
O’Browser: Objective Caml on browsers

Benjamin Canou1,2, ∗

1 Laboratoire d’Informatique de Paris 6
LIP6 - CNRS UMR 7606

Université Pierre et Marie Curie – Paris 6
Case 169, 75252 Paris Cedex 05, FranceBenjamin.Canou�lip6.fr Vincent Balat2, ∗∗

2 Preuves, Programmes et Systèmes
PPS - CNRS UMR 7126

Université Paris Diderot – Paris 7
Case 7014, 75205 Paris Cedex 13, FranceVinent.Balat�pps.jussieu.fr Emmanuel Chailloux1

1 Laboratoire d’Informatique de Paris 6
LIP6 - CNRS UMR 7606

Université Pierre et Marie Curie – Paris 6
Case 169, 75252 Paris Cedex 05, FranceEmmanuel.Chailloux�lip6.fr

Abstract
We present a way to run Objective Caml programs on a standard,
unmodified web browser, with a compatible data representation
and execution model, including concurrency. To achieve this, we
designed a byte-code interpreter in JavaScript, as well as an im-
plementation of the run-time library. Since the Web browserdoes
not provide the same interaction mechanisms as a typical Objective
Caml environment, we provide an add-on to the standard library,
enabling interaction with the Web page. As a result, one can now
build the client side of a web application with the standard Objec-
tive Caml compiler and run it on any modern web browser.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Run-time environments; H.5.3 [Information inter-
faces and presentation]: Web-based interaction

General Terms Languages, Design, Experimentation

Keywords Virtual machine, Web browsers, Objective Caml, Doc-
ument Object Model, JavaScript

A preview of O’Browser is available for testing at (1)1,
including a tutorial scripted in Objective Caml.

1. Introduction
From its creation and up to a few years ago, one could define the
World Wide Web as a system of interlinked hypertext documents
accessed via the Internet. But that definition, still present in many
dictionaries, is now outdated. It is not possible any more tospeak
about the Web without mentioning dynamism. That evolution hap-
pened in two steps. The first one was “server side” dynamism. It
has been a small revolution of the nature of the Web itself, asit
destroyed a strong invariant, namely the uniqueness of the associa-
tion between URLs and documents. The second one, dynamism on

∗Work partially supported by the FoundationDigiteo-Triangle de la
Physique.
** Work partially supported by theAgence Nationale pour la Recherche.
1 We use the notation (n) to reference external links; see section Links at
the end of the document for full URLs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ML’08, September 21, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-062-3/08/09. . . $5.00

client side, is currently taking place and the technologiesinvolved
are so unsatisfactory, that it is far from being completed.

At the beginning, client side dynamism was limited to small
scripts, performing basic actions on pages, but such pages are
evolving towards real applications running in browsers, oreven
distributed between a browser and one or several servers. Imple-
menting that kind of application requires taking into account new
issues, like communication problems (that will not be addressed in
this paper) or portability. As we have very little influence on what
succeeds on client side (browsers), we must depend on standards,
and, more regrettably, on implementations. Unfortunately, most of
the time, Web technologies have not been designed with the cur-
rent evolution of the Web in mind and solutions need to take into
account these constraints, at least for browser side.

Despite these problems, several recent projects aimed at propos-
ing cleaner integrated solutions for the new Web. The first point
is to use compiled and statically typed languages instead oftradi-
tional Web scripting languages. Besides the advantage in terms of
efficiency, it allows to check statically the programs. Sophisticated
uses of type systems have been proposed to check the consistency
of Web interaction (Balat 2006; Cooper et al. 2006; Balat 2007),
and to ensure that pages will respect standards (Benzaken etal.
2003; Hosoya and Pierce 2003).

All these projects also propose to forget the old “page-based”
view of the Web that does not fit well the new kind of applications
we want to build, and especially the notion of session.

The third common point of these projects is to use the same lan-
guages for programming all three tiers of a Web application (Leroy
and Loddo 2003; Cooper et al. 2006; Serrano 2007), avoiding the
need to resort to different languages for server side, client side and
database access, and thus facilitating communication, compatibil-
ity, mobility, etc. This paper takes place in the Ocsigen project
(2), initiated in 2004 to explore new techniques for programming
complete Web applications, taking advantage of the functional pro-
gramming paradigm and static typing. It distinguishes itself by not
creating its own language, but aiming at allowing to use the full
power of Objective Caml (Leroy et al. 2007) for programming the
Web. In that perspective, we describe here an experiment on how
to program the client side using Objective Caml.

Using the same language for server and client sides requires
generating the code to be executed on the browser, using a tech-
nology it can understand. This also has the advantage of unburden-
ing the Web programmer of the problems of compatibility between
browsers, and may even allow to target several execution platforms.

There are currently mainly two ways to achieve this: either use
a virtual machine implemented on the browser (often in a plug-in)
or compiling a language towards JavaScript (Flanagan 1998). In

this paper, we propose a third way: an implementation of a virtual
machine in JavaScript for an existing language (here Objective
Caml). It allows running, on a browser, Objective Caml programs
that have been compiled using the standard Objective Caml byte-
code compiler (without any modification). To make this possible,
we also reimplemented in JavaScript the Objective Caml run-time
library and a new standard library allowing the interactions with the
Web page. Thus, it is possible to use it for real client side dynamic
Web programming, in “Web 2.0” style, fully integrated to theWeb
page (unlike some plug-ins that use their own displaying system in
a box within the Web page). For example, you can perform dynamic
changes of the XHTML code from your Objective Caml program.

With respect to the use of a plug-in, and like compiling towards
JavaScript, it has the advantage that it requires no modification of
the browser, and thus can be deployed easily. With respect toa
compiler, we reached at very low cost the full power of Objective
Caml (even preemptive threads). All current implementations of
JavaScript are too slow to run really complex programs, so our
implementation suffers from this limitation and enforces it with a
factor of about ten in execution time. But we demonstrated bywrit-
ing real examples that it is usable for all what is currently done in
JavaScript in today’s Web sites, and even more. The flexibility and
programming comfort we gain foreshadows much more dynamic
Web applications than what is done at the moment. O’Browser will
fit perfectly in a complete Web programming framework, provid-
ing power and ease of use for the programmer and the user. We
can consider using it as a flexible alternative to a run-time system
implemented as a plug-in.

Section 2 is a short historical survey on the attempts to program
web clients with ML dialects. Section 3 will then present our
model, followed in 4 by some experimental results and examples.
Finally, after a review of some related works in section 5, we
shall discuss on this experiment, and present our future works in
section 6.

2. ML languages and Web browsers
Functional languages, including the ML family, have followed the
evolution of the client-server applications: from fat clients (large
size applications with periodic connection to a central server) to
thin clients (Web browsers where computations are on the server).
And now to “Rich Internet Applications” (RIA), where the division
of work is more distributed between servers and clients. To appre-
ciate this evolution, we describe several experiments of RIA using
one of the ML dialects, Objective Caml or Standard ML.

