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Abstract—1In this work we suggest a novel methodology for
synthesizing switching controllers for continuous and hybrid
systems whose dynamics are defined by linear differential
equations. We formulate the synthesis problem as finding
the conditions upon which a controller should switch the
behavior of the system from one “mode” to another in or-
der to avoid a set of bad states, and propose an abstract
algorithm which solves the problem by an iterative compu-
tation of reachable states. We have implemented a concrete
version of the algorithm, which uses a new approximation
scheme for reachability analysis of linear systems.
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I. INTRODUCTION

“The purpose of control is to alter the dynamical behav-
tor of a physical system in accordance with man’s wishes”
[EI] In other words, control theory is concerned with finding
systematic ways to influence the behavior of systems by ob-
serving their state and injecting appropriate control signals
(see, for example, [] for a modern exposition). Classically,
both the system to be controlled (“plant” in the control
terminology) and the controller were modeled as continu-
ous dynamicalﬂ. systems, and the control signal was “com-
puted” continuously over time. This was a natural model
when control was implemented using analog devices.

The introduction of digital control (and in particular,
control by general-purpose computers) gave rise to models
based on discrete-time and sampling [@] In this setting
time is discretized into fixed intervals. During every in-
terval the values of the state-variables are measured and
digitized, and the values to be delivered by the feedback
function are computed and converted back to analog sig-
nals. The nature of the continuous process underlying the
plant dictates which sampling rate is sufficient so that the
sampled control can be viewed as a good approximation
of the “ideal” continuous controller. If the computer is
fast enough for computing the feedback function within
the sampling period, sampled control can be treated by
techniques similar to classical ones. This might explain
why some control theorists do not always understand im-
mediately what novelty there is in these hybrid “discrete-
continuous” systems.

Eugene Asarin, Thao Dang and Oded Maler are with VERIMAG,
Grenoble, France, Surname.Name@imag.fr; Olivier Bournez
is with LORIA, Nancy, France, Olivier.Bournez@loria.fr; Amir
Pnueli is with Weizmann Institute of Science, Rehovot, Israel,
amir@wisdom.weizmann.ac.il. This work was partially supported
by the European Community Esprit-LTR Project 26270 VHS (Verifi-
cation of Hybrid systems) and the French-Israeli collaboration project
970MAEFUTS (Hybrid Models of Industrial Plants).

IThroughout this paper the term “continuous dynamical system”
is used in the narrow sense of a system whose behaviors are solutions
to differential equations, e.g. [E

We argue that the major motivation for hybrid systems
is not necessarily the introduction of computers into the
feedback loop but rather the inadequacy of models based
on continuous mathematics for describing certain classes
of complex systems. Notwithstanding the mathematical
beauty of the calculus, smooth functions, differential equa-
tions etc. and their effectiveness in predicting stellar and
missile motion and much more than that, they do not con-
stitute a universal modeling language. A decision of a robot
to go left or right, a command of a process control system
to open a valve, shifting gears in a car — all are phenom-
ena whose most natural and useful models contain discrete
components, and attempts to express them exclusively us-
ing the tools of classical continuous mathematics are, per-
haps, as adequate as epicycles (similar arguments can be
found in [{]). Note that this is not an argument about the
“real” nature of the world but rather about the utility of
certain classes of mathematical models.

People designing real control systems have always known
these facts and control by switching (i.e. discrete change in
the dynamics) has been used since the early days of con-
trol. This practice was sometimes accompanied by serious
attempts of mathematical formalization, e.g. [ﬁ] However,
the feeling is that in all these attempts, the discrete dy-
namics was a second-class citizen] a kind of hacking to
glue together several respectable continuous models. The
reason for this seems obvious: the existence of a rich and
beautiful theory of continuous systems, a product of sev-
eral centuries, and the lack of a similar theory in the dis-
crete side.ﬁ There was some theoretical recognition of the
existence of dynamical systems whose nature cannot be
captured in a useful way by continuous models, and this
led eventually to the theory of discrete-event dynamical
systems (DES), for which a controller synthesis methodol-
ogy, essentially based on automata theory, has been devel-
oped by Ramadge and Wonham [E] However these models,
(with some exceptions, see [E]) were kept apart from con-
tinuous models. It was only within computer science (in
particular in the domains of verification and semantics),
that discrete non-metrical dynamical systems were studied
as a primary object, deserving the attention of both (soft-

2 As exemplified by the term “differential equation with discontinu-
ous right-hand side”. See also an interesting recent survey of results
on switched systems [[f] which treats similar problems without men-
tioning an automaton!

3This does not mean that discrete mathematics did not exist before,
but the development of a decent notion of a function over non-metric
domains was initiated only in the 19th century by Boole. The devel-
opment of an explicit mathematical model of a discrete non-metric
dynamical system (the automaton) had to wait to the works of Tur-
ing, Kleene and von Neumann.



ware and hardware) engineers and computer scientists.ﬁ
Now the time is perhaps ripe for a real theory of hybrid
control which can pick useful ingredients from both theo-
ries of dynamical systems and pass on the rest with silence
(a primal sketch of a basis of such a theory can be found
in [00).

In addition to the theory of automata, an important po-
tential contribution of computer science to control is in the
emphasis on computation in both design and implementa-
tion of control systems. Computations during the design
phase are those performed off-line by the control engineer
in order to predict the behavior of the controlled system.
Those might be analytical manipulations of formulae, “ex-
periments” with simulations, etc. Like in any other en-
gineering domain, CAD systems are crucial for designing
complex and reliable control systems, and the major con-
tribution of this paper is in automating part of the design
process of switching controllers. The outcome of the design
stage includes the feedback map, a function to be computed
by the controller online during its operation each time it
samples the state of the plant. This computation falls into
the category of “real-time” computation, a domain where
there is still a lot to be done in terms of clean formaliza-
tion and bridging the gap between the views of control and
software engineers, but this is not the subject of this paper.

A feature of hybrid systems which makes controller de-
sign harder is that discrete transitions break down the
possibility of finding nice analytical solutions of the con-
trol problem. Consider, for example, a linear system
X = Ax + Bu for which one can, at least in an idealized
setting, compute a stabilizing feedback function directly
by looking at A and B. The introduction of non-trivial
switching into the dynamics spoils all this beauty, and one
has to resort, sometimes, to brute-force approaches of ex-
ploring the state-space, inspired by algorithmic verification
of automata where an analytic solution has never been a
dominant option.

