
Equations on Timed Languages ?

Eugene ASARIN

Institute for Information Transmission Problems
19 Bolshöı Karetnÿı lane, 101447, Moscow, Russia

asarin@ippi.ras.ru

Abstract. We continue investigation of languages, accepted by timed
automata of Alur and Dill. In [ACM97] timed regular expressions equiv-
alent to timed automata were introduced. Here we introduce quasilinear
equations over timed languages with regular coefficients. We prove that
the minimal solution of such an equation is regular and give an algo-
rithm to calculate this solution. This result is used to obtain a new proof
of Kleene theorem ([ACM97]) for timed automata. Equations over timed
languages can be also considered as an alternative way of specifying these
languages.

1 Introduction

Timed automata ([AD94]) form the best investigated class of hybrid systems.
It is known which problems about these automata are decidable and which are
not, and there are tools for testing emptiness, evaluating reachable states etc.
([DOTY96]). However some theoretical aspects and parallels with ordinary finite
automata are still not clear. This paper may be considered as a continuation of
([ACM97]) where timed languages were analyzed from the traditional linguistic
viewpoint — and timed regular expression capable to specify exactly the same
languages as timed automata were introduced.
We take for a model following classical (forty years old) results about finite

automata, regular languages and linear equations (see e.g. [Brz62]).
Any system of linear equations in the form

Xi = αi +

n
∑

j=1

βijXj i = 1, . . . , n, (1)

where Xi stand for unknown languages and αi, βij — for given regular coeffi-
cients, has a regular minimal solution. The regular expression for this solution
can be found effectively from the coefficients.
For any finite automaton a system (1) can be easily constructed, each un-

known Xi of the system corresponding to a state qi of the automaton. In the

? This research was supported in part by the Russian Foundation for Basic Research
under the grants 97-01-00692 and 96-15-96048; and by the International Association
for the Promotion of Cooperation with Scientists from the Independent States of the
Former Soviet Union (INTAS) under the grant 94-697.

minimal solution, the language Xi is exactly the language accepted by the au-
tomaton starting from the state qi.
As a corollary these two classical results imply Kleene theorem ([Kle56])

about regularity of languages accepted by finite automata.
Our aim is to port these results to timed automata and to introduce a class of

equations over timed languages capable to specify languages of one-clock timed
automata. These equations are similar to classical linear equations (1). However
the following example shows that a straightforward timed adaptation of linear
equations cannot work.

q2

q3 Accept

-

?
-

?
+

a

b

a

b
a

q1 q2

q3 Accept

-

?
-

?
+

a, c = 5/c := 0

b, c > 7

a, c = 8

b, c = 2
a, c < 10

q1

Fig. 1. Two automata

Example 1. The language of the first (untimed) automaton on Figure 1 can be
represented by the following equations:







X1 = aX2 +bX3

X2 = b +aX3

X3 = a

Xi here stands for the language accepted from the state qi and each transition
from qi to qj labeled with a can be represented by a term aXj in the equation for
Xi. Roughly speaking, such a transition corresponds to concatenating its label
a to the language.
The case of the second (timed) automaton is more complicated because now

there are two kinds of transitions. Some of them reset the clock and in this case
they also can be represented by concatenation of the label (with time restriction)
to the language. However some transitions do not reset the clock. We cannot
write an equation like X1 = aX2 + bX3 with a constraint on the sojourn time
in state q1, because after completing action b the automaton enters the state q3
with a modified clock value.

To deal with this problem we introduce another composition operation on
timed languages (◦ operation) which corresponds to non-resetting transitions.
We introduce quasilinear equations on timed languages which use both kinds

of concatenation (· and ◦) and are strong enough to represent one-clock timed
automata.

Our main result is that any system of equations of this class with regular
coefficients has a regular minimal solution. We give an algorithm to find out this
solution.

The paper is motivated by the theory of timed automata, however the major
part of it (sections 3–4) contains an automata-free theory of timed languages,
regular timed expressions and quasilinear equations on timed languages. At our
opinion, this linguistic approach could be useful for other classes of hybrid sys-
tems as well.

