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Abstract

We present a way to run Objective Caml programs on a standar
unmodified web browser, with a compatible data represemtati
and execution model, including concurrency. To achievs, thie
designed a byte-code interpreter in JavaScript, as welhdma
plementation of the run-time library. Since the Web browdees
not provide the same interaction mechanisms as a typicalaiig
Caml environment, we provide an add-on to the standardriipra
enabling interaction with the Web page. As a result, one @am n
build the client side of a web application with the standatijed-
tive Caml compiler and run it on any modern web browser.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guage§ Language Constructs and Features; D.B#bframming
Languagek Run-time environments; H.5.3rfformation inter-
faces and presentatifiiVeb-based interaction

General Terms Languages, Design, Experimentation

Keywords Virtual machine, Web browsers, Objective Caml, Doc-
ument Object Model, JavaScript

A preview of O'Browser is available for testing at t1)
including a tutorial scripted in Objective Caml.

1. Introduction
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client side, is currently taking place and the technologieslved

g.are so unsatisfactory, that it is far from being completed.

At the beginning, client side dynamism was limited to small
scripts, performing basic actions on pages, but such pages a
evolving towards real applications running in browsersgeen
distributed between a browser and one or several servepedm
menting that kind of application requires taking into aauionew
issues, like communication problems (that will not be adseel in
this paper) or portability. As we have very little influenae what
succeeds on client side (browsers), we must depend on stinda
and, more regrettably, on implementations. Unfortunatalyst of
the time, Web technologies have not been designed with the cu
rent evolution of the Web in mind and solutions need to take in
account these constraints, at least for browser side.

Despite these problems, several recent projects aimedpbgr
ing cleaner integrated solutions for the new Web. The firgntpo
is to use compiled and statically typed languages instedchdf
tional Web scripting languages. Besides the advantagerimstef
efficiency, it allows to check statically the programs. Sepbated
uses of type systems have been proposed to check the cangiste
of Web interaction (Balat 2006; Cooper et al. 2006; Balat7p0
and to ensure that pages will respect standards (Benzakehn et
2003; Hosoya and Pierce 2003).

All these projects also propose to forget the old “page-thase

From its creation and up to a few years ago, one could define the View of the Web that does not fit well the new kind of applicatio

World Wide Web as a system of interlinked hypertext docusent
accessed via the Internet. But that definition, still préegsemany
dictionaries, is now outdated. It is not possible any morspeak
about the Web without mentioning dynamism. That evolutiap-h
pened in two steps. The first one was “server side” dynamism. |
has been a small revolution of the nature of the Web itselft as
destroyed a strong invariant, namely the uniqueness ofsthecéa-

we want to build, and especially the notion of session.

The third common point of these projects is to use the same lan
guages for programming all three tiers of a Web applicati@rdy
and Loddo 2003; Cooper et al. 2006; Serrano 2007), avoidiieg t
need to resort to different languages for server side, tcéigle and
database access, and thus facilitating communicationpatiil-
ity, mobility, etc. This paper takes place in the Ocsigenjgmb

tion between URLs and documents. The second one, dynamism on(2). initiated in 2004 to explore new techniques for progmany
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complete Web applications, taking advantage of the funetipro-
gramming paradigm and static typing. It distinguishedfitsg not
creating its own language, but aiming at allowing to use tike f
power of Objective Caml (Leroy et al. 2007) for programmihg t
Web. In that perspective, we describe here an experimenban h
to program the client side using Objective Caml.

Using the same language for server and client sides requires
generating the code to be executed on the browser, usingha tec
nology it can understand. This also has the advantage ofrdebu
ing the Web programmer of the problems of compatibility bestw
browsers, and may even allow to target several executidfopias.

There are currently mainly two ways to achieve this: eithes u
a virtual machine implemented on the browser (often in a4oh)g
or compiling a language towards JavaScript (Flanagan 1988)



this paper, we propose a third way: an implementation of mair
machine in JavaScript for an existing language (here Ofgect
Caml). It allows running, on a browser, Objective Caml pergs
that have been compiled using the standard Objective Catat by
code compiler (without any modification). To make this pbksi
we also reimplemented in JavaScript the Objective Camtime-
library and a new standard library allowing the interacsiarith the
Web page. Thus, it is possible to use it for real client sideedyic
Web programming, in “Web 2.0 style, fully integrated to th&eb
page (unlike some plug-ins that use their own displayingesysn
a box within the Web page). For example, you can perform dymam
changes of the XHTML code from your Objective Caml program.
With respect to the use of a plug-in, and like compiling tadear
JavaScript, it has the advantage that it requires no motidicaf
the browser, and thus can be deployed easily. With respeat to
compiler, we reached at very low cost the full power of Ohyject
Caml (even preemptive threads). All current implementetiof
JavaScript are too slow to run really complex programs, so ou
implementation suffers from this limitation and enforcewith a
factor of about ten in execution time. But we demonstrateaiity
ing real examples that it is usable for all what is currentiye in
JavaScript in today’s Web sites, and even more. The fleijldhd
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programming comfort we gain foreshadows much more dynamic  Figure 1. A .Net applet running a ray-tracer in Objective Caml

Web applications than what is done at the moment. O’'Browsdér w
fit perfectly in a complete Web programming framework, pdsvi

ing power and ease of use for the programmer and the user. Weproduced byte-code can be executed.

can consider using it as a flexible alternative to a run-tigstesn
implemented as a plug-in.

Section 2 is a short historical survey on the attempts torarag
web clients with ML dialects. Section 3 will then present our
model, followed in 4 by some experimental results and exampl
Finally, after a review of some related works in section 5, we
shall discuss on this experiment, and present our futurésmor
section 6.

