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Abstract

Rauzy fractals are compact sets with fractal boundary that can be associated
with any unimodular Pisot irreducible substitution. These fractals can be defined
as the Hausdorff limit of a sequence of compact planar sets, where each set is the
projection of a finite union of faces of unit cubes. We exploit this combinatorial
definition to prove the connectedness of the fractal associated with any finite product
of Arnoux-Rauzy substitutions.

1 Introduction
Rauzy fractals are compact sets with fractal boundary that can be associated with any
unimodular Pisot irreducible substitution. (See Definition 2.7 and 2.9 below for precise
definitions.) They first appeared in the work of Rauzy [Rau82], who generalized the
theory of interval exchange transformations by defining a domain exchange transformation
of three pieces in R2. Each of the three pieces is translated along a vector (one distinct
vector for each piece) in order to give a different partition of the same shape (see Figure 1).
These fractals were also discussed in the later work of Thurston [Thu89] in the context of
numeration systems in non-integer bases.

7−→

Figure 1: Domain exchange in the Tribonacci fractal.
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Properties of Rauzy fractals Originally, Rauzy considered the Tribonacci substitu-
tion σ : 1 7→ 12, 2 7→ 13, 3 7→ 1, and he proved in [Rau82] that the dynamics of the
symbolic dynamical system generated by σ is realized by the domain exchange in the
Rauzy fractal associated with σ. Rauzy’s results have then been generalized by Arnoux
and Ito [AI01] as follows: for any unimodular Pisot irreducible substitution σ on d let-
ters, the subshift Xσ generated by σ is measure-theoretically isomorphic to a domain
exchange of d pieces in the fractal associated with σ, on the assumption that σ verifies a
combinatorial condition called the strong coincidence condition (see also [CS01]).

Rauzy fractals enjoy other nice dynamical properties. The subshift Xσ is measure-
theoretically isomorphic to a translation on the (d − 1)-dimensional torus if σ satisfies
the super coincidence condition introduced in [IR06, BK06]. Also, Rauzy fractals provide
explicit Markov partitions for some hyperbolic automorphisms of the torus [IO93, Pra99].
It is currently not known if a Pisot irreducible substitution σ always verifies the strong
and the super coincidence conditions; the Pisot conjecture states that this is always the
case.

Let us mention some other properties of Rauzy fractals. In numeration systems,
they provide natural extensions of β-transformations with relevant algebraic properties
[ABBS08]. In theoretical physics, they are good candidates for explicit cut-and-project
schemes which model quasi-cristals [GVG04]. In discrete geometry, they are related to dis-
crete plane generation via multidimensional continued fraction algorithms [IO93, ABFJ07,
Fer09].

Topology of Rauzy fractals The Rauzy fractal associated with the Tribonacci sub-
stitution (Figure 1) has a very nice topology: the origin is an inner point, and it is
homeomorphic to a closed disc [Mes00]. However, it has been shown that the topology
of Rauzy fractals can be very complicated in general. For example, they can fail to be
connected or simply connected, and the origin is not always an inner point of the set; see
Figure 2. More examples are given in [ST10].

The study of topological properties of Rauzy fractals has many applications. Con-
nectedness of the Rauzy fractal is linked to some properties of the Markov partitions
of hyperbolic automorphisms of the torus [Adl98]. Cut-points of the fractal are related
to some topological invariants of tiling spaces [BDS09]. In Diophantine approximation,
explicit computation of the size of the largest ball contained in the fractal provides the
best possible simultaneous approximations of some two-dimensional vectors with respect
to a specific norm [HM06]. In number theory, finite greedy expansions in non-integer
bases (β-numeration systems) are closely related to the inner points of the fractal, and
the connectedness of the fractal is conjectured to guarantee explicit relations between
the norm of β and the β-expansion of 1 [AG05]. The properties of rational numbers
with purely periodic β-expansions are closely related to the shape of the boundary of
the Rauzy fractal [ABBS08, AFSS10]. In discrete geometry, studying the position of the
origin in the fractal allows us to study the structure of discrete planes and to generate
them [IO93, BLPP10].