2.1 Applets

One of the first approaches to implement ML applets has been the
MMM experiment (3), a Web navigator written in Objective Caml
and running Applets in Objective Caml (Rouaix 1996). This work
has proved that the Objective Caml language was a valuable choice
to build a Web browser, mainly on separate compilation and secu-
rity, type safety and isolated run-time environment. The security
properties applets are formalized in (Leroy and Rouaix 1999).

Another attempt was to embed the Objective Caml top-level (4)
inside a more commonly used browser as a plug-in for Mozilla or
Firebird. These navigators provide a graphical area for theapplets,
as an X-window window, and so a graphical Objective Caml ap-
plication can use this area to interact. A source program is down-
loaded, compiled to byte-code and then evaluated. A specialtop-
level can be built with a limited library, without system or IO func-
tions, to ensure security. There is no check of the downloaded
source program since its successful compilation ensures that the

Figure 1. A .Net applet running a ray-tracer in Objective Caml

produced byte-code can be executed.

Because the main Web browsers embed a Java Virtual Machine
to run Java Applets, another way to create ML Applets is to usea
compiler from ML to Java. We can cite MLj (5) which is a compiler
from SML to Java byte-code. Two papers (Benton et al. 1998),
(Benton and Kennedy 1999) describe the compiler architecture and
its intermediate languages, and present benchmarks. Applets can
be found on the MLj project page. On the Objective Caml side,
the Ocaml-Java project (6) aims to provide interaction between
Objective Caml and Java, including applets development.

The more recent platform .NET also allows to build applets. The
interoperability must be with the CLR/C# model. For that, the MLj
compiler has evolved to SML.NET (7) and the paper (Nick Benton
and Russo 2004) describes this experience of interoperability in the
.NET world.

The OCamil project (8) compiles the whole Objective Caml
distribution, (including the top-level) to .NET managed code (Mon-
telatici et al. 2005). Communications between Objective Caml and
C# cannot be direct: C# and Objective Caml objects have to be
interfaced. This is done with an IDL (Interface Description Lan-
guage) and a code generator called O’Jacaré.net (Chailloux et al.
2004). Figure1 shows an adaptation of the ICFP Programming
Contest 2000: a ray tracer program.

Thanks to all these experiments, the ML community is now able
to build RIA as applets for the main Web browsers.

2.2 DOM

Another approach for rich client is to use the DOM (Document Ob-
ject Model) (9) (DOM). The DOM is an interface allowing a pro-
gram to modify dynamically the content or structure of a document
which can be included inside a Web page. This interface is lan-
guage independent. For example for Mozilla’s browsers, theDOM
implementation is based on the XPCOM components, which can
be written in C, C++ or JavaScript. There are also some bindings
between Java and XPCOM components as Java DOM API (10) or
Java plug-in (11).

But the most famous way to manipulate the DOM is to script
actions in JavaScript. In this case, JavaScript can be seen as a glue

language for libraries, written as XPCOM components or directly
in JavaScript. Among the most popular JavaScript libraries, we can
cite jQuery or Scriptaculous (12).

The Google Web Toolkit (13) (GWT) provides a java2javascript
translator to produce AJAX2 applications. This method has been
used to translate ML dialects as Objective Caml (ocamljs (14)),
F# (Afax (15)) and Standard ML (smltojs (16)) programs to
JavaScript. In section 4, we shall compare our solution to ocamljs
and smltojs.

3. Description of our solution
Up to this point, the reader probably still has in mind the ques-
tion “Why do we want to run Objective Caml code in a browser,
and why through JavaScript?”. In this section, we first give our
answer to this question and describe our experimental approach.
We then present the API (Application Programming Interface) of
O’Browser. Finally, we explain the execution model of O’Browser,
with our answers to some selected technical problems which arose
during its implementation.

3.1 Motivations

Why JavaScript? The answer to this part of the question is prac-
tical. Unlike technologies like Adobe Flash, Java or other plug-
ins, JavaScript is available and enabled by default in all modern
browsers. Furthermore, in some closed devices (like the Apple
iPhone, the Nintendo Wii or some set top boxes), there is no way
to install additional plug-ins. Hence, to be able to executecode in a
Web page, one has to use the provided JavaScript engine. In other
words, JavaScript, if neither the safest nor the fastest language, is
the key to portability.

Why Objective Caml? Again, we wish to write a complete Web
application in one language, in our case Objective Caml. Indeed,
as shown in (Balat 2006), Objective Caml is a fine tool to develop
the server part of a Web application. It is well adapted to tree ma-
nipulations, has a type system authorizing the static checking of
many security issues (like form parameters’ types), and is efficient
enough to write a full-featured Web server. The maturity of the
Objective Caml compilers gives a strong confidence in the safety
of the execution, which is important in a hostile environment like
the Web and would be hard to achieve if we were designing a new
language and compiler from scratch. Moreover, using a well devel-
oped language gives access to numerous existing libraries,and, last
but not least, is a good way to reach an audience since there already
exists a quite active community around the language.

The next step in our effort to write Web applications in Objec-
tive Caml is therefore to run Objective Caml code on the client. A
way to run Objective Caml programs through JavaScript is to write
a compiler. However, since there already exists a byte-codecom-
piler, another option is to write a virtual machine in JavaScript. The
choice we made is obviously arguable, but here are some reasons
behind it.

• As said earlier, we want to keep the gain of using a mature and
well tested compiler.

• The Objective Caml byte-code format rarely changes from one
version to another, which is not the case of the compiler, so it is
easier to maintain.

• The abstraction we get from the JavaScript execution model
enables us to get close to Objective Caml’s semantics. For

2 AJAX (Asynchronous JavaScript And XML) is a commercial name for
web applications heavily using the JavaScript possibilityto perform HTTP
requests

example, we provide preemptive threads, which do not exist in
JavaScript, as will be detailed later in this section.

• It is well known that debugging JavaScript code is hard, in par-
ticular debugging generated code. Debugging a virtual machine
is easier, by running it step by step and comparing its state to
the original Objective Caml virtual machine.

• It sounded like fun and we did really want to see if it was
feasible.

3.2 A brief chronology of the experiment

In our early experiments, we tried to mimic the standard execution
environment within the browser, including a terminal emulator and
thepGraphicsq3 library to be able to run unmodified Objective Caml
byte-code programs as shown in figure 2. We included a step-by-
step debugger to help us design and optimize the core of the virtual
machine.

