
Client-server Web applications widgets∗

Vincent Balat
Univ Paris Diderot – Sorbonne Paris Cité – PPS, UMR 7126 CNRS, Inria – Paris, France

vincent.balat@ univ-paris-diderot.fr

ABSTRACT
The evolution of the Web from a content platform into an
application platform has raised many new issues for devel-
opers. One of the most significant is that we are now de-
veloping distributed applications, in the specific context of
the underlying Web technologies. In particular, one should
be able to compute some parts of the page either on server
or client sides, depending on the needs of developers, and
preferably in the same language, with the same functions.
This paper deals with the particular problem of user inter-
face generation in this client-server setting. Many widget
libraries for browsers are fully written in JavaScript and do
not allow to generate the interface on server side, making
more difficult the indexing of pages by search engines. We
propose a solution that makes possible to generate widgets
either on client side or on server side in a very flexible way.
It is implemented in the Ocsigen framework.

Categories and Subject Descriptors
D.3.3 [Software]: Programming languages—Language Con-
structs and Features; H.5.3 [Information Systems]: In-
formation interfaces and presentation—Group and Organi-
zation Interfaces Web-based interaction

General Terms
Languages, Reliability

Keywords
JavaScript, Web applications, mobile applications, GUI

1. INTRODUCTION
The time of regular desktop applications is gone. It is now

rare to design a modern application without thinking about

∗
Work partially supported by the French national research agency

(ANR), PWD project, grant ANR-09-EMER-009-01, and performed at
the IRILL center for Free Software Research and Innovation in Paris,
France

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

a storage in the cloud, and a mobile version, with shared
data. The time is also gone of static Web sites or Web
sites as basic front-ends to databases. Users now expect a
high level of interaction with modern ergonomics and user-
friendliness. The frontier between applications and sites is
narrowing. It’s even more true for mobile applications for
which the use of Web technologies (HTML5) is the simplest
way to ensure portability.

This convergence is a challenge for Web framework devel-
opers. Most of these modern Web applications are still writ-
ten with old technologies that were not designed for this. A
lot of libraries have been designed to make this work easier,
but most of the time they do not give a complete solution
for the whole problem of distributed Web-based programs.
Some JavaScript libraries tend to mimic traditional desk-
top graphical user interface libraries, without taking into
account the specificities of the Web, nor the evolution in
graphic design and ergonomics.

Taking the problem as a whole first requires to use the
same language for implementing both client and server parts
of the application. This makes a lot more than just removing
the need for developers to master several languages. It also
makes disappear the impedance mismatch between the two
sides. No need to use conversion functions to transmit data.
You can also share libraries and use the exact same functions
on both sides without having to implement them twice.

Very few frameworks give the ability to use the same lan-
guage on both sides. The main difficulty is that it is very
difficult to make a new language or virtual machine available
in all browsers, and relying on a plugin is not a good solu-
tion for inter-operability. One solution is to use JavaScript
on server side, as NodeJS is doing [11]. Another solution is
to make possible to execute programs written in your lan-
guage through JavaScript, either by implementing and in-
terpreter in JavaScript (or a byte-code interpreter [4]), or by
compiling to JavaScript [9, 6, 14, 4, 15].

The Ocsigen framework [2, 1] experimented the two last
solutions and is now mainly relying on a compiler to Java-
Script [15]. We chose the OCaml language because we be-
lieve that the kind of complex programs we want to imple-
ment deserves a modern expressive language with sophis-
ticated typing features, in order to help the developer to
reduce the number of bugs. Ocsigen is using an extension of
OCaml providing a way to distinguish between parts of the
code to be executed on one side or another, or even to share
some parts between both sides.

This opens a new range of possibilities for the developers.
Whereas the side where to execute some computation was

heavily constrained (if not imposed) by the languages or
libraries, the model we advocate gives the freedom of choice
for the developer. For example he is now free to generate
some parts of the page on server side or on client side. This
is really useful for example when you want your Web site
to be indexed by search engines (which requires to generate
HTML on server side), but also want to add dynamically
new content on browser side, for example from data entered
by a user.

But more than one same language for both sides, the
model implemented in Ocsigen provides a way to design the
full Web application as a single program, with some parts
being executed on server side, others on client side. Thus
the developer does not need anymore to think about defin-
ing a way to communicate between the two parts. As it
is the same program, you can just use the same variable.
For example Ocsigen makes possible to give a name to some
HTML element on server side and use this name on client
side to refer the element without having to rely on manually
inserted HTML identifiers and the getElementById function.