Arnoux-Rauzy substitutions Sturmian sequences are a classical object of symbolic
dynamics. They are the infinite sequences of two letters with complexity n + 1 (i.e.,
they have exactly n + 1 factors of length n), and they correspond to natural codings
of irrational rotations on the circle [MH40]. These sequences are also closely related to
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(a) 1 7→ 12, 2 7→ 31, 3 7→ 1 (b) 1 7→ 3, 2 7→ 23, 3 7→ 31223

(c) 1 7→ 21111, 2 7→ 31111, 3 7→ 1 (d) 1 7→ 123, 2 7→ 1, 3 7→ 31

Figure 2: Examples of Rauzy fractals: (a) is connected and has uncountable fun-
damental group; (b) is disconnected and 0 is not an inner point; (c) is connected,
has uncountable fundamental group, and 0 is an inner point; (d) is connected and
0 is not an inner point. Black crosses mark the origin.

continued fraction expansions of real numbers; see [PF02, Chap. 6] and [Lot97, Chap. 2]
for a detailed survey of their properties.

Arnoux-Rauzy sequences were introduced in [AR91] to generalize Sturmian sequences
to three-letter alphabets. They are the infinite sequences of three symbols obtained by
iterating the Arnoux-Rauzy substitutions σ1, σ2, σ3 defined by

σi :
{
j 7→ j if j = i
j 7→ ji if j , i

(i = 1, 2, 3),

with each of the σi occuring infinitely often in the iteration. These sequences have com-
plexity 2n + 1 and they yield an algorithm for simultaneous approximations of some
particular pairs of algebraic numbers [CFM08]. It was conjectured that Arnoux-Rauzy
sequences correspond to natural codings of translations on the two-dimensional torus (as
in the Sturmian case with rotations on the circle), but this conjecture has been disproved
in [CFZ00]. For more references about Arnoux-Rauzy sequences, see [BFZ05, CC06].

Our results In the case where σ is a two-letter substitution, topological properties of
Rauzy fractals (which are subsets of R) are fully understood: the fractal is connected (i.e.,
an interval) if and only if the substitution is Sturmian [EI98], [PF02, Chap. 9]. However,
very few general results are known when σ acts on three or more letters, because topo-
logical studies such as the ones cited above usually rely on a description of the boundary
of a single fractal, which makes the study of some families of fractals very difficult.

In this article, we study the family of Rauzy fractals associated with finite products
of Arnoux-Rauzy substitutions and we prove that they are connected (Theorem 4.3).

To this end, we use a combinatorial characterization of Rauzy fractals given by Arnoux
and Ito in [AI01] (see Definition 2.9 below). For any unimodular Pisot irreducible substi-
tution σ on d letters, they define a generalized substitution E∗1(σ), that acts not on words
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but on faces of unit cubes in Rd. The Rauzy fractal associated with σ can then be obtained
by iterating E∗1(σ) starting from a small set of unit faces (for example when d = 3).
This gives an increasing sequence of finite sets of unit faces in Rd which, if projected on
a particular hyperplane and renormalized appropriately at each step, admits a Hausdorff
limit that is equal to the Rauzy fractal.

Our results are based on an alternative description of E∗1(σ) substitutions, introduced
in [IO93, IO94, ABI02]. It consists of trying to compute the image E∗1(σ)(P ) of a set
of unit faces P by concatenating the images of the elements of P , instead of using the
definition of E∗1(σ) to compute the new position of each face. This is similar to the relation
σ(uv) = σ(u)σ(v) which is valid for words but difficult to generalize to higher dimensions.

Let us note that a proof of Theorem 4.3 has been announced in [Can03], relying on
completely different methods, but it has not been published.

Outline of the paper In Section 2, we give the definition of generalized substitutions
and explain how they act on discrete planes, we give a definition of the Rauzy fractal using
these objects, and we introduce Arnoux-Rauzy substitutions. In Section 3, we establish
a combinatorial sufficient condition for the connectedness of Rauzy fractals. In Section 4
we apply the results of Section 3 to prove the connectedness of the fractal associated with
an Arnoux-Rauzy substitution (Theorem 4.2 and 4.3). Finally, in Section 5 we provide
examples to show that some possible generalizations of Theorem 4.3 are not true.

2 Preliminaries
The definitions and results of this section are valid in any dimension but we state them
for dimension 3 only, since our main results (Theorem 4.2 and 4.3) hold in dimension 3.

2.1 Discrete planes and unit faces
We start by giving a geometric definition of discrete planes, following [Rev91, IO93, IO94,
ABI02]. Let (e1, e2, e3) denote the canonical basis of R3, and recall that the plane of
(non-zero) normal vector v ∈ R3

+ is the set of points x ∈ R3 such that 〈x,v〉 = 0.