2. ML languages and Web browsers

Functional languages, including the ML family, have folkmvthe
evolution of the client-server applications: from fat dlie (large
size applications with periodic connection to a centralsgrto
thin clients (Web browsers where computations are on theger
And now to “Rich Internet Applications” (RIA), where the diion
of work is more distributed between servers and clients.pforex
ciate this evolution, we describe several experiments &f i&ling
one of the ML dialects, Objective Caml or Standard ML.

2.1 Applets

One of the first approaches to implement ML applets has been th
MMM experiment (3), a Web navigator written in Objective dam
and running Applets in Objective Caml (Rouaix 1996). Thiskvo
has proved that the Objective Caml language was a valuableech
to build a Web browser, mainly on separate compilation acd-se
rity, type safety and isolated run-time environment. Theusigy
properties applets are formalized in (Leroy and Rouaix 1999

Another attempt was to embed the Objective Caml top-levgl (4
inside a more commonly used browser as a plug-in for Mozilla o
Firebird. These navigators provide a graphical area foafipets,
as an X-window window, and so a graphical Objective Caml ap-
plication can use this area to interact. A source progranovend
loaded, compiled to byte-code and then evaluated. A sptagal
level can be built with a limited library, without system @ func-
tions, to ensure security. There is no check of the downldade
source program since its successful compilation ensusttie

Because the main Web browsers embed a Java Virtual Machine
to run Java Applets, another way to create ML Applets is toause
compiler from ML to Java. We can cite ML;j (5) which is a compile
from SML to Java byte-code. Two papers (Benton et al. 1998),
(Benton and Kennedy 1999) describe the compiler architeend
its intermediate languages, and present benchmarks. &pgaa
be found on the MLj project page. On the Objective Caml side,
the Ocaml-Java project (6) aims to provide interaction eetw
Objective Caml and Java, including applets development.

The more recent platform .NET also allows to build applete T
interoperability must be with the CLR/C# model. For thag ML
compiler has evolved to SML.NET (7) and the paper (Nick Banto
and Russo 2004) describes this experience of interopiyahithe
.NET world.

The OCamil project (8) compiles the whole Objective Caml
distribution, (including the top-level) to .NET managedie¢Mon-
telatici et al. 2005). Communications between ObjectivenCand
C# cannot be direct: C# and Objective Caml objects have to be
interfaced. This is done with an IDUnterface Description Lan-
guage and a code generator called O’Jacaré.net (Chailloux et al.
2004). Figurel shows an adaptation of the ICFP Programming
Contest 2000: a ray tracer program.

Thanks to all these experiments, the ML community is now able
to build RIA as applets for the main Web browsers.

2.2 DOM

Another approach for rich client is to use the DOBbcument Ob-
ject Mode) (9) (DOM). The DOM is an interface allowing a pro-
gram to modify dynamically the content or structure of a doent
which can be included inside a Web page. This interface is lan
guage independent. For example for Mozilla’s browsersDé/
implementation is based on the XPCOM components, which can
be written in C, C++ or JavaScript. There are also some bgwdin
between Java and XPCOM components as Java DOM API (10) or
Java plug-in (11).

But the most famous way to manipulate the DOM is to script
actions in JavaScript. In this case, JavaScript can be seemlae



language for libraries, written as XPCOM components oratliye
in JavaScript. Among the most popular JavaScript libravigscan
cite jQuery or Scriptaculous (12).

The Google Web Toolkit (13) (GWT) provides a java2javascrip
translator to produce AJAXapplications. This method has been
used to translate ML dialects as Objective Caml (ocamljs))(14
F# (Afax (15)) and Standard ML (smltojs (16)) programs to
JavaScript. In section 4, we shall compare our solution sndjs
and smltojs.

3. Description of our solution

Up to this point, the reader probably still has in mind the syue
tion “Why do we want to run Objective Caml code in a browser,
and why through JavaScript?’In this section, we first give our
answer to this question and describe our experimental appro
We then present the APApplication Programming Interfageof
O'Browser. Finally, we explain the execution model of O'Bsser,
with our answers to some selected technical problems whadea
during its implementation.

3.1 Motivations

Why JavaScript? The answer to this part of the question is prac-
tical. Unlike technologies like Adobe Flash, Java or othlkergp
ins, JavaScript is available and enabled by default in aldieno
browsers. Furthermore, in some closed devices (like theleApp
iPhone, the Nintendo Wii or some set top boxes), there is no wa
to install additional plug-ins. Hence, to be able to execoide in a
Web page, one has to use the provided JavaScript enginehédn ot
words, JavaScript, if neither the safest nor the fastegfLiage, is
the key to portability.

Why Objective Caml? Again, we wish to write a complete Web
application in one language, in our case Objective Camieddd
as shown in (Balat 2006), Objective Caml is a fine tool to dgvel
the server part of a Web application. It is well adapted te tre-
nipulations, has a type system authorizing the static dhgoif
many security issues (like form parameters’ types), anffiient
enough to write a full-featured Web server. The maturity fod t
Objective Caml compilers gives a strong confidence in thetgaf
of the execution, which is important in a hostile environiidee

the Web and would be hard to achieve if we were designing a new

language and compiler from scratch. Moreover, using a vesiéd
oped language gives access to numerous existing libranes)ast
but not least, is a good way to reach an audience since thegagl
exists a quite active community around the language. ;
The next step in our effort to write Web applications in Olajeci’
tive Caml is therefore to run Objective Caml code on the tlién s
way to run Objective Caml programs through JavaScript isritew 6
a compiler. However, since there already exists a byte-code
piler, another option is to write a virtual machine in Jav3cThe
choice we made is obviously arguable, but here are somengaso
behind it.

¢ As said earlier, we want to keep the gain of using a mature and
well tested compiler.

¢ The Objective Caml byte-code format rarely changes from one
version to another, which is not the case of the compilett iso i
easier to maintain.

e The abstraction we get from the JavaScript execution model
enables us to get close to Objective Caml’'s semantics. For

2AJAX (Asynchronous JavaScript And XMIs a commercial name for
web applications heavily using the JavaScript possibibtperform HTTP
requests

example, we provide preemptive threads, which do not exist i
JavaScript, as will be detailed later in this section.

