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Abstract. We introduce a multidimensional continued fraction algo-
rithm based on Arnoux-Rauzy and Poincaré algorithms, and we study
its associated S-adic system. An S-adic system is made of infinite words
generated by the composition of infinite sequences of substitutions with
values in a given finite set of substitutions, together with some restric-
tions concerning the allowed sequences of substitutions, expressed in
terms of a regular language. We prove that these words have a factor
complexity p(n) with lim sup p(n)/n < 3, which provides a proof for the
convergence of the associated algorithm by unique ergodicity.

1 Introduction

Given a vector of frequencies (f1, f2, · · · , fd) ∈ R
d
+ (with

∑
fi = 1), our goal

here is to propose a construction of an infinite word w over the alphabet A =
{1, 2, · · · , d} such that the frequency of each letter i ∈ A exists and is equal to
fi. We also would like the word w to have particular combinatorial properties,
namely a linear factor complexity and a bounded balance. In dimension two, the
question is completely answered. The Sturmian words form a well-known family
of infinite balanced words having a linear factor complexity (p(n) = n + 1). But
the situation is more contrasted in higher dimensions.

In [BL11, Lab12], we considered this question under the approach of multidi-
mensional continued fraction algorithms and S-adic systems. Experimentations
suggested that Brun multidimensional continued fraction algorithm as well as a
fusion of Arnoux-Rauzy and Poincaré algorithms were the two best choices to
investigate for such an approach. In this article, we focus on the Arnoux-Rauzy-
Poincaré algorithm (a bit better than Brun experimentally), and construct an in-
finite word for Lebesgue almost each frequency vector (f1, f2, f3) ∈ R

3
+. We show

that such words have a linear factor complexity, namely p(n + 1) − p(n) ∈ {2, 3}
for all n ≥ 0, by describing extensively the life of every bispecial factor, including
strong and weak ones which come in pairs (as proved in Lemma 10 below).

More precisely, we introduce an S-adic system associated with a set of 9
substitutions. Three of them are substitutions known under the name of Arnoux-
Rauzy substitutions [AR91], and the other six are named Poincaré substitutions
after Poincaré algorithm [Nog95]. The execution of the Arnoux-Rauzy-Poincaré
algorithm yields restrictions to the allowed infinite sequences of substitutions,
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expressed in terms of a regular language. We show that we have a bijection (up to
a set of zero measure) between infinite words and R

3
+. We show that these words

have a factor complexity p(n) that satisfies with lim sup p(n)/n < 3. The proof
relies on the fact that weak and strong bispecial factors are alternating in the
sequence (ordered by increasing length) of non neutral bispecial factors. Then,
by using a result of Boshernitzan [Bos85], we deduce the existence of (uniform)
frequency of any factor, and thus of the letters. This provides a combinatorial
proof of convergence for this multidimensional continued fraction algorithm.

The article is structured as follows. In Section 2, we introduce the Arnoux-
Rauzy-Poincaré multidimensional continued fraction algorithm, with its nine
associated substitutions, as well as our main result on the factor complexity and
on the convergence. In Section 3, we study bispecial factors under Arnoux-Rauzy
and Poincaré substitutions with no restriction on the application of substitutions.
In Section 4, we prove the result on factor complexity of the associated S-adic
system where the language of substitutions is restricted to a regular language
defined by a finite automaton.

2 The Arnoux-Rauzy-Poincaré Algorithm

The Arnoux-Rauzy-Poincaré multidimensional continued fraction algorithm be-
longs to the family of multidimensional continued fraction algorithms defined
in terms of triangle maps such as introduced in [Gar01]. It combines the two
classical algorithms that are Poincaré algorithm and Arnoux-Rauzy algorithm,
which are respectively defined in dimension 3 as follows: Poincaré algorithm acts
on a triple of non-negative entries by subtracting the smallest entry to the me-
dian and the median to the largest, whereas Arnoux-Rauzy algorithm acts by
subtracting the sum of the two smallest entries to the largest, when possible.
Our fusion algorithm privilegiates an Arnoux-Rauzy step if possible, otherwise
it perfoms a Poincaré step.