In this work we introduce a simple framework for study-
ing control by switching, using the commonly accepted
model of a hybrid automaton [[1], L. In this model a
system can be in one of several “modes”, in each of which
its behavior is governed by a distinct continuous dynamical
law. At certain parts of the continuous state-space the sys-
tem can switch from one mode to another. We formulate
the problem of controller synthesis as determining these
switching surfaces so that all trajectories generated by the
system satisfy some performance criteria. We present an
abstract algorithm to solve this problem which uses as a
major component a procedure for computing sets of reach-
able states (sometimes called “flow pipes” or “tubes of tra-
jectories”) of continuous systems. In order to make this
algorithm concrete we use a novel technique of approximat-

4In computer science, due to various factors, the distance between
engineers, applied and pure theoreticians is much smaller than in
other disciplines. It is not uncommon to find researchers of the foun-
dations of computing who also have experience in building real sys-
tems. It is less likely to see, for example, a Lie algebraist, actually
involved in the control of a physical system of the type his mathe-
matics is supposed to describe.
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ing such sets for linear differential equations [[L] to give a
switching controller with guaranteed correctness. This al-
gorithm has been implemented. The bottom line of this
work is that if you have a plant modeled as a piecewise-
linear dynamical system and you design a controller capa-
ble of switching between modes, you can suggest potential
switching regions in the state-space and our (implemented)
algorithm will synthesize safe switching surfaces in a fully-
automatic manner.

The rest of the paper is organized as follows: in section 2
we introduce the minimal necessary definitions concerning
discrete and continuous behaviors and hybrid automata. A
special effort is made to relate the definitions to those used
in the control literature. In section 3 we formulate the con-
troller synthesis problem and give the abstract algorithm
that solves it. In section 4 we discuss computability issues
and our approximation scheme and in Section 5 we illus-
trate the approximation with two concrete examples. In
the last section we discuss the location of this work within
the hybrid systems literature on controller synthesis and
on approximate computation of reachable sets.

II. SWITCHED SYSTEMS AND HYBRID AUTOMATA

We start with a control-oriented presentation of the set-
ting before introducing hybrid automata. The system de-
picted in Figure , is defined over a continuous time domain
T = R, and a continuous state-space X C R", whose ele-
ments we write as x = (21,...,%,). The system can be in
several modes, each with a distinct continuous dynamics.
The origin of these modes can be of various sorts: they
can be identified with different structural configurations of
a continuous system such as gears in a car or combina-
tions of open and closed valves in a liquid container; they
can represent several continuous regulators, each used at a
different range of operation; they can be used to approx-
imate continuous-valued control by a finite discretization
of non-linear systems by piecewise-linear ones. The choice
between the modes is done by a discrete controller (supervi-
sor, decision-maker) which observes continuously the state
of the plant and decides continuously which mode to select
out of a discrete (and usually finite) set.

Some features distinguish our treatment of this setting
from the way some control theorists would approach it:

1. Hybrid State-Space: We are looking closely at the
structure of the discrete switching controller and model it
as an automaton with a set @ of states, where each state
is identified with the value sent by the controller to the
plant. Hence, the domain of the feedback map is Q x X
and not only X, and the controller may react differently to
the same x € X according to its current mode. In other
words we consider () X X as the state-space of the combined
system to which we apply all our analysis and synthesis
techniques. In this context, the hybrid automaton model
is most natural and phenomena such as certain types of
hysteresis are easy to model.ﬂ

5In fact, differential automata have been used to model hysteresis
already in
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A SWITCHING CONTROLLER.

2. Non-determinism: This feature might seem strange
to some control theorists — we do not insist (at least not all
the time) that the controller is deterministic, but are rather
satisfied with a feedback map of the form c¢: Q x X — 29.
This means that at some parts of the state-space there is
more than one possibility for the continuous trajectory to
evolve, either according to the current mode or to switch to
one or more other modes. Unlike control, where differen-
tial inclusions [@] are not considered a mainstream topic,
in computer science such a set—valuedﬁ non-determinism is
commonplace, and the archaic “uniqueness of solutions”
is traded for higher expressive power. Non-determinism
can express uncertainty in models, sensors, actuators and
disturbances. It can also be used to specify the possible
behaviors under all potential controllers before synthesis
is done. Synthesis itself can then be viewed as replacing
an under-specified controller ¢ with a more restrictive one
¢’ such that all the behaviors induced by ¢’ satisfy the re-
quired properties. Hopefully this will become clearer in the
sequel.

3. Properties: In formal verification of discrete (software
and hardware) systems, one is interested in showing that all
possible behaviors of the system in question satisfy prop-
erties such as “the system will never reach a set of bad
states” or “every occurrence of event a will be followed by

6By “set-valued” we mean non-determinism which specifies a set of
possibilities but does not define probabilities on this set.

an occurrence of event b” etc. These properties can be
expressed in formalisms such as temporal logic [@] Per-
formance criteria used in control have similar yet somewhat
different flavor, partly due to historical reasons, partly due
to the different nature of the time domains and state-spaces
(in discrete spaces it is hard to talk about getting “closer”
to a point). For example, convergence to an equilibrium
is roughly the temporal property “eventually always P”
where P is a small open ball around the equilibrium point.
In this paper we concentrate on the safety property, namely
the avoidance of a set of forbidden states (“avoid states
where the altitude of the airplane is very low and its down-
ward velocity is very high”).

In order to speak about the behavior of a switched dy-
namical systems over time we need a language to express
both the evolution of the continuous variables as well as
the evolution of the discrete state. A temporal behavior is
the general concept that unifies them.

Definition 1 (Temporal Behavior) A temporal behavior
over a set M is a partial function 8 : T'— M whose domain
of definition is an interval [0, ) for some r € T' U {o0}.
We call r the metric length of 3, denote it by ||, and say
that  is infinite if » = co. Restrictions of 3 to points and
intervals are denoted by S[t] or ([t1, t2).

Definition 2 (Piecewise-Constant Non-Zeno Behavior) A
temporal behavior § of length r is piecewise-constant if it
admits a strictly increasing sequence J(8) = 0,¢1,ta,... of
time points such that for every k, 3 is constant on the inter-
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val Iy, = [tg, tk+1). A behavior is non-Zeno if J(3) N [0,7]
is finite for every r < oo.

The definition of a piecewise-constant temporal behavior
already excludes infinitely many switchings occurring at
the same point in time (for example when a thermostat
model has the same threshold for moving from ON to OFF
and vice versa). The definition of a non-Zeno behavior ex-
cludes more sophisticated ways to “stop” the passage of
time, by prohibiting infinitely many switchings from oc-
curring in finite time, as do Achilles and the tortoise in the
famous paradox attributed to Zeno of Elea.

