
Noisy Turing Machines

Eugene Asarin1 and Pieter Collins2

1 LIAFA, Université Paris 7 / CNRS, case 7014, 2 place Jussieu, 75251
Paris Cedex 05, France, Eugene.Asarin@liafa.jussieu.fr

2 Centrum voor Wiskunde in Informatica, P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands, Pieter.Collins@cwi.nl

Abstract. Turing machines exposed to a small stochastic noise are con-
sidered. An exact characterisation of their (≈ Π0

2) computational power
(as noise level tends to 0) is obtained. From a probabilistic standpoint
this is a theory of large deviations for Turing machines.

1 Introduction

Computers are always subjected to faults and component failures, and even
random changes of memory bits caused by to cosmic rays or neutrons flipping
memory cells [1]. From the practical viewpoint these phenomena are particularly
important for computers operating in hostile environments, such as aboard a
spacecraft [2]. In the present paper we adopt a more theoretical and abstract
approach to this issue and study how small random perturbations can affect
the computational power of popular computational models, in our case Turing
machines (TMs).

As far as we know, the pioneering paper considering influence of infinitesi-
mal noise on computational models was Puri’s [3], where the author introduces
the infinitesimally perturbed semantics and solves the reachability problem for
timed automata. Fränzle [4] applies a version of Puri’s noise to hybrid systems,
and argues that such a noise leads to a sort of “practical decidability”. The
immediate predecessor of the present paper is [5] where computational power is
analysed for infinitesimally perturbed hybrid systems and TMs. The main result
of [5] is the Π0

1 completeness of reachability or acceptance problems for such
machines. It is important to notice that all the papers cited above considered a
non-deterministic noise of a bounded (and tending to zero) magnitude, with no
probabilistic assumptions.

The influence of a small stochastic noise on computational models has been
considered in [6] for finite-state models, and in [7] for neural networks. Other re-
lated work concerns the behaviour of dynamical systems under a small stochastic
noise, known as the theory of large deviations. A good reference is [8].

In the present paper we consider TMs exposed to a small stochastic noise,
or in other words large deviations for TMs. We give an exact characterisation of
their computational power in terms of classes of arithmetic hierarchy (see [9]).

The rest of the paper is organised as follows. In Sec. 2 we introduce Noisy
Turing Machines (NTMs) and several versions of “computability” by such ma-
chines. In Sec. 3 we explore NTMs with a noise level ε > 0 and establish some

2 Eugene Asarin and Pieter Collins

basic properties, such as continuity and computability of acceptance probability,
decidability of the halting problem etc. In Sec. 4 we describe several interest-
ing NTMs used in the subsequent sections. This section also gives a flavour of
“noisy programming” and reasoning about noisy programs. The main techni-
cal results of the paper are established in Sec. 5 and 6 where we explore the
computational power of NTMs for a noise level tending to zero. Such a “limit
computational power” turns out to be stronger than that of a TM; we give its
precise characterisation.

2 The Model

We consider a standard multi-tape TM augmented by an additional parameter
giving the noise level. Formally, a Noisy Turing Machine (NTM) is a tuple

Mε = (Q,Σ, Γ,N, ρ, ε, q0, q> , q⊥) , (1)

where Q is the set of states, Σ is the input alphabet (not containing the special
blank symbol), Γ ⊃ Σ ∪ { } is the tape alphabet, N is the number of tapes,
ρ : Q × ΓN → Q × ΓN × {L,R, S}N is the transition function, ε is the noise
level, q0 is the initial state, q> the accepting state and q⊥ the rejecting state.

Every tape is infinite in both directions. Initially the ith tape contains a word
wi ∈ Σ∗ completed by two infinite tails of blank symbols , and the ith tape
head is pointing to the first symbol of wi. Every computation step performed by
an NTM consists of two stages:

At the noisy stage the tapes are exposed to a noisy environment, which
changes each symbol on the tape independently with probability ε � 1. A
changed symbol takes any other value in the tape alphabet with equal prob-
ability.