We follow here the formalism described in Section 2.1 of [DFG+12]. The
Arnoux-Rauzy-Poincaré multidimensional continued fraction algorithm is a fu-
sion algorithm such as introduced in [BL11, Lab12]. It is defined on the 2-simplex

Δ = {(x1, x2, x3) ∈ R
3
+ : x1 + x2 + x3 = 1}

whose vertices are the vectors e1 = (1, 0, 0)�, e2 = (0, 1, 0)� and e3 = (0, 0, 1)�.
In order to partition Δ, we consider the following fifteen matrices:

A1 =

( 1 1 1
0 1 0
0 0 1

)

, P21 =

( 1 1 1
0 1 1
0 0 1

)

, P31 =

( 1 1 1
0 1 0
0 1 1

)

, H21 =

( 1 0 0
0 1 0
1 0 1

)

, H31 =

( 1 0 0
1 1 0
0 0 1

)

,

A2 =

( 1 0 0
1 1 1
0 0 1

)

, P12 =

( 1 0 1
1 1 1
0 0 1

)

, P32 =

( 1 0 0
1 1 1
1 0 1

)

, H12 =

( 1 0 0
0 1 0
0 1 1

)

, H32 =

( 1 1 0
0 1 0
0 0 1

)

,

A3 =

( 1 0 0
0 1 0
1 1 1

)

, P13 =

( 1 1 0
0 1 0
1 1 1

)

, P23 =

( 1 0 0
1 1 0
1 1 1

)

, H13 =

( 1 0 0
0 1 1
0 0 1

)

, H23 =

( 1 0 1
0 1 0
0 0 1

)

,
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Fig. 1. Left: the three Arnoux-Rauzy matrices, the six Poincaré matrices and the six
half triangles. Right: the partition of Arnoux-Rauzy-Poincaré algorithm.

whose column vectors are represented at Figure 1. Then, the column vectors
of A1, A2, A3, P31H31, P13H13, P23H23, P32H32, P12H12 and P21H21 describe
a disjoint partition of Δ depicted in Figure 1. This partition then allows the
definition of the following map:

T : Δ → R
3
+

x �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A−1
k x, if x ∈ AkΔ (subtract the sum of the two smallest entries

to the largest),
P −1

jk x, if x ∈ PjkHjkΔ (subtract the smallest entry to the median
and the median to the largest).

The Arnoux-Rauzy-Poincaré multidimensional continued fractions algorithm is
defined as the iteration of the function T : Δ → Δ, x �→ T (x)

||T (x)|| with ||x|| =
x1 + x2 + x3. For each x, it generates a sequence of matrices (Mn)n with values
in the set {Ak, Pjk | j, k ∈ {1, 2, 3}, j �= k}.

2.1 The Arnoux-Rauzy-Poincaré S-Adic System

We recall below the definition of an S-adic system. For more on S-adic words see
[BD13, CN10, DLR13, Ler12]. We say that the infinite word w ∈ AN admits an
S-adic representation if there exist a finite set S of substitutions defined on the
alphabet A, a sequence s = (σn)n∈N ∈ SN of substitutions that all belong to S,
and (an)n∈N a sequence of letters in A such that w = limn→∞ σ0σ1 · · · σn(an).
The word w is said to be S-adic, and the sequence s is called the directive
sequence. An S-adic system is obtained by adding restrictions on the set of
allowed directive sequences s ∈ SN: an S-adic system is given by a finite directed
strongly connected graph G labeled by the substitutions in S, with each infinite
path giving rise to a directive sequence.
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Here sequences of letters (an)n are constant sequences. Let i, j, k be such
that {i, j, k} = {1, 2, 3}. A Poincaré substitution is a substitution of the form
πjk : i �→ ijk, j �→ jk, k �→ k. An Arnoux-Rauzy substitution is given by αk : i �→
ik, j �→ jk, k �→ k. Let

S := {πjk, αk | j, k ∈ {1, 2, 3}, j �= k}.