We denote the sequence of intervals Ig, Iy, ..., by Z(8).
The untimed abstraction of a piecewise-constant behavior
(3 is the partial function 3 : N — Q defined as 8, = ¢
iff B[t] = ¢ for every t € Iy. The number of intervals is
called the logical length of 3. Examples of continuous and
piecewise-constant behaviors appear in Figure E

Definition 3 (Hybrid Automaton) A hybrid automaton
(HA) is a system A = (Q, X, H,G, f) where
e Q={1,...,m} is the discrete state-space,

o X is the continuous state-space, a bounded subset of R™,
o H:Q — 2% are the staying conditions (“invariants”)

o G:QxQ — 2% are the switching conditions (“transition
guards”),

e [:Q — (X — R"™) assigns a continuous (and Lipschitz)
vector field on X to every discrete state.

While the definition allows arbitrary subsets of the Eu-
clidean space as staying and switching conditions, in prac-
tice we use much simpler subsets of X, with limited topo-
logical complezity and some geometrical restrictions, e.g.
convex polyhedra. A hybrid automaton is depicted in fig-
ure E We will use the notation f, for f(q), G4¢ for G(q,q’),
H, for H(q) and H for |J, Hy. A pair (¢,x) € @ x X is
called a configuration of A.
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A 3-STATE HYBRID AUTOMATON.

The set H, is the subset of the continuous state-space
where the dynamics f, can be applied. Such a restriction
can come from physical modeling considerations (a plane
cannot be in a flight mode in altitude zero) or from the
decision of a particular controller (e.g. a good train con-
troller will not stay in an acceleration mode when the train
is close to another train). Similarly the set G4 is the sub-
set of the state-space where the controller can switch from
mode g to ¢’. These sets can be expressed in terms of the
non-deterministic feedback map ¢ : @ x X — 29 where
Hy={x:q€c(q,x)} and Gg = {x: ¢ € ¢(q,x)}.

The hybrid automata defined here are slightly more re-
stricted than others appearing in this issue, e.g. [L7], L] as
there are no jumps or resets in the values of the continuous
variables when transitions are taken. These more general
models include also a reset map R : Q x Q x X — 2%,
which decomposes into reset maps Rgq : X — 2% with
dom(Ryy) = Gqq for each (¢,¢') € Q x Q. Our models
correspond to the special case where each R4 is the iden-
tity map. For this reason we may assume that G4 = 0
because a transition from a discrete state to itself without
updating the continuous variables does not really change
the configuration of the system. The results of this paper
can be easily extended to systems with jumps at the price
of additional notation.

The possible behaviors of such a hybrid automaton are
those satisfying the following intuitive definition: when the
HA is in a configuration (g, x) such that x € Hy, the contin-
uous state can evolve according to the differential equation
x = f4(x), for which we assume existence and uniqueness
of solution for every initial condition in H,. Whenever
a point x’ € Gy is reached, the automaton can make a
transition to ¢’ and switch the dynamics accordingly to
% = fy(x). We assume that transitions can be made only
to states where continuous evolution can be continued, i.e.
Gqq € Hy. Whenever this is not the case, G can be re-
placed by G’ = GN H, that is, G}, = G4 N Hy for every
q,q" € Q. All this can be formalized as follows.
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Definition 4 (Continuous Evolution) Let oo : T — X be
the solution of the differential equation x = f,(x) with
a[0] = x, and let F' be a subset of X. We say that:

o The dynamics g is enabled from x for time t > 0 if a[t'] €

H, for every t' < t. This is denoted by x @t If, in
addition, the trajectory stays within ' C X between 0

and t we write it as x q—’Ftn

e A point x’ is g-reachable from x in time ¢ if x q—’t>, t< oo
and aft] = x’. This is denoted by x 2L X/ Tf, in addition,
aft'] € F for every t' < t we write it as x q—l;t> x'.

o A set G C X is ¢g-reachable from x in time ¢ if x LN

for some x’ € G. This is denoted by x 2L G. I, in

addition, aft'] € F for every t' < t we write it as x q—l;t>

(F until G in mode ¢).

Equipped with these definitions we can define the seman-
tics of hybrid automata, that is, the set of behaviors they
can generate from any initial state.

Definition 5 (Semantics of HA) A trajectory of a HA A,
starting from a configuration (gg, X¢) is a behavior £ : T —
(X x Q) which can be written as a pair of behaviors « :
T — X and 8 : T — @ such that « is continuous, ( is
piecewise-constant and:

1. Inmitiality: «[0] = x¢ and S[0] = go.

2. Differential evolution: for every interval I, =
[t tir1) € Z(B) such that B, = g, afte] 25 afty +
for every t € [0, tg41 — ti)-

3. Transition conditions: for every ¢, € J(f), such that
Pr—1=qand B = ¢, afty] € Gyyr-

Note that our definitions of piecewise-constant behaviors
imply strict monotonicity of the jump points and for any
step k, the interval I has duration tx41 —tx > 0 and a
non-trivial continuous evolution. Other models allow steps
of zero duration and hence several jumps in one time point.

A behavior of a 3-state HA is sketched in Figure [, which
can be viewed as drawing the behavior in Figure E on
the state-space. Recall that typically there is more than
one possible trajectory starting from a given configuration
(¢,x) because H, and G4y may overlap. Such “margins”
can be useful for representing uncertainty both in physical
modeling and in the delay between the initiation of a tran-
sition and its actual execution. Uniqueness of solutions is
not part of the prerequisites of verification methodology —
it can be restored by insisting on deterministic HA where
for every ¢ the sets {Gyq }qrq are mutually disjoint and
have an empty intersection with the interior of H,. The
set of all trajectories starting from (go,Xo) is denoted by
L(A, (qo0,%0)) and the set of trajectories starting from any
(¢,x) such that x € H, is denoted by L(A).

Some anomalies may occur under these definitions. It
may happen that a trajectory leaves H, without entering
any Ggq . Such a trajectory becomes “blocked”. One way
to fix it is to “complete” the automaton by adding a new
discrete state to which the systems enters when it goes out
of the staying conditions of all dynamics. We will not do it
because there will be an explicit notion of the “good” and
“bad” states in the formulations of the synthesis problem.