¢ |tis well known that debugging JavaScript code is hard, in pa
ticular debugging generated code. Debugging a virtual imach
is easier, by running it step by step and comparing its state t
the original Objective Caml virtual machine.

e |t sounded like fun and we did really want to see if it was
feasible.

3.2 A brief chronology of the experiment

In our early experiments, we tried to mimic the standard etien
environment within the browser, including a terminal enbal@and
the'Graphic$ library to be able to run unmodified Objective Caml
byte-code programs as shown in figure 2. We included a step-by
step debugger to help us design and optimize the core of theli
machine.

As we were implementing the run-time library primitives,rou
scepticism on the viability of the approach faded. Indebd;\ir-
tual machine was able to run, even if quite slowly, prograike |
a Mandelbrot set computation or the Knuth-Bendix rewritaig
gorithm (which is used in Objective Caml test suites becafse
its mixing of exceptions, string manipulations, functibstyle and
allocations). In the end, we were close to being able to rarCh-
jective Caml interactive top-level (the limitations canterfi the
difficulty to mimic accesses to the file system which are nddne
the Objective Caml compiler).

This led us to the conclusion that the approach of running Ob-
jective Caml programs on the client by using the standareQive
Caml compiler and a virtual machine in JavaScript is feasibl

However, if it was useful to develop the virtual machine core
our simulation of a standard Objective Caml environment olas
viously not adapted to writing Web applications. So, thetrstep
was to tweak the standard library to be able to manipulatédlse
ing Web page, and to remove input/output functions which enak
no sense in a Web browser environment.

The current version we present in this section includes this
modified standard library and is simply a standalame.js file
containing arfexec_caml(url, argv)function taking an URL to
a byte-code file as argument, to be used as shown in listing 1.
The virtual machine implementation is fully re-entrant svesal
Objective Caml programs can run at the same time in one page.

Il waits for the page to be loaded
window . onload =function () {
exec_caml ("client_side .exe.uue");
/l since JavaScript supports 7bit ascii,
// we UUencode bytecode files

}

Listing 1. The only JavaScript code remaining: run ocaml

3.3 The modified standard library

As said in section 3.2, our first environment simulated adsaesh
Objective Caml environment in which input/output funcsomnere
redirected to terminal emulators. In particular, it was siole to
write page elements in the virtual console by printing XHTML
code. However, as explained in section 2, a cleaner and more
modern way to create page element is to use the DDM@ment
Object Mode).

The DOM If the reader is not familiar with the DOM, here is a
quick and simplified description from a JavaScript point w

3We use the notatioltodé for code extracts in the text
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.:: HACHINE STATE ::.
Lib path:
Libs:
1d?1graph1cs (ol ~+: FILE [STDOUT] (0UT) ::.
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Caml Virtual Machine in
(C) 2007 Benjamin Canou, Benjam

Integer size: 32 bits (ok) (wil
Mantissa size: 52 bits (ok)
http_get uuencode/tests/mandelb
Primitives table built (258 not
called undefined primitive unix_inet_addr_of_string
called undefined primitive unix inet_addr of string
called undefined primitive unix_inet_addr_of_string
called undefined primitive unix inet_addr of string
called undefined primitive caml_gr_sigio signal

called undefined primitive caml_install signal_handler
http_get uuencode/fixedld.psf

Font 'fixedl4,psf' loaded (256 chars) (mapped)

LOAD FILE FLUSH & RESUHE = EOF

Figure 2. O'Browser’s early look

See (9) for the official specification. The DOM is an API to ngani are however not forbidden for the data which do not repregent

ulate the run-time representation of a Web page. Web page, like the environment of closures, user-creategso
Each DOM node is an object, in the JavaScript sense, which etc.).

can be seen as a map associating string keysitges, where val- In practice, the browser exposes the DOM of the current page

ues can be references to other nodes, primitive types likegst to the JavaScript API through a few global variables. Fongxa,

and integers, or closures. ¢key, value) pair of an object is usu- the documeritvariable represents the root of the HTML content.

ally called aproperty;, or amethodif the value is a closure. To be . . . _—

precise, JavaScript method calls use the following mesnarthe DOM assignments As we have just said, assigning a node ref-
free variablethis' in the body of a functiory definition is instan- ~ €re€nce to a key in another node makes it disappear from other
tiated too when f is bound tam in the object and called with the ~ N°des. In a similar way, assignments sometimes have siéleteff

Y ol
syntaxo.m(args). The JavaScript syntak. call (o0, args) is also Eor example, modifying rt]h@ style proper';y ﬁf a node. for(c:ies the
available and equivalent. rowser to recompute the appearance of the associated fgage e

The whole DOM can then be seen as a set of references to DOM ment. Similarly, assigning th'éinnerHTML'“ property makes the
nodes, with a few primitives to access, modify and removenetets browser parse the given string as HTML and replace the @nldr

of the nodes: of the node.
get : noderef — string — value DOM events As we have said, nodes need not only contain simple
set : noderef — string — value — unit types and node references, but also closures. When some even
unset : noderef — string — unit namede occurs to a DOM node: in the browser, and if the key

. . . e is bound to a closure in, thenn(e) is called. More practically,
In this model, each page element (each markup in the XML file) jisting 2 shows how to greet the user when the page is clicked.

is represented by a node as follows: tagNamekey indexes the  j3yaScript, closures are appended tevent queueso have to wait
name of the XML element, and each attribute is bound to itsezal oy the termination of all pending events handlers to be etest

The children of a markup are of course also represented as nodes, ‘ .
and a reference to each of them appears fFor example the DOM 1 window. onclick = function () {

noden representing the HTML codeimg src="img.png" /3 ver- 35 document.innerHTML = "<hi>Hellot</h1>";
ifiesn(“tagName”) = “IMG” andn(“src”) = “img.png”.
In fact, the DOM does not contain only XML nodes, but can also Listing 2. Assigning a handler to an event in JavaScript

contain user-created values.

