FEATURE

A LEGO-Based
Control Experiment

Bench-top demonstrations and laboratory experiments
in the field of continuous-time control systems

he LEGO Mind-
storms Robotic
Invention Sys-
tem is marketed
as an education-
al toy for chil-
dren aged 12 years and older
[1], [2]. Apart from a pletho-
ra of structural components,
the kit contains dc motor
actuators, a range of sen-
sors, and, most importantly,
the so-called RCX compo- .
nent. The RCX component is
a self-contained programma-
ble system based on the Hitachi H8 8-b microprocessor
with built-in interface to three actuators and three sensors,
as well as an infrared (IR) communications interface.

The RCX component was initial-
ly developed as an educational
tool through the collaboration of
LEGO and MIT [3], [4]. One of the
first versions of the RCX allowed six input and six output
blocks to be connected to the H8 microprocessor. When
LEGO developed the commercial version of the RCX, the
number of inputs and outputs was reduced to three of
each. Although this change reduced the flexibility of the
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RCX utilization, it reduced
the drain on the batteries
that power the system.

The initial intended use of
the RCX system was for
research and educational
activities. Combining the ver-
satile LEGO Technics con-
struction blocks with the
easy-to-use programming
and I/O interfacing of the
RCX provided a fast proto-
typing system to support
these activities. Although the
commercialization of this

product has focused on the recreational and

K-12 educational markets, the flexible and expand-

ing world of LEGO Mindstorms is widely accepted as a tool
for research and higher education.

Enthusiasts have extended the
hardware and software in various
ways [1], [2]. A recent issue of
IEEE Robotics and Automation Magazine [5]-[7] argues that
these extensions show that the LEGO Mindstorms kit can
be used to good effect in an educational context. In partic-
ular, the kit is relatively cheap, robust, reconfigurable,
reprogrammable, and induces enthusiasm and innovation
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Figure 1. The cart and pendulum system. This view is gener-
ated using the LEGO design program Ldraw. The correspond-
ing parts lists are given in Tables 1 and 2. The large yellow
brick contains the microprocessor, and has three sensor
inputs and three actuator outputs. The pendulum is suspend-
ed from a triangulated gantry attached to the cart. More
detail appears in Figure 4.

Figure 2. Angle sensor detail. A 10 k2 low-friction conduc-
tive-plastic potentiometer (Radiospares #173-580) is glued to
a standard grey LEGO plate. The potentiometer shaft is firmly
connected by means of a grey standard axle joiner to the
black axle, which is firmly connected to the black pendulum
by means of the grey 90° axle connecter and the blue con-
nector; thus, the potentiometer shaft rotates with the pendu-
lum axis. The potentiometer body is constrained by the short
black axle protruding though the grey plate and firmly fixed
to the black upright. One end of the conductive track and the
wiper are soldered to a standard LEGO cable and connector;
when connected to the RCX, this arrangement measures the
angular rotation of the pendulum. The corresponding code
appears in Code fragment 14.
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in students. However, most work in robotics and automa-
tion such as [5]-[8] focuses on discrete-event control using
on-off sensors and logic control.

In contrast, this article uses the LEGO Mindstorms kit
for bench-top demonstrations and laboratory experiments
in the field of continuous-time control systems. However,
neither the sensors nor the actuators provided as stan-
dard are appropriate for this purpose; in fact, the sensors
are heavily quantized and the actuators are nonlinear. This
article shows how these deficiencies can be overcome by
creating more accurate sensors and by linearizing the
actuators using electro-mechanical feedback. Several con-
trol experiments are presented to investigate and illustrate
the use of this kit; in particular, we consider the identifica-
tion and state-space control of the cart and pendulum sys-
tem shown in Figure 1.

Throughout the text, ideas for student investigation are
presented in boxed form like this.

LEGO Components

The components of the LEGO Mindstorms Robotic Inven-
tion System are described in detail in [1]; for this article,
components are categorized under the headings of sensors,

Online Resources

e http://brickos.sourceforge.net/contains the latest
version of the legOS/brickOS operating system for
the LEGO RCX brick.

e http://www.ldraw.org/ has programs for drawing
and displaying LEGO models.

e www.octave.org has information about the Mat-
lab-like program Octave.

e http://www.mech.gla.ac.uk/~peterg/Lego contains

—the LEGO model in Idraw form

—the legOS and LNP source used for the project

—the cart and pendulum control code

—the Octave code for controller design and code
generation

—a movie of a cart and pendulum experiment.