The other anomaly is that of a Zeno behavior (a term
first coined in [E]), namely a trajectory which switches in-
finitely often between discrete states during a bounded time
interval. Similar phenomena have been studied extensively
under the title sliding mode control [E] One should be very
careful to prevent the synthesis algorithm from producing
controllers that can avoid bad states only by generating
such behaviors which “stop” Time. Our approach to this
problem is to define HA which are non-Zeno by construc-
tion (as we did for timed automata in [Rd]) and hence any
synthesized controller cannot generate Zeno behaviors.

Definition 6 (Non-Zeno Hybrid Automata) A Zeno cy-
cle in a HA is a sequence ¢i,...qs of states such that
c(Gy2) Nel(Gaz) N ... Nel(Gs1) # O where ¢l is the clo-
sure operator. A HA is non-Zeno if it has no Zeno cycle.

Claim 1 (Trajectories of Non-Zeno Automata) All the
behaviors of a non-Zeno HA are non-Zeno.

Proof: TFor any three states q,¢’,q¢” € @ in a non-
Zeno HA the distance between the sets G4 and Gy g is
bounded below by some d > 0 and hence there is a positive
lower bound on the time duration of evolution within ¢’.
Let A be the minimal such number over all triples of states.
Then every trajectory & of logical length greater than or
equal to m satisfies |£] > mA. |

The lack of Zeno cycles is a sufficient (but not necessary)
condition for preventing Zeno behaviors, which is easy to
check. Finding more precise conditions is an interesting
topic that is irrelevant here.

For two HA A = (Q,X,H,G,f) and A" =
(Q,X,H',G', f), we say that A’ is more restrictive than
A, denoted by A’ < A, if H' C H and G’ C G in the natu-
ral sense of inclusion between such functions, i.e. H, zlz CH,
and G}, C G4y forevery ¢,q" € Q. Clearly A" < Aimplies
L(A’") C L(A) and if A is non-Zeno, so is A’.



III. THE PROBLEM AND THE SOLUTION

We formulate the simplest control problem of avoiding
bad states in a non-trivial way (a trivial solution would be
to block completely the evolution of the system by letting
H=0).

Definition 7 (Safety Synthesis for Hybrid Automata) Let

A= (Q,X,H,G,f) be a HA and let F be a subset of
@ x X. The safety controller synthesis problem is: find
the maximal non-blocking HA A* < A such that for every
e L(A") and every t € T, E[t] € F.

In order to solve this problem we make use of the following
operator:

Definition 8 (Predecessors) The predecessor operator
7w 2@%X 5 92@xX g defined for every set of configura-
tions

F={q}xF)U...U{gn} x Fn)

as

q,0

{(g,x) :x =V
(HeTId eQ IX eX

x q—’é xX'ANx' €Gyy N(¢,X') € F)}

Essentially (¢, x) is in w(F) if either there is an infinite tra-
jectory without switching starting from (g, x) and always
staying in F, or that it is possible to stay in F' for some
time and then make a transition to another configuration
which is still in F. For those who do not feel comfortable
with quantifiers we give the following alternative definition
of m(F). Let A and B be two subsets of X. For every ¢ we
define the following two operators.

o The unbounded time predecessor 7. : 2% — 2% defined

m(F) =

as m°(A) = {x : x X1, ie. the points from which it
is possible to continue indefinitely with dynamics ¢ while
staying in A.

o The until operator U, : 2% x 2X — 2% defined as
U (A, B) = {x: Ftx q—f» B}, i.e. points from which it
is possible to continue with dynamics ¢ and stay in A until
B is reached.

Then 7 (F') can be written as

F'=({q} x F)U...U({gm} x FL,)

where for every ¢

Fq/ = 7T§°(Fq) U U Uq(Fq’ (qu’ n Fq’))»
q'#q
as illustrated in Figure [j
The high-level algorithm for solving this problem is pre-
sented below. It works by computing the set P* of “win-
ning” states and can be viewed as a specialization of dy-

namic programming value iteration to 0 — 1 cost functions.
Algorithm 1 (Safety Controller Synthesis for HA)

P':=FnH
repeat
Pk .= Pk (PF)
until PF+1 = p*
pP* .= pP*
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Claim 2 (Properties of the Algorithm) For every k, the
state (g,x) belongs to P* iff L(A, (¢,x)) contains a trajec-
tory that remains invariantly in F', which is either of logical
length smaller than k and infinite metric length, or else of
logical length not less than k.

Proof: The proof concerning the length of trajectories
is done by induction. For the base case, all points at P°
admit empty runs of length zero and all points outside P°
(and outside F') do not admit such runs. Going from k
to k + 1 is easy because if (¢,x) € 7(P¥) it can take one
transition to P* and k transitions from there. On the other
direction, if (¢,x) ¢ m(P*), the automaton cannot take
from it a transition to P* nor an infinite run and hence it
can take at most k transitions. |
The algorithm produces a decreasing sequence { P¥} of sets,
and if the algorithm terminates it returns the fixed-point
P>

Claim 8: The automaton A* = (Q, X, H*, G*, f) where
for every ¢,¢' Hy = {x: (¢,x) € P*} and G}, = Ggg N
Hj N Hy, is the solution of the safety controller synthesis
problem.

Proof:  The limit P* is the set of all points which
have either a run of finite logical length whose last interval
is infinite or a run of infinite logical length, which implies
(for non-Zeno HA) an infinite metric length. Hence P* is
the maximal subset of () x X from which all trajectories can
be extended to infinity without leaving F'. Any automaton
larger than A* will contain points outside P* which do not
admit infinite trajectories inside F'. |

A feedback map ¢ : Q x X — 29 can be derived from A*
by letting

c(g,x) ={q" : (¢ =qAx e H)V({ #qrxec G )}

As mentioned above, this controller is not deterministic,
similar to the “least restrictive supervisor” in the theory of
discrete-event control [f. A deterministic controller can be
derived from it by reducing H* and G* so that the feedback
map becomes a function ¢: @ X X — @. In general there
is no “canonical” way to do this reduction and we consider
it an implementation issue.

Mathematicians might stop here: P* is characterized as
the maximal fixed-point of the equation P = F N7 (P) and
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A* is the solution of the synthesis problem. Those inter-
ested in actually computing the controller need to proceed
further. While the notion of effective computationf] is cen-
tral in computer science, it is less familiar within control
theory, so some introductory remarks are in order.

Algorithm 1 involves the computation of the following
functions over subsets of X:

o Intersection, N : 2% x 2X — 2X,

o Predecessors, 7 : 2%X — 2% and

o Equivalence checking, = :2% x 2%¥ — {0,1}.