An important property is that an XML node of the DOM can  accessing the DOM from O’Browser We provide an Objective
be referenced by at most one other XML node. In practice, & on  cam|Nodé module, containing the DOM primitives. A simplified
takes a node: referenced by the node, and makes it a child signature is given in listing 3.
of np with the set operation defined above, thenimmediately
disappears from,. 1 module Node : sig

With such a property, the DOM is able to describe the tr%e type t

. . A . (x the root node x)
structure of an XML document, allowing its modification wehil 4 val document : t
avoiding sharing and cycles of page elements (sharing aclé<xy 5 (+ create nodes and texts)
6 val text : string —> t
. - . . . val element : string—> t
4|n fact, every function is an instance of the built-in objggie Functiod g (* attributes (string properties)x*)
which defines the methodsall’ and'apply. val get_attribute : t—> string —> string

~

©
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val set_attribute : t—> string —> string —> unit Compatibility The virtual machine itself has been successfully

val remove_attribute : t—> string —> unit ported to the JavaScript engines of all the current commowwdaers,
f/*;l e:’:;itsstz)r event namely Microsoft Internet Explorer 6+, Mozilla Firefox 23,
.t —> string —> (unit —> unit) —> unit Opera 9+, Apple Safari 3.0+ and Konqueror 3.5+. This reguiioe
val clear_event : t—> string —> unit compare the efficiency of JavaScript's control flow struesur=or
(+ access ﬂod_e 's childrenx) instance, we did a little benchmark between JavaScrgpwich',
va ;S;'edr:de“_ A lst an array of functions and nest&f's. The result is that we use an
val remove : t—> t —> unit array of functions indexed by instruction codes instead @#/dch
end since this approach has performs better on some enginesmid s
— - larly on others. We made the arguable choice to keep a siodle ¢
Listing 3. Node: The low level DOM interface for all platforms, but a solution would be to provide sevénaple-

imentations of the same algorithm using different codingestgnd
to choose the best one at run-time.
However, even if the core is compatible, and since we provide
a low level DOM interface and there are differences betwéen t
e get the root node, DOMs exposed by the different browsers, the same applicatiy
o create fresh nodes (XML element nodes as well as text nodes), Fun but have different behaviours. A first solution we prap(and
) are still working on) is to solve these issues in the highgelle
* set properties of the three types: 'Html' module. For instance, Microsoft Internet Explorer 6 does
» get, set and remove attributes (string properties), nhOt sugport the" DOt')Slition ifine(E]—" style attribut”e gsed t?l SPSCify
. . that a div stays visible even if the page is scrolled. We thosige
link (and unlink) caml closures to events, a'~fixed optional argument to thltml.div' function which sim-
= access and modify child nodes. ulates this behaviour with JavaScript but uses the styldaté on
other browsers. Another solution would be to abstract thiesby
Objective Caml types.

The type€Node.tdefines an abstract value containing a JavaScrip
DOM node reference. Functions are provided to do the prmiti
operations described above:

Listing 4 is a toy example use of tidode module. It is a re-
cursive function collecting the URLSs of all the links in thage. As
said earlier, th&tagName"property of a node is its XML element 34 A compatible data representation
name, for links, it iS"A™. The attributd” href™ of a link markup

contains its target (like ifca href="index . html">index<a>). Even if Objective Caml allows the definition of quite comphiata

types, the run-time representation of values is limitedvo ¢ases:

let get_urls () = integers and pointed blocks, with a small number of bloclesyp
:2: :ez éift [Jrl'sn ode - In standard Objective Caml, onvabit architecture, a value can be
match get_attribute node "tagName With either an —1 bit integer, encoded in the higher part af &it word,
| "A" —>r := get_attribute node "href" :: Ir the least significant bit beingla or a pointer to an even address, the
| _—> List.iter get_urls (children node) last bit being by definition &. The discrimination between integers
n ) and pointers is then simply a done by testing the least sogmifi
get_urls document ; It bit. I the value is a pointer, then the pointed data can baipain
Listing 4. Node usage example array of values, a closure, a boxed 64 bit float, an array obxedb

64 bit floats or a foreign value encapsulated ituatomblock®.

We chose to remain as close as possible to the standard repre-
sentation, in particular, we can discriminate if a valuerisraeger
or a block, use the same boxing policy for floats and float array
and implemented the same standewdtomblocks for the standard
library, like "Int64'.

Having a closely similar data representations is reallydrtgnt
for the following reasons:

Higher level HTML content creation Using only the DOM prim-
itives to create page elements can be compared to using assem
bly language to produce complex software. Hence, we prozide
higher level interface, with théHtml' module. This module de-
fines a function for each HTML markup, using Objective Caml’s
labelled optional argumeritdor optional attributes. When using
the'Node module, to construct nodes with children, one has to cre-
ate an empty node and then add its children one by one. Toigimpl e We can (de)serialize values in a compatible format. This is

this, the'HtmI' functions for elements with children take a list of important since we want to be able to transmit data between
nodes as argument. Similarly, each function takes an ogiticst the browser and the server as Objective Caml values through
of (string x string) values to define additional attributes. serialization.
(+ signature x) e Some Objective Caml features, like a large part of the Object
val string : Oriented layer, are implemented in the language itself,esom
string —> Node. t times by bypassing the type inference, and rely on the dpta re
vay et string —> ?name: string—> resentation. By using a compatible representation, we san u
2style: string—> 2onclick:(unit —> ’a) —> the standard library unmodified and so save time and avoid the
?attrs :(stringx string) list —> bugs of a new implementation.
Node.t list —> Node.t . ) i
(+ example <a href="index.html">index </a>«) e |t also helped us debug the virtual machine by comparing the
let link = a ~href:"index.html" [string "index"] data structures.
Listing 5. Link creation with Html Implementation In practice, an integer is simply a JavaScript