As we were implementing the run-time library primitives, our
scepticism on the viability of the approach faded. Indeed; the vir-
tual machine was able to run, even if quite slowly, programs like
a Mandelbrot set computation or the Knuth-Bendix rewritingal-
gorithm (which is used in Objective Caml test suites becauseof
its mixing of exceptions, string manipulations, functional style and
allocations). In the end, we were close to being able to run the Ob-
jective Caml interactive top-level (the limitations came from the
difficulty to mimic accesses to the file system which are needed by
the Objective Caml compiler).

This led us to the conclusion that the approach of running Ob-
jective Caml programs on the client by using the standard Objective
Caml compiler and a virtual machine in JavaScript is feasible.

However, if it was useful to develop the virtual machine core,
our simulation of a standard Objective Caml environment wasob-
viously not adapted to writing Web applications. So, the next step
was to tweak the standard library to be able to manipulate thehost-
ing Web page, and to remove input/output functions which make
no sense in a Web browser environment.

The current version we present in this section includes this
modified standard library and is simply a standalonevm.js file
containing anpexec_caml(url , argv)q function taking an URL to
a byte-code file as argument, to be used as shown in listing 1.
The virtual machine implementation is fully re-entrant so several
Objective Caml programs can run at the same time in one page.

1 / / w a i t s f o r t he page to be loaded
2 window . on load = f unc t i on () {
3 exec_caml (" c l i e n t _ s i d e . exe . uue ") ;
4 / / s i n c e J a v a S c r i p t s u p p o r t s 7 b i t a s c i i ,
5 / / we UUencode by te c ode f i l e s
6 }

Listing 1. The only JavaScript code remaining: run ocaml

3.3 The modified standard library

As said in section 3.2, our first environment simulated a standard
Objective Caml environment in which input/output functions were
redirected to terminal emulators. In particular, it was possible to
write page elements in the virtual console by printing XHTML
code. However, as explained in section 2, a cleaner and more
modern way to create page element is to use the DOM (Document
Object Model).

The DOM If the reader is not familiar with the DOM, here is a
quick and simplified description from a JavaScript point of view.

3 We use the notationpcodeq for code extracts in the text

Figure 2. O’Browser’s early look

See (9) for the official specification. The DOM is an API to manip-
ulate the run-time representation of a Web page.

Each DOM node is an object, in the JavaScript sense, which
can be seen as a map associating string keys tovalues, where val-
ues can be references to other nodes, primitive types like strings
and integers, or closures. A(key, value) pair of an object is usu-
ally called aproperty, or amethodif the value is a closure. To be
precise, JavaScript method calls use the following mechanism: the
free variablepthisq in the body of a functionf definition is instan-
tiated too whenf is bound tom in the objecto and called with the
syntaxo.m(args). The JavaScript syntaxpf . call (o, args)q4 is also
available and equivalent.

The whole DOM can then be seen as a set of references to DOM
nodes, with a few primitives to access, modify and remove elements
of the nodes:

get : node ref → string → value
set : node ref → string → value → unit
unset : node ref → string → unit

In this model, each page element (each markup in the XML file)
is represented by a node as follows: thetagNamekey indexes the
name of the XML element, and each attribute is bound to its value.
The children of a markupn are of course also represented as nodes,
and a reference to each of them appears inn. For example the DOM
noden representing the HTML codepq ver-
ifies n(“tagName”) = “IMG” andn(“src”) = “img.png”.
In fact, the DOM does not contain only XML nodes, but can also
contain user-created values.

An important property is that an XML node of the DOM can
be referenced by at most one other XML node. In practice, if one
takes a noden referenced by the nodena and makes it a child
of nb with the set operation defined above, thenn immediately
disappears fromna.

With such a property, the DOM is able to describe the tree
structure of an XML document, allowing its modification while
avoiding sharing and cycles of page elements (sharing and cycles

4 In fact, every function is an instance of the built-in objecttypepFunctionq
which defines the methodspcallq andpapplyq.

are however not forbidden for the data which do not representthe
Web page, like the environment of closures, user-created nodes,
etc.).

In practice, the browser exposes the DOM of the current page
to the JavaScript API through a few global variables. For example,
thepdocumentq variable represents the root of the HTML content.

DOM assignments As we have just said, assigning a node ref-
erence to a key in another node makes it disappear from other
nodes. In a similar way, assignments sometimes have side effects.
For example, modifying thep" style "q property of a node forces the
browser to recompute the appearance of the associated page ele-
ment. Similarly, assigning thep"innerHTML"q property makes the
browser parse the given string as HTML and replace the children
of the node.

DOM events As we have said, nodes need not only contain simple
types and node references, but also closures. When some event
namede occurs to a DOM noden in the browser, and if the key
e is bound to a closure inn, thenn(e) is called. More practically,
listing 2 shows how to greet the user when the page is clicked.In
JavaScript, closures are appended to anevent queue, so have to wait
for the termination of all pending events handlers to be executed.

1 window . o n c l i c k = f unc t i on () {
2 document . innerHTML = "<h1> He l l o ! < / h1 > " ;
3 }

Listing 2. Assigning a handler to an event in JavaScript

Accessing the DOM from O’Browser We provide an Objective
CamlpNodeq module, containing the DOM primitives. A simplified
signature is given in listing 3.

1 module Node : s i g
2 type t
3 (∗ t he r o o t node ∗)
4 va l document : t
5 (∗ c r e a t e nodes and t e x t∗)
6 va l t e x t : s t r i n g −> t
7 va l e le me n t : s t r i n g−> t
8 (∗ a t t r i b u t e s (s t r i n g p r o p e r t i e s)∗)
9 va l g e t _ a t t r i b u t e : t−> s t r i n g −> s t r i n g

10 va l s e t _ a t t r i b u t e : t−> s t r i n g −> s t r i n g −> u n i t
11 va l r e m o v e _ a t t r i b u t e : t−> s t r i n g −> u n i t
12 (∗ e v e n t s ∗)
13 va l r e g i s t e r _ e v e n t
14 : t −> s t r i n g −> (u n i t −> u n i t) −> u n i t
15 va l c l e a r _ e v e n t : t−> s t r i n g −> u n i t
16 (∗ ac c e s s node ’ s c h i l d r e n∗)
17 va l c h i l d r e n : t −> t l i s t
18 va l append : t −> t −> u n i t
19 va l remove : t −> t −> u n i t
20 end

Listing 3. Node: The low level DOM interface

The typepNode.tq defines an abstract value containing a JavaScript
DOM node reference. Functions are provided to do the primitive
operations described above:

• get the root node,

• create fresh nodes (XML element nodes as well as text nodes),

• set properties of the three types:

get, set and remove attributes (string properties),

link (and unlink) caml closures to events,

access and modify child nodes.

Listing 4 is a toy example use of thepNodeq module. It is a re-
cursive function collecting the URLs of all the links in the page. As
said earlier, thep"tagName"q property of a node is its XML element
name, for links, it isp"A"q. The attributep"href "q of a link markup
contains its target (like inpindexq).