This way of programming Web applications is a step for-
ward in the convergence between Web sites and applications,
because it makes possible to keep the best of the two worlds:
the program is still a Web site, and can benefit from the tra-
ditional Web interaction features, like URLs, forms, book-
marks, back button, multi-tabs. But it also behaves like a
desktop application in term of features, responsiveness and
ergonomics. Ocsigen makes possible for example to have a
program running in your browser which is persistent across
page changes through links or forms.

The first industrial users of our framework witness that
the freedom gained by the developers has a great impact on
the development time. But these new possibilities require
to rethink the way interface libraries are written, in order
to make them flexible enough and not to impose unnatural
limitations. It is for example noticeable that a lot of existing
JavaScript user interface libraries have not been designed in
a way that make them usable in this context.

In next section, we will briefly describe the two-level lan-
guage Ocsigen is using for programming client-server Web
applications. Then we will describe the problem that shows
up when designing client-server widgets, and the solution we
propose, with some examples.

2. A TWO-LEVEL PROGRAMMING LAN-
GUAGE FOR WEB APPLICATIONS

2.1 Client and server sections, injections
Ocsigen’s syntax is the usual OCaml syntax, with some

extra constructs to distinguish between client, server, and
shared (duplicated on both sides) parts.

The three main syntactical constructs are {server{ ... }}

{client{ ... }} and {shared{ ... }} used for enclosing re-
spectively server side, client side, and shared code (that we
want on both sides).

It is possible to use server side values in client side code,
by prefixing their name with a %. We call this an injection.
Injections are send together with the page and correspond
to the server side values at the moment when the piece of
code containing then % is executed on server side. A typical
use of this is when you want to define a communication bus
between client side processes. It is defined on server side

and all clients can listen or write on the bus just by using
the same variable name.

During compilation, server and client parts are extracted
into two separated program, one being compiled to native
code to be executed on the server, and the other one being
compiled to JavaScript. Shared parts are duplicated. Some
type information are automatically added in both parts to
ensure that values types match on both sides.

2.2 Client values
The additional double brackets syntax {{ ... }} makes

possible to define client side values inside server parts. For
example, the following code defines a client side value that
is referred on server side through name v.

1 {server{
2 let v = {{ "some string" }}
3 }}

Here, the value v has type string client_value on both
sides. This type is abstract on server side and it is impos-
sible to access the value. Besides, knowing the actual client
side value may require some computation that will be per-
formed on client side next time something is send to the
client (either a page or some OCaml value).

The only way to use client values is to use the % syntax
on client side, for example: {{ %v }}. On client side, type
’a client_value is just ’a (where ’a is any type). Here %v

has type string.
It is possible to define client values of any types, even

functions, and they can require any kind of computation,
even with side effects. Incidentally, it is used very often just
to ask the client to execute some piece of code.

3. CLIENT-SERVER USER INTERFACES

3.1 The problem of client server widgets
Most user interface libraries, like Google Closure [8], GWT [9]

or Enyo [7], define their widgets programmatically. That is,
you call a JavaScript function that will create the DOM ele-
ments to be inserted in the page. This makes impossible to
generate the widgets before sending the page. It is accept-
able when your program is mostly client side, or if you use
these widgets only for limited parts, but not if you want the
content to be indexed by search engines.

Some other libraries depart from the traditional widget
style by separating the creation of the element from the com-
putational part (for example binding events). This makes
possible to generate the page fully on server side, and change
the behaviour of DOM elements on client side after the page
is loaded. In that extend they are closer to the needs of Web
developers. This is the case for example of JQuery [10].

3.2 User interfaces generated on server side
The syntax we described in previous section makes pos-

sible to define server side generated widgets in a straight-
forward manner. While generating the HTML element, just
use a client value to ask the client side program to do some
side effects on it after loading the page (for example bind
some mouse event or call JQuery methods).

Here is an example of a page using client server widgets:

1 {server{
2 let my_box () =
3 let a = div [pcdata "Hello"] in

4 let b = div [pcdata "Click me"] in
5 let jqa = {{ JQuery.jQuery %a }} in
6 let _ = {{ lwt ev = click %b in
7 %jqa## slideDown () }} in
8 div [a; b]
9 }}

This example defines a server side function my_box that re-
turns a <div> element, containing two other <div> elements,
called a and b. Together with this page, we ask the client
side program to execute two pieces of client side code, defin-
ing two client values. The first one is computed by calling
the JQuery function jQuery (also called $ in JQuery). The
result is a client value, referred through name jqa on server
side.