Because brickOS and LNP are open source, the student
can gain an understanding of real-time operating sys-
tems and sensor/actuator interfacing. Students are
encouraged to download and use the latest versions to
understand the importance of software upgrades and the
corresponding bug-fixing cycle.
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actuators, and information technology. As dis-
cussed in [2], it is possible to build alternative
sensors and interface them to the RCX. Equally
important, an alternative operating system
legOS (now known as brickOS [9]) is available
for implementing real-time controllers pro-
grammed in C++, and a TCP/IP based commu-
nications protocol LNP (legOS network
protocol) is available for downloading code and
communicating data by means of the IR link.

Sensors

For control-system operation, the standard
LEGO sensor of interest is the rotation sensor;
however, this sensor can measure rotation only
in increments of 360°/16 = 22.5°. As discussed
in [1], this resolution can be increased by suit-
able gearing; unfortunately, this approach intro-
duces excessive friction for the purpose of
suspending a pendulum. However, as shown in
[2], an instrumentation-quality potentiometer
can be glued to a standard LEGO flange and

(a) (b)

Figure 3. Two uses for a dc motor: (a) velocity sensor and (b) brake.
(a) One of the two wires in the standard LEGO connector is cut, and a 10
RQ resistor is soldered between the two bare ends. Because the RCX
drauws little current, the measured voltage is effectively the armature volt-
age, which is proportional to angular velocity. The small armature cur-
rent also means that the braking effect is small. The resistor is necessary
to protect the RCX. The corresponding code appears in Code fragment 15.
(b) Both wires of the standard LEGO connector are cut, and the two bare
ends soldered together. This technique effectively short-circuits the motor

electrically interfaced to the RCX. Figure 2 illus-
trates how this modification is accomplished.

There is no standard velocity sensor provid-
ed. However, as every engineering student
should know, an open-circuit dc motor produces a voltage
proportional to angular velocity. As discussed in [2], the
RCX can measure a voltage as long as the voltage source
has large internal resistance. Figure 3(a) gives details of how
the measurement can be accomplished.

terminals, and thus all generated power is dissipated in the armature
resistance. This electrodynamic brake makes the cog wheel act as a lin-
ear mechanical resistance with torque proportional to angular velocity.

As discussed later, the output from the angular velocity
sensor is noisy. Students can design and build a suit-
able low-pass filter.

Automatic Code Generation

utomatic code generation is widely used in industry
and academia. As a simple example, consider the
state-space controller of (7) with numerical values
given in Table 3. Standard state-space design within the matrix
manipulation package Octave (similar to MATLAB) is used to
generate the state-feedback gain K and observer gain L given by

K=11.2688 4.4721], L' =[1.685710.1672].

The m-files controller2c.m of Code fragment 16 and
matrix2c.m of Code fragment 17 generate the following
code ready for compilation:

/% Error equations x/
@= =y 41
/* State estimator */

xdot = —2.30968x%x[0] + 1.91551*u_out — 1.68575x*€;
x[0] = x[0] + xdot«xDT;

xdot = +x[0] — 10.1672xe;

x[1] = x[1] + xdot«xDT;

/+ Control signal x/

u=4.47214xw — 1.26875xx[0] — 4.47214xx[1];

Note that matrix entries with value zero do not appear, and
matrix entries with value unity do not explicitly appear.
Compared to the alternative approach of using loops to
implement matrix multiplication, this approach yields fast-
executing code, which is an important consideration when
using the relatively slow Hitachi H8 processor. This code is
included in the function Cart_con.c listed in Code fragment
18, where further explanation is given.
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Actuators

The standard LEGO actuator component is a good qual-
ity permanent-magnet dc motor with high inertia and

low friction.

open circuit, and thus the armature resistance plays no
part in the overall system dynamics. Thus, the effective
armature resistance depends on the control signal to the
dc motor. In the context of the cart and pendulum system,

the armature resistance forms the

Although the commercialization of this major part of the resistive component

of the dynamics, and so this nonlinear

product has focused on the recreational ~ cfiect s sisnificant.