At the progress stage the computation proceeds as follows. Starting in state
q−, the machine reads the symbol on each tape, giving an N -tuple s− ∈ ΓN . If
ρ(q−, s−) = (q+, s+,m+), the machine changes to state q+, writes (s+)i on the
ith tape, and shifts the ith tape head left if (m+)i = L, right if (m+)i = R, and
does not move it if (m+)i = S. Whenever the machine arrives at q> or at q⊥ it
halts.

We are interested in the probabilities IP (Mε(w) ↓), IP (Mε(w) = >) and
IP (Mε(w) = ⊥) that, for a given noise level ε and a given input word w, the
NTM M halts, accepts or rejects, respectively. We are even more interested in
the behaviour of those probabilities as ε → 0.

Definition 1. An NTM M is

– lim-halting if ∀x ∈ Σ∗, limε→0 IP (Mε(x) ↓) = 1, i.e the limit probability to
halt is 1;

– almost sure (a.s.)-halting if for any x ∈ Σ∗ and any ε > 0 the probability to
halt is 1;

– converging if ∀x ∈ Σ∗, limε→0 IP (Mε(x) = >) exists.

Noisy Turing Machines 3

Clearly if an NTM is a.s.-halting, then it is lim-halting. The former two properties
seem restrictive, but in Sec. 3 it will be shown that any NTM is equivalent to
an a.s.-halting one, in the sense that the acceptance probabilities are equal.

The “limit computational power” of an NTM captures the behaviour of a
machine operating in an environment which is almost, but not entirely, noise-
free.

Definition 2. An NTM M lim-generates a function p : Σ∗ → [0, 1] if it is
lim-halting, converging, and for any x ∈ Σ∗, the limit probability to accept it is
p(x):

∀x ∈ Σ∗, lim
ε→0

IP (Mε(x) = >) = p(x).

An NTM M lim-decides a set S ⊂ Σ∗ if it lim-generates its characteristic
function.

Notice that in order to lim-decide a set S, an NTM should satisfy a 0-1 law:

lim
ε→0

IP (Mε(x) = >) =
{

1, if x ∈ S;
0, if x 6∈ S.

A weaker notion of computability considering lim sup (or lim inf) rather than
lim is suitable for non-converging machines.

Definition 3. An NTM M lim sup-generates a function p : Σ∗ → [0, 1] if it is
lim-halting and for any x ∈ Σ∗, the upper limit probability to accept it is p(x):

∀x ∈ Σ∗, lim sup
ε→0

IP (Mε(x) = >) = p(x).

An NTM M lim sup-decides a set S ⊂ Σ∗ if for any x ∈ Σ∗ it lim sup-generates
its characteristic function.

The question whether this can be really considered as a computation is left to a
philosophically-minded reader.

2.1 If it Halts without Noise

We start the study of noisy machines with the easy case when a machine without
noise halts on an input x.

Theorem 1. If M(x) = > then limε→0 IP (Mε(x) = >) = 1. Symmetrically, if
M(x) = ⊥ then limε→0 IP (Mε(x) = ⊥) = 1.

Proof. Consider the first case, M(x) = >; the other case is similar. Let τ be the
computation time of M on the input x. For any δ > 0 take an ε < δτ−2.

A normal computation (without noise) of M on x uses at most τ tape cells
during τ time units. When noise is added the probability for at least one of
those cells being perturbed during τ time units cannot exceed τ · τ · ε < δ. The
computation of M on x leading to acceptance is then unaffected by the noise,
hence the NTM Mε accepts x with probability at least 1−δ. Since δ is arbitrary,
limε→0 IP (Mε(x) = >) = 1. ut
Corollary 1. If a TM M decides a set S ⊂ Σ∗ then its NTM version lim-
decides the same set S.

4 Eugene Asarin and Pieter Collins

3 General Properties: ε > 0

In this section we explore NTMs and acceptance by NTMs for a positive noise
level ε > 0. This paves the way for the characterisation of the limit behaviour of
NTMs as ε → 0 in subsequent sections.