The second one asynchronously waits for a mouse click on
element b and then calls JQuery method slideDown on jqa

1.
It is convenient to use OCaml objects for widgets. The

instanciation of the object is done through a client value
section. It is possible to save the object as a new property
of the DOM element.

3.3 Client-server user interfaces
In order to make possible to create widgets either on server

or client sides, we extended the client value syntax to shared
sections. While compiling the client version of shared sec-
tions, client value syntax {{ ... }} is just ignored, whereas
it is kept on server side.

While doing that, one must be careful about two things:

• The computational part of a widget may require to
wait for the element to be inserted in the page before
being executed. This can be done easily by using the
Ocsigen equivalent of callbacks (using the Lwt library).

• In the client version of shared sections, the % syntax
may refer either to a server value defined before the
shared section or a client value defined in the shared
section (in which case the % must be ignored). Dis-
tinguishing between the two cases is left to the pro-
grammer for now. We introduced another syntax %%

for this. But we hope to be able to detect the case
automatically in the future.

4. CONCLUSION
Ocsigen’s client server syntax makes very easy to write

sophisticated Web applications in very few lines of code. It
removes the impedance mismatch between server and client
code, makes unnecessary to convert data before sending it to
the other side, and removes in most cases the need for calls
to getElementById. But one on the most interesting features,
which is described in this paper, is the ability to define client-
server widgets. First you can define your widgets on server
side and ask the client side program to initialize it. Secondly,
it is even possible to define a widget that will be usable either
on server or client side.

The use of the OCaml language provides a lot of very ex-
pressive features like sum types, pattern matching, objects,
or type inference to make programming very enjoyable and
concise. An advanced use by Ocsigen of its powerful typing

1The lwt syntax means that the click function is a thread
that waits until a mouse click happens. Then it returns
a DOM event called ev. The ## syntax is used to call
JavaScript methods from OCaml.

system helps the programmer to remove a very large set of
bugs at compile time (for example a program that may gen-
erate a page that does not conform to the recommendations
of the W3C is rejected!).

Very few other frameworks are proposing to write client-
server Web applications as a single program. One noticeable
exception is the Hop language [14], derived from Scheme,
and also the Links research prototype [5] or the Dart [6]
language. One can also cite JavaScript frameworks like
NodeJS [11] or Opa [12]. None of them focus on the server
side as we do, especially in the goal of achieving the full con-
vergence between Web sites and applications. Hop has the
closest client server syntax, but without client-server wid-
gets.

This paper describes mainly the last features of Ocsigen,
that have been introduced in version 3 (December 2012).
The goal of the project is not only to write a research proto-
type but to make a complete framework, usable for real Web
applications. Despite its young age, it is already used in in-
dustry. The most advanced project is the Besport [3] social
network. But more and more projects are choosing Ocsigen
(like Pumgrana [13] or XPrime [16]). Ocsigen is also used
for many traditional Web sites without advanced client side
features (which corresponds to the features of previous ver-
sions of the framework).

5. REFERENCES
[1] V. Balat, P. Chambart, and G. Henry. Client-server

Web applications with Ocsigen. In WWW2012 dev
track proceedings.

[2] V. Balat, J. Vouillon, and B. Yakobowski. Experience
report: ocsigen, a web programming framework. In
ICFP ’09: Proceedings of the 14th ACM SIGPLAN
international conference on Functional programming

[3] Besport. http://www.besport.com/.

[4] B. Canou, E. Chailloux, and J. Vouillon. How to Run
your Favorite Language in Web Browsers. In
WWW2012 dev track proceedings.

[5] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links:
Web programming without tiers. In In 5th
International Symposium on Formal Methods for
Components and Objects (FMCO). Springer-Verlag,
2006.

[6] Dart. http://www.dartlang.org/.

[7] Enyo. http://enyojs.com/.

[8] Google closure library. http:
//code.google.com/intl/en/closure/library/.

[9] Google web toolkit.
http://code.google.com/webtoolkit/.

[10] Jquery. http://jquery.com/.

[11] Nodejs. http://nodejs.org/.

[12] Opa. http://www.opalang.com/.

[13] Pumgrana. http://www.pumgrana.com/.

[14] M. Serrano, E. Gallesio, and F. Loitsch. Hop, a
language for programming the web 2.0. In Dynamic
Languages Symposium, Oct. 2006.

[15] J. Vouillon and V. Balat. From bytecode to javascript:
the js of ocaml compiler. in journal Software: Practice
and Experience, 2013.

[16] Xprime. http://www.ocsigenlabs.com/xprime/.