To the control engineer, a natural

and K-12 educational markets, the way to overcome the nonlinearity

arising from the pulse-width modula-

flexible and expanding world of LEGO tion is to design a velocity feedback

loop. A simple design is to mechani-

Mindstorms is widely accepted as a tool =~ ca!y connect the actuating de motor

shaft to the shaft of a second dc

for researCh and higher education. motor with short-circuited armature.

Figure 3(b) gives relevant details.

The high quality of the LEGO motors allows a good
demonstration of electro-mechanical energy conversion
by electrically connecting two motors and observing
that manually rotating one shaft rotates the other shaft
through the same angle.

Students can devise methods to measure the arma-
ture resistance rq, the motor gain k;,, and the motor
mechanical inertia j;; assuming that both friction and
armature inductance can be neglected.

Unfortunately for control purposes, the linear actuator

is powered using pulse-width modulation. During the on
phase, the armature resistance contributes to the system
dynamics, whereas during the off phase the armature is an

Students can show why this connection gives velocity
feedback and why the short-circuited dc motor is equiv-
alent to a rotational mechanical damper. They can also
investigate the alternative approach of implementing
the velocity feedback in software using the angular
velocity sensor discussed above.

Cart and Pendulum System

The cart and pendulum system shown in Figures 1 and
4 is constructed using the LEGO components of Tables 1
and 2, together with the special sensors discussed above
and corresponding software. In particular, the hardware
comprises the following items:

IR Port

Rotation Sensor

Pendulum

Brake

Motor
Axle

RCX

(b)

Figure 4. The cart and pendulum system is constructed out of LEGO. The yellow brick is the RCX component containing a
Hitachi H8 8-bit microprocessor, sensor and actuator interfaces, and IR communication port. (a) Overall system and (b) detail.
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Table 1. Cart parts list. The cart is constructed from the LEGO components listed here with the modifications of Figure 3.

Quantity Color Description

1 Yellow LEGO Mindstorms RCX

1 Black LEGO Mindstorms IR Tower

2 Black Brick 2 x 2

4 Black Electric Bricks 2 x 2 & connecting wire
1 Light Blue Electric Rotation Sensor

4 Light Grey Electric Mini-Motor 9 V

10 Light Grey Plate 1 x 2

1 Black Technic Axle 6

2 Black Technic Axle 8

1 Light Grey Technic Axle Joiner

6 Light Grey Technic Axle Pin

4 Black Technic Brick 1 x 16 with holes
1 Light Grey Technic Bush

1 Light Grey Technic Gear 16 Tooth

4 Light Grey Technic Gear 24 Tooth

2 Light Grey Technic Gear 40 Tooth

2 Light Grey Technic Liftarm 1 x 3

2 Light Grey Technic Liftarm 3 x 3 L-Shape
4 Light Grey Technic Pin with Friction

2 Light Grey Technic Plate 2 x 6 with holes
7 Light Grey Technic Plate 2 x 8 with holes
4 Black Tire 81.6 x 15 Motorcycle

4 White Wheel 81.6 x 15 Motorcycle

October 2004

Two motors fixed on a common axle to drive the rear
wheels by means of a 24:24 =1 ratio gear (see
Figure 4). The software converts a normalized con-
trol signal —1 < u < 1 into the full torque range of
the motor drive.

The open-circuit dc motor of Figure 3(a), coupled to
the drive motor by means of a 24 : 40 = 0.6 ratio gear,
acts as a velocity sensor. The software converts this
signal into the forward velocity of the cart v. m/s.

The short-circuited dc motor of Figure 3(b), coupled
to the drive motor by means of a 24 : 40 = 0.6 ratio
gear, acts as an electrodynamic brake. As discussed
above, this motor provides velocity feedback to
make the drive more linear.

A standard rotation sensor, which is coupled to the
motors by means of a 24: 16 = 1.5 ratio gear. The
software converts this signal into the linear position
of the cart y. m.

The homemade rotation sensor of Figure 2, which is
used as the suspension point of the pendulum. The
software converts this signal into the horizontal move-
ment of the pendulum y, m with respect to the cart.

e The gearing is shown in detail in Figure 4(b), where a
driving wheel has been removed for visibility.