1 l e t g e t _ u r l s () =
2 l e t r = r e f [] i n
3 l e t rec g e t _ u r l s node =
4 match g e t _ a t t r i b u t e node " tagName "with
5 | "A" −> r := g e t _ a t t r i b u t e node " h r e f " : : ! r
6 | _ −> L i s t . i t e r g e t _ u r l s (c h i l d r e n node)
7 i n
8 g e t _ u r l s document ; ! r

Listing 4. Node usage example

Higher level HTML content creation Using only the DOM prim-
itives to create page elements can be compared to using assem-
bly language to produce complex software. Hence, we providea
higher level interface, with thepHtmlq module. This module de-
fines a function for each HTML markup, using Objective Caml’s
labelled optional arguments5 for optional attributes. When using
thepNodeq module, to construct nodes with children, one has to cre-
ate an empty node and then add its children one by one. To simplify
this, thepHtmlq functions for elements with children take a list of
nodes as argument. Similarly, each function takes an optional list
of (string × string) values to define additional attributes.

1 (∗ s i g n a t u r e ∗)
2 va l s t r i n g :
3 s t r i n g −> Node . t
4 va l a :
5 ? h r e f : s t r i n g −> ?name : s t r i n g−>
6 ? s t y l e : s t r i n g−> ? o n c l i c k : (u n i t −> ’ a) −>
7 ? a t t r s : (s t r i n g ∗ s t r i n g) l i s t −>
8 Node . t l i s t −> Node . t
9 (∗ example <a h r e f =" i nde x . h tml "> index ∗)

10 l e t l i n k = a ~ h r e f : " i nde x . h tml " [s t r i n g " i nde x "]

Listing 5. Link creation with Html

Listing 5 shows an extract of the signature of the modulepHtmlq,
along with an example use.

5 The syntaxp?a: tq defines an optional argumenta of typet, taking the value
pSome xq if x is passed to the function viap~a:xq or pNoneq if a is omitted.

Compatibility The virtual machine itself has been successfully
ported to the JavaScript engines of all the current common browsers,
namely Microsoft Internet Explorer 6+, Mozilla Firefox 2 and 3,
Opera 9+, Apple Safari 3.0+ and Konqueror 3.5+. This required to
compare the efficiency of JavaScript’s control flow structures. For
instance, we did a little benchmark between JavaScript’spswitchq,
an array of functions and nestedpifqs. The result is that we use an
array of functions indexed by instruction codes instead of aswitch
since this approach has performs better on some engines and simi-
larly on others. We made the arguable choice to keep a single code
for all platforms, but a solution would be to provide severalimple-
mentations of the same algorithm using different coding styles and
to choose the best one at run-time.

However, even if the core is compatible, and since we provide
a low level DOM interface and there are differences between the
DOMs exposed by the different browsers, the same application may
run but have different behaviours. A first solution we propose (and
are still working on) is to solve these issues in the higher level
pHtmlq module. For instance, Microsoft Internet Explorer 6 does
not support thep" position : fixed "q style attribute used to specify
that a div stays visible even if the page is scrolled. We thus provide
a p~fixedq optional argument to thepHtml.divq function which sim-
ulates this behaviour with JavaScript but uses the style attribute on
other browsers. Another solution would be to abstract the styles by
Objective Caml types.

3.4 A compatible data representation

Even if Objective Caml allows the definition of quite complexdata
types, the run-time representation of values is limited to two cases:
integers and pointed blocks, with a small number of block types.
In standard Objective Caml, on an bit architecture, a value can be
either an−1 bit integer, encoded in the higher part of an bit word,
the least significant bit being a1, or a pointer to an even address, the
last bit being by definition a0. The discrimination between integers
and pointers is then simply a done by testing the least significant
bit. If the value is a pointer, then the pointed data can be mainly an
array of values, a closure, a boxed 64 bit float, an array of unboxed
64 bit floats or a foreign value encapsulated in acustomblock6.

We chose to remain as close as possible to the standard repre-
sentation, in particular, we can discriminate if a value is an integer
or a block, use the same boxing policy for floats and float arrays
and implemented the same standardcustomblocks for the standard
library, like pInt64q.

Having a closely similar data representations is really important
for the following reasons:

• We can (de)serialize values in a compatible format. This is
important since we want to be able to transmit data between
the browser and the server as Objective Caml values through
serialization.

• Some Objective Caml features, like a large part of the Object
Oriented layer, are implemented in the language itself, some-
times by bypassing the type inference, and rely on the data rep-
resentation. By using a compatible representation, we can use
the standard library unmodified and so save time and avoid the
bugs of a new implementation.

• It also helped us debug the virtual machine by comparing the
data structures.

Implementation In practice, an integer is simply a JavaScript
pNumberq 7, and a pointer is an instance of the object typepBlockq.

6 A block containing the foreign value along with a pointer to its associated
primitives for hashing, comparison, serialization, etc.
7 Simple types are not a special case: one can for instance write
p(3). toString ()q in JavaScript.

Then the discrimination between the two is done by the test
p(b instanceof Block)q. The definition of the object typepBlockq
is presented in listing 6. A block encapsulates an array of values,
which can be either integers or blocks, thanks to the permissive type
system of JavaScript. To be able to mimic some of the behaviours
of the original run-time on values, the prototype of thepBlockq type
provides apshiftq method which simulates pointer arithmetic8. This
method creates a new blockb from a blocka, sharing its content
with a but for which thepgetq andpsetq operations use an offset.

1 f unc t i on Block (s i z e , t a g) {
2 / / f u n c t i o n s can be seen as o b j e c t c o n s t r u c t o r s
3 / / (new Block (s , t)) c r e a t e s an o b j e c t o f t y p e B lock
4 / / " t h i s " i s a r e f e r e n c e to the new o b j e c t
5 t h i s . s i z e = s i z e ;
6 t h i s . t a g = ta g ;
7 t h i s . c o n t e n t = [] ;
8 t h i s . o f f s e t = 0 ;
9 }

10 / / mod i f y i ng the p r o t o t y p e o f t he f u n c t i o n B lock makes
11 / / i t s c o n t e n t a c c e s s i b l e from a l l o b j e c t s o f t y p e B lock
12 / / (t h i s i s how i n h e r i t a n c e i s done in \ j s)
13 Block . p r o t o t y p e . ge t =f unc t i on (i) {
14 re turn t h i s . c o n t e n t [t h i s . o f f s e t + i] ;
15 }
16 Block . p r o t o t y p e . s e t =f unc t i on (i , v) {
17 t h i s . c o n t e n t [t h i s . o f f s e t + i] = v ;
18 }
19 Block . p r o t o t y p e . s h i f t = f unc t i on (o) {
20 var n s i z e = t h i s . s i z e − o >= 0 ?t h i s . s i z e − o : 0 ;
21 var b = new Block (ns i z e , t h i s . t a g) ;
22 b . c o n t e n t = t h i s . c o n t e n t ;
23 b . o f f s e t = t h i s . o f f s e t + o ;
24 re turn b ;
25 }

Listing 6. The Block object

Foreign functions interface Since we use Objective Caml’s byte-
code calling convention and a data representation different from
JavaScript for simple types and objects, it is not possible to call
existing JavaScript functions from Objective Caml directly. To be
able to use existing JavaScript libraries, one needs to write interface
code (as it is the case with the C language for standard Objective
Caml programs).