Definition 2.1 (Discrete plane). Let v ∈ (R+ \ {0})3 be a non-zero vector, and let S be
the half-space of points x ∈ R3 such that 〈x,v〉 < 0. We define the discrete plane Pv
of normal vector v as the boundary of the union of the closed unit cubes with integer
coordinates that intersect S.

A discrete plane can be seen as a union of unit faces of three different types. Let
i ∈ {1, 2, 3} and x ∈ Z3. The unit face type i at point x is the set [x, i]∗ defined by

[x, 1]∗ = {x + λe2 + µe3 : λ, µ ∈ [0, 1]}
[x, 2]∗ = {x + λe1 + µe3 : λ, µ ∈ [0, 1]}
[x, 3]∗ = {x + λe1 + µe2 : λ, µ ∈ [0, 1]}

(see Figure 3). The type i of face [x, i]∗ corresponds to the canonical vector ei to which
it is orthogonal to. If x ∈ R3, we can write y + [x, i]∗ instead of [x + y, i]∗, and we denote
by x + X the translation of a union of faces X by x. Let us remark that Definition 2.1
implies that the set [0, 1]∗ ∪ [0, 2]∗ ∪ [0, 3]∗ is included in every discrete plane.
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e1 e2

e3

[(0, 0, 0), 1]∗ [(0,−1, 0), 2]∗ [(−2, 1, 0), 3]∗

Figure 3: Three unit faces of different types.

The following proposition gives an alternative definition of discrete planes, where the
belonging of each face to a plane is translated into an inequality on scalar products.

Proposition 2.2 ([ABI02, ABS04]). The discrete plane Pv is the union of faces [x, i]∗
satisfying 0 6 〈x,v〉 < 〈ei,v〉.

2.2 Generalized substitutions
We start with the classical notion of unidimensional substitution. Let A = {1, . . . , d} be
a finite alphabet. A substitution is a function σ : A∗ → A∗ such that σ(uv) = σ(u)σ(v)
for every words u, v ∈ A∗, and such that the image of each letter of A is non-empty. The
incidence matrix Mσ of σ is the square matrix of size d×d defined by Mσ = (mij), where
mij is the number of occurrences of the letter i in σ(j). A substitution is said unimodular
if the determinant of its incidence matrix equals 1 or −1.

A classical example of a substitution is the Tribonacci substitution introduced by
Rauzy in [Rau82], whose action on {1, 2, 3}∗ and incidence matrix are given by

σ :


1 7→ 12
2 7→ 13
3 7→ 1

and Mσ =

1 1 1
1 0 0
0 1 0

 .

We now introduce generalized substitutions, which act not on unidimensional words,
but on unit faces in R3. This formalism was sketched by Ito and Ohtsuki [IO93, IO94],
and then refined later by Arnoux and Ito in [AI01] (see Definition 2.3 below), where
they also highlight the connections between generalized substitutions and discrete planes
(Propositions 2.5 and 2.6 below).

Definition 2.3 (Generalized substitution). Let σ : {1, 2, 3}∗ → {1, 2, 3}∗ be a unimodular
substitution. The generalized substitution associated with σ, denoted by E∗1(σ), is defined
by

E∗1(σ)([x, i]∗) =
⋃

j=1,2,3

⋃
s|σ(j)=pis

[M−1
σ (x + `(s)), j]∗.

We extend this definition to any union of unit faces:

E∗1(σ)(X1 ∪X2) = E∗1(σ)(X1) ∪ E∗1(σ)(X2).

Let us remark that E∗1(σ) is completely described by Mσ and the images of the faces
[0, 1]∗, [0, 2]∗ and [0, 3]∗, because E∗1(σ)([x, i]∗) = M−1

σ x+E∗1([0, i]∗) for every unimodular
substitution σ and every face [x, i]∗. It is also worth noticing that E∗1(σ ◦ σ′) = E∗1(σ′) ◦
E∗1(σ) holds for every unimodular substitutions σ and σ′; see [AI01] for more details.
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Example 2.4. Let σ be the Tribonacci substitution 1 7→ 12, 2 7→ 13, 3 7→ 1. The action
of E∗1(σ) on unit faces is given by

E∗1(σ)([x, 1]∗) = M−1
σ x + [(1, 0,−1), 1]∗ ∪ [(0, 1,−1), 2]∗ ∪ [(0, 0, 0), 3]∗

E∗1(σ)([x, 2]∗) = M−1
σ x + [(0, 0, 0), 1]∗

E∗1(σ)([x, 3]∗) = M−1
σ x + [(0, 0, 0), 2]∗

,

which can be represented graphically as follows:

x
7−→

M−1
σ x

x
7−→

M−1
σ x

x 7−→
M−1

σ x

In general, the images of two distinct faces are not necessarily disjoint, but it is the
case when the faces belong to a common discrete plane, as stated in Proposition 2.5.