The software comprises the following programs:

e The real-time kernel 1legOS [9] version 0.2.4 (see
“Online Resources”). Unlike later versions, this ver-
sion has full support for the legOS Network Protocol
(LNP) communications software and support for the
serial IR communications port.

Students can upgrade this version to support the more
recent USB IR communications port.

e Automatically generated controller code (see “Auto-
matic Code Generation”) implementing one of four
controllers:

e open-loop control
e proportional control of cart position y.
e observer/state-feedback control of cart position

Y=Y
e observer/state-feedback control of load position
Y=Y+
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Table 2. Pendulum parts list. The pendulum and gantry are constructed from the LEGO components

listed here with the modifications of Figure 2.

Quantity Color Description
1 - Potentiometer position sensor;
see Figure 2
Light Grey Plate 2 x 2
Light Grey Plate 2 x 10
16 Light Blue Technic Angle Connector #2
1 Black Technic Axle 5
3 Black Technic Axle 8
22 Black Technic Axle 12
2 Light Grey Technic Axle Joiner Offset
4 Black Technic Brick 1 x 16 with holes
8 Light Grey Technic Bush
4 Light Grey Technic Connector
6 Light Grey Technic Connector with Axle hole
1 Light Grey Technic Plate 2 x 4 with holes
2 Light Grey Technic Plate 2 x 6 with holes
1 Light Grey Technic Pole Reverser Handle
1 Light Grey Technic Pulley Large
2 Black Tire 30.4 x 14 VR
2 Black Tire Medium
2 White Wheel 30.4 x 14 VR
2 Yellow Wheel Center Large

Physical System System Modeling

|

Parameter
Estimation

Mathematical
Model

[

Model Parameters| Control Theory

|

Software

Controller Engineering

Implement
and Test

]

Students can implement their own controllers in
C/C++. They can thus complete an entire design cycle
from modeling and control design to discrete-time
implementation.

e The infrared sensor is programmed using the LNP
software to send five numbers back to the external
computer at every sample instant: time f, pendulum
absolute position y =y, + ¥, control signal u, mea-
sured cart velocity v, and controller setpoint w. To
save time, each floating-point number is scaled and
converted into a two-byte integer.

Figure 5. From physical system to controller implementa-
tion. The implementation can be divided into several steps
(left-hand boxes). Each step of the implementation requires a
specific engineering skill (right-hand boxes). The LEGO cart
and pendulum provides an effective testbed for this process.
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Students should understand that the big-endian, little-
endian controversy means that bytes have to be
swapped to be meaningful to the computers at each end
of the link. Students should also be aware of the accura-
cy/time tradeoff in choosing how to represent numbers
over this slow (7 ms/byte) communication link.
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Experiments

This section presents one set of control experiments that
can be performed with the cart and pendulum system.
Our aim is to show that introductory experiments using
proportional control, as well as more advanced state-
space-based control, can be used to illustrate and teach
basic control engineering skills. In particular, as indicated
in Figure 5, the implementation of the real-time controller
requires several steps, each of which exercises a particu-
lar engineering skill. Each of the following experiments
requires the student to systematically follow the flow-
chart of Figure 5.

The outlines given below can form the basis for either
prepackaged experiments, demonstrations for a first
course in control, or open-ended projects for the more
advanced student.

As illustrated in Figure 6, both classical and state-space
methods can be used at the controller design stage.

System Modeling

There are several ways to obtain a model of the cart and
pendulum system in a form suitable for control. While this
section considers system identification, other approaches
are suggested as well.

System

(a)

V<

System

L2 g I
A

Observer

Figure 6. Feedback control. (a) Proportional control and (b) state-space control. The System block can have either a transfer
function or a state space representation. The system can be the cart with y = cart position, or the cart and pendulum with
y = pendulum bob position. w is the desired value of y, and u is the control signal. (a) The control signal is proportional to