The outline of the paper is as follows. In section 2 we recall the definition of
timed regular languages from [ACM97]. In section 3 the new operation ◦ over
languages is formally introduced. This operation is crucial for representing timed
automata by equations. We investigate algebraic properties of this operation and
show, that ◦ can be eliminated in a sense. In section 4 quasilinear equations are
introduced and solved. The possibility to solve this kind of equations is the
main result of the paper. In section 5 we recall the definition of timed automata
and apply our main result to languages of these automata. For any one-clock
automaton we construct a quasilinear system, which represents the language
of this automaton. This provides an alternative proof of expressive equivalence
of timed automata and timed regular expressions from ([ACM97]). In the last
section further work is discussed.

2 Timed Regular Languages

We reproduce in a slightly modified form the basic definitions of timed languages
and timed regular equations from [ACM97]. Let Σ be a finite alphabet and let
R+ denote the set of positive real numbers. A signal over Σ is a timed sequence
of elements of Σ, i.e. a finite sequence w = ((a1, t1), . . . , (an, tn)) with ai ∈ Σ

and ti ∈ R+, such that 0 < t1 < . . . < tn. We will also write this signal as

w = ar11 a
r2
2 · · · a

rn
n ,

where r1 = t1, and ri+1 = ti+1 − ti, i.e. ri are relative delays between ai oc-
currences. We call tn the length of w and denote it by |w|. The empty signal
is denoted by ε. Its length equals 0. The set of all signals is denoted by S(Σ).
Subsets of S(Σ) are referred to as (timed) languages. For every w1, w2 ∈ S(Σ)
such that w1 = ar11 a

r2
2 · · · a

rn
n and w2 = bs11 bs22 · · · b

sn
n we define their concatena-

tion as w = w1w2 = ar11 · · · a
rn
n bs11 · · · b

sn
n . This notion can be extended naturally

to concatenation of languages by letting

L1L2 = {w1w2 : w1 ∈ L1 ∧ w2 ∈ L2}.

An integer-bounded interval is either [l, u], (l, u], [l, u), or (l, u) where l ∈ N
and u ∈ N ∪ {∞} such that l ≤ u. We exclude ∞] and use l for [l, l].

Definition 1 ((Timed Regular Expressions)). The set E(Σ) of timed regu-
lar expressions over an alphabet Σ, (expressions, for short) is defined recursively
as either a, α1 ·α2, α1 +α2, α

∗ or 〈α〉I where a ∈ Σ, α, α1, α2 ∈ E(Σ) and I is
an integer-bounded interval.

The semantics of timed regular expressions, [[]] : E(Σ)→ 2S(Σ), is given by:

[[a]] = {ar : r ∈ R+}
[[α1 + α2]] = [[α1]] ∪ [[α2]]
[[α1 · α2]] = [[α1]][[α2]]
[[α∗]] =

⋃∞
i=0([[α

i]])
[[〈α〉I]] = [[α]] ∩ {w : |w| ∈ I}

Some comments should be given here. First, the semantics of a is not a
singleton, but a non-countable language. The intuitive meaning of this expression
is that some unknown time passes and then event a happens. Operations +, · and
∗ are the same as for untimed languages. The only operation which introduces
time explicitly is “time restriction” 〈〉I which chooses only those signals in the
language, whose lengths belong to the constraining interval I.

Example 2.

[[〈〈ab〉(2;3)c〉100]] = {a
xbycz|2 < x+ y < 3;x+ y + z = 100}.

To simplify notation we write ε for the following regular expression 〈a∗〉0,
whose semantics is exactly ε.
Expressions introduced here form a proper subclass of those introduced in

[ACM97], because here intersection is not allowed in the syntax. This change
explains the difference between the formulation of Theorem 2 below from that
of the same theorem in [ACM97].

3 Operation ◦

Begin with the following shift operation over signals, which just delays the be-
ginning by t and preserves relative delays between events.

