc(ξ) = r1s

k1

1 r2s
k2

2 . . . rns
kn

n rn+1, where

1. For all i ∈ [1, n+ 1], ri is a sequence of pairwise different edges;
2. For all i ∈ [1, n], si is a simple cycle (i.e., without repetition of edges)

repeated ki times;
3. For all i ∈ [1, n−1], first(ri+1) 6= first(si) if ri+1 6= ε, otherwise first(si+1) 6=

first(si);
4. For all i ∈ [1, n], if ri 6= ε then last(ri) = last(si);
5. rn+1 6= ε. Moreover, rn+1 = first(sn) if σ(ξ) ends in a loop and first(rn+1) 6=

first(sn) otherwise.

This canonical representation can be obtained as follows. Let σ(ξ) = e1 . . . ep−1ep
be an edge signature. Starting from ep−1 and traversing backwards, take the
first edge that occurs the second time. If there is no such edge, then trivially
the signature can be expressed in a canonical way and we are done. Otherwise,
suppose that the edge ej occurs again at position i (i.e. ei = ej with i < j),
thus σc(ξ) = wsr, where w, s and r are obtained as follows, depending on the
repeated edge:

w = e0 . . . ei
s = ei+1 . . . ej
r = ej+1 . . . ep−1

Clearly r is not a cycle and s is a simple cycle with no repeated edges. We
continue the analysis with w. Let km = max{l | sl is a suffix of w}. Thus,
σc(ξ) = w′skr with w′ = e0 . . . eh (a prefix of w) and k = km + 1. We repeat
recursively the procedure above with w′. Adding the edge ep to the last r (at the

end) we obtain σc(ξ) = r1s
k1

1 . . . rns
kn

n rn+1 that is a canonical representation of
signature σ.

Let us define the type of a signature σ as type(σ(ξ)) = r1, s1, . . . , rn, sn, rn+1.
Notice that the “preprocessing” (taking away the last edge ep) is done in order
to differentiate edges signatures that end with a cycle from those that do not.
There exists many other (maybe easier) ways of decomposing a signature σ in a
canonical form (in particular, traversing forward instead of backwards), but the
one chosen here permits a clearer and simpler presentation of the reachability
algorithm. In fact in this canonical form, the last visited edge in a cycle e1 . . . ek
is always the last one (ek).

Example. Let us consider the following examples. Suppose that σ = abcdbcefg
efgefgefhi. Then, after applying once the above procedure we obtain that σc =
w(s2)

3r1, with w = abcdbcef ; s2 = gef ; r1 = h. Applying the procedure once
more to w we obtain w = w′(s3)

1r2 with w′ = r3 = abc; s3 = dbc; r2 = ef .
Putting all together and adding the last edge (i) gives σc = abc(dbc)1ef(gef)3hi
with type type(σ) = abc, dbc, ef, gef, hi. Suppose now, that the signature ends
with a cycle: σ = abcdbcefgefgefgefgef . In this case we apply the preprocessing
obtaining σc = w(s2)

4r1 with w = abcdbce; s2 = fge; r1 = ε. Applying the
procedure to w we finally obtain w = w′(s3)

1r2 with w′ = r3 = abc; s3 =
dbc; r2 = e and that gives σc = abc(dbc)1e(fge)4f (adding f to the end). ut

Lemma 4. The type of a signature σ, type(σ), has the following properties:

1. For every 1 ≤ i 6= j ≤ n+ 1, ri and rj are disjoint;
2. For every 1 ≤ i 6= j ≤ n, si and sj are different;
3. If v is a vertex appearing in type(σ), then it can only occur exactly once in

ri for some 1 ≤ i ≤ n+ 1 in σ. Moreover, v 6∈ last(ri) unless i = n+ 1.

Proposition 3. The set of types of edge signatures is finite.

Thus, to solve the reachability problem we can proceed by examining one by one
the types of signatures.

5 Affine Operators

Before getting into the problem of analyzing types of edge signatures, we need
to introduce some useful notions.