the difference between w and y. k is chosen using classical control theory. (b) The observer generates the state estimate x in
terms of the system model and the measured system input and output. In the case of the cart only, the vector x has two compo-
nents, whereas, in the case of the cart and pendulum, x has four components. The state-feedback gain vector K multiplies the
state estimate x to give a scalar signal. The gain k gives the correct steady-state value fory. The gains K and k and the observ-
er are chosen using state-space control theory.
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Figure 7. System identification: (a) measured data and (b) reconstructed data. (a) The solid line shows the cart velocity v as
measured by the velocity sensor of Figure 3(a), and the dashed line shows the system input u to the motor. As a check on the
velocity sensor, the computed derivative y of the cart position y is shown as a dotted line, as expected, the computed deriva-
tive is a noisy version of the measured velocity. (b) The solid line is the measured velocity of (a), and the dotted line is
obtained by passing the system input u of (a) through the transfer function (1) using the identified parameters a and b of
Table 3. Comparison of the two plots shows that the identified transfer function is a reasonable approximation of the true sys-
tem dynamics.
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With the pendulum removed, the cart consists of sev-
eral inertial elements (the inertias of the cart, motors,
brake, and gears) and several resistance-like compo-
nents (the friction of the motors, brake gears and cart,
and the armature resistances). All of the inertias are
rigidly coupled by the gear train of Figure 4(b), and thus
there is only one independent inertia. Ignoring the effect
of armature inductance, it follows that the cart subsys-
tem relating input u to linear velocity v is first order.
Assuming further that the system is linear, its transfer
function can be written as

v b
—_ = G = —. 1
p o(S) st a 1)
The corresponding transfer function relating to the
“System” block of Figure 6(a) and (b) is G(s) given by

y 1 b

u EGU(S) T ssta @

; Identified Step — |
04t 7 Transfer Function Step -

Identified Step Response (m)
o
[6)]

0O 05 1 15 2 25 3 35 4 45 5
Time [s]

Figure 8. Identified step response. The step response given
by the solid line is identified using the measured velocity v
and the input signal u of Figure 7(a) using the method of
[11]. This identified step response is used to identify the
unknown parameters of the transfer function (1), the step
response of the transfer function (1) with the identified para-
meters a and b of Table 3 is given as the dotted line. As
expected, the dotted line is a smoother version of the solid
line indicating that the identified transfer function is a rea-
sonable representation of the identified step response.

Table 3. Numerical values used to design the state-space
controller. The parameter A is the linear-quadratic con-
trol weight, o is the measurement noise variance, and a

and b are the identified cart parameters of (1) and (6).

0.05 0.01 2.31 1.92
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One approach to finding the parameters a and b is given in
the next section.

System Identification

The open-loop data of Figure 7(a) were generated, where
the solid line shows the measured value of the cart veloci-
ty v. Following the methods of [10] and [11], the identifica-
tion is accomplished in two stages. First, the
frequency-sampling filter (FSF) approach of [10] is used to
estimate the system step response given as the solid line
in Figure 8 from the input-output data of Figure 7(a). Sec-
ond, following [11], a first-order model of the form of (1) is
fitted to the estimated step response giving the numerical
values of a and b appearing in Table 3. The corresponding
step response is given as the dotted line in Figure 8. As a
further comparison, the input data of Figure 7(a) are
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Figure 9. Proportional control of the cart: (a) cart position
and (b) control signal. This experiment enables the student
to compare simulation with reality. Repeating the experiment
with a different gain illustrates the tradeoff between control
effort and performance. (a) This plot shows measured
(solid) and simulated (dotted) cart positions superimposed
on the setpoint (dashed). Although the match is not exact,
the measured and simulated cart positions are similar. Dis-
crepancies might be due to the sensor quantization and
unmodeled nonlinear friction as well as the unmodeled con-
trol limits shown in (b). (b) The actual (solid) and simulated
(dotted) control signals are different since the actual control
signal is limited to £1 and is less smooth due to feedback
from the imperfect [(a)] actual system.
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passed through the transfer function of (1) with the para-
meters a and b of Table 3 to generate the dotted line of
Figure 7(b), which is superimposed on the actual data v
appearing as a solid line.

Figure 10 shows a two-cart system that approximates
the cart and pendulum system. The leftmost cart, labeled
m =1, represents the cart that we have already identified,
while the spring and the second cart represent the pendu-
lum. The length of the pendulum is /, = 0.38m, and thus
the natural frequency of the cart and pendulum system
with the cart fixed is

_ (8 _ /281 _ -1
w—\/;— 0.38_5,08rads = 0.81Hz. 3)

The two-cart system of Figure 10 with the first cart fixed
has the same natural frequency when the spring compli-
ance is given by ¢, = (I,/gmp).