To achieve this, the virtual machine exposes apRTq global object
which is used for the look-up of foreign functions’ symbols.To
define a foreign function, the programmer associates a function to
its symbol inpRTq. Thanks the JavaScript methodspcallq andpapplyq
of the pFunctionq prototype, a foreign function is simply defined
as a JavaScript function taking the same number of parameters as
the Objective Caml associated function. To call such a function, the
virtual machine then simply does apRT["symbol"]. call (vm, args)q.
The first argument ofpcallq is the current virtual machine state,
which, for instance, enables the programmer to raise exceptions in
the virtual machine. This is important since, as said earlier, multiple
instances of the virtual machine can run simultaneously.

Listings 7 and 8 shows how thepString . getq function is de-
clared and defined.

1 e x te r na l ge t
2 : s t r i n g −> i n t −> c ha r
3 = " c a m l _ s t r i n g _ g e t "

Listing 7. A foreign function declaration

1 RT . c a m l _ s t r i n g _ g e t =f unc t i on (a r r , i dx) {
2 i f (i dx >= 0 && idx < a r r . s i z e − 1) {
3 re turn a r r . ge t (i dx) ;
4 }

8 This is used for instance to support Objective Caml’s representation of
mutually recursive functions, and to handle code segments as blocks.

5 t h i s . a r r a y _ b o u n d _ e r r o r () ;
6 }

Listing 8. A foreign function definition

3.5 The execution model

To fulfill our goal to have a unique language to program a complete
Web application, we wanted the execution model to be as closeas
possible to the one of a standard Objective Caml environment.

In particular, the JavaScript execution model is such that the
browser is blocked during a JavaScript computation. The JavaScript
programmer has to give back the control to the browser explic-
itly to keep the user interface reactive. Moreover, there isno easy
yield operation: a yield is done by creating manually a continu-
ation and by adding its execution to the event queue through a
call to pwindow.setTimeout(0, continuation)q. When compiling to
JavaScript, a solution is to rewrite the program in CPS form,then a
yield is done by putting the current continuation in the event queue.

We did not want to add an explicit yield operation to the lan-
guage and thus change the programming style. So the solutionis the
following simple behaviour: the virtual machine executes aquota
of instructions and then puts in the event queue a closure which
runs itself again. Since foreign functions may take an undetermined
time, a time barrier is also set. To sum up, the programmer just
writes normal Objective Caml code, and the virtual machine han-
dles all the low level control flow passing operations.

Blocking calls Some functions, likepwait_next_eventq from the
standard library graphical module, or thephttp_getq function pro-
vided by O’Browser which gets the content of a file from its URL,
are seen as blocking calls from the Objective Caml point of view.
However, it would be a poor solution to block the browser while
waiting for the resource. The solution we adopted is to freeze the
machine as follows:

1. When a foreign function9 wants to wait for a resource, it stores
the continuation of its execution into a closurecres.

2. It then tells the virtual machine, by raising a JavaScriptexcep-
tion, that it has not finished and is waiting for the resourcer.

3. The machine assigns to the event spawned whenr is ready a
closure which resumes itself, and then stops.

4. When the virtual machine is run again, it first checks if some
cres is present and runs it.

5. • If cres succeeds, then the machine puts the result on the
stack as it would be for a normal foreign function call, and
continues to execute the remaining byte-code.

• If cres does not succeed, or if it simply has to wait for
another resource before returning, the same process is done
one more time.

Actually, this is a simplification, and the real implementation in-
volves more states and resource identifiers, but these are technical
details.

1 f o r i = 0 to 10 do
2 a l e r t (s p r i n t f " i t e r a t i o n %d" i) ;
3 s l e e p 1
4 done

Listing 9. Blocking calls example

An interesting gain compared to JavaScript is the possibility
to resume a computation after a given time, without the need to

9 The JavaScript implementation of an Objective Caml external function.

construct manually the continuation, as shown in listing 9.With our
implementation, the virtual machine is stopped during thepsleepq
call and the browser thus stays reactive.

Concurrency O’Browser implements thepThreadsq module of the
Objective Caml standard library. This is simply done by putting the
virtual machine register in a context object, and by wrapping the
byte-code interpretation loop within a scheduler which regularly
does a context switch.

Some other tricks were needed, for example the blocking calls
presented above do not actually stop the machine but try to run
another thread and only stops if no thread is alive.

Not surprisingly, if the implementation was conceptually sim-
ple to implement, it was hard to debug due to the number of states
and the difficulty to handle the control flow in JavaScript). Find-
ing a good scheduling algorithm and its associated constants took
a lot of time. The problem is that it has to run enough instructions
for the program not to run too slowly while doing enough context
switch to provide concurrency. It also has to pass the control flow
to the browser often enough so that the user interface stays reac-
tive, but not too often because this operation has a high and quite
unpredictable impact on performance. The current one seemsgood
enough on most of our examples but we are still tweaking it.

Events handlers as concurrent threadsWe chose to use a dif-
ferent semantics than JavaScript’s one for events execution. While
in JavaScript, event handlers are executed sequentially byputting
them in a queue, in O’Browser, each event handler is launchedin
a separate thread. The positive result is that the programmer may
write an arbitrary long computation in an event handler, while keep-
ing the rest of the application reactive. However, one cannot assume
that, for instance, apmouseOverq event has terminated when its cor-
respondingpmouseOutq event is launched. Of course, these issues
are solvable by using Objective Caml’s Mutexes, implemented by
O’Browser.

4. Experimental results
We now present the results of our experiment, first by comparing
its performance to Objective Caml and JavaScript, and then by
showing some demonstrative examples to put the, not surprisingly,
quite poor benchmark results into perspective.

4.1 Performance

Comparison to other technologiesWe did a comparison between
ocamlc (the standard byte-code compiler), ocamljs (an experimen-
tal compiler to JavaScript (14)), smltojs (a compiler of Standard
ML to JavaScript (16)), JS (an equivalent of the algorithm inplain
JavaScript if we were able to write one) and O’Browser.

• ack is the Ackermann function called on(3, 6) twenty times.

• kb is the Knuth-Bendix rewriting algorithm.