An affine function f : R → R is defined by a formula f(x) = ax + b with
a > 0. An affine multivalued operator F : R → 2R is determined by two affine
functions fl(x) and fu(x) and maps x to the interval 〈fl(x), fu(x)〉, where 〈a, b〉
means (a, b), [a, b], (a, b] or [a, b) : F (x) = 〈fl(x), fu(x)〉. We use the nota-
tion F = 〈fl, fu〉. Such an operator can be naturally extended to subsets of

R: F (S) =
⋃
x∈S F (x). In particular, if S = 〈l, u〉: F (〈l, u〉) = 〈fl(l), fu(u)〉. A

truncated affine multi-valued operator G : R → 2R is determined by an affine
multi-valued operator F and an interval 〈L,U〉 as follows: G(x) = F (x)∩〈L,U〉.
Such operators can be also extended to sets. We use notations G = F ∩ 〈L,U〉

and F = G̃.

Lemma 5 (composition of affine operations). Affine functions, affine multi-
valued operators, and truncated affine multi-valued operators are closed under
composition.

Example. Let G̃1(x) = (2x+3, 3x+5] and G̃2(x) = [5x+2, 7x+6] be two (non-
truncated) affine multi-valued functions, G1 = G̃1∩ (1, 6], and G2 = G̃2∩ [6, 10)
their truncated versions. The truncated affine multi-valued operator G2 ◦G1(x)
is obtained as follows:

G2 ◦G1(x) = G̃2 ◦ G̃1(x) ∩ G̃2((1, 6]) ∩ [6, 10)

= (5(2x+ 3) + 2, 7(3x+ 5) + 6] ∩ (5 · 1 + 2, 7 · 6 + 6] ∩ [6, 10)

= (10x+ 17, 21x+ 41] ∩ (7, 48] ∩ [6, 10)

= (10x+ 17, 21x+ 41] ∩ (7, 10).

Notice also that for any interval 〈l, u〉 its image is G2 ◦ G1(〈l, u〉) = 〈10l +
17, 21u+ 41〉 ∩ (7, 10). ut

Let f be an affine function, x0 be any initial point and xn = fn(x). Clearly,
the sequence xn is monotonous, and it converges to a limit x∗ (finite or infinite).
Indeed, x∗ can be effectively computed knowing a, b and x0, as follows. If a < 1,
x∗ is the unique fixpoint of f , that is, ax∗+ b = x∗, which yields x∗ = b/(1− a).
If a = 1, x∗ = −∞ if b < 0, x∗ = ∞ if b > 0, and x∗ = x0, if b = 0. If a > 1,
let x∗ = b/(1− a), then x∗ = −∞ if x0 < x∗, x

∗ =∞ if x0 > x∗, x
∗ = x0 = x∗,

otherwise. This result can be extended to multi-valued affine functions.

Lemma 6. Let 〈l0, u0〉 be any initial interval and 〈ln, un〉 = F̃n(〈l0, u0〉). Then

1. The sequences ln and un are monotonous;
2. They converge to limits l∗ and u∗ (finite or infinite), which can be effectively
computed.

Proposition 4. Let F be truncated affine and I ⊆ 〈L,U〉. Then F n(I) =
F̃n(I)

⋂
〈L,U〉.

6 Computing the Successor Function

To solve the reachability problem for SPDI, the next step is to provide a pro-
cedure for computing the successors of a point (and an interval), which requires
having an effective representation of (rational) points and intervals on edges.

Let us first introduce a one-dimensional coordinate system on each edge. For
each edge e we chose (1) a point on it (the origin) with radius-vector v, and

(2) a director vector e going in the positive direction in the sense of the order
≺. Now to characterize e we need the coordinates of its extreme points, namely,
el, eu ∈ Q∪{−∞,∞} such that e = {x = v+xe | el < x < eu}. That is, an edge
e ∈ E can be represented by a triplet (v, e, (el, eu)). If the edge is a vertex, the
representation is simply (v, [0, 0]). Now, every point x = v+xe ∈ e is represented
by the pair (e, x) (Fig.7(a)), and every interval 〈x1,x2〉 ⊆ e is represented as
(e, 〈x1, x2〉), where x1 = (e, x1) and x2 = (e, x2) (Fig.7(b)). Now, having fixed

acbed?f
ghiLj

iCk
i

f f
aa

l"m,n l"o�n

pp

acbed,kqf

phqr

l"s�n

iBt

iacbudCj�f

Fig. 7. (a) Representation of edges; (b) Representation of an interval; (c) One-
step successor.

a one-dimensional coordinate system to represent points, the question now is to
take advantage of it to compute the successor of a point or an interval.