3.1 Automaton

For an NTM M described by a tuple (1), we can abstract away the memory
tapes to obtain an automaton

A = (Q, ρ′, q0, q> , q⊥) ,

where the transition relation ρ′ ⊂ Q × Q is obtained from ρ : Q × ΓN →
Q × ΓN × {L,R, S}N by projection. Any allowable sequence of transitions of
A is a possible sequence of transitions for M, since it is always possible that
the element at the tape head changes just before the step to enable the desired
transition.

We say a state q of M is a looping state if for every possible sequence of
transitions starting at q, no halting state is reached. In this case, the probability
that M halts given that it reaches q is zero.

Theorem 2. For any NTM M, there exists an effectively constructible a.s.-
halting NTM M′ with the same acceptance probability for any input x ∈ Σ∗ and
any ε > 0.

Proof. We construct M′ by deleting all looping states from M, and replacing
all transitions leading to looping states with a transition leading to q⊥ . Then
clearly, IP (M′

ε(x) = >) = IP (Mε(x) = >).
It remains to show that IP (M′

ε(x) ↓) = 1. Since M′ has no looping states,
for any state q of M′, there is a sequence of transitions leading to a halting
state in at most k = |Q| steps. This sequence of transitions occurs for the noisy
machine with probability at least (ε/|Σ|)k. Therefore the probability that the
machine halts after nk steps is at least 1−

(
1− (ε/|Σ|k

)n. Hence M′ halts with
probability 1. ut

We can therefore replace any NTM with one that halts with probability 1
for every ε > 0 without changing the acceptance probability. This means that,
unlike ordinary TMs, we need only consider NTMs which almost surely halt on
any input. In the rest of this paper, we assume that all NTMs have no looping
states.

3.2 Continuity

Theorem 3. IP (Mε(w) = >) is continuous with respect to ε for ε > 0.

Noisy Turing Machines 5

Proof. Let p(w, ε, t) be the probability that M halts in time t in state q> , and
q(w, ε, t) be the probability that M halts in time t in state q⊥ . Then clearly
p(w, ε, t) and q(w, ε, t) are continuous as functions of ε > 0, since they depend
on finite computations. Let r(w, ε, t) = 1 − p(w, ε, t) − q(w, ε, t). Then by our
standing assumption of almost-sure halting, r(w, ε, t) → 0 as t →∞.

It is easy to see that

p(w, ε, t) < IP (Mε(w) = >) < p(w, ε, t) + r(w, ε, t) = 1− q(w, ε, t). (2)

To prove continuity of IP (Mε(w) = >) at ε, take t such that r(w, ε, t) < δ/3. For
ε′ sufficiently close to ε, both |p(w, ε′, t)−p(w, ε, t)| < δ/3 and r(w, ε′, t) < 2δ/3.
Then, using (2), we obtain |IP (Mε(w) = >) − IP (Mε′(w) = >) | < δ. Hence
IP (Mε(w) = >) is continuous. ut

3.3 Computability

We now consider ε-perturbed machines for a fixed rational ε. By computability
of a real number x (see [10]), we mean that given an error bound δ > 0, there is
a TM which computes an approximation to x with an error of at most δ.

Theorem 4. IP (Mε(w) = >) is computable as a function of M, rational ε > 0
and w.

Proof. Let p(w, ε, t), q(w, ε, t) and r(w, ε, t) be as in the proof of Theorem 3. By
simulating all possible runs of the NTM of length at most t and computing the
probability of each, we can compute p, q and r exactly. Since r(w, ε, t) → 0 as t →
∞, we can take t sufficiently large so that r(t, ε, t) < δ, and so |IP (Mε(w) = >)−
p(w, ε, t)| < δ. ut

4 Some Gadgets

We now describe some generally useful NTMs and their properties.

4.1 Measuring Time

The first gadget is a Timer. Its construction is very simple: it is just a TM
with one tape (initially blank), whose head goes right at every step. If it sees a
non-blank cell it stops.