For each {i, j, k} = {1, 2, 3}, Pjk is the incidence matrix of the substitution πjk

and Ak is the incidence matrix of αk.
The automaton G = (Q, S, T, I) is defined by the states Q = {Δ, H12, H13, H21,

H23, H31, H32}, the transitions T = {(Δ, αk, Δ), (Δ, πjk , Hjk), (Hjk, αj , Hjk),
(Hjk, αi, Δ), (Hjk , πij , Hij), (Hjk, πki, Hki), (Hjk, πji, Hji) : for each {i, j, k} =
{1, 2, 3}} ⊂ Q × S × Q and the initial state I = {Δ} (see Figure 2). We consider
the S-adic system associated with the regular language L(G). This language
corresponds to directive sequences (sn)n for which the sequence of incidence
matrices (Msn)n is generated by the execution of the Arnoux-Rauzy-Poincaré
algorithm.

Proposition 1 (ARP regular language). The set of directive sequences pro-
duced by the Arnoux-Rauzy-Poincaré algorithm is exactly the set of labeled infi-
nite paths starting in Δ in the graph G illustrated in Figure 2.

We now state the main theorem. Its proof is given in Section 4. Let us say that
x ∈ Δ is totally irrational if x1, x2, x3 are linearly independent over Q.

Theorem 1 (Factor Complexity). Let w be an S-adic word generated by the
Arnoux-Rauzy-Poincaré algorithm applied to a totally irrational vector x ∈ Δ.
Then the factor complexity of w is such that p(n) ≤ 3n+1, p(n+1)−p(n) ∈ {2, 3}
for all n ≥ 0, and lim supn→∞

p(n)
n < 3.

Theorem 2 (Frequencies and Convergence). Let w be an S-adic word gen-
erated by the Arnoux-Rauzy-Poincaré algorithm applied to a totally irrational
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Fig. 2. The deterministic automaton G. To avoid crossing arrows, the initial state Δ is
drawn at three places. Also, the indices of π transitions are not written because they
are determined by the indices of the arrival state: π−→ Hjk means

πjk−−→ Hjk.
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vector x ∈ Δ. Then the symbolic dynamical system generated by w is uniquely
ergodic, and the frequencies of letters are proved to exist in w and to be equal to
the coordinates of x.

Furthermore, the Arnoux-Rauzy-Poincaré algorithm is a weakly convergent
algorithm, that is, for Lebesgue almost every x ∈ Δ, if (Mn)n stands for the
sequence of matrices produced by the Arnoux-Rauzy-Poincaré algorithm, then
one has ∩nM0 · · · Mn(R3

+) = R+x.

Theorem 2 is a direct consequence of Theorem 1 together with Theorem 1.5
of [Bos85] for the unique ergodicity statement (see also [FM10]). The weak con-
vergence comes from the unique ergodicity. Usual proofs of convergence rely on
linear algebra and on the use of the Hilbert projective metric (see e.g. [Sch00]).
Let us stress the fact that we provide here a purely combinatorial proof of con-
vergence for a multidimensional continued fraction algorithm.

3 Bispecial Factors under Arnoux-Rauzy and Poincaré
Substitutions

3.1 Bispecial Factors and Extension Types

The proof of Theorem 4 requires some preparation. In this section, we follow
the notation of [CN10]. Let w be a factor of a recurrent infinite word u. We let
E+(w) = {x ∈ A | wx ∈ L(u)} denote the set of right extensions of w in u.
The right valence d+(w) = Card E+(w) of w (in u) is the number of distinct
right extensions of w. Left extensions E−(w) and left valence d−(w) are defined
similarly. A factor whose right valence is at least 2 is called right special. A factor
whose left valence is at least 2 is called left special. A factor which is both left
and right special is called bispecial. The set of bispecial factors of length n are
identified by BSn(u). The extension type Eu(w) of a factor w of u is the set of
pairs (a, b) of A × A such that w can be extended in both directions as awb :

Eu(w) = {(a, b) ∈ A × A | awb ∈ L(u)}.

We let denote Eu(w) by E(w) when the context is clear. The bilateral multiplicity
of a factor w is the number

m(w) = Card E(w) − d−(w) − d+(w) + 1.