'Numbet 7, and a pointer is an instance of the object t{fleck.
Listing 5 shows an extract of the signature of the moddtenl,

along with an example use. 6 A block containing the foreign value along with a pointertgdssociated
primitives for hashing, comparison, serialization, etc.
5The syntaX?a: defines an optional argumembf typet, taking the value 7Simple types are not a special case: one can for instancee writ

'Some Xif x is passed to the function viaa:X or 'Non€é if a is omitted. (3). toString () in JavaScript.
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Then the discrimination between the two is done by the test
(b instanceof Block). The definition of the object typ&lock' 6
is presented in listing 6. A block encapsulates an array hfeg
which can be either integers or blocks, thanks to the peiveisge
system of JavaScript. To be able to mimic some of the behewiou
of the original run-time on values, the prototype of fRick type
provides d shift' method which simulates pointer arithmé&tighis
method creates a new blodkfrom a blocka, sharing its content
with a but for which thdget and'set operations use an offset.

function Block(size, tag) {
I/l functions can be seen as object constructors
/Il (new Block(s,t)) creates an object of type Block
/l "this" is a reference to the new object
this.size = size;
this.tag = tag;
this.content = [];
this.offset = 0;

/I modifying the prototype of the function Block makes
Il its content accessible from all objects of type Block
/1 (this is how inheritance is done in \js)
Block. prototype .get =function (i) {

return this .content[this.offset + i];

Block . prototype .set =function (i, v) {
this.content[this.offset + i] = v;

Block. prototype . shift =function (o) {
var nsize =this.size — o >= 0 ?this.size— o :0;
var b = new Block (nsize, this.tag);
b.content =this.content;
b.offset =this.offset + o;
return b;

Listing 6. The Block object

Foreign functions interface Since we use Objective Caml’s byte-
code calling convention and a data representation diffefrem
JavaScript for simple types and objects, it is not possibleal
existing JavaScript functions from Objective Caml dingcllo be
able to use existing JavaScript libraries, one needs te wmti¢rface
code (as it is the case with the C language for standard Qigect
Caml programs).

To achieve this, the virtual machine exposé& global object
which is used for the look-up of foreign functions’ symboa
define a foreign function, the programmer associates aibmtd
its symbol inRT. Thanks the JavaScript methddsil' and"apply
of the "Function prototype, a foreign function is simply defined
as a JavaScript function taking the same number of parasnaser
the Objective Caml associated function. To call such a fangcthe
virtual machine then simply doesRiT["symbol"]. call (vm, args
The first argument ofcall’ is the current virtual machine state,
which, for instance, enables the programmer to raise excepin
the virtual machine. This is important since, as said earfeltiple
instances of the virtual machine can run simultaneously.

Listings 7 and 8 shows how tH&tring . get function is de-
clared and defined.

external get
: string —> int —> char
= "caml_string_get"

Listing 7. A foreign function declaration
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RT.caml_string_get =function (arr, idx) {
if (idx >= 0 & idx < arr.size — 1) {
return arr.get(idx);

8This is used for instance to support Objective Caml’s regesion of
mutually recursive functions, and to handle code segmevitdoaks.

this.array_bound_error ();

}

Listing 8. A foreign function definition

3.5 The execution model

To fulfill our goal to have a unique language to program a cetepl
Web application, we wanted the execution model to be as esse
possible to the one of a standard Objective Caml environment

In particular, the JavaScript execution model is such that t
browser is blocked during a JavaScript computation. ThaSenipt
programmer has to give back the control to the browser explic
itly to keep the user interface reactive. Moreover, theneoigasy
yield operation: a yield is done by creating manually a cunti
ation and by adding its execution to the event queue through a
call to 'window.setTimeout(0, continuation When compiling to
JavaScript, a solution is to rewrite the program in CPS fahen a
yield is done by putting the current continuation in the evgreue.

We did not want to add an explicit yield operation to the lan-
guage and thus change the programming style. So the soisitioa
following simple behaviour: the virtual machine executeguata
of instructions and then puts in the event queue a closurehwhi
runs itself again. Since foreign functions may take an werdened
time, a time barrier is also set. To sum up, the programmer jus
writes normal Objective Caml code, and the virtual machiae-h
dles all the low level control flow passing operations.

Blocking calls Some functions, likéwait_next_eventfrom the
standard library graphical module, or theitp_get function pro-
vided by O’Browser which gets the content of a file from its URL
are seen as blocking calls from the Objective Caml point eWwi
However, it would be a poor solution to block the browser whil
waiting for the resource. The solution we adopted is to feetbe
machine as follows:

1. When a foreign functichwants to wait for a resource, it stores
the continuation of its execution into a closuxe..

2. It then tells the virtual machine, by raising a JavaSa@iatep-
tion, that it has not finished and is waiting for the resource

3. The machine assigns to the event spawned whisnready a
closure which resumes itself, and then stops.

4. When the virtual machine is run again, it first checks if som
Cres IS present and runs it.

5. e If ¢es SUcceeds, then the machine puts the result on the
stack as it would be for a normal foreign function call, and
continues to execute the remaining byte-code.

o If ¢,es does not succeed, or if it simply has to wait for
another resource before returning, the same process is done
one more time.

Actually, this is a simplification, and the real implemerdatin-
volves more states and resource identifiers, but these @rrital
detalils.

for i = 0 to 10 do
alert (sprintf "iteration%d" i) ;
sleep 1

done

Listing 9. Blocking calls example

An interesting gain compared to JavaScript is the possibili
to resume a computation after a given time, without the need t

9The JavaScript implementation of an Objective Caml extdtmation.



construct manually the continuation, as shown in listing/2h our
implementation, the virtual machine is stopped during "#ieep
call and the browser thus stays reactive.