• queensis a solver for the n-queens problem.

• nucleic is a benchmark using float and trees used in (P. H.
Hartel, M. Feeleyet al 1996) to compare functional language
implementations

The numbers are execution times, on a mainstream Intel Dual
Core platform running a 64 bit GNU/Linux operating system. The
browser used for the tests is Mozilla Firefox 3, except forkb
since the smltojs version made Firefox completely hang for some
unknown reason, so we used Opera 9.5.

test ocamlc JS ocamljs smltojs O’Browser
ack 160ms 1.6s 5s 3s 1m20s

kb 1s - fails10 > 1h30 9m15s

queens 75ms fails11 2s 3s 21s

nucleic 800ms - 2m8s 32s 5m15s

If we look at the raw data, the performance is poor. However, we
chose these examples because they show the three common cases
and allow us to put these bad results into perspective:

• ack is a computation intensive task, with a unique recursive
function over integers, so is a function quite easily optimizable
by the JavaScript interpreters (integers unboxing, etc.),whereas
the abstraction of the virtual machine prevents such optimiza-
tions. By the way, it is important to notice that the JavaScript
tests (JS and ocamljs) didn’t run at our first try and requiredus
to tweak the interpreter since the number of recursions is lim-
ited to usually 100 or 1000 (since the virtual machine has its
own stack, O’Browser does not suffer from this limitation).

• kb is complex, highly functional, using exceptions as a pro-
gramming style and doing many string manipulations. The
compilation of such a program is hard and indeed breaks
ocamljs and is extremely slow in smltojs (that is not due to
the syntax conversion since the Standard ML version, compiled
by mlton, is even faster than the Objective Caml one compiled
by ocamlopt). So, even if we get a big ratio between the two
Objective Caml virtual machines, this is a case where the ab-
straction provided by O’Browser is a clear gain.

• queensandnucleicshow the common case of the performance
ratio, which is around 10 to 20 between JavaScript (or compiled
to JavaScript) code and O’Browser.

An important result is that even if the ratio fluctuates between
the two virtual machines, it seems more likely to stay in a pre-
dictable range since the algorithms are similar; such a result could
hardly be obtained with a compiler using JavaScript controlflow
primitives (like the exception mechanism), as demonstrated by the
kbexample.

Moreover, the examples of the next section will show that this
factor stays acceptable for many use-cases in client side Web pro-
gramming. In fact the time is spent more in user interaction and
page redrawing than in code execution (as it is the case in thecom-
putational examples from this benchmark) .

Comparison between JavaScript enginesNot surprisingly, since
JavaScript engines’ performance is a central point in the fight
between browsers, the execution times in most of the popular
browsers are similar. During our tests, the order (beginning with
the fastest) was Firefox 3, Safari 3.2, Opera 9.5, MSIE 6, Fire-
fox 2, and the speed factor between the fastest and the slowest was
about 2. There is then a gap between the aforementioned ones and
MSIE 8 and Konqueror, but the former one is still in beta stage,
and the Konqueror developers have just announced the integration
of a new engine so the situation will probably completely change
in a near future.

As previously said, computation time is not often the major
problem in current Web applications, and it is a good result for
portability to see that none of the common browsers is left behind.
Another positive result is that Opera has good performance,since
it is almost always the browser embedded in gaming platformsand
set top boxes.

10The compiler succeeds but the generated code behaves incorrectly.
11We wrote a version in JavaScript but the lack of tail recursion prevented
it from running with our available memory.

4.2 Examples

We now present some concrete uses of O’Browser. We start with
a small overview of the two main aspects of client side scripting,
namely the creation of new HTML content and the modification of
the page, along with a presentation of how to do this in O’Browser.
Then we present two small yet quite complex and demonstrative
Web applications written entirely in Objective Caml. Theseexam-
ples are extracted form the O’Browser tutorial, and are thusavail-
able for testing by the reader.

Content creation One possible use of O’Browser is to collect the
raw data through HTTP requests and to create an HTML view of
it. This can can prove useful to define page data without having to
encode it in HTML at each modification, and without requiringa
server script.

For example, listings 10, 11 and figure 3 show the different parts
of a small code snippet creating an HTML ordered list from the
lines of a text file, and its rendering in a browser.

1 l e t i t e ms = s p l i t (h t t p _ g e t " l i s t . t x t ") ’ \ n ’ i n
2 l e t c o n t a i n e r = ge t_e le me n t_by_ id " b a s k e t "i n
3 Node . append
4 c o n t a i n e r
5 (Html . o l
6 (L i s t . map
7 (fun n −> Html . l i [Html . s t r i n g n])
8 (L i s t . f i l t e r ((< >) " ") i t e ms)))

Listing 10. A list from a file: O’Browser code

1 <body>
2 <div id =" b a s k e t " s t y l e=" bo rde r :1 px b la c k s o l i d ">< / div >
3 < / body>

Listing 11. A list from a file: html code (extract)

Figure 3. A list from a file: an execution

Page modification Another common use of client side scripting,
is the modification of the page to use a more dynamic interface
when JavaScript is enabled, while keeping the same content.

There are several possibilities to find out which DOM ele-
ments are to be modified. One can for instance insert recognis-
able patterns in CSS classes, in comments or even simply add
custom (not XHTML valid) markups or attributes. Our solution
is to encodecommandsin markups ids. This has the advantage
of keeping the XHTML code valid since every markup can have

an id attribute. We use an encoding of forbidden characters us-
ing colons (which is one of the few special characters autho-
rized in ids), and we provide the encoder and decoder. A com-
mand is an Objective Caml list of strings, and is encoded as the
concatenation of these strings separated by two colons withfor-
bidden characters encoded as entities surrounded by colons. For
example, the commandp["view";"imgs/13. jpg"]q is encoded as
p"uid0 :: view:: imgs: slash :13. jpg"q. A unique string is prefixed,
since all ids in an XML document must be different.

For instance, in the tutorial, we browse the DOM to find code
fragments and apply a syntax coloration. Listings 12 and 13 show
respectively the O’Browser code to detect source code extracts to
colorize, and a colorization command encoded in an id.

1 match
2 g e t _ a t t r i b u t e node " tagName " ,
3 decode_ id (g e t _ a t t r i b u t e node " i d ")
4 with
5 | " span " , [" i n l i n e−s ou rc e " ; l a ng]−>
6 l e t code = g e t _ a t t r i b u t e node " t e x t C o n t e n t "i n
7 c o l o r i z e node code la ng
8 | " d i v " , [" s ou rc e " ; l a ng ; f i l e] −>
9 l e t code = h t t p _ g e t f i l e i n

10 c o l o r i z e node code la ng
11 | (∗ i n t e r p r e t o t h e r commands . . .∗)

Listing 12. Inline code coloration: O’Browser code

1 l e t x = 2< /span>
2 <div id =" u id1 : : s ou rc e : : ocaml : : t e s t : do t : ml ">< /div >

Listing 13. Inline code coloration: html code (extract)

We are still working on DOM interaction and the code may
neither seem very clean nor beautiful. However, it foreshadows the
efficiency of Objective Caml over JavaScript, in particular, it shows
how the pattern matching and functional style help the programmer
introspect and interact with the document in a few lines of code.