Let e = 〈el, eu〉 ∈ in(P) and e′ = 〈e′
l
, e′

u
〉 ∈ out(P). For x = (e, x) and

c ∈ φ(P), we denote by Succce,e′(x) the unique x
′ = (e′, x′) such that x′ = x+ct

for some t > 0. The point (e′, x′) is the successor of (e, x) in the direction c (see
Fig.7(c)). Expanding, v′+x′e′ = v+xe+ tc. Multiplying both expressions by ĉ
we obtain that (v′+x′e′)ĉ = v · ĉ+xeĉ, i.e. x′(e′ · ĉ) = x(e · ĉ)+(v−v′) · ĉ. Thus,

x′ = Succce,e′(x) =
e·ĉ

e′·ĉ
x+ v−v

′

e′·ĉ
· ĉ and x′ ∈ 〈e′l, e′u〉. Indeed, putting α(c) = eĉ

e′ĉ
,

and β(c) = v−v
′

e′·ĉ
· ĉ we have the following result.

Lemma 7. The function Succce,e′(x) = α(c)x + β(c) ∩ 〈e′
l
, e′

u
〉 is truncated

affine.

S̃ucce,e′(x) will denote the non-truncated function α(c)x + β(c). The notion
of successor can be extended on all possible directions c ∈ φ(P) and it can be
applied to any subset S ⊆ 〈el, eu〉 and in particular to intervals 〈l, u〉:

Lemma 8. Let φ(P) = ∠
b
a , x = (e, x) and 〈l, u〉 ⊆ 〈el, eu〉. Then:

1. Succe,e′(x) =
⋃

c∈φ(P) Succce,e′(x) = 〈S̃ucc
b

e,e′(x), S̃ucc
a

e,e′(x)〉 ∩ 〈e
′l, e′

u
〉;

2. Succe,e′(〈l, u〉) = 〈S̃ucc
b

e,e′(l), S̃ucc
a

e,e′(u)〉 ∩ 〈e
′l, e′

u
〉.

The successor operator will be used as a building block in the reachability al-
gorithm. It can be naturally extended on edge signatures: for w = e1, e2, . . . , en
let

Succw(I) = Succen−1,en
◦ . . . ◦ Succe2,e3 ◦ Succe1,e2(I)

that by Lemma 5 is truncated affine. Notice that since we use edge signatures
the semi-group property takes the following form.

Lemma 9. For any edge signatures w and v and an edge e, Succew ◦ Succve =
Succvew.

Example. Let us come back to the example of the swimmer trying to escape
from a whirlpool in a river (see Fig. 1). Suppose that the swimmer is following
a trajectory with edge signature (e1 . . . e8)

∗. It is not difficult to find a repre-
sentation of the edges such that for each edge ei, (e

l
i, e

u
i) = (0, 1). Besides, the

truncated affine successor functions are:

Succe1e2(x) =
[
x
2 ,

x
2

]
∩ (0, 1) Succe2e3(x) =

[
x− 3

10 , x+ 2
15

]
∩ (0, 1)

Succeiei+1
(x) = [x, x] ∩ (0, 1), for all i ∈ [3, 7] Succe8e1(x) =

[
x+ 1

5 , x+ 1
5

]
∩ (0, 1)

The successor function for the loop s = e1 . . . e8 is obtained by composition of
the above functions as follows. Let us first compute

Succe1e2e3(l, u) = Succe2e3 ◦ Succe1e2(l, u)
= [l2 −

3
10 ,

u
2 + 2

15] ∩ (0− 3
10 , 1 +

2
15) ∩ (0, 1)

= [l2 −
3
10 ,

u
2 + 2

15] ∩ (0, 1)

Since S̃ucceiei+1
for i ∈ [3, 7] are the identity functions, we have that

Succe1...e8(l, u) = Succe8e1 ◦ Succe1e2e3(l, u)
= [l2 −

3
10 + 1

5 ,
u
2 + 2

15 + 1
5] ∩ (0

2 + 1
5 ,

1
2 + 1

5) ∩ (0, 1)
= [l2 −

1
10 ,

u
2 + 1

3] ∩ (1
5 , 1)

By Lemma 6 we have that l∗ =
−

1
10

1− 1
2

= − 1
5 , and u∗ =

1
3

1− 1
2

= 2
3 . ut

7 Reachability Analysis

The algorithm for solving the reachability problem between two points x0 =
(e0, x0) and xf = (ef , xf) is depicted in Fig. 8. The proofs of soundness and
termination are given in the extended version ([5]). It works as follows.