The latter is needed to detect the termination of the algo-
rithm when P¥*! = P* and can be reduced to checking
emptiness of the set difference P* — PF+1,

In order for a function to be computable by a discrete
device, the elements in its domain and its range must have
a finite syntactic representation, and there must be an ef-
fective and terminating procedure which takes as input a
representation of an element of the domain, and returns as
output a representation of the value of the function applied
to that element. For example, functions over the integers
can be computed by applying well-known algorithms for
addition and multiplication to unary, binary or decimal
representations of numbers. In this paper we focus on the
problem of computing functions over subsets of X. Subsets
of the mathematical real numbers can be very weird objects
and, unlike the finite sets encountered in discrete verifica-
tion, they do not admit an explicit (enumerative) repre-
sentation. Instead, they can be expressed symbolically by
finite syntactical objects (e.g. formulae of some logic). To
take a concrete example, the sub-class of polyhedral sets
consists of sets which can be represented by Boolean com-
binations of linear inequalities, and the membership of any
point in a given set can be determined using a finite number
of arithmetical and logical operations. Similarly, the semi-
algebraic sets are those which can be written as combina-
tions of polynomial inequalities. While these sets admit
effective Boolean operations, easy membership testing and
more involved equivalence checking algorithms, they are
usually not closed under flows of linear systems and hence
even if a set F' belongs to a well-behaving class, w(F') will
not belong to that class.

We illustrate the problem using a HA with one discrete
state and a simplified version of 7 (F) defined as mo(F') =

{x: 3t x N F}, namely the points from which it is
possible to reach F' some time in the future. Suppose that
F itself is characterized by a formula ¢(x) whose truth
value is 1 iff x € F. Suppose further that the equation
% = f(x) has a closed-form solutionf] of the form a(x,t)
for every initial condition x. In this case, mo(F) can be
characterized by the formula

P(x) =3t > 0 p(a(x,1)).

"The theory of computability, also known as Recursion Theory can
be seen as a kind of pure mathematics of computer science and it
has deep connection with logic and set theory. The notions that we
borrow from there are only the tip of the iceberg and the exposition is
not meant by any means to be a serious introduction to the domain.

8 An assumption which, by itself, restricts the scope of the approach
significantly.

The process of transforming v into an equivalent quantifier-
free formula ¢’(x) is called quantifier elimination by logi-
cians. If ¢ and « are part of a theory which admits a
quantifier elimination algorithm, then the my operator is
computable, i.e. there is an effective way to transform a
formula ¢(x) for F into a formula ¢’'(x) for 7o(F). If in
the logic in question, the satisfiability problem for non-
quantified formulae is decidable, questions such as the in-
clusion of mo(F) in another set are decidable as well (see
[l for a survey of logic notions).

In the simple case where f is constant, i.e. f(x) = c, and
F' is a polyhedral set written as a formula ¢(x) which is a
combination of linear equalities, we get

P(x) =3t >0 p(x +ct)

and quantifier elimination can be performed using elemen-
tary linear algebra. This is the basis for reachability algo-
rithms for timed automata and other hybrid systems with
constant derivatives implemented in tools such as Kronos
[RT] and HyTech [RF. In the less trivial case of linear sys-
tems, the definition reduces to

mo(F) = {x: 3t e*'x € F}.

In this case, quantifier-elimination techniques fail except
for some special classes of matrices (recent results concern-
ing the applicability of algebraic manipulation techniques
for the reachability analysis of linear hybrid systems appear
in 23], [B4] and [[[7)). The geometry of mo(F) for constant
and non-constant dynamics is illustrated in Figures ﬁ-(a)
and ff-(b).

Even if we were equipped with an effective precise proce-
dure to compute w(F"), Algorithm 1, more often than not,
will not terminate in a finite number of steps, even for the
most trivial forms of continuous dynamics. In such cases,
for every step k of the iteration, there will be some part of
P* that cannot stay within itself and the fixed point will
not be reached in a finite number of iterations. This phe-
nomenon is illustrated in Figure ﬂusing a PCD system (a
special class of deterministic HA where all vector fields are
constant, see [@]) Given this state-of-affairs we resort to
a classical solution of continuous mathematicians and use
numerical methods to compute approximately predecessors
(and successors) in the continuous state-space.

To overcome the effectiveness and termination problems
we propose an approximate variant of Algorithm 1, spe-
cialized for piecewise-linear systems i.e. ¢ = A,x for every
g € Q (similar systems have been introduced in [@] for dis-
crete time), and which uses a restricted class of subsets of
X, orthogonal “griddy” polyhedra (unions of unit boxes de-
fined by a fixed grid @}) The approximation techniques,
described in the next section (and in more detail in [@]),
when plugged into Algorithm 1, yields a sequence P* of
polyhedra which converges after finitely many steps and
which satisfies P* C P¥ for every k. The obtained solution
P* is included in P* and hence the resulting HA satisfies
the same required properties of A* except, of course, being
maximal.



PROCEEDINGS OF THE IEEE

o (F
o(F) o(F)
(a) (b)
Fig. 6
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Fig. 7
A SIMPLE HYBRID SYSTEM WITH PIECEWISE-CONSTANT DERIVATIVES
FOR WHICH THE COMPUTATION OF P* DOES NOT TERMINATE.

IV. THE APPROXIMATION TECHNIQUE

The approximation technique developed in [B] treats
various other problems related to the automatic analysis
of hybrid systems. While the synthesis algorithm requires
under-approximation of the backward reachability operator
7, other tasks such as verification of reachability proper-
ties (computing all states reachable from a given set F' of
initial conditions under all admissible inputs) require over-
approximation of the forward analysis operator §, which is
a bit more intuitive to explain.