Proposition 2.5 ([AI01]). If [x, i]∗ and [x′, i′]∗ are two distinct faces of Pv, then the sets
E∗1(σ)([x, i]∗) and E∗1(σ)([x′, i′]∗) are disjoint up to a set of measure zero.

Proposition 2.6 states that the image of a discrete plane by a generalized substitution
is again a discrete plane.

Proposition 2.6 ([AI01, Fer06]). Let Pv be a discrete plane and σ be a unimodular
substitution. We have

E∗1(σ)(Pv) = PtMv.

2.3 The Rauzy fractal associated with a substitution
We will now give the definition of the Rauzy fractal associated with a unimodular Pisot
irreducible substitution, as in [AI01]. We recall that a Pisot number is a real algebraic
integer greater than 1 whose conjugates have absolute value less than 1.

Definition 2.7 (Pisot irreducible substitution). A unimodular substitution σ is Pisot
irreducible if the maximal eigenvalue of Mσ is a Pisot number, and if the characteristic
polynomial of Mσ is irreducible.

Let σ : {1, 2, 3}∗ → {1, 2, 3}∗ be a unimodular Pisot irreducible substitution, and let
β be the maximal eigenvalue of Mσ. We denote by uβ an eigenvector of Mσ associated
with β, and by vβ an eigenvector of tMσ associated with β.

Definition 2.8 (Contracting plane). Let σ be a unimodular Pisot irreducible substitution.
The contracting plane Pc associated with σ is the plane of normal vector vβ. We denote
by πc : R3 → Pc the projection of R3 on Pc along uβ.

Let U = [0, 1]∗ ∪ [0, 2]∗ ∪ [0, 3]∗. Proposition 2.6 enables us to iterate E∗1(σ) on U in
order to obtain an infinite sequence of patterns of increasing size that are included in the
discrete plane of normal vector vβ, i.e., the discretization of the contracting plane. Let us
remark that the set Pvβ is indeed a discrete plane, because vβ has positive coordinates.
This can be proved by applying the Perron-Frobenius theorem to Mσ, because the matrix
of a unimodular Pisot irreducible substitutions is always primitive; see [CS01].
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It is possible to project and renormalize the patterns by applying Mσ ◦ πc, in order
to obtain a sequence of subsets of the contracting plane Pc that converges to a compact
subset of Pc. More precisely, for n > 0, let

Dn = Mn
σ ◦ πc ◦ E∗1(σ)n(U).

Arnoux and Ito proved in [AI01] that (Dn)n>0 is a convergent sequence in the metric space
of compact subsets of Pc together with the Hausdorff distance, as illustrated below.

Definition 2.9 (Rauzy fractal). Let σ : {1, 2, 3}∗ → {1, 2, 3}∗ be a unimodular Pisot
irreducible substitution. The Rauzy fractal associated with σ is the Hausdorff limit of the
sequence (Dn)n>0.

2.4 Arnoux-Rauzy substitutions
Let σ1, σ2, σ3 be the Arnoux-Rauzy substitutions [AR91] defined by

σ1 :


1 7→ 1
2 7→ 21
3 7→ 31

, σ2 :


1 7→ 12
2 7→ 2
3 7→ 32

, σ3 :


1 7→ 13
2 7→ 23
3 7→ 3

.

The following proposition enables us to define Rauzy fractals associated with finite
products of Arnoux-Rauzy substitutions.

Proposition 2.10 ([AI01]). A finite product of Arnoux-Rauzy substitutions where each
σi appears at least once is a unimodular Pisot irreducible substitution.

As we will see in the following sections, the Rauzy fractal associated with such a
product of Arnoux-Rauzy substitutions is always connected (Theorem 4.3), but not nec-
essarily simply connected (Section 5). Examples of these fractals are depicted in Figure 1,
Figure 2c and Figure 4.

(a) σ1σ1σ2σ2σ3σ3 (b) σ2σ1σ