The following lemma establishes that, when subjected to an ε-noise, Timer
is capable to measure approximately a lapse of ε−1/2 time units.

Lemma 1. Let τ be the time before the Timerε stops. Then for any a, b with
a < 1/2 < b, the following estimates hold:

1. IP (τ < ε−a) = O(ε1−2a);
2. IP

(
τ > ε−b

)
= O(εd) for any 0 < d < 1/2.

6 Eugene Asarin and Pieter Collins

Proof. First we estimate the probability of the event E1 that τ < ε−a. This
probability can be majorated by the probability of the event E2 that during
bε−ac time units at least one of the first bε−ac cells on the tape has been altered
by the noise. For each cell and each step the probability to be altered is ε, which
gives an upper bound

IP (E1) ≤ IP (E2) ≤ bε−ac · bε−ac · ε = O(ε1−2a).

In the sequel we will omit b·c and d·e symbols and make all the computations
as if all the powers of ε considered were integer numbers.

The event E3 that τ > ε−b, implies either the event E4 that none of the first
ε−b cells have been modified before the timer scans them, or the event E5 that
at least one of the first ε−b cells has been modified at least twice in time ε−b.
Hence IP (E3) ≤ IP (E4) + IP (E5).

E4 is a conjunction of ε−b ·ε−b/2 independent events with probabilities 1−ε;
each event means that a cell has not been perturbed at a time instant. Hence

IP (E4) = (1− ε)ε−2b/2 = O(exp(−ε1−2b)).

In particular, if b > 1/2, IP (E4) = o(εn) for any n > 0.
The event E5 is a disjunction of independent n = ε−b events. Each of those

events is that a particular cell has been perturbed at least twice during ε−b time
units. Hence

IP (E5) ≤ n
(
1− (1− ε)n − nε(1− ε)n−1

)
= O(n3ε2) = O(ε2−3b).

Therefore, IP (E3) = O(ε2−3b) for 1/2 < b < 2/3. Since IP (E3) is a decreasing
function of b, we must have IP (E3) = O(εd) for any 0 < d < 1/2. ut

We say an event E occurs with high probability if there exists d > 0 such that
IP (E) = 1−O(εd). Similarly, it occurs with low probability if IP (E) = O(εd).

We remark that it would be easier to build a timer measuring ε−1 lapse of
time. Such a timer is an NTM staying in place and observing one cell, until
its contents is modified. Unfortunately, such a timer would be rather useless,
because during such a long time the contents of all the cells on the tape becomes
completely random.

We prefer the ε−1/2 timer described at the beginning of this section because
during such time the probability of perturbation on a small zone of tape or of a
“double error” in the same position of two tapes is low. In the next subsection we
formalise these properties, and explain how they allow for reliable computations
of duration ε−1/2 and even more. We will then be able to use these constructions
to build O(ε−c) Timers for 1/2 < c < 1.

4.2 Tossing Coins

By letting two Timers race each other to find a non-blank symbol, we can
generate random bits.

Noisy Turing Machines 7

A RandomBit machine has two tapes. Two Timers are launched concur-
rently on both tapes. If the first one stops before the second one, the result is
⊥, if the second one stops before the result is >. In the highly improbable case
of a tie, the Timers are restarted. The following result is straightforward, but
important; it shows that NTMs can produce random bits.

Lemma 2. The RandomBitε terminates almost surely and returns ⊥ and >
(or 0 and 1) with probabilities 1/2 each. Its computation time is bounded above
by ε−b (with b > 1/2) with probability 1−O(εd) for any 0 < d < 1/2.

Notice that the RandomBitε gadget can also be started some time T after the
beginning, and can be run continuously to generate a succession of random bits.

4.3 Memory

Even on time scales of order ε−1/2 generated by a Timer, the behaviour of
a noisy version of a regular TM M has unacceptably high errors. To obtain
correct execution with high probability of a time interval of order ε−a, we run
all computations of M on a multi-tape Memory with error correction.