Definition 9 (Successors) Let A be a dynamical system
defined by x = f(x) and let I C T be a time interval. The
successor operator d; : 2% — 2% is defined for any subset

§;(F)={x':3xeF3telx - x}

We use the notation d, for §j,, (states reachable after
ezactly r time), 0 for dj ) (states reachable after any
non-negative amount of time) and §7(x) for d;7({x}). Note
that J satisfies the semi-group property, i.e. d1,(0r, (F)) =
511@12(F) where I; ® I, = {tl +ty:ty € 1 ANty € Ig} is the
Minkowski sum of two intervals, and that, in particular,
010,751 (010,111 (F)) = 00,7, 4r,] (F'). Hence the computation
of §(F), which is the basic operation in verification algo-
rithms (as is w(F) for algorithm 1) can be reduced to the
following iterative numerical algorithm for some time step
T

Algorithm 2: (Exact Computation of 0(F') using Time-
step r)

PV .=F
repeat

PFHL = pPky 5[07T](Pk)
until P*+1 = p*

The exact application of Algorithm 2 suffers from two prob-
lems. The computation of [y, is not more feasible than
the computation of the whole ¢, and even if djg ) was com-
putable, the algorithm usually does not terminate after a
finite number of steps. The first problem can be resolved by
approximating subsets of X by polyhedral sets. Any open
or closed set F' C X can be over- or under-approximated
arbitrarily closely by a set F’ consisting of a finite union
of convex polyhedra with rational vertices (see Figure E—
(a)). An effective approximation of Algorithm 2 can thus
be implemented by replacing all the operations (Boolean
operations, equivalence testing and computation of dpg )
by their approximated versions. Note that if the class is
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(a)

(b)

Fig. 8
(A) A SET F OVER- AND UNDER-APPROXIMATED BY POLYHEDRA. (B) THE SAME SET APPROXIMATED BY GRIDDY POLYHEDRA.

closed under Boolean operations, only do,(F) needs to
be approximated (this is true for arbitrary polyhedra but
neither for convex polyhedra nor for ellipsoids). If the
approximate algorithm terminates, the result is an over-
approximation of §(F).

The termination of the procedure, however, cannot be
guaranteed since there are infinitely many polyhedral sets.
Moreover, the implementation is very complicated because
the sets P can be very complex non-convex polyhedra for
which there is no useful canonical form and the test P*+1 =
P* is very expensive. To overcome this problem we restrict
further the class of sets which are used to approximate P*
to be what we call griddy polyhedra, i.e. sets which can be
written as unions of closed unit hypercubes with integer
vertices. When the continuous state-space X is bounded,
there are only finitely many griddy polyhedral subsets and
Algorithm 2 is guaranteed to terminate. Moreover, the
restriction to griddy polyhedra allows us to benefit from a
relatively efficient canonical representation for both convex
and non-convex sets [@], supported by an experimental
software package. The price, however, for using griddy
polyhedra is that the quality of the approximation they
provide in terms of Hausdorff distance per vertex is poorer
than that of arbitrary polyhedraﬁ but such a compromise
seems unavoidable.

Some aspects of the technique take advantage of special
properties of linear systems. Let conv({x1,...,X;,}) be the
convex hull of a set of points, i.e. {x : x =l1x1+" -, l;mXm }
for non-negative [; whose sum is 1. For linear systems we
have 6;(x) = e*x and the matrix exponential, as a linear
operator, preserves convexity:

L xm})) = conv({B(x1), .., 8 (xm) ).

0 (conv({x1,..

This means that for a convex set F = conv(V) where
V = {x1,...,Xn}, and for every ¢, the states reachable
from F' can be determined by the states reachable from V
(see Figure E—(a)). We exploit this property to approximate
dj0,r) (conv(V)) based on the set of points V U4,.(V) where

9For an m-vertex approximation of a figure with piecewise-smooth
boundaries in R™, the worst-case error is O(m_l/("_l)) for griddy
and O(m’Q/("’l)) for arbitrary approximating polyhedra.

0,(V) is computed from V by a finite number of matrix
exponentiations or numerical integration steps. Our ap-
proximation scheme consists of three steps:
1. Compute G = conv(V UG,(V)) (see Figure P} (b)). This
set is an approximation of djg ,j(conv(V)) but neither an
over-approximation nor under-approximation. The convex-
hull algorithm provides us with information concerning the
orientation of the faces which is used in the next step.
2. Push the faces of G outward to obtain a bloated convex
polyhedron G’ that is guaranteed to contain the required
set (Figure [}-(c)). The amount of pushing is determined by
the time step 7 and the matrix A (see the analysis in [[[J]).
Pushing inward will result in an under-approximation.
3. Over-approximate G’ by a griddy polyhedron 6{07T](F )
(Figure -(d)).
The approximate algorithm for computing §(F) for F =
conv(V) is defined below:

Algorithm 3: (Approximate Computation of §(F') for
Linear Systems)

PY:=F; VY :=V;
repeat k=1,2,...
VF = §,.(VF1);
G* := conv(VF-L U VF);
G* = bloat(G*);
GF .= griddy(G*);
PF = PFlyGH
until P+l = pF

The algorithm is guaranteed to terminate because {P*} is
a monotone increasing sequence over the finite set of griddy
polyhedra. There are two types of errors accumulated in
the process of computing P*: from the actual set to its
bloated convex hull and from there to the griddy polyhe-
dron. However these errors do not propagate to the next
step which computes P**! based on V¥ U V**! and not
on P* (Figure [J-(e)). Note that our orthogonal polyhedra
package [R7] maintains 5{07%] (F) as a single canonical ob-
ject and mot as a union of convex polyhedra or ellipsoids
(Figure [J-(f)). The algorithm can be fine-tuned by chang-
ing the time step r and the size of the hypercubes.

Result 1: (Computation of Reachable States for Linear



10

Sop(x1)

(d) (e)

‘—..

PROCEEDINGS OF THE IEEE

5{0,21*] (F)

()

Fig. 9
(A) A SET F = conv({x1,%2}) AND ITS EXACT SUCCESSORS FOR TIME INTERVALS [0,7] AND [r,2r]. (B) APPROXIMATING do ) (F) BY CONVEX

HULL. (C) BLOATING THE CONVEX POLYHEDRON TO OBTAIN A POLYHEDRAL OVER-APPROXIMATION. (D) RECTANGULATING THE POLYHEDRON

INTO 6{0 vl (F). (E) REPEATING THE SAME PROCEDURE IN THE NEXT TIME STEP TO OBTAIN 6[T
(F) = 5fo,r](F) U JET72T](F).
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Systems) There exists an implemented algorithm for over-
approximating the reachable sets of systems defined by lin-
ear differential equations.

The reason this result is not a theorem is due to the fol-
lowing facts:

1. There is always a trivial over-approximation of any sub-
set F'of X: X itself.

2. The smallest polyhedral or griddy set that contains §(F)
is as impossible to compute as 0(F').

3. The best upper bounds that can be easily proved on the
approximation error are much larger than what happens in
practice.

Doing under-approximation is almost symmetric, and for
computing backwards you need to invert the system. With
some additional modification one can under-approximate
the 7 operator and hence:

Result 2: (Effective Controller Synthesis for Linear Sys-
tems) There exists an implemented algorithm for under-
approximating the least-restrictive safety controller for
piecewise-linear systems.