A bispecial factor is said strong if m(w) > 0, weak if m(w) < 0 and neutral if
m(w) = 0. A bispecial factor whose extension type satisfies

E(w) ⊆ ({a} × A) ∪ (A × {b}) for a pair of letters (a, b) ∈ E(w) (1)

is said ordinary. An ordinary bispecial factor is neutral, but the converse is not
true for |A| > 2. It is convenient to represent extension type E(w) of a bispecial
factor w graphically. Often represented as a bipartite graph, we choose a table
representation: a cross (×) is drawn at the intersection of row a and column b if
and only if (a, b) ∈ E(w) (see Figure 3).
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strong

Fig. 3. We represent the extension type E(w) of a bispecial factor w by a table. A
cross (×) is at the intersection of row a and of column b if and only if (a, b) ∈ E(w).

Definition 1 (Left equivalence). Let w and w′ be two bispecial factors defined
on the alphabet A. We say that their extension types are left equivalent if there
exists a permutation τ acting on A such that E(w′) = {(τ(a), b) | (a, b) ∈ E(w)}.

Right equivalence is defined similarly. Left equivalence can be interpreted on the
table representation of the extension type as follows: one representation can be
obtained from the other by a permutation of the rows:

E(w) =

1 2 3
1 ×
2
3 × × ×

and E(w′) =

1 2 3
1 × × ×
2 ×
3

Substitutions considered in this article preserve the first letter and thus pre-
serve the right extensions. Then, the notion of left-equivalence is sufficient for
our need. When the extension type of two words are equivalent, they share com-
mon properties. In particular, being ordinary, strong or weak is preserved under
equivalence.

3.2 Factor Complexity

Let p(n) be the factor complexity function of w. The sequences of finite differ-
ences of order 1 and 2 respectively of p(n), that is, s(n) = p(n + 1) − p(n) and
b(n) = s(n + 1) − s(n), are used to show upper bounds for p(n).

Lemma 1. Suppose |A| = 3. Then, p(n + 1) − p(n) ∈ {2, 3} if and only if
∑n−1

�=0 b(�) ∈ {0, 1}. Also, if the sequence of finite differences of order 2 is such
that (b(�))� = 0, . . . , 0, 1, 0, . . . , 0, −1, 0, . . . , 0, 1, 0, . . . then

∑n−1
�=0 b(�) ∈ {0, 1}.

Proof. Since |A| = 3, then p(1) = 3 and s(0) = p(1) − p(0) = 3 − 1 = 2. We have
p(n + 1) − p(n) = s(n) = s(0) +

∑n−1
�=0 b(�) = 2 +

∑n−1
�=0 b(�).

Function b(n) is related to the multiplicity of bispecial factors.

Theorem 3. [CN10, Theorem 4.5.4] Let u ∈ AN be an infinite recurrent word.
Then, for all n ∈ N: b(n) =

∑
w∈BSn(u) m(w).
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3.3 Synchronization Lemmas

The goal of the next sections is to describe strong and weak bispecial factors.
From now on, the alphabet is set to A = {1, 2, 3}. The next lemma describes the
preimage of a factor under Arnoux-Rauzy (AR) and Poincaré (P) substitutions.

Lemma 2 (Synchronization). Let u ∈ A∗ and w be a factor of αk(u) for
some {i, j, k} = {1, 2, 3}.

(i) If w is empty or if the first letter of w is i or j, then there exists a unique
v ∈ A∗ and a unique s ∈ {ε, i, j} such that w = αk(v) · s.

(ii) If the first letter of w is k, then there exists a unique v ∈ A∗ and a unique
s ∈ {ε, i, j} such that w = k · αk(v) · s.

Let u ∈ A∗ and w be a factor of πjk(u) for some {i, j, k} = {1, 2, 3}.