For computations taking O(ε−a) time with a < 2/3 we can guarantee error-
freedom with high probability by taking three identical copies of the tape and
making the same computation on all of them. If at some moment a disagreement
between the three tapes is observed, it is immediately corrected by a majority
vote. This procedure allows to correct single errors, while Lemma 3 ensures that
double errors are highly improbable.

By using more tapes, we can, in fact, construct Memory which is error-free
with high probability on time intervals O(ε−c) for any c < 1.

Lemma 3. Let Mε be an NTM running on a three-tape Memory for a time
period O(ε−a) using space O(ε−b). Then the probability of incorrect execution of
Mε is of order O(ε2−2a−b).

Proof. Incorrect execution can only occur if two cells with the same coordinate
are perturbed in time period τ = O(ε−a). The probability of such a “double
error” in a given cell is O(ε2(1−a)), hence the probability of a double error in
any of b cells is O(ε2−2a−b).

4.4 Programming NTMs

Armed with a Timer, a RandomBit and (fairly) reliable Memory, we can start
to program NTMs by running ordinary TMs on a Memory, using a Timer to
halt the computation before the noise-induced errors become too high.

A simple, but very useful gadget is a Counter machine. This machine stores
an integer n in binary form in a three-tape Memory. The Counter spends all
its time incrementing its value, which asymptotically grows as n ∼ t/ log t.

Using a Counter, we can construct a Delay gadget. When this gadget is
activated, it copies the time n contained in the counter, and computes some

8 Eugene Asarin and Pieter Collins

(easy to compute) function f(n) ∼ ns. It then waits until the Counter reaches
f(n), emits a signal, and goes back to sleep.

Using the Counter and Delay gadgets, we can construct an improved
version of a Timer. We run an ∼ ε−1/2 timer as usual, but when this stops, we
activate a Delay gadget with f(n) ∼ n2c. The program continues running until
the Delay gadget deactivates. This new Timer(c) gadget stops in time ∼ ε−c

with high probability.
We can use Timer(c) and RandomBit to construct a RandomNumber.

By storing successively generated bits in a Memory, we generate an increas-
ing sequence of rationals ri converging to a real number r which is uniformly
distributed in [0, 1]. By using a Timer(c), we can generate ∼ ε1/2−c digits of r.

4.5 Oscillators

An Oscillator is a gadget which stores a binary digit in a “register” variable
where it is unaffected by the noise. (Formally, we construct a register by taking
a set of states Q×{0, 1}.) When the Oscillator is halted by a Timer, it stops
in q> if the register holds 1, and in q⊥ if the register holds 0.

A simple oscillator which changes register state at every step is not very
interesting; the limiting acceptance probability is 1/2. By using a Delay, we
can hold the value of the register for a period [m, f(m) ∼ mc]; long enough for
its value to be seen when the Timer halts.

Lemma 4. Let M be an Oscillator which uses a delay to switch state at
times ni = f(ni−1) with f(n) ≥ nc, and which halts when a Timer stops. Then
M halts almost surely, but IP (Mε = >) does not converge as ε → 0.

Proof. Choose a, b such that a < 1/2 < b < 2/3, b/a < c and a + b < 1, and let
d = 1− a− b. For any given n, we can find ε < 1 such that [ε−a, ε−b] ⊂ [n, nc].
If oscillator switches at times ni, then ni+1 ≥ nc

i . Hence, there is a sequence εi

with εi → 0 as i →∞ such that [ε−a
i , ε−b

i] ⊂ [ni, ni+1].
The Timer halts at τ ∈ [ε−a

n , ε−b
n] with high probability. Further, in this time

the Memory ensures correct execution with high probability. Hence for noise
levels ε2i, the probability that the timer halts with the register in state 0 tends
to 1 as n → ∞, and for noise levels ε2i+1 timer halts with the register in state
1 with high probability. Thus IP (Mε = >) oscillates between 0 and 1 as ε → 0,
and does not converge as ε → 0. ut

5 Decisional Power of NTMs

In this section we address the capabilities of NTMs for deciding sets S ⊂ Σ∗.
The main result of this section is

Main Result 1. A set S ⊂ Σ∗ is lim-decidable if and only if it is ∆0
2. A set

S ⊂ Σ∗ is lim sup-decidable if and only if it is Π0
2 .