! 12T](F)‘ (F) THE ACCUMULATED STATES

In the framework described so far we assumed no ad-
versary (disturbances) and that all the transitions are con-
trollable, i.e. initiated by the discrete controller. These
assumptions can be relaxed but a detailed description is
beyond the scope of this paper, so only a sketch is given
below. Uncontrolled transitions, that is, transitions ini-
tiated by the plant, can serve several modeling purposes.
They can model a discrete transition of a physical system
(such as a collision), an adversary which is modeled us-
ing a switching controller (a human operator that pushes
a button) or, when a non-linear system is approximated
by a piecewise-linear one, a passage from one region of the
state-space to another. There is a standard adaptation of
the 7 operator for such situations (see, for example, [Rg]).
For continuous disturbances, we have extended our sys-
tem to treat dynamics of the form x = Ax + Bu where u
ranges over a convex set. Using a modification of the pro-
cedure proposed in [@], based on the maximum principle,
we can compute an appropriate variant of 7 and solve the
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Fig. 10
THE SAFE SETS FOR THE THERMOSTAT IN THE r1-T2 PLANE. THE
SAFE SETS FOR 1 ARE THOSE OBTAINED BY INTERSECTION WITH

xo = 0.

synthesis problem in the presence of such disturbances as
Example 1 will show. Our techniques can be adapted, via
discretization of control values, to construct strategies for
linear differential games of the form x = Ax 4+ Bu + Clv,
and it remains to see whether this approach has advantages
over known techniques.

V. EXAMPLES

We illustrate the behavior of the algorithm on several
examples. Recall that the results are obtained in a fully
automatic manner once the model has been written.

Ezxample 1: a Thermostat with Delay and Disturbances
Consider a thermostat having two states ¢; (OFF) and

g2 (ON). The corresponding dynamics are

u € [—0.5,0.5]

.3.61:7561 +u

and

1=-x1+u u€[3.54.5].

Note that these are equivalent to differential inclusions due
to uncontrolled (but bounded) disturbances. Similarly to
[BO] we augment the system with an additional “clock” vari-
able xo, such that in every state @5 = 1, every transition is
guarded by the condition x5 > 0.5 and x5 is reset to zero
after a transition is taken. This construction guarantees
that the guards are separated and the automaton is non-
Zeno. The price is having an additional dimension and a
slight modification of 7 to take clock resetting into account.

Our goal is to keep 1 within the interval [1.5, 3.6] hence
F =[1.5,3.6] x [0.0,0.5]. The synthesis is done in the two-
dimensional space and converges after three iterations into
the safe sets shown in Figure m After removing the ficti-
tious clock variable by intersection with xo = 0, we obtain
H{ = [2.48365,3.5] and Hs = [1.5,3.15736]. From this we
can derive a deterministic switching controller which starts
heating when z; = 015 and stops heating when xo = 65, for
any 615 and 6o satisfying 2.48365 < 012 < 031 < 3.15736.

Ezxample 2: Two Spirals

Consider a system with two discrete states ¢; and go
where the dynamics is defined by
-2.0
0.05

0.05 —-0.5 0.05

A= < 2.0 0.05 > Az = ( 0.5
so that in each state there is an expanding spiral (see a
sketch of the phase-portrait on top of Figure ) In order
to stay within F = {q1,¢2} x [-0.65,0.35] x [—0.35,0.68]

the controller must switch between the orthogonal spirals.
The initial transition guards are:

G12
G21 =

[~0.2,-0.01] x [—0.2,0.01]
0.01,0.32] x [—0.01,0.1]

The algorithm starts with F' as the safe set and termi-
nates after three iterations (Figure [[1]).

VI. RELATED WORK

In this section, we discuss the relationship between our
work and some other results on controller synthesis for hy-
brid systems. This is by no means an exhaustive survey;
the reader is also referred to [B1], [H], [L in this special
issue.

Albeit under different names, many verification and con-
troller synthesis problems can be viewed as instances of the
more general concept of finding or evaluating strategies in
games. For example, the typical question of verification,
“will the system behave correctly in the face of all behaviors
of the environment?” can be rephrased as asking whether a
particular given strategy is winning. Similarly, many prob-
lems in control can be viewed as simple instances of finding
winning strategies in differential games [@] For finite-
state discrete systems, all variants of these problems are
algorithmically solvable, and we survey various attempts
to extend such results to deal with continuous and hybrid
dynamics. These works can be classified according to the
following inter-dependent criteria:

1. What is the complexity of the discrete and continuous
dynamics considered? Different degrees of continuous com-
plexity exist, starting from clocks, via constant derivatives,
linear differential equations up to arbitrary continuous dy-
namics. Of course, the more complex is the dynamics, the
weaker is the computational content of the results.

2. Direct vs. indirect approach: does the synthesis proce-
dure work directly on the continuous state-space or is the
system reduced first, via abstraction, into a finite-state au-
tomaton?

3. Computational content and generality: does the ap-
proach attempt to solve the problem for a class of systems
or does it focus on a particular system originating from an
application? Is the solution really effective or is there an
implicit notion of an “oracle” that solves the hard compu-
tational problems?

The first and simplest class of hybrid systems for which
controller synthesis has been applied is the class of timed
automata [BJ] where all continuous variables are clocks fol-
lowing the same dynamics, x = 1, in all discrete states.
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Fig. 11
THE PHASE PORTRAIT OF THE TWO SPIRAL SYSTEM AND THE RESULTS
OF THE ALGORITHM. THE EVOLUTION OF F; AND G2 N F} 1S SHOWN
ON THE LEFT AND THAT OF Fb AND (GGo1 N F> IN THE RIGHT. THE
FINAL RESULTS SHOW FOR EACH STATE THE SAFE REGION WHERE THE
SYSTEM CAN SPIRAL AND THEN MAKE A TRANSITION TO THE SAFE
REGION OF THE OTHER STATE.
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Wong-Toi and Hoffmann [B4] were the first to consider
the application of supervisory control methodology to this
class. In [Bg (see also [R(], B]) we have defined an algo-
rithm similar to Algorithm 1 and have shown that the exact
computation of P* can be performed over the set of zones
(a restricted class of polyhedra underlying the verification
of timed automata). Another class of systems for which
a controller synthesis procedure always terminates are the
initialized rectangular hybrid automata, systems where the
dynamics in each state is of the form ¢ < &; < d for every
variable x; and for which controller synthesis was proved
to be solvable for discrete [Bf] and continuous [B7 time by
Henzinger et al. In the rest of the constant slope world,
exact verification and synthesis problems are undecidable,
algorithms such as Algorithm 1 are not guaranteed to ter-
minate, yet operators such as m and § can be computed
exactly at every step using linear algebra (polyhedra are
closed under these operations). A controller synthesis pro-
cedure for fixed slope hybrid automata, which also treats
the problem of Zeno controllers, was given by Wong-Toi in
BY and implemented in HyTech. Earlier work concerning
controller synthesis for such systems was reported in [@]