Definition 2. For a signal w = at11 a
t2
2 . . . atn

n let Stw = at1+t
1 at22 . . . atn

n

We say that a language is shift-invariant, if S−tL = L for any t > 0, i.e.
any signal w belongs (or does not belong) to L simultaneously with Stw. The
following condition is sufficient for shift invariance — the regular expression
should not begin with something in 〈〉. Formally speaking

Lemma 1. If a regular expression has a form
∑

i αiβi where αi 63 ε and αi does
not contain 〈〉, then its language is shift-invariant. We call this type of regular
expressions dull.

Now we can define a new composition operation over timed languages which
is crucial for describing timed automata.

Definition 3. Let L1 and L2 be timed languages. Then

L1 ◦ L2 = {w1w2|w1 ∈ L1 and S
|w1|w2 ∈ L2}.

w1

w2

w1 · w2

w1 ◦ w2

Fig. 2. Two compositions

In other words, for two signals w1 = ((a1, t1), . . . , (an, tn)) ∈ L1 and w2 =
((b1, s1), . . . , (bm, sm)) ∈ L2 such that tn < s1 we include the signal ((a1, t1), . . .,
(an, tn), (b1, s1), . . . , (bm, sm)) into L1 ◦L2. Figure 2 illustrates ◦-composition in
comparison with concatenation.
First of all, state some simple algebraic properties of this composition oper-

ation.

Proposition 1 ((Algebraic properties of circle)).

– operation ◦ is +-distributive: (α + β) ◦ γ = α ◦ γ + β ◦ γ and α ◦ (β + γ) =
α ◦ β + α ◦ γ

– operation ◦ is associative: (α ◦ β) ◦ γ = α ◦ (β ◦ γ)
– α ◦ (βγ) = (α ◦ β)γ if ε 6∈ β

We suppose that ◦ cannot be expressed in terms of other operations. However,
it can be eliminated for regular languages.

Proposition 2 ((Circle elimination)). If L1 and L2 are regular, then L1 ◦L2

is regular. The regular expression for it can be obtained algorithmically.

Circle elimination is easy with the following prefix form of regular expressions

Lemma 2. Any regular expression can be effectively transformed to the form:

γ +
n
∑

k=1

〈αk〉Ik
βk (2)

or

ε+ γ +
n
∑

k=1

〈αk〉Ik
βk, (3)

where γ is dull and αk 63 ε.

The proof is by induction over the structure of regular expression. The only bad
operation is Kleene star — all others are trivial. To deal with Kleene star suppose
that δ is already in the prefix form (2) δ = (γ+

∑

k〈αk〉Ik
βk) and transform the

expression δ∗ to the form δδ∗ + ε and open the parentheses:

δ∗δδ∗ + ε = (γ +
∑

k

〈αk〉Ik
βk)δ

∗ + ε = γδ∗ +
∑

k

〈αk〉Ik
βkδ

∗.

which is already in the required form (3). The case when δ is in the form (3) is
considered similarly.
It is easy to calculate ◦-composition with terms of (2) or (3):

– If γ is dull then δ ◦ γ = δγ;
– δ ◦ 〈α〉Iβ = 〈δα〉Iβ if α 63 ε;
– δε = δ.

Proposition 2 is now immediate.
We illustrate Proposition 2 by the following example.

Example 3. Let us eliminate ◦ from δ = 〈d〉3 ◦ (〈ab〉8c)
∗. First transform the

second term to the prefix form: (〈ab〉8c)
∗ = 〈ab〉8c(〈ab〉8c)

∗ + ε, and second
calculate δ = 〈〈d〉3ab〉8c(〈ab〉8c)

∗ + 〈d〉3.

We can introduce the following analogue of Kleene star for ◦-composition.

Definition 4. L~ = ε ∪ L ∪ L ◦ L ∪ L ◦ L ◦ L ∪ . . .

This operation can also be eliminated for regular languages. However this
result is less straightforward.

Proposition 3 ((Circled star elimination)). If L is regular, then L~ is reg-
ular. The regular expression for it can be obtained algorithmically.