The upper complexity bounds follow from Theorems 9 and 11 in the next section.

Noisy Turing Machines 9

5.1 Deciding Recursively Enumerable Sets

The following result illustrates how converging NTMs can be stronger than or-
dinary TMs, and solve, for example, the halting problem.

Theorem 5. For any recursively enumerable (Σ0
1) set S there exists an NTM

N which lim-decides S.

Proof. Recall that S is Σ0
1 if there is a TM M such that M(w) halts if, and

only if, w ∈ S. Given such a TM, we construct an NTM Nε with 4 tapes to
lim-decide S. On tapes 1, 2 and 3 we have a Memory store on which we run
M, correcting errors by majority vote. On tape 4, we run a Timer gadget.

The computation terminates in the accepting state if M runs successfully
and reaches its halting state. The computation terminates in the rejecting state
if the Timer stops.

Since the Timer stops almost surely, and does so with high probability in
time τ ∈ [ε−a, ε−b], the computation performed by M runs successfully with
high probability, terminating in state q> if w ∈ S (as long as ε is small enough,
namely such that ε−a exceeds the computation time of M(w)), and halts in
state q⊥ if w 6∈ S. ut

5.2 Deciding ∆0
2 Sets

We now strengthen the result of Theorem 5 to show that NTMs can lim-decide
∆0

2 sets. Recall that a set S is ∆0
2 if both S and its complement are Π0

2 .
A particularly useful characterisation of a Π0

2 set, similar to Büchi acceptance
by ω-automata, can be given in terms of signalling TMs. A signalling TM has
no halting states, but instead a distinguished set of signalling states Qs ⊂ Q. A
set S is Π0

2 if there is a signalling TM M which enters states from Qs infinitely
often if, and only if, w ∈ S.

Theorem 6. For any ∆0
2 set S there exists an NTM which lim-decides S.

Proof. Let M1 be a TM such that M1(w) emits a signal infinitely often iff
w ∈ S, and M0 a TM such that M0(w) emits a signal infinitely often iff w 6∈ S.

We can run M1 and M0 in parallel with a register variable. Whenever Mi

emits a signal, we store i in the register. If w ∈ S, then eventually M0 emits no
more signals, but M1 continues to do so, and the register sticks to 1. Conversely,
if w 6∈ S, then eventually the register contains 0. In both cases, after some time
T (w) the register’s content never changes and is equal to χS(w).

We lim-decide S by an NTM N running M1 and M0 as described above.
Computation is terminated when a Timer stops, the outcome is the register’s
content. Whenever ε is small enough to ensure that the Timer stops after time
T (w), we can easily see that Nε operates correctly with high probability and
outputs χS(w). Hence N lim-decides S. ut

10 Eugene Asarin and Pieter Collins

5.3 Deciding Π0
2 Sets

We now investigate the computational power of NTMs without restriction of
convergence.

Theorem 7. For any Π0
2 set S there exists an NTM which lim sup-decides S.

Proof. Let M be a TM such that M(w) emits a signal infinitely often iff w ∈ S.
To ensure that signals are noticed in the presence of noise, we combine M with a
Delay which activates when M emits a signal, setting a register to 1. Whenever
Delay deactivates, it resets the register to 0. As usual, the computation is halted
whenever the Timer stops.