Moving to non-trivial continuous dynamics one faces the
problems mentioned in this paper, and the class of sys-
tems for which results on synthesis can be given an exact
computational content is extremely limited. The works of
Lygeros, Tomlin and Sastry, using a game-theoretic ap-
proach [@], [ are very close in spirit to ours. They at-
tempt to solve the controller synthesis problem using an ab-
stract algorithm similar to Algorithm 1, for arbitrary con-
tinuous dynamics with time-varying piecewise-continuous
control and disturbance inputs. The computational bur-
den of computing the 7 operator is delegated, in the spirit
of differential games, to the solution of a Hamilton-Jacobi-
Bellman-Isaacs partial differential equation. In fact, all
problems of tracking the evolution of a subset of X under
differential flows can be rephrased as an initial-value prob-
lem for PDE [@], but no evidence has been given so far of
the computational advantages of this point of view. In [@]
it has been shown that for the sub-class of linear systems
where the matrices are either diagonal or nilpotent, the
synthesis problem is solvable, in principle, using computer
algebra. Beyond this limit, we believe there is not much
hope for exact answers.

Another distinguishing feature of computational ap-
proaches to these problems is whether they work directly
on subsets of the continuous state-space (as in this paper)
or indirectly by using a finite-state abstraction of the orig-
inal system. Without getting into technical details (see
17 for exact definitions) this approach consists in find-
ing a dynamics-preserving homomorphism (such as the one
known as bisimulations) from the continuous or hybrid sys-
tem into a finite-state automaton. These homomorphisms
result in a finite partition of the state-space such that the
continuous reachability between partition blocks is faith-
fully reflected in the finite-state automaton transition rela-
tion.

The indirect approach is very tempting to use because
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once the finite abstraction has been constructed, we can
apply standard discrete algorithms, some of which already
implemented in tools. The danger of this approach is that
it may lead to sweeping the hard parts under the carpet
and proving results which assume already the existence of
a well-behaving partition or prove the existence of such a
partition for certain systems, without explaining how to
actually compute it or use it in practice (such partitions
might have very complex boundaries, whose crossing can-
not be detected by any realistic controller).

The work of [@] is an example of the rigorous application
of the indirect approach to timed automata by using the
finite quotient, also known as the “region graph”, on which
a supervisory control problem a-la Ramadge-Wonham is
solved. Our work in [BJ] solves the same problem in a
direct manner. In verification of systems with constant
slopes, the indirect approach is represented by papers like
[ and [E]7 which prove that for certain classes of systems
such reductions are possible. The verification procedure in
[[J and in [T (the latter proves decidability for a class
of systems not having a finite quotient) and the synthesis
algorithm of [E] are examples of the direct approach. More
complex continuous dynamics were treated by [[iJ] and [[i4]
who tried to compute approximate discrete abstractions for
electrical circuits modeled at the transistor level.

We believe that in practice, except for timed automata,
very few interesting hybrid systems admit a finite quotient,
and that in any case, trying to compute or approximate
such a partition is at least as hard as solving any veri-
fication problem. For example, in order to show that a
given partition is a bisimulation, one needs to compute
successors for every block of the partition. Moreover, the
size of the quotient might be prohibitively large for dis-
crete verification and synthesis. A direct algorithm, which
explores the state-space “on-the-fly”, might, in the worst-
case, do all this exploration, but in many practical cases
the exploration will terminate without traversing the whole
state-space. Nevertheless, proving the existence of a finite
bisimulation for a class of systems is an important step in
tackling its verification and synthesis problems. For exam-
ple, the termination of Algorithm 1 for timed automata is
implied by the existence of the region graph [B3]. If the
system is to be subject to many different queries it might
be worthwhile to compute its finite-state abstraction as a
pre-processing step.

Other works based on a mixture of direct and indirect
approaches have been proposed by various authors from
the control and DES communities (see the tutorial [@]
and the survey in [[J]). Some of these works try to relate
continuous and hybrid models to the supervisory control
framework. Since the dynamics treated by these authors is
non-trivial, they do not look for exact finite quotient but
rather for approzimating automata (e.g. [@]) In the more
recent works such [i7], [i], backward methods similar to
ours are used for computing and refining finite partitions
of such systems. In [E] the problem of interface design,
i.e. defining a mapping from the continuous state-space to
a finite observation alphabet that can serve as a basis for

feed-back control, has been investigated. In fact modern
DES methods for hybrid systems can be viewed as com-
bining preliminary direct analysis with indirect synthesis
of the supervisory controller.

Our approximation scheme is among a class of new tech-
niques for computing reachable states of continuous sys-
.o 00, 19, 60, 61, (6, . . 0 9. B
Among these, the work of Chutinan and Krogh [47], also
centered on linear differential equations, is the closest to
ours. Their goal is to find discrete abstractions, and they
use the approximate “flow pipes” as means to achieve this
goal. Their approach differs from ours in some technical
aspects, most notably their different way of computing ¢
and our use of griddy polyhedra for storing the reachable
states.

One cultural difference between the different communi-
ties is manifested in the computer science tendency toward
generality: a controller synthesis algorithm works (if com-
plexity is ignored) for all finite-state automata or for all
timed automata. On the other hand, in the study of con-
tinuous systems, it is sometimes hard enough to treat one
instance of a problem. For example, the work of Zhao et al.
in [@] combines knowledge of dynamics with computation-
geometrical algorithms in order to synthesize controllers
that navigate in the phase-space of one particular non-
linear system. In our work we have tried to follow the more
general (and, perhaps naive) approach, offering an approx-
imate solution for the whole class of piecewise-linear dy-
namical systems. To be fair, our tool is not yet as general-
purpose as we would like and some user intelligence is re-
quired in order to tune the system parameters and adapt
them to each problem instance. We hope that further ex-
perience in applying this technique to real-life case-studies
will inspire more development and will determine whether
it has a place among the useful techniques for computer-
aided control system design.
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