Notice that this is easy for terms of (2). In fact, if γ is dull then γ~ = γ∗,
and

(〈α〉Iβ)
~ = 〈〈α〉I(βα)

∗〉Iβ + ε.

The general case is more difficult. We give only a sketch of proof. First of
all, transform the expression to the prefix form (2). Let 0 = τ0 < τ1 < τ2 <

· · · < τn = ∞ be all the endpoints of intervals Ik. For each values of i and
k either (τi, τi+1) ⊆ Ik (in this case we say that αk is active on (τi, τi+1)),
or Ik ∩ (τi, τi+1) = ∅. If αk is active, it means that it is allowed to terminate
anywhere inside the interval (τi, τi+1). Otherwise it is not allowed to terminate in
(τi, τi+1). Let Ai = {k|αk active on (τi, τi+1)}. γ is allowed everywhere, and βk
should happen after the corresponding active αk. For each i we define a regular

expression Ai = (γ +
∑

k∈Ai
αkβk)

∗. Its language contains concatenations of
words, active on (τi, τi+1). Any word from Ai if it fits into (τi, τi+1) may occur
during this time interval.
Let w be a signal from L~. It can be parsed as follows:

w = w0δ0w1δ1 . . . wmδm, (4)

where m ≤ n, τi occurs during wi, shifts of wi belong to some 〈αk〉Ik
βk or to

γ and δi ∈ Ai. The idea behind this parsing is to see what happens at finitely
many critical times τi and to allow any number of γ and αkβk, where k ∈ Ai to
happen on the interval (τi, τi+1) (see Fig. 3).

w0 δ0 w1 δ1 w2 δ3
α1 β1 A0 α4 β4 A1

γ A2

6 6 6 6
τ0 = 0 τ1 τ2 τ3

Fig. 3. Parsing a signal from L~

All these requirements can be written as a regular expression. For sake of
simplicity we ignore the case when some wi boundary is exactly at τi or if some
wi covers several consecutive τi.
For any τi find out what happens in w at τi, i.e to which term 〈αk〉Ik

βk
or to γ belongs (the shift of) wi. We also find when τi occurs: during α or β.
All this information for all the τi forms the pattern of the word w. Notice that
there are finitely many possible patterns. An example pattern P (corresponding
to Fig. 3) is as follows: “α3 at τ0, β4 at τ1, γ at τ2 and the signal is finished
before τ3” (for this pattern to be valid, α3 and α4 should be active at (τ0, τ1)).
Now consider each pattern separately. For any pattern, using parsing (4) and
expressions Ai we can write a regular expression which defines the set of all the
words in L~ having this pattern. Instead of a heavy general formula consider
only the expression corresponding to our sample pattern P:

EP = 〈〈〈〈〈α1β1A0α4〉(0,τ1)β4〉(τ1,τ2)A1〉(τ1,τ2)γ〉(τ2,τ3)A2〉(τ2,τ3).

Last, to obtain the final regular expression we sum expressions EP over all valid
patterns P.

4 Quasilinear Equations

Definition 5. A system of quasilinear equations has the following form:

Xi = αi +

n
∑

j=1

βijXj +

n
∑

j=1

γij ◦Xj , i = 1, . . . , n, (5)

where Xi stand for unknown timed languages and αi, βij , γij — for given regular
coefficients.

We can now formulate the main result of the paper.

Theorem 1. The minimal solution of a system of quasilinear equations is reg-
ular. Its regular expression can be obtained algorithmically from expressions for
the coefficients.

The rest of this section is devoted to the sketch of proof of this theorem and
algorithm description. Without loss of generality suppose that βij do not contain
the empty signal ε. Otherwise we can move this empty signal from βij to γij .
The first thing to do is to separate unknowns to which concatenation is

applied from those to which ◦ is applied. To achieve this aim we create another
copy of each unknown.