It turns out that the system transfer function is largely
independent of mj, as long as m, < 1. Here, we somewhat
arbitrarily choose m, = 0.1. With this choice, together with
(D), (3), and Table 3, the model of the system of Figure 10
is fully identified.

Proportional Control of the Cart
With the pendulum removed, the system is described by
(D), or, in terms of y, as

y b

u :s(s+a)'

“4)

Root-locus analysis shows that the proportional controller
u=25w-—y) ®)

gives a closed-loop system with poles at s = —1.1548 +
1.8588;. Figure 9(a) shows the setpoint w together with the
actual and simulated system output y, and Figure 9(b)
shows the corresponding control signals.

State-Space Control of the Cart

From (4), a state-space model giving y in terms of u is given by

—a 0 b
A:[1 0], B:[O] C=[0 1], D=0. (6

A standard observer/state-feedback controller [12], [13] is
designed in the form

y=Cx
9 — A%+ Bu—L(y—y) )
u =kw— Kx.
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Figure 10. Cart and pendulum system represented by a
mass-spring system. The pendulum friction is small enough to
ignore the resultant damping term.
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Figure 11. State-space control of the cart: (a) cart position
and (b) control signal. The state-space controller has better
performance than the proportional controller of Figure 9. (a)
This plot shows measured (solid) and simulated (dotted) cart
positions superimposed on the setpoint (dashed). (b) This plot
shows actual (solid) and simulated (dotted) control signals.
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The state-feedback gain K is the solution to the steady-
state linear quadratic optimization problem [12], [13]

J= / - (% + ru(t)’dt. 8)
0

The observer gain L is the solution to the steady-state
optimal observer problem [12], [13], where the system

states are corrupted by uncorrelated white noise with
unit standard deviation and the measurement is cor-
rupted by uncorrelated white noise with standard devi-
ation o. Numerical values for A, o, a, and b appear in
Table 3.

The numerical computation is performed using the-
MATLAB-like program Octave (see “Online Resources”). A
simple octave script is written to convert the equations
implied by (7) and Table 3 into C code, together with a
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Figure 12. State-space control of the cart and pendulum sys-
tem: (a) load position and (b) control signal. (a) This plot
shows measured (solid) and simulated (dotted) positions
superimposed on the setpoint (dashed). Despite the low
damping of the open-loop system, the closed-loop load posi-
tion behaves in a well-damped fashion. (b) This plot shows
the input (solid) and simulated input (dotted). The oscilla-
tions in the control signal show how the cart has to be moved
to counteract the pendulum movement.
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Figure 13. Load position when (a) regulating cart position
and load position when (b) regulating load position. In (a)
the cart stays still but the load swings in an uncontrolled fash-
ion. In (b) the cart moves so as to stop the swing of the load.
It is a salutary experience for the student to try and stop the
load swinging by manually moving the cart. (a) The cart
position (dotted) is held by the controller at a constant value;
this mode leaves the load position (solid line) free to swing.
The amplitude of the load oscillation is reduced due to natur-
al damping. (b) The feedback controller drives the load posi-
tion to zero by moving the cart position (dotted line) to
counteract the pendulum movement.
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simple Euler integration routine [14],
which then becomes an include file for
the overall compilation into RCX code
(see “Automatic Code Generation”).

Figure 11 shows the actual and simu-
lated results. As can be seen, the perfor-
mance of the state-space controller is
better than that of the proportional con-
troller of Figure 9.

The LEGO Mindstorms kit is relatively

cheap, robust, reconfigurable,
reprogrammable, and induces

enthusiasm and innovation in students.

The state-space controller has a transfer function rep-
resentation [12], [13]. Students can compare the rela-
tive performance of the two controllers and give an
explanation using the transfer-function representation
of each controller.

State-Space Control

of the Cart and Pendulum

In a similar fashion, a fourth-order version of the observ-
er/state-feedback controller of (7) is designed using the
same optimization criterion to give the code shown in
Code fragment 19. Once again, Figure 12 shows the set-
point-following behavior of the actual and simulated con-
trol system. As in Figures 9 and 11, there are discrepancies
between the simulated and actual result; in this case,
there is a significant steady-state offset.

/x Angle sensor data */

#define MAX_INT_ANGLE 1023

#define MAX_ANGLE 3.142

#define INTERNAL_RESISTANCE 10000
#define POT_RESISTANCE 20000

/x Angle sensor code */

double pendulum_angle(double angle_0)

{
double angle,resistance;
unsigned int angle_raw;
angle_raw = SENSOR_2/64;
resistance = 1.0xangle_rawxINTERNAL_RESISTANCE/

(MAX_INT_ANGLE-angle_raw); /x ohms */

angle = 2xPlx(resistance/POT_RESISTANCE); /x Radians */
angle = 0.85xangle; /% Fiddle factor!! %/
return angle-angle 0;

Figure 14. Pendulum_angle.c. The BrickOS API provides the
three short integer values SENSOR_1, SENSOR_2, and SEN-
SOR_3, which contain the current raw sensor readings, we
use the center sensor connection, and thus SENSOR_2 here.
The remaining code converts the reading to the actual angle
in radians. angle_0 is the value corresponding to the vertical
pendulum.
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The student can observe the practical effects of LQ
parameters as well as control-signal saturation. The stu-
dent can devise an extended state-space controller to
remove steady-state offset as discussed in [12] and [13].

Perhaps the most dramatic desktop demonstration of the
controller is as a regulator. With the controller switched off
(using the RCX on/off button) the load is manually set
swinging up to an angle of about 45°. The controller is then
switched on, and the data recorded on the host machine.

When the cart position is regulated, the load swings
freely with a slow decay [Figure 13(a)]. In contrast, with
the load position regulated, the pendulum stops swinging
within about 3 s [Figure 13(b)]. As can be deduced from
the control signal u, the controller achieves this perfor-
mance by moving the cart appropriately. In effect, the pen-
dulum is shaken to a halt. This experiment makes an
impressive benchtop demonstration for a lecture or class.
An online movie is available (see “Online Resources”).

Summary
A nice feature of the LEGO system is that, although the
mechanical, electrical, and structural construction is good

/x Velocity sensor data */
#define VELOCITY _FACTOR 342.0

/x Velocity sensor code */

double motor_velocity()

{
int velocity_raw;
double velocity;
velocity_raw = (SENSOR_3/64) - 512;
velocity = velocity_raw/VELOCITY _FACTOR;
return velocity;

Figure 15. Motor_velocity.c. As discussed in Code fragment
14, SENSOR_3 contains the raw sensor reading when the
angle sensor is connected to the third sensor input. The
remaining code converts the reading to the velocity of the
cart in m/s.
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function eqns = controller2c (A,B,C,.DK)L,g_ss)
## usage: eqns = controller2c (AB,C,D,K L, g_ss)
##
## Copyright (C) 2003,2004 by Peter J. Gawthrop
## $1d: controller2c.m,v 1.6 2004/04/06 08:56:04 peterg Exp peterg $
[nxnuny] = abeddim(A.B,CD); # Dimensions
eqns = ' ’; # Initialise string

## Error equations

eqns = sprintf(' #s /* Error equations */\n’.eqns);

for i = liny
eqn = sprintf(’ e[#i] = —y[#i]’, i-1, i-1);
eqn = matrix2¢(C,i,’ x’ .eqn); # C matrix

endfor

eqns = sprintf(’ #s#s;\n’, eqns, eqn);

## Observer equations
eqns = sprintf(’ #s /* State estimator x/\n’, eqns);

for i = linx
eqn = sprintf(’ xdot =');
eqn = matrix2c(A,i,’ x’ eqn); # A matrix
eqn = matrix2c¢(B,,’ uout’ ,eqn); # B matric
eqn = matrix2c(-L,i,’ e’ ,eqn); # L matrix
eqn = sprintf(’ #s;\n x[#1] = x[#i] + xdotsDT;\n’, eqni-1,-1);

eqns = sprintf(’ #s#s’, eqns, eqn);
endfor

## Controller equations
eqns = sprintf(’ #s /# Control signal #/\n’, eqns);
for i=1:nu
eqn = sprintf(’ u([#1i] = #g*w’,i-1,1/gss);
eqn = matrix2¢(—K,i,’ x’ eqn); # K matrix
eqns = sprintf(’ #s#s;\n’, eqns, eqn);
endfor

## Replace arrays by scalars

if (nu==1)
eqns = strrep (eqns,”’ u[0] 7, u’);
eqns = strrep (eqns,’ u-out [0] *,’uout’);
endif
if (n_y==1)
eqns = strrep (eqns,’y [0]7,'y');
eqns = strrep (eqns,’ e [0] ', e”’);
endif
endfunction

Figure 16. Controller2c.m. This Octave function converts the system matrices A, B, C, D, the feedback
matrix K, and the observer matrix L to the corresponding C code.

enough for successful results, there are enough discrepan-
cies between theory and practice to introduce the student
to real-world problems of controller implementation. This
article concentrates on implementing the feedback con-
troller within the RCX, with the host computer used for
compiling, downloading, and data display. However, an
interesting research project is to implement part of the con-
troller (for example, optimization-based model-predictive
control) on the host computer and communicate by means
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of the IR channel. The bandwidth restriction that this
approach imposes can provide the basis for a research pro-
ject on control through a restricted-bandwidth channel.
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## usage:

## Used in controller2c.m

## Defaults
if nargin<3
name = ‘x’;

endif

if nargin<4
eqn = ‘7,

endif

[n,m] = size(M);
for j = I:m
m.j = M(@,;);
if m_ij<0
pm = "-*;
else
pm = "+7;
endif
a = abs(m.ij);
if (a==1)

elseif (a™=0)
endif

endfor
endfunction

function eqn = matrix2c(M.,i,name,eqn);
eqn = matrix2c(M,i,name,eqn);
## Writes equations for row i of matrix M with name ’'name’

## Copyright (C) 2003,2004 by Peter J. Gawthrop
## $Id: matrix2c.m,v 1.7 2004/04/05 08:24:33 peterg Exp $

## Create string containing equation of row i

eqn = sprintf(’ #s #s #s[#1i]’, eqn, pm, name, j-1);

eqn = sprintf(’ #s #s #g*#s[#i]’, eqn, pm, a, name, j-1);

# Default name

# Blank string

# Dimensions

# sign symbol

# |m_i|

Figure 17. Matrix2c.m. This Octave function converts the ith row of a matrix to the corresponding C code.
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/* File Cart_con.c */
/x Created by MakeController.sh at Tue Apr 6 10:03:18 BST 2004 */
/x Using control weight lambda=0.05 and observer weight sigma=0.01 %/
double controller(double y, double u_out, double w, double x[N_state])
{

double u,exdot;

/x Error equations */

e = -y + x[l];

/% State estimator */

xdot = — 2.30968xx[0] + 1.91551*u_out — 1.68575xe;

x[0] = x[0] + xdot+DT;

xdot = + x[0] - 10.1672x¢;

x[1] = x[1] + xdot«xDT;

/% Control signal */

u = 4.47214xw — 1.26875%x[0] — 4.47214%x[1];

return u;

Figure 18. Cart_con.c. Automatically generated state-feedback controller for the
cart control of Figure 11. The sample interval DT is defined in the main program.
u_out is the constrained control signal actually applied to the cart in the previous
time instant. It is important to use u_out in the observer equations rather than the
computed value u.

/% File PendulumOnCart_con.c */
/% Created by MakeController.sh at Tue Apr 6 10:03:25 BST 2004 %/
/% Using control weight lambda=0.05 and observer weight sigma=0.05 %/
double controller(double y, double u_out, double w, double x[N_state])
{
double u,e,xdot;
/x Error equations */
e = -y + x[3J;
/x State estimator =/
xdot = — 2.30968%x[0] — 2.58158%x[1] + 1.91551%u_out + 0.909516x¢;
x[0] = x[0] + xdot«xDT;
xdot = + x[0] - 10%x[2] + 4.68795x¢;
x[1] = x[1] + xdot«DT;
xdot = + 2.58158xx[1] - 4.16972x¢;
x[2] = x[2] + xdot«DT;
xdot = + 10%x[2] - 10.1683x¢;
x[3] = x[3] + xdotxDT;
/+ Control signal */
u = 4.47214xw - 1.89038xx[0] - 7.78873xx[1] + 0.48409xx[2] - 4.47214xx[3];
return u;

Figure 19. PendulumOnCart_con.c. Automatically generated state-feedback con-
troller for the cart and pendulum controller of Figures 12 and 13. Compared to
Code fragment 18, this controller has four observer states to update, namely, the
cart position and momentum, and the pendulum position and momentum.
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