Concurrency O’Browser implements th&hreadsmodule of the
Objective Caml standard library. This is simply done by imgtthe
virtual machine register in a context object, and by wragtme
byte-code interpretation loop within a scheduler whichutady
does a context switch.

Some other tricks were needed, for example the blocking call
presented above do not actually stop the machine but tryrto ru
another thread and only stops if no thread is alive.

Not surprisingly, if the implementation was conceptualiy-s
ple to implement, it was hard to debug due to the number oéstat
and the difficulty to handle the control flow in JavaScriptind=
ing a good scheduling algorithm and its associated corsstank
a lot of time. The problem is that it has to run enough instomnst
for the program not to run too slowly while doing enough canhte
switch to provide concurrency. It also has to pass the cbfiow
to the browser often enough so that the user interface seays r
tive, but not too often because this operation has a high aitd q
unpredictable impact on performance. The current one sgeot
enough on most of our examples but we are still tweaking it.

Events handlers as concurrent threadsWe chose to use a dif-
ferent semantics than JavaScript’s one for events execitihile

in JavaScript, event handlers are executed sequentialputiing
them in a queue, in O'Browser, each event handler is launghed
a separate thread. The positive result is that the programmag
write an arbitrary long computation in an event handler|evkéep-
ing the rest of the application reactive. However, one chassume
that, for instance, @ouseOverevent has terminated when its cor-
respondingmouseOutevent is launched. Of course, these issues
are solvable by using Objective Caml's Mutexes, impleme g
O’Browser.

4. Experimental results

We now present the results of our experiment, first by compari
its performance to Objective Caml and JavaScript, and then b
showing some demonstrative examples to put the, not surglys
quite poor benchmark results into perspective.

4.1 Performance

Comparison to other technologiesWe did a comparison between
ocamlc (the standard byte-code compiler), ocamljs (anraxea-
tal compiler to JavaScript (14)), smiltojs (a compiler of rigtard
ML to JavaScript (16)), JS (an equivalent of the algorithnpliain
JavaScript if we were able to write one) and O’'Browser.

e ackis the Ackermann function called dB, 6) twenty times.
¢ kbis the Knuth-Bendix rewriting algorithm.
e queensds a solver for the n-queens problem.

¢ nucleicis a benchmark using float and trees used in (P. H.
Hartel, M. Feeleyet al 1996) to compare functional language
implementations

[ test ]l ocamic] JS | ocamljs| smitojs [ O’Browser |
ack 160ms | 1.6s 5s 3s 1m20s
kb 1s - fails’® | > 1h30 | 9ml5s

queens|| 75ms | fails™ 25 3s 21s
nucleic || 800ms - 2m8s 32s 5m15s

If we look at the raw data, the performance is poor. However, w
chose these examples because they show the three commen case
and allow us to put these bad results into perspective:

e ack is a computation intensive task, with a unique recursive
function over integers, so is a function quite easily optahie
by the JavaScript interpreters (integers unboxing, ethgreas
the abstraction of the virtual machine prevents such optimi
tions. By the way, it is important to notice that the Java&cri
tests (JS and ocamljs) didn’t run at our first try and required
to tweak the interpreter since the number of recursionsnis li
ited to usually 100 or 1000 (since the virtual machine has its
own stack, O’Browser does not suffer from this limitation).

e kb is complex, highly functional, using exceptions as a pro-
gramming style and doing many string manipulations. The
compilation of such a program is hard and indeed breaks
ocamljs and is extremely slow in smitojs (that is not due to
the syntax conversion since the Standard ML version, cadplil
by miton, is even faster than the Objective Caml one compiled
by ocamlopt). So, even if we get a big ratio between the two
Objective Caml virtual machines, this is a case where the ab-
straction provided by O’Browser is a clear gain.

e queensandnucleicshow the common case of the performance
ratio, which is around 10 to 20 between JavaScript (or cardpil
to JavaScript) code and O’Browser.

An important result is that even if the ratio fluctuates betwe
the two virtual machines, it seems more likely to stay in a pre
dictable range since the algorithms are similar; such dtresuld
hardly be obtained with a compiler using JavaScript corftow
primitives (like the exception mechanism), as demondtratethe
kb example.

Moreover, the examples of the next section will show that thi
factor stays acceptable for many use-cases in client sidepie
gramming. In fact the time is spent more in user interactiod a
page redrawing than in code execution (as it is the case icotime
putational examples from this benchmark) .

Comparison between JavaScript enginedot surprisingly, since
JavaScript engines’ performance is a central point in thbt fig
between browsers, the execution times in most of the popular
browsers are similar. During our tests, the order (begupniith

the fastest) was Firefox 3, Safari 3.2, Opera 9.5, MSIE 6g-Fir
fox 2, and the speed factor between the fastest and the dlaass
about 2. There is then a gap between the aforementioned ndes a
MSIE 8 and Konqueror, but the former one is still in beta stage
and the Konqueror developers have just announced the atimgr

of a new engine so the situation will probably completelyradea

in a near future.

As previously said, computation time is not often the major
problem in current Web applications, and it is a good resuit f
portability to see that none of the common browsers is |ditrize
Another positive result is that Opera has good performasiceg
it is almost always the browser embedded in gaming platfamnas

The numbers are execution times, on a mainstream Intel Dual set top boxes.

Core platform running a 64 bit GNU/Linux operating systerheT
browser used for the tests is Mozilla Firefox 3, except Kkbr

since the smitojs version made Firefox completely hang éones

unknown reason, so we used Opera 9.5.

10The compiler succeeds but the generated code behaveseictbprr

11we wrote a version in JavaScript but the lack of tail recurgicevented
it from running with our available memory.
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4.2 Examples

We now present some concrete uses of O'Browser. We start with
a small overview of the two main aspects of client side siript
namely the creation of new HTML content and the modificatibn o
the page, along with a presentation of how to do this in O'Brexv
Then we present two small yet quite complex and demonstrativ
Web applications written entirely in Objective Caml. Thesam-
ples are extracted form the O’Browser tutorial, and are tuasl-

able for testing by the reader.