Client/server over http exampleUsing plain Objective Caml
(with the sockets from the standard library) to program a simplified
HTTP server, and O’Browser (with itspGraphicsq implementation),
we wrote a simpleproof-of-conceptcommunicating Web applica-
tion entirely in Objective Caml.

Figure 4. A multiuser scribble in Objective Caml

Figure 4 shows a session of this toy application which enables
several users to share a whiteboard over the network throughtheir
Web browsers. The simplicity of the Web server and the numberof
requests due to the naive textual-over-http protocol makesit a little
slow, but it works. The whole application fits in a little morethan a
hundred lines of Objective Caml.

Integration with Ocsigen Even if O’Browser cannot (yet) di-
rectly communicate with Ocsigen, it is already possible to make
it communicate via standard http request, and to use it to enhance
Ocsigen modules.

For instance, we wrote a little image gallery script. The Ocsigen
part takes a directory of images, generates thumbnails and re-sized
images. The main service generates a page of thumbnails linked
to the pictures, with encoded commands to call the viewer on the
re-sized pictures (as presented earlier in the section).

When the gallery is loaded, the O’Browser programs searches
for the encoded commands in the DOM and replaces the links’
targets to calls to a caml closure launching a picture browser in
the same window.

The picture browser then dynamically loads and displays the
re-sized pictures, providing buttons to previous and next pictures
(since the list of all pictures is collected during the initial DOM
search), a screen capture is shown in picture 5.

Figure 5. A gallery in Ocsigen and O’Browser

The advantage of such an approach is that the original page
remains accessible, since it is valid XHTML as checked by thetype
system of Ocsigen and fully working even when JavaScript is not
available.

Again, the whole application fits in a little more than a hundred
lines of Objective Caml.

5. Related work
As there are lots of Web programming tools, we focus here on the
ones that generate code to be executed on the client, and especially
those inspired by the functional programming community.

Client/server frameworks A few projects share Ocsigen’s goal
of generating code for both server and client side (and also for
database queries) using one language.

One of the most closely related is HOP (Serrano 2007) (17), a
language inspired by Scheme, with two compilers for producing
server and client side code. It is using a two level language to dis-
tinguish between server and client portions of code, the latter be-
ing compiled towards JavaScript. The Web application is therefore
written in one single code, and the two execution flows communi-
cate through function calls.

Links (18) is also a language allowing to write server and client
sides in the same code, through annotations. It is using a compiler

towards JavaScript, with a concurrency model that uses message
passing in Erlang or Mozart style (19) (20). Communication be-
tween server and client is done through function calls.

Client side code execution Another compiler towards JavaScript
is Ycr2js (21) (Yhc Core to Javascript Converter) that converts
Haskell to Javascript. It implements concurrency through acoop-
erative thread model.

There are also other compilers to JavaScript, for example inthe
GWT(13) or Volta (22) frameworks.

Flapjax (23) is a language to program the client side of a Web
application. It is using reactive programming. The language uses
JavaScript syntax, and a compiler to translate the reactivepart
into JavaScript. It is also possible to use it simply as a library in
JavaScript.

We are not aware of any other virtual machine implemented
in JavaScript, but one virtual machine for Java called Orto (24),
for which we have very little information. Some interpreters for
scripting languages have also been written in JavaScript.

6. Conclusion
Thanks to this experiment, our goal to write a Web application
entirely in Objective Caml is one step closer. We were able towrite
the server code, thanks to Ocsigen, now, we have a fully functional,
yet a bit slow, experimentation platform to write the clientcode.

Future work We plan to work on the communication between the
two parts. As explained in section 3, we use a compatible run-time
data representation which enables us to transmit serialized data. We
plan to use the work from (Henry et al. 2007) on safe deserializa-
tion of Objective Caml values to design our security model.

Moreover, we have started to work on statically type-checked
database interfacing for the server side. The goal is to ensure that
the program uses a coherent database scheme before running it and
thus eliminate run-time errors. Some work has already been done
by pgocaml (25), we plan to add more flexibility to the model, to
add a modular back-end interface to support several database en-
gines, and to perform the checks at the deployment phase instead
of the compilation.

We also plan to ensure properties on the preservation of the
XML grammar of the DOM during its modification. Several works
have been done on XML typing integration in Objective Caml, like
OcamlDuce (Frisch 2006) (26), but they are centered on XML tree
generation. It does not seem trivial to apply them directly to the
DOM due to its dynamic nature, in particular the fact that a side
effect on a node of the DOM may affect other nodes and thus break
their well typedness.

Nearer future work There are two visions of client side Web
programming. The first, which is the most widespread one to-
day, is to enhance Web sites by adding a more reactive user in-
terface. For this, and as shown by the examples presented in sec-
tion 4, O’Browser has good enough performance and using Objec-
tive Caml gives a better programming experience in terms of safety
and productivity.

The second one is RIA (Rich Internet Applications) which are
arising with tools such as Google SpreadSheets and show the limits
of JavaScript (the reader may have a look at such applications to be
convinced that there are performances and debugging issueswith
them). For this kind of applications, we have already started to write
a browser plug-in embedding the Objective Caml virtual machine
and exposing the same Objective Caml API as O’Browser. On one
hand, this will give a great performance gain to users who install
the plug-in, on the other hand, users who do not want, or cannot,

install the plug-in will still be able to run the applications thanks to
our JavaScript implementation.

Links
(1) O’Browser tutorial

http://www.pps.jussieu.fr/˜canou/obrowser/tutorial/

(2) Ocsigen and Eliom
http://www.ocsigen.org/

(3) MMM, a web browser in Objective Caml
http://pauillac.inria.fr/˜rouaix/mmm/papers/

(4) The embedded Objective Caml top-level
http://www.pps.jussieu.fr/˜capel/eng/toplevel/toplevel.html

(5) MLj, an ML to Java compiler
http://www.dcs.ed.ac.uk/home/mlj/

(6) The Ocaml-Java project
http://ocamljava.x9c.fr/

(7) SML.NET, an SML to .Net compiler
http://www.cl.cam.ac.uk/research/tsg/SMLNET/

(8) OCamil, an Objective Caml to .Net compiler
http://ocamil.ortsa.com

(9) The DOM (Document Object Model)
http://www.w3.org/DOM/

(10) The Java DOM API
http://www.mozilla.org/projects/blackwood/dom/

(11) The Java plug-in
http://java.sun.com/products/plugin/1.3/docs/jsobject.html

(12) Comparison of JavaScript libraries
http://en.wikipedia.org/wiki/Comparison of JavaScriptframeworks