Lemma 3. The following system:











Xi = αi +

n
∑

j=1

βijYj +

n
∑

j=1

γij ◦Xj ,

Yi = Xi

(6)

has the same solutions as the original system (5). Formally X1 = L1, . . . , Xn =
Ln is a solution to (5) iff X1 = Y1 = L1, . . . , Xn = Yn = Ln is a solution to (6)
and all the solutions to the latter system have this form.

The following lemma gives a solution to a single equation with only one
operation. Its proof is fully similar to the proof of the same result for discrete
equations.

Lemma 4. – The minimal solution to X = α+ γ ◦X is X = γ~ ◦ α;
– The minimal solution to Y = α+ βY is Y = β∗α;

The algorithm of solving the system (6) is similar to the classical algorithm
for discrete languages and consists in iterated application of Lemma 4 together
with circle elimination from Section 3. At the first stage we begin with the first
equation and express X1 from it as

X1 = γ~
11 ◦ (α1 +

n
∑

j=1

β1jY1 +

n
∑

j=2

γ1j ◦Xj).

Eliminating circles, this equation can be transformed to the form

X1 = α′1 +

n
∑

j=1

β′1jY1 +

n
∑

j=2

γ′1j ◦Xj .

We put this expression into the second equation and solve it for X2. And we con-
tinue till Xn for which we find an expression that contains only Y s and not X

unknowns. Then the second stage begins. We go backwards putting this expres-
sion for Xn into equation number n− 1. This allows to find Xn-free expression
for Xn−1 and so on until we reach X1 once again. Now the system has the form











Xi = α′′i +

n
∑

j=1

β′′ijYj ;

Yi = Xi.

(7)

Replacing Yi by Xi we obtain the ◦-free system

Xi = α′′i +
n
∑

j=1

β′′ijXj ;

and we express again

X1 = β
′′∗
11 (α

′′
1 +

n
∑

j=2

β′′1jXj),

put the result into the second equation, find X2 and so on. This is the third stage
of the algorithm. The fourth (and the last) stage consists in going backwards
putting the regular expression for Xn into equation n− 1 and so on. This ends
up with finding regular expressions for all the Xi. This concludes the algorithm
and the proof of Theorem 1.

5 Applying Equations to Timed Automata

First recall shortly the definition of timed automata and their languages.

Definition 6 ((Timed Automaton, [AD94])). A timed automaton is a tuple
A = (Q,C,∆,Σ, S, F) where Q is a finite set of states, C is a finite state of
clocks, Σ is an output alphabet, ∆ is a transition relation (see below), S ⊆ Q

an initial set and F ⊆ Q an accepting set. An element of the transition relation
is of the form (q, φ, ρ, q′, a) where q and q′ are states, a ∈ Σ -an output symbol,
ρ ⊆ C and φ (the transition guard) is a boolean combination of formulae of the
form (c ∈ I) for some clock c and some integer-bounded interval I.

A clock valuation is a function v : C → R+ ∪{0} (which is the same a vector
v ∈ (R+ ∪ {0})

|C|). We denote the set of all clock valuations by H. For a clock
valuation v and a set ρ ⊆ C we put for any clock variable c ∈ C

Resetρ v(c) =

{

0 if c ∈ ρ

v(c) if c 6∈ ρ

That is, Resetρ resets to zero all the clocks in ρ and leaves the other clocks
unchanged. We use 1 to denote the unit vector (1, . . . , 1).

A finite run of the automaton is a sequence

(q0,v0)
δ1
−→
t1

(q1,v1)
δ2
−→
t2

. . .

δn
−→
tn

(qn,vn),

where qi ∈ Q,vi ∈ H, δi ∈ ∆, ti ∈ R+, and which satisfies the following condi-
tions:

Time progress: 0 < t1 < . . . < tn (for convenience we put t0 = 0);
Succession: If δi = (q, φ, ρ, q

′, ai) then qi−1 = q, qi = q′, the condition φ(vi−1+
(ti − ti−1)1) holds and vi = Resetρ(vi−1 + (ti − ti−1)1).

An accepting run is a run satisfying the additional conditions:

Initialization: q0 ∈ S;v0 = 0;
Termination: qn ∈ F .