(i) If w is empty or if the first letter of w is i, then there exists a unique v ∈ A∗

and a unique s ∈ {ε, i, j, ij} such that w = πjk(v) · s.
(ii) If w = j, then there exists a unique v(= ε) such that w = j · πjk(v).
(iii) If the first letter of w is j and |w| > 1, then there exists a unique v ∈ A∗

and a unique s ∈ {ε, i, j, ij} such that w = jk · πjk(v) · s.
(iv) If the first letter of w is k, then there exists a unique v ∈ A∗ and a unique

s ∈ {ε, i, j, ij} such that w = k · πjk(v) · s.

Proof. The sets {ik, jk, k} and {ijk, jk, k} form a prefix code.

Definition 2 (Antecedent, extended image). Let σ = αk or σ = πjk, u ∈
A∗ and w be a factor of σ(u). We say that the antecedent of w under σ is the
unique word v as defined by Lemma 2. If v is the antecedent of a word w, then
we say that the word w is an extended image of v.

While the antecedent is unique, a word v may have more than one extended
image. For example, w1 = 23π23(11)1 = 231231231 and w2 = 3π23(11)2 =
31231232 are two distinct extended images of v = 11. This is why the situation
becomes here quite intricate especiallly for bispecial factors (it happens that
strong and weak bispecial words appear in pairs, see Lemma 10 below).

Definition 3 (Bispecial extended image). We shall say that a bispecial
extended image w of v under σ is a bispecial word which is an extended image
of v under σ.

3.4 Antecedents and Images of Bispecial Words

Lemma 3 (AR - Bispecial extended image). Let v be a bispecial factor.
There is a unique bispecial extended image w = kαk(v) of v under αk.

Lemma 4 (AR - Antecedent of a bispecial). Let u ∈ A∗ and w �= ε be a
bispecial factor of αk(u). Let v be the unique antecedent of w under αk such that
w = kαk(v). Then, v is bispecial and it has the same extension type Eαk(u)(w) =
Eu(v) and same multiplicity m(w) = m(v) as w.



78 V. Berthé and S. Labbé
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Fig. 4. The preimage of the bispecial word w under αk

Proof. One checks that (a, b) ∈ E(v) if and only if (a, b) ∈ E(kαk(v)) (see
Figure 4). Then E(kαk(v)) = E(v). We deduce that E+(kαk(v)) = E+(v) and
E−(kαk(v)) = E−(v). From this we conclude that m(kαk(v)) = m(v).

Lemma 5 (P - Bispecial extended images). Let v be a bispecial factor.
There are at most two distinct bispecial extended images of v under πjk. They
are either kπjk(v) or jkπjk(v).

Proof. Let w be a bispecial extended images of v under πjk. Since it is a bispecial
factor, it must start with letter j or k and end with letter k. From Lemma 2,
w ∈ {jkπjk(v), kπjk(v)}.

Lemma 6 (P - Antecedent of a bispecial). Let u ∈ A∗ and w �= ε be a
bispecial factor of πjk(u). Let v be the unique antecedent of w under πjk such
that w = kπjk(v) or w = jkπjk(v). Then, v is bispecial.

Now we want to describe more precisely under which conditions a bispecial
word v has a unique bispecial extended image under Poincaré substitutions and
give its extension type. In general, this depends on its left extensions E−(v).
However, if the value of the left valence d−(v) = 2, we deduce the unicity of the
bispecial extended image as well as important information on the extension type
of the extended image.

Lemma 7 (P - Bispecial extended images in details). Let v be a bispecial
factor.

(i) If d−(v) = 2, v admits a unique bispecial extended image w ∈
{kπjk(v), jkπjk(v)} under πjk and d−(w) = 2. Moreover, the extension types
E(v) and E(w) are left equivalent.

(ii) If d−(v) = 3, then v admits either one, or two bispecial extended images
w ∈ {kπjk(v), jkπjk(v)} under πjk. In any case, d−(w) = 2 and the two non
empty rows of E(w) are obtained by projection of rows of E(v).