(13) Google Web Toolkit
http://code.google.com/webtoolkit/

(14) Ocamljs, an Objective Caml to JavaScript compiler
http://skydeck.com/blog/programming/ocamljs-ocaml-to-javascript-compiler/

(15) Afax, F# web tools
http://tomasp.net/projects/fswebtools.aspx

(16) SMLtojs, an SML to JavaScript compiler
http://www.itu.dk/people/mael/smltojs/

(17) Hop, a web 2.0 programming language
http://hop.inria.fr/

(18) Links, a web 2.0 programming language
http://groups.inf.ed.ac.uk/links/

(19) Erlang, a language for distributed and concurrent applications
http://www.erlang.org/

(20) Mozart, a language for distributed and concurrent applications
http://www.mozart-oz.org/

(21) Ycr2js, an Haskell to JavaScript compiler
http://www.haskell.org/haskellwiki/Yhc/Javascript

(22) Volta, web applications in .Net
http://labs.live.com/volta/

(23) Flapjax, a reactive client side web progamming language
http://www.flapjax-lang.org/

(24) Orto, a JVM in JavaScript
http://orto.accelart.jp/

(25) pgOcaml, typed database requests for Objective Caml and PgSQL
http://developer.berlios.de/projects/pgocaml/

(26) OcamlDuce, XML typing for Objective Caml
http://www.cduce.org/ocaml

References
Vincent Balat. Eliom’s tutorial. Technical report, Laboratoire PPS, CNRS,

université Paris-Diderot, 2007. URLhttp://osigen.org/eliom.

Vincent Balat. Ocsigen: Typing web interaction with objective caml. In
ML’06: Proceedings of the 2006 workshop on ML, pages 84–94, Port-
land, Oregon, USA, 2006. ACM. ISBN 1-59593-483-9.

Nick Benton and Andrew Kennedy. Interlanguage Working Without Tears:
Blending SML with Java. InProceedings of the International Confer-
ence on Functional Programming (ICFP)", 1999.

Nick Benton, Andrew Kennedy, and George Russel. Compiling Standard
ML to Java Bytecodes. InProceedings of the International Conference
on Functional Programming (ICFP), September 1998.

Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: An
XML-centric general-purpose language. InProceedings of the Inter-
national Conference on Functional Programming (ICFP), pages 51–63,
2003. ISBN 1-58113-756-7.

Emmanuel Chailloux, Grégoire Henry, and Raphael Montelatici. Mixing
the objective caml and c# programming models in the .net framework. In
Multiparadigm Programming with OO Languages (MPOOL’04), June
2004.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.Links: Web
Programming Without Tiers. In5th International Symposium on Formal
Methods for Components and Objects, November 2006.

David Flanagan.JavaScript: The Definitive Guide. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1998. ISBN 1565923928.

Alain Frisch. Ocaml + xduce. InProceedings of the international confer-
ence on Functional programming (ICFP), pages 192–200. ACM, 2006.

Grégoire Henry, Michel Mauny, and Emmanuel Chailloux. Typer la dé-
sérialisation sans sérialiser les types.Technique et Science Informa-
tiques, 26(9):1067–1090, November 2007.

Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML
processing language.ACM Transactions on Internet Technology, 3(2):
117–148, May 2003.

Xavier Leroy and Jean-Vincent Loddo. Functional programming for
the web, Apr 2003. Hyperlearning – Project proposal for the 6th
framework program of the European Union, http://www-lipn.univ-
paris13.fr/ loddo/funding/projet-hyper-learning.pdf.

Xavier Leroy and François Rouaix. Security properties of typed applets. In
J. Vitek and C. Jensen, editors,Secure Internet Programming – Security
issues for Mobile and Distributed Objects, volume 1603 ofLecture Notes
in Computer Science, pages 147–182. Springer, 1999.

Xavier Leroy, Didier Rémy with Damien Doligez, Jacques Garrigue, and
Jérôme Vouillon. The objective caml system release 3.10 documentation
and user’s manual. Technical report, Inria, may 2007.

Raphael Montelatici, Emmanuel Chailloux, and Bruno Pagano. Objective
caml on .net: The ocamil compiler and toplevel. In3rd International
Conference on .NET Technologies, May 2005.

Andrew Kennedy Nick Benton and Claudio Russo. Adventures inIn-
teroperability: The SML.NET Experience. InProceedings of the 6th
ACM-SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP), August 2004.

P. H. Hartel, M. Feeleyet al. Benchmarking implementations of functional
languages with “Pseudoknot’ ’, a float-intensive benchmark". Journal of
Functional Programming, 1996.

François Rouaix. A web navigator with applets in caml.Comput. Netw.
ISDN Syst., 28(7-11):1365–1371, 1996. ISSN 0169-7552.

Manuel Serrano. Programming Web Multimedia Applications with Hop.
In Proceedings of theACM Sigmm andACM Siggraph conference on
Multimedia,Best Open Source Software, Augsburg, Germany, Septem-
ber 2007.

http://www.pps.jussieu.fr/~canou/obrowser/tutorial/
http://www.ocsigen.org/
http://pauillac.inria.fr/~rouaix/mmm/papers/
http://www.pps.jussieu.fr/~capel/eng/toplevel/toplevel.html
http://www.dcs.ed.ac.uk/home/mlj/
http://ocamljava.x9c.fr/
http://www.cl.cam.ac.uk/research/tsg/SMLNET/
http://ocamil.ortsa.com
http://www.w3.org/DOM/
http://www.mozilla.org/projects/blackwood/dom/
http://java.sun.com/products/plugin/1.3/docs/jsobject.html
http://en.wikipedia.org/wiki/Comparison of JavaScript frameworks
http://code.google.com/webtoolkit/
http://skydeck.com/blog/programming/ocamljs-ocaml-to-javascript-compiler/
http://tomasp.net/projects/fswebtools.aspx
http://www.itu.dk/people/mael/smltojs/
http://hop.inria.fr/
http://groups.inf.ed.ac.uk/links/
http://www.erlang.org/
http://www.mozart-oz.org/
http://www.haskell.org/haskellwiki/Yhc/Javascript
http://labs.live.com/volta/
http://www.flapjax-lang.org/
http://orto.accelart.jp/
http://developer.berlios.de/projects/pgocaml/
http://www.cduce.org/ocaml
http://ocsigen.org/eliom

	Introduction
	ML languages and Web browsers
	Applets
	DOM

	Description of our solution
	Motivations
	A brief chronology of the experiment
	The modified standard library
	A compatible data representation
	The execution model

	Experimental results
	Performance
	Examples

	Related work
	Conclusion