Reach. From the section above we know that there exists a finite number of type
signatures of the form r1, s1, . . . , rn, sn, rn+1. Moreover, the type signatures are
restricted to those with e0 = first(r1) and ef = last(rn+1). Given such a set of
type signatures type(e0, ef), the algorithm Reach(·) is guaranteed to terminate,
answering YES if xf is reachable from x0 or NO otherwise. Reachability from
x0 to xf with fixed signature w is tested by the function Reachtype(x0, xf , w).

Reachtype. Let the type w have the form w = r1, s1, . . . , rn, sn, rn+1. Put
fi = first(si) and exi = first(ri+1) if ri+1 is non-empty and fi+1 otherwise
(i.e. exi is the edge to which the trajectory exits from the loop si). Let us say
that a type signature w has a loopend property if rn+1 = first(sn), i.e. signa-
tures of type w terminate by several repetitions of the last loop. This algorithm
uses two functions: Test(S, s, x) that answers whether x is reachable from a set
S (represented as a finite union of intervals) in the loop s (formally, whether
x ∈ Succs+first(s)(I)); and the function Exit(S, s, e) that for an initial set S, a
loop s, and an edge e (not in this loop) finds all the points on e reachable by
making s several times and then exiting to e (formally, it computes Succs+e(I),
which is always a finite union of intervals). Since we know how to calculate the
successor of a given interval in one and in several steps (Succee′(·) and Succr(·)),
in order to implement Test(·) and Exit(·) it remains to show how to analyze
the (simple) cycles si and eventually their continuation. Both algorithms Test(·)
and Exit(·) start by qualitative analysis of the cycle implemented in the function
Analyze(I, s). This analysis proceeds as follows.

Analyze. The function Analyze(I, s) returns the kind of qualitative behavior of
the interval I = 〈l, u〉 under the loop s. Let s be a simple cycle, f = first(s) its

first edge, and I = 〈l, u〉 ⊂ f an initial interval and Succs,f (x) = S̃uccs,f (x) ∩
〈L,U〉. The first thing to do is to determine the qualitative behavior of the
leftmost and rightmost trajectories of the interval endpoints in the cycle. This
can be done without iterating Succsf . Indeed, by Lemma 6, we can compute the

limits (l∗1, u
∗

1) = limn→∞ S̃ucc
n

s,f (〈l, u〉) (notice that those are limits only for the

non-truncated operator S̃ucc), not taking into account that the edges are possible
bounded (we use Lemma 4) and compare these limit points corresponding to
unrestricted dynamics with L and U . There are five possibilities:

1. STAY The cycle is not abandoned by any of the two trajectories: L ≤ l∗ ≤
u∗ ≤ U .

function Reach(x0,xf)
R = false

for each w ∈ type(e0, ef)
R = R ∨ Reachtype(x0, xf , w)

←− R

function Reachtype(x0, xf , w) :
S = Succr1f1

(x0)
for i = 1 to n− 1

S = Succri+1fi+1
(Exit(S, si, exi))

if loopend(w)
then ←− Test(S, sn, xf)
else ←− xf ∈ Succrn+1

(Exit(S, sn, exn))?

function Exit(S, s, ex)
E = ∅
for each I ∈ S such that Succs,f (I) 6= ∅

E = E ∪ ExitAnalyze(Succs,f (I), s, ex)
←− E

function Test(S, s, x)
R = false

for each I ∈ S such that Succs,f (I) 6= ∅
R = R ∨ TestAnalyze(Succs,f (I), s, x)

←− R

Fig. 8. Main algorithm.

2. DIE The right trajectory exits the cycle through the left (consequently the
left one also exits) or the left trajectory exits the cycle through the right
(consequently the right one also exits). In symbols, u∗ < L ∨ l∗ > U .

3. EXIT-BOTH Both trajectories exit the cycle (the left one through the left
and the right one through the right): l∗ < L ∧ u∗ > U .