3.5 Life of a Bispecial Factor under Arnoux-Rauzy-Poincaré
Substitutions

In this section, the life of a bispecial factor is analyzed more precisely under the
application of Arnoux-Rauzy and Poincaré substitutions in the spirit of Section
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4.2.2 of [Cas97] where bispecial factors are described under the image of circular
morphisms. To achieve this, we need to understand exactly the left extensions
which will give information about the multiplicity of the bispecial factors. We
denote by Sα, Sπ, respectively the following sets of substitutions:

Sα = {α1, α2, α3}, Sπ = {π12, π13, π23, π21, π31, π32}, with S = Sα ∪ Sπ.

Let w be a factor of limk→∞ σ0σ1 · · · σk(ak), ak ∈ A, where σi ∈ S. Let w0 = w
and wi+1 be the unique antecedent of wi under σi for i ≥ 0. If |wi| > 0, then
|wi+1| < |wi|, then there exists n such that wn = ε.

Definition 4 (Age). The smallest of those integers n is called the age of w
and is noted age(w).

Thus, w1 is the antecedent of w0 under σ0 and w2 is the antecedent of w1 under
σ1. If n = age(w), wn is the antecedent of wn−1 under σn−1 and the extension
type E(wn) of wn = ε depends on σn.

Definition 5 (History, life). We say that the finite sequence σ0σ1 · · · σn is the
history and the sequence (wi)0≤i≤n is the life of the bispecial word w.

w = w0 w1 w2 · · · wk wk+1 · · · wn−1 wn = ε

σ0 σ1 σk
σn−1 σn

Fig. 5. Life and history of a factor w

Lemma 8. Let n ≥ 0 be an integer. Let Bn be the set of all bispecial factors of
age n of limn→∞ σ0σ1 · · · σn(an), an ∈ A, where σi ∈ S. Then Card Bn ≤ 2.

The life (wi)0≤i≤n of bispecial factors starts as an empty word at i = n. The
word wi for i < n is the concatenation of one or two letters and σi(wi+1). These
letters depend on the extension type E(wi+1) and recursively on the extension
type E(wn) of wn = ε. Thus, it is important to understand properly what are
the possible extension types of the empty word under the application of Arnoux-
Rauzy and Poincaré substitutions. Below, the extension type E(ε) of the empty
word considered as a bispecial factor in the language of σ(u) is denoted by
Eσ(u)(ε).

Lemma 9. Let u ∈ A∗ ∪ AN be such that all letters of A appear as proper
factors of u. Considered as a bispecial factor of the language of the word αk(u),
the empty word ε is ordinary. Considered as a bispecial factor of the language of
the word πjk(u), the empty word ε is neutral but not ordinary:

Eαk(u)(ε) =

i j k
i ×
j ×
k × × ×

and Eπjk(u)(ε) =

i j k
i ×
j ×
k × × ×

.
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In the next lemma, we describe exactly what are the bispecial factors associ-
ated with each possible history.

Lemma 10. Let u = limn→∞ σ0σ1 · · · σn(an). Let w be a bispecial factor of u
such that n = age(w) and limm→∞ σn+1σn+2 · · · σm(am) contains all letters of
A as proper factors. Let z be the other bispecial factor of the same age as w if it
exists. Then the history σ0σ1 · · · σn of w determine the left valence, multiplicity
and extension type of w and z according to the following table.

σ0σ1 · · · σn ∈ d−(w) m(w) ordinary d−(z) m(z) ordinary
S∗

αSα 3 0 yes
S∗

αSπ 3 0 no
S∗ πjk S∗

α{αk} 2 0 yes
S∗ πjk S∗

α{αi, αj} 2 0 yes 2 0 yes
S∗ πjk S∗

α{πji, πki, πij , πkj} 2 0 yes 2 0 yes
S∗ πjk S∗

α{πik, πjk} 2 +1 no 2 −1 no

Strong and weak bispecial words thus appear in pairs under the application
of Poincaré substitutions each time πjk is followed by πjk or πik for {i, j, k} =
{1, 2, 3} with possibly some Arnoux-Rauzy substitutions αk, k ∈ {1, 2, 3}, in
between.

4 Proof of Theorem 1

Restricted to the language of the automaton G, illustrated in Figure 2, the his-
tory of a strong or weak bispecial factor necessarily contains Arnoux-Rauzy
substitutions.