Assuming correct operation of M and Delay, which occurs with high prob-
ability, the register variable is equal to 1 on time intervals [τi, τ

c
i] infinitely often

if w ∈ S, and is eventually equal to 0 if w 6∈ S. Using the argument from the
proof of Lemma 4 we can see that N lim sup-decides S. ut

6 Generating Probability Functions

In this section, we investigate the functions which can be generated as the ac-
ceptance probability of an NTM as ε → 0. We shall prove the following result:

Main Result 2. A function p : Σ∗ → [0; 1] can be lim-generated by a con-
verging NTM if and only if it is 0′-computable. A function p : Σ∗ → [0; 1] is
lim sup-generated by an NTM if and only if it is upper 0′-semicomputable.

6.1 Generating 0′-Computable Probabilities

Recall that a function is called 0′-computable if it can be computed by a TM
using an oracle for the halting problem. Equivalently, p is 0′-computable iff
{(r, w) ∈ Q×Σ∗ | r < p(w)} and {(r, w) ∈ Q×Σ∗ | r > p(w)} are Π0

2 -sets.

Theorem 8. Let p : Σ∗ → [0, 1] be a 0′-computable function. There exists a
converging NTM S that lim-generates the function p.

Proof. Since {(r, w) ∈ Q × Σ∗ | r < p(w)} is Π0
2 , there is a TM M< such that

M<(r, w) emits infinitely many signals if, and only if, r < p(w).
We now aim to extend this computation to real numbers. Suppose we have

access to an increasing sequence of rationals ri converging to a real number
r. We run M< sequentially on inputs (ri, w), starting M<(rn, w) after each
computation M<(ri, w) (with i < n) has emitted n− i signals.

Suppose r < p(w). Then ri < p(w) for all i, so M<(ri, w) emits infinitely
many signals for all i. Conversely, if r > p(w), then ri ≥ p(w) for some i, and
M<(ri, w) emits only finitely many signals before looping indefinitely.

We can therefore construct a TM M′
< which, given w ∈ Σ∗ and n digits of

r, emits infinitely many signals if r < p(w), and finitely many signals if r > p(w)

Noisy Turing Machines 11

and n is sufficiently large. Similarly, we can construct a TM M′
> which, given n

elements of a decreasing sequence converging to r, emits infinitely many signals
if r > p(w), and finitely many signals if r < p(w) and n is sufficiently large.

We now construct an NTM N to lim-generate the function p. We use a
RandomNumber gadget to generate the binary approximants ri to a random
variable r uniformly distributed in [0, 1]. Notice that the distribution of the
ri is independent of the noise ε. We use M′

< and M′
> to compute r < p(w)

and r > p(w). The computation is halted by a Timer(c) with 1/2 < c < 2/3
to ensure that RandomNumber generates sufficiently many bits, but that the
Memory is still error-free with high probability.

Fix w ∈ Σ∗ and n, and suppose p(w) 6∈ [rn, rn + 1/2n], which occurs with
probability 1 − 1/2n. We claim that after a fixed time T , independent of r,
the value of the register does not change. In the case rn + 1/2n < p(w), then
ri < p(w) for all i, so M′

< emits infinitely many signals, whereas M>(rn, w)
emits only finitely many signals, so after some time T (rn), machine M>(rn, w)
does not emit further signals. Since there are only finitely many possible values
of rn, we can choose T independently of rn The case rn > p(w) is similar.

Using the same argument as in Theorem 6, we see that with high probability,
Nε accepts if rn < p(w) and rejects if p(w) < rn +1/2n. Hence IP (Nε(w) = >) ∈
[rn, rn + 1/2n], and since n is arbitrary, IP (Nε(w) = >) = p(w). ut

To prove that Theorem 8 gives a precise characterisation of the computational
power of a converging NTM, we analyse the limit as ε → 0.

Theorem 9. limε→0 IP (Mε(w) = >) is 0′-computable for any converging NTM.

Proof. The function f(ε, w) given by IP (Mε(w) = >) is computable when ε is
rational, and converges as ε → 0 for all w ∈ Σ∗. By definition,

r < lim
ε→0

f(ε, w) ⇐⇒ ∃s > r, ∃q > 0, ∀ε < q, (¬(s > f(ε, w))).

The inequality (s > f(ε, w)) belongs to the class Σ0
1 . We deduce that the relation

(r < limε→0 f(ε, w)) belongs to the class Σ0
2 , and hence is 0′-recursively enumer-

able. Symmetrically, the inequality (r > limε→0 f(ε, w)) is also 0′-recursively
enumerable. Hence limε→0 f(ε, w) is 0′-computable. ut

6.2 Generating Upper 0′-Semicomputable Probabilities

Recall that a function p is upper 0′-semicomputable if the set {(r, w) ∈ Q×Σ∗ |
r > p(w)} is of class Σ0

2 , so that {(r, w) ∈ Q×Σ∗ | r ≤ p(w)} is of class Π0
2 .

Theorem 10. Let p : Σ∗ → [0, 1] be an upper 0′-semicomputable function.
There exists an NTM S that lim sup-generates p.

Proof. We use the machine M′
<(r, w) and the RandomNumber from the proof

of Theorem 8, and combine this with Delay as in the proof of Theorem 7, and
a Timer(c) to halt the computation.

12 Eugene Asarin and Pieter Collins

Computation proceeds by runningM′
<, and starting a Delay wheneverM<

emits a signal. If M< emits signals infinitely often, then every rn < p(w), so
r ≤ p(w), and if M<(rn, w) loops for some rn, then rn ≥ p(w), so r ≥ p(w).

The rest of the proof follows that of Theorems 7 and 8, and is omitted. ut

Theorem 11. lim supε→0 IP (Mε(w) = >) is upper 0′-semicomputable.

Proof. As in the proof of Theorem 9, it is easy to show that lim supε→0 f(ε, w)
is upper 0′-semicomputable whenever f : (0, 1) × Σ∗ → [0; 1] is continuous and
computable. ut

7 Concluding Remarks

We have described a class of randomly perturbed Turing machines and studied
their computational properties. We have shown that in the limit of infinitesimal
noise, these machines can be programmed to lim-decide ∆0

2, and lim sup-decide
Π0

2 sets. It is interesting to compare this result with [5], where a small nonde-
terministic noise led to a Π0

1 computational power only. We have also given a
characterisation of the acceptance probability distributions which can be gener-
ated. As a future work we are planning to explore how sensitive are these results
to the choice of a computational model (discrete, hybrid or analog) and of a
stochastic noise model.

References

1. McKee, W., Bergman, D., Nguyen, N., Aton, T., Block, L., Huynh, V., McAdams,
H., Smith, E., McPherson, J., Janzen, J., Ondrusek, J., Hyslop, A., Russell, D.,
Coy, R.: Cosmic ray neutron induced upsets as a major contributor to the soft error
rate of current and future generation DRAMs. In: Proceedings of the International
Reliability Physics Symposium. (1996)

2. Howard, J.J., Hardage, D.: Spacecraft environments interactions: Space radiation
and its effects on electronic systems. Technical Report TP-1999-209373, NASA
(1999) http://trs.nis.nasa.gov/archive/00000502/01/tp209373.pdf.

3. Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Sys-
tems 10 (2000) 87–113

4. Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infin-
ity of states. In Flum, J., Rodŕıguez-Artalejo, M., eds.: Computer Science Logic
(CSL’99). Volume 1683 of LNCS., Springer-Verlag (1999) 126–140

5. Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In:
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science,
IEEE Computer Society (2001) 269

6. Delyon, B., Maler, O.: On the effects of noise and speed on computations. Theo-
retical Computer Science 129 (1994) 279–291

7. Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog
computations. Neural Computation 10 (1998) 1071–1095

8. Freidlin, M., Wentzell, A.: Random perturbations of dynamical systems. Springer-
Verlag, New York (1984)

http://trs.nis.nasa.gov/archive/00000502/01/tp209373.pdf

Noisy Turing Machines 13

9. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-
Hill (1967)

10. Weihrauch, K.: Computable analysis. Springer-Verlag, Berlin (2000)

	Noisy Turing Machines
	Eugene Asarin (LIAFA) and Pieter Collins (CWI)