4. EXIT-LEFT The leftmost trajectory exits the cycle but not the other: l∗ <
L ≤ u∗ ≤ U .

5. EXIT-RIGHT The rightmost trajectory exits the cycle but not the other:
L ≤ l∗ ≤ U < u∗.

Exit. The function Exit(S, s, ex) should return Succs+ex(S). Both the argu-
ment S and the result are finite collections of intervals. The exploration is made
for each initial interval separately. Notice that the call Succs,f (I) ensures that
I ⊆ 〈L,U〉. All the work for each initial interval I is done by the function
ExitAnalyze(I, s, ex) which launches the Analyze(·) procedure described above
and last, according to the result of this analysis launches one of five special-
ized procedures ExitSTAY , ExitLEFT , ExitRIGHT , ExitBOTH , ExitDIE which
calculates the exit set (Fig. 10).

function Search(I, x)
while Found(I, x) = NOTYET

I = Succs,f (I)
←− Found(I, x)

function Found(I, x)
cases

x ∈ I : ←− YES
I = ∅ : ←− NO
x < I ∧ l ↑ : ←− NO
x > I ∧ u ↓ : ←− NO
else : ←− NOTYET

Fig. 9. Search and Found.

Test. The upper-level structure is the same as for EXIT: each initial interval
is treated separately by TestAnalyze, which makes one turn of the loop, calls
Analyze and delegates all the remaining to one of the five specialized functions
TestSTAY , TestLEFT , TestRIGHT , TestBOTH , TestDIE (Fig. 10). The five spe-
cialized Test functions use the following two procedures (Fig. 9). The function
Found(I, x) determines if the current interval I contains x (YES), does not con-
tain x and moves in the opposite direction (NO), or none of both these cases
(NOTYET). Found(I, x) uses the fact that the sequences ln and un are increas-
ing or decreasing (which can be easily determined at the stage of the preliminary
analysis of the loop): l ↑ means that the sequence l, l1, l2, . . . of successive suc-
cessors of l is increasing whereas l ↓ means that the sequence is decreasing, and
similarly for u ↑ and u ↓. The function Search(I, x) iterates the loop s until the
previous function Found gives a definite answer YES or NO (Fig. 9). It is used
only when its convergence is guaranteed.

Exit Test

STAY
function ExitSTAY (I, s, ex)
←− ∅

function TestSTAY (I, s, x)
cases

l∗ < x < u∗ : ←− YES
x ≤ l∗ ∧ l ↓ : ←− NO
x ≥ u∗ ∧ u ↑ :←− NO
else : ←− Search(I, x)

DIE

function ExitDIE(I, s, ex)
f = first(s)
S = ∅
repeat

I = Succsf (I)
S = S

⋃
Succs,ex(I)

until I = ∅
←− S

function TestDIE(I, s, x)
←− Search(I, x)

BOTH
function ExitBOTH(I, s, ex)
←− Succs,ex(〈L, U〉)

function TestBOTH(I, s, x)
←− x ∈ 〈L, U〉?

LEFT
function ExitLEFT (I, s, ex)
←− Succs,ex(〈L, u〉)

function TestLEFT (I, s, x)
cases

x ∈ 〈L, u∗〉 : ←− YES
x < 〈L, u∗〉 : ←− NO
〈L, u∗〉 < x ∧ u ↑ :←− NO
else : ←− Search(I, x)

RIGHT Similar to the previous case. Similar to the previous case.

Fig. 10. Exit and Test.

...
v�w

x&y

x�z

v z

x w

x�{
v�|x�}

x�~

x |

v ~

v }

v y x��

v {

v ���u� wz �M� � �~ x
� ����� w

�,� � ~y
�:� � w�x�� � �

�
� ��� wz

Fig. 11. Example: xf = (e1,
3
4) is not reachable from x0 = (e1,

1
2) (u

∗ < 3
4).

Example. Consider again the swimmer. Let x0 = (e1,
1
2) be her initial position.

We want to decide whether she is able to escape from the whirlpool and reach

the final position xf = (e1,
3
4). Recall that l

∗ =
−

1
10

1− 1
2

= − 1
5 and u∗ =

1
3

1− 1
2

= 2
3 .

Thus, by the Analyze function we know that the cycle behaves as an Exit-LEFT
and applying the function TestLEFT we obtain that xf = (e1,

3
4) is not reachable

from x0 = (e1,
1
2) because we have that u ↑ and u∗ < xf (2

3 <
3
4) (Fig. 11). ut

From all the results above we have the following theorem.