Content creation One possible use of O'Browser is to collect the
raw data through HTTP requests and to create an HTML view of
it. This can can prove useful to define page data without lyatgin
encode it in HTML at each modification, and without requirig 1
server script. 2
For example, listings 10, 11 and figure 3 show the differertspa3
of a small code snippet creating an HTML ordered list from the

lines of a text file, and its rendering in a browser. 6
7
let items = split (http_get "list.txt") ’'\n’in 8
let container = get_element_by_id "basketh 9
Node . append 10
container 11
(Html. ol
(List.map

(fun n —> Html. i [Html.string n])
(List. filter ((<>) "") items))) 1
2

Listing 10. A list from a file: O’Browser code

<body>
<div id="basket" style="border:1px,black_solid"></div>
</body>

Listing 11. Alist from a file: html code (extract)

2] caml - Kengqueror’ EHEE
Fille Edit Wlew Go Bookmarks Tools Settings »
Qa v ER v @ v e {J} | hitp:/localhost€d v | |

1. bananas
2. potaloes
3. mangoes
4. penguins

Figure 3. A list from a file: an execution

Page modification Another common use of client side scripting,

is the modification of the page to use a more dynamic interface

when JavaScript is enabled, while keeping the same content.
There are several possibilities to find out which DOM ele-

an id attribute. We use an encoding of forbidden characters u
ing colons (which is one of the few special characters autho-
rized in ids), and we provide the encoder and decoder. A com-
mand is an Objective Caml list of strings, and is encoded as th
concatenation of these strings separated by two colons faith
bidden characters encoded as entities surrounded by cdfons
example, the commani"view";"imgs/13.jpg"] is encoded as
™uid0 :: view::imgs: slash :13. jpg" A unique string is prefixed,
since all ids in an XML document must be different.

For instance, in the tutorial, we browse the DOM to find code
fragments and apply a syntax coloration. Listings 12 andht8vs
respectively the O’'Browser code to detect source code @xtta
colorize, and a colorization command encoded in an id.
match

get_attribute node "tagName",

decode_id (get_attribute node
with

| "span", ["inline—source" ; lang]—>

let code = get_attribute node "textContentih
colorize node code lang

| "div", ["source" ; lang ;
let code = http_get filein

colorize node code lang
| (* interpret other commands .. .x)

"id")

file] —>

Listing 12. Inline code coloration: O’'Browser code

<span id="uidO::inline—source ::ocaml">let x = 2<dgpan>
<div id="uidl::source ::ocaml::test:dot:ml"><iv>

Listing 13. Inline code coloration: html code (extract)

We are still working on DOM interaction and the code may
neither seem very clean nor beautiful. However, it foreshesthe
efficiency of Objective Caml over JavaScript, in particuleshows
how the pattern matching and functional style help the Eogner
introspect and interact with the document in a few lines afeco

Client/server over http exampleUsing plain Objective Caml
(with the sockets from the standard library) to program agosified
HTTP server, and O’Browser (with it&raphicsimplementation),
we wrote a simplgroof-of-conceptommunicating Web applica-
tion entirely in Objective Caml.

ition  Affichage ~ Histori

@h [«

@

Fichier Edition Affichage Historique Mal

Multi-user scrib

color: [ AN
size:| [ TT NN M

color: [N
size:) [ TH NN

Figure 4. A multiuser scribble in Objective Caml

Figure 4 shows a session of this toy application which ersable

ments are to be modified. One can for instance insert recognis several users to share a whiteboard over the network thritnggh
able patterns in CSS classes, in comments or even simply addWeb browsers. The simplicity of the Web server and the nuraber
custom (not XHTML valid) markups or attributes. Our solatio  requests due to the naive textual-over-http protocol malkekttie

is to encodecommandsn markups ids. This has the advantage slow, but it works. The whole application fits in a little mdtan a
of keeping the XHTML code valid since every markup can have hundred lines of Objective Caml.



Integration with Ocsigen Even if O’'Browser cannot (yet) di-
rectly communicate with Ocsigen, it is already possible fken
it communicate via standard http request, and to use it targeh
Ocsigen modules.

For instance, we wrote a little image gallery script. TheiGes
part takes a directory of images, generates thumbnailsesized
images. The main service generates a page of thumbnaiksdlink
to the pictures, with encoded commands to call the viewethen t
re-sized pictures (as presented earlier in the section).

When the gallery is loaded, the O’'Browser programs searches
for the encoded commands in the DOM and replaces the links’
targets to calls to a caml closure launching a picture broirse
the same window.

The picture browser then dynamically loads and displays the
re-sized pictures, providing buttons to previous and nétupes
(since the list of all pictures is collected during the &aitDOM
search), a screen capture is shown in picture 5.

Example Galery [ml=1]Fy

Fichier Edition Présentation Historique Signets Fenétre Aide

@-

. (5] hitp://pokky. hd.free.fr: SOSUfgam(suexample
Apple  Yahoo! Google Maps ?‘5

Figure 5. A gallery in Ocsigen and O’Browser

The advantage of such an approach is that the original page
remains accessible, since it is valid XHTML as checked byithe
system of Ocsigen and fully working even when JavaScripbis n
available.

Again, the whole application fits in a little more than a hietdir
lines of Objective Caml.

5. Related work

As there are lots of Web programming tools, we focus here en th
ones that generate code to be executed on the client, anclakpe
those inspired by the functional programming community.

Client/server frameworks A few projects share Ocsigen’s goal
of generating code for both server and client side (and also f
database queries) using one language.