The trace of such a run is the signal

at11 a
t2−t1
2 · · · atn−tn−1

n ,

whose length is tn. The language of a timed automaton, L(A), consists of all the
traces of its accepting runs.
Now recall the main result of [ACM97].

Theorem 2 ([ACM97]). A timed language L can be accepted by a timed au-
tomaton of Alur and Dill iff it can be represented in the form

L = ϕ

(

n
⋂

i=1

Li

)

,

where Li are regular languages and ϕ — a homomorphism.

(The terminology of [ACM97] is slightly different.)
The difficult direction is of course to find regular expressions for a given

automaton. This operation in ([ACM97]) is split into 2 parts. The first one
consists in reduction to one-clock automata.

Lemma 5 ([ACM97]). Any timed language L accepted by a timed automaton
can be represented in the form

L = ϕ

(

n
⋂

i=1

Li

)

,

where Li are languages accepted by one-clock automata and ϕ — a homomor-
phism.

Our equation techniques is of no help here. However our result can simplify the
proof of the second part.

Lemma 6 ([ACM97]). Any timed language L accepted by a one-clock timed
automaton is regular.

Given a one-clock timed automaton it is easy to construct an equivalent
system of quasilinear equations.
In order to do it, for any control state of the automaton qi introduce an

unknown Xi. For a transition from qi to the accepting state with the label a
and the guard (c ∈ I) put αi = 〈a〉I . For a transition from qi to qj with label a,
guard (c ∈ I) and no reset put γij = 〈a〉I . For a transition qi to qj with label
a, guard (c ∈ I) and reset (c := 0) put βij = 〈a〉I . Finally write the system of
equations

Xi = αi +

n
∑

j=1

βijXj +

n
∑

j=1

γij ◦Xj , i = 1, . . . , n, (8)

of the form (5).
The quasilinear system obtained in such a straightforward way from the one-

clock automaton can be solved using the algorithm of the previous section. The
following lemma concludes the new proof of Lemma 6 and Theorem 2.

Lemma 7. Xi in the minimal solution of equations (8) is the language accepted
by the automaton from the state qi with initial value of the clock c = 0.

Example 4. Consider the second (timed) automaton on the Figure 1. According
to the general construction corresponding quasilinear equations are like this:







X1 = 〈a〉5X2 +〈b〉2 ◦X3

X2 = 〈b〉(7,∞) +〈a〉(0,10) ◦X3

X3 = 〈a〉8

(9)

For the system 9 the procedure of section 4 gives the solution






X1 = 〈a〉5〈b〉(7,∞) + 〈a〉5〈〈a〉(0,10)a〉8 + 〈〈b〉2a〉8
X2 = 〈b〉(7,∞) + 〈〈a〉(0,10)a〉8
X3 = 〈a〉8

6 Conclusions and Further Work

In this paper a new linguistic formalism for timed languages is proposed. This
formalism is adequate for timed automata. However there are still many ques-
tions to investigate.

– Which is the complexity of the algorithms?
– Is it possible to apply this approach directly to multi-clock timed automata?
– Which are other possible applications of this formalism? In particular, is it
convenient for specification of timed systems?

– What can be done for more complicated equations?

References

ACM97. Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for timed
automata. In Proc. 12th Annual IEEE Symposium on Logic in Computer

Science, pages 160–171, Warsaw, June 1997. IEEE Computer Society.
AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical

Computer Science, 126:183–235, 1994.
Brz62. Janusz A. Brzozowski. A survey of regular expressions and their applica-

tions. IRE Trans. on Electronic Computers, EC-11(3):324–335, 1962.
DOTY96. Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The

tool KRONOS. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Son-
tag, editors, Hybrid Systems III, Verification and Control, number 1066 in
Lecture Notes in Computer Science, pages 208–219. Springer-Verlag, 1996.

Kle56. S.C. Kleene. Representations of events in nerve nets and finite automata.
In R. McNaughton and H. Yamada, editors, Automata Studies, pages 3–42.
Princeton University Press, 1956.