Lemma 11. Let u = limn→∞ σ0σ1 · · · σn(an). Let w be a bispecial factor of u
such that n = age(w) and limm→∞ σn+1σn+2 · · · σm(am) contains all letters of
A as proper factors. If w is weak or strong and the history of w is in the regular
language σ0σ1 · · · σn ∈ L(G), then

σ0σ1 · · · σn ∈ S∗ πjk{αj}∗ αi S∗
α {πik, πjk}

for some {i, j, k} = {1, 2, 3}.

Lemma 12. Let z+ and z− be two bispecial factors of a word u of the same age
age(z+) = age(z−). Suppose that z− is weak and z+ is strong. Then |z+| < |z−|.

Lemma 13. Let z− and w+ be two bispecial factors of a word u such that z−

is weak and w+ is strong. If age(z−) < age(w+), then |z−| < |w+|.

Lemma 14. Let z−, w+ and w− be bispecial factors of a word u such that z−

is weak, w+ is strong and w− is weak. If age(z−) < age(w+) = age(w−), then
|w+| − |z−| > |w−| − |w+|.
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neutral

Fig. 6. Lifes of two pairs of strong and weak bispecial factors: z+, z− and w+, w−

We now have gathered all the elements for giving a proof of Theorem 1. We
show that strong and weak bispecial words alternate when the length increases
and make use of Lemma 1 (see Figure 6). Note that the notion of alternance was
used to prove Theorem 4.11.2 in [CN10, p. 238].

Proof (of Theorem 1). Note first that the assumption on x, i.e., x is totally
irrational, is required for applying Lemma 11 for bispecial factors of all age.
The set of bispecial factors of length n contains at most one weak or strong
bispecial factor. Indeed, suppose on the contrary that it contains two of them: w
and z. They cannot have the same age according to Lemma 12 since this would
otherwise imply |w| �= |z|. Also, if one is older, e.g. age(w) > age(z), then |w| >
|z| from Lemma 13. Then b(n) ∈ {−1, 0, +1} according to Theorem 3. Finally,
it remains to prove that the assumptions of Lemma 1 are satisfied. The first
non-zero value of b(n) is +1 because strong and weak bispecial factors come in
pairs and the strong one is smaller than the weak one from Lemma 12. Moreover,
non-zero values are alternating. Indeed, let z+ and w+ be two strong bispecial
factors such that age(w+) > age(z+). Let z− be the weak bispecial factor such
that age(z−) = age(z+). From Lemma 12 and Lemma 13, |z+| < |z−| < |w+|.
Hence, there is always a −1 between two +1 in the sequence (b(n))n≥0. This
shows that p(n + 1) − p(n) ∈ {2, 3} (Lemma 1), so that p(n) ≤ 3n + 1 for
n ≥ 0. Moreover, p(n) < 3n for each n > 0 since p(1) = 3 and p(2) = 5. We
can show even more. From Lemma 14, the range of consecutive values of 2 for
p(n + 1) − p(n) is larger than the range of consecutive values of 3 which follows
immediately. From this we conclude that lim supn→∞

p(n)
n ≤ 5

2 .

5 Concluding Remarks

The restriction to the regular language L(G) is clearly important; there exist
examples of S-adic words constructed with the alphabet of substitutions S for
which the upper bound of 3n is false otherwise. Moreover, a quadratic complexity
is even also achievable (fixed point of π23π13). Hence, this gives some more insight
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on a statement of the S-adic conjecture which is to find conditions for which
S-adic sequences have a linear complexity (see e.g. [DLR13, Ler12]).

Factor complexity of Poincaré and Arnoux-Rauzy substitutions can be de-
scribed exactly by considering left and right extensions of length one. It is not
always the case, and Brun substitutions seems to be an example for which exten-
sions of length longer than 1 are necessary to describe bispecial factors. Recently,
Klouda [Klo12] described bispecial factors in fixed point of morphisms where ex-
tensions of length longer than one were considered. Extending this work to S-adic
words deserves further research.

Balance of the Poincaré and Arnoux-Rauzy S-adic system also has nice
properties and its study will be part of a extended version of this article.
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