One of the most closely related is HOP (Serrano 2007) (17), a
language inspired by Scheme, with two compilers for praaiyci
server and client side code. It is using a two level languaghs-
tinguish between server and client portions of code, therldte-
ing compiled towards JavaScript. The Web application isctoee
written in one single code, and the two execution flows conimun
cate through function calls.

Links (18) is also a language allowing to write server andrdli
sides in the same code, through annotations. It is using @iterm

towards JavaScript, with a concurrency model that usesagess
passing in Erlang or Mozart style (19) (20). Communicati@n b
tween server and client is done through function calls.

Client side code execution Another compiler towards JavaScript
is Ycr2js (21) (Yhc Core to Javascript Converter) that cotse
Haskell to Javascript. It implements concurrency througio@p-
erative thread model.

There are also other compilers to JavaScript, for examptleein
GWT(13) or Volta (22) frameworks.

Flapjax (23) is a language to program the client side of a Web
application. It is using reactive programming. The languages
JavaScript syntax, and a compiler to translate the reagtare
into JavaScript. It is also possible to use it simply as aalipin
JavaScript.

We are not aware of any other virtual machine implemented
in JavaScript, but one virtual machine for Java called O2i),(
for which we have very little information. Some interpretdor
scripting languages have also been written in JavaScript.

6. Conclusion

Thanks to this experiment, our goal to write a Web applicatio
entirely in Objective Caml is one step closer. We were ablerite
the server code, thanks to Ocsigen, now, we have a fully imat,
yet a bit slow, experimentation platform to write the clientle.

Future work We plan to work on the communication between the
two parts. As explained in section 3, we use a compatibleima-
data representation which enables us to transmit senidiata. We
plan to use the work from (Henry et al. 2007) on safe deseaali
tion of Objective Caml values to design our security model.

Moreover, we have started to work on statically type-chdcke
database interfacing for the server side. The goal is torertbat
the program uses a coherent database scheme before ruramag i
thus eliminate run-time errors. Some work has already beee d
by pgocaml (25), we plan to add more flexibility to the model, t
add a modular back-end interface to support several daabas
gines, and to perform the checks at the deployment phassauhst
of the compilation.

We also plan to ensure properties on the preservation of the
XML grammar of the DOM during its modification. Several works
have been done on XML typing integration in Objective Caike |
OcamlDuce (Frisch 2006) (26), but they are centered on XMe tr
generation. It does not seem trivial to apply them direabhthte
DOM due to its dynamic nature, in particular the fact thatdesi
effect on a node of the DOM may affect other nodes and thukbrea
their well typedness.

Nearer future work There are two visions of client side Web
programming. The first, which is the most widespread one to-
day, is to enhance Web sites by adding a more reactive user in-
terface. For this, and as shown by the examples presentestin s
tion 4, O'Browser has good enough performance and usingd®bje
tive Caml gives a better programming experience in termsifeftg
and productivity.

The second one is RIARich Internet Applicationswhich are
arising with tools such as Google SpreadSheets and shointite |
of JavaScript (the reader may have a look at such applicat®be
convinced that there are performances and debugging isgtles
them). For this kind of applications, we have already stbidevrite
a browser plug-in embedding the Objective Caml virtual niraeh
and exposing the same Objective Caml API as O’Browser. On one
hand, this will give a great performance gain to users whtalhs
the plug-in, on the other hand, users who do not want, or danno



install the plug-in will still be able to run the applicat®thanks to
our JavaScript implementation.

Links

(1) O’'Browser tutorial
http://www.pps.jussieu.fr/"canou/obrowser/tutorial/

(2) Ocsigen and Eliom
http://www.ocsigen.org/

(3) MMM, a web browser in Objective Caml
http://pauillac.inria.fr/rouaix/mmm/papers/

(4) The embedded Objective Caml top-level
http://www.pps.jussieu.fr/"capel/eng/toplevel/tmelehtm|

(5) MLj, an ML to Java compiler
http://www.dcs.ed.ac.uk/home/mlj/

(6) The Ocaml-Java project
http://ocamljava.x9c.fr/

(7) SML.NET, an SML to .Net compiler
http://www.cl.cam.ac.uk/research/tsg/SMLNET/

(8) OCamil, an Objective Caml to .Net compiler
http://ocamil.ortsa.com

(9) The DOM (Document Object Model)
http://www.w3.0rg/DOM/

(10) The Java DOM API
http://www.mozilla.org/projects/blackwood/dom/

(11) The Java plug-in
http://java.sun.com/products/plugin/1.3/docs/jschjetml

(12) Comparison of JavaScript libraries
http://fen.wikipedia.org/wiki/Comparison of JavaSciigmeworks

(13) Google Web Toolkit
http://code.google.com/webtoolkit/

(14) Ocamljs, an Objective Caml to JavaScript compiler
http://skydeck.com/blog/programming/ocamljs-ocamrjavascript-compiler/

(15) Afax, F# web tools
http://tomasp.net/projects/fswebtools.aspx

(16) SMLtojs, an SML to JavaScript compiler
http://iwww.itu.dk/people/mael/smitojs/

(17) Hop, a web 2.0 programming language
http://hop.inria.fr/

(18) Links, a web 2.0 programming language
http://groups.inf.ed.ac.uk/links/

(19) Erlang, a language for distributed and concurrentiegibns
http://www.erlang.org/

(20) Mozart, a language for distributed and concurrentiegiibns
http://www.mozart-oz.org/

(21) Ycr2js, an Haskell to JavaScript compiler
http://www.haskell.org/haskellwiki/Yhc/Javascript

(22) Volta, web applications in .Net
http://labs.live.com/volta/

(23) Flapjax, a reactive client side web progamming languag
http://www.flapjax-lang.org/

(24) Orto, a JVM in JavaScript
http://orto.accelart.jp/

(25) pgOcaml, typed database requests for Objective CainPgSQL
http://developer.berlios.de/projects/pgocaml/

(26) OcamlIDuce, XML typing for Objective Caml
http://www.cduce.org/ocaml
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