Theorem 1 (Point–to–Point Reachability). The point-to-point, edge-to-edge
and region-to-region reachability problems for SPDI systems are decidable. ut

8 Concluding Remarks

We have presented an algorithm for solving the reachability problem for simple
planar differential inclusions. The novelty of the approach for the domain of Hy-
brid System is the combination of two techniques, namely, the representation of
the two-dimensional continuous dynamics as a one-dimensional discrete system
(due to Poincaré), and the characterization of the set of qualitative behaviors of
the latter as a finite set of types of signatures.

One possible direction of future work is to try to apply the same method for
solving the parameter synthesis problem for SPDI’s, that is, for any two points,
x0 and xf , assign a constant slope cP ∈ φ(P) to every region P such that xf is
reachable from x0, or conclude that such an assignment does not exist. Clearly,
the decidability of the reachability problem does not imply the decidability of
the parameter synthesis one.

Another question that naturally arises is decidability of the reachability prob-
lem for hybrid automata whose locations are equipped with SPDI’s. We can cer-
tainly find (stringent) conditions, such as planarity of the automaton, “memory-
less” resets, etc., under which decidability follows almost straightforwardly from
the decidability of SPDI’s. On the other hand, it is not difficult to see that
this problem, without such conditions, is equivalent to deciding whether given
a piece-wise linear map f on the unit interval and a point x in this interval,
the sequence of iterates x, f(x), f(f(x)), and so on, reaches some point y. This
last question is still open [13]. And last but not the least, another interesting
issue is the complexity analysis of the algorithm. It should be based on counting
all “feasible” types of signatures. Our finiteness argument of lemma 4 gives a
doubly exponential estimation, which can certainly be improved.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. TCS
138 (1995) 3–34.

2. R. Alur and D.L. Dill. A theory of timed automata. TCS 126 (1994) 183–235.

3. E. Asarin, O. Bournez, T. Dang, and O. Maler. Reachability analysis of piecewise-
linear dynamical systems. In HSCC’00, 20–31. LNCS 1790, Springer Verlag, 2000.

4. E. Asarin, O. Maler, and A. Pnueli. On the analysis of dynamical systems having
piecewise-constant derivatives. TCS, 138 (1995) 35–65.

5. E. Asarin, G. Schneider and S. Yovine. On the Decidability of the Reachability
Problem for Planar Differential Inclusions. VERIMAG Technical Report. 2001.
http://www-verimag.imag.fr/∼gerardo.

6. O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear differen-
tial inclusions using ellipsoidal approximations. In HSCC’00. LNCS 1790, Springer
Verlag, 2000.

7. M. Broucke. A geometric approach to bisimulation and verification of hybrid
systems. In HSCC’99. LNCS 1569, Springer Verlag, 1999.

8. K. C̆erāns and J. Vı̄ksna. Deciding reachability for planar multi-polynomial sys-
tems. In Hybrid Systems III. LNCS 1066, Springer Verlag, 1996.

9. T. Dang and O. Maler. Reachability analysis via face lifting. In HSCC’98, 96–109.
LNCS 1386, Springer Verlag, 1998.

10. J. Della Dora and S. Yovine. Looking for a methodology for analyzing hybrid
systems. Submitted to ECC 2001, 2000.

11. M. R. Greenstreet and I. Mitchell. Reachability analysis using polygonal projec-
tions. In HSCC’99. LNCS 1569, 103–116. Springer Verlag, 1999.

12. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? In 27th Annual Symposium on Theory of Computing, 373–382.
ACM Press, 1995.

13. P. Koiran. My favourite problems. http://www.ens-lyon.fr/˜koiran/problems.html.
14. A.B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis.

In HSCC’00. LNCS 1790, Springer Verlag, 2000.
15. G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable hybrid

systems. In HSCC’99. LNCS 1569, 137–151. Springer Verlag, 1999.
16. O. Maler and A. Pnueli. Reachability analysis of planar multi-linear systems. In

CAV’93. LNCS 697, 194–209. Springer Verlag, 1993.

http://www-verimag.imag.fr/~gerardo
http://www.ens-lyon.fr/~koiran/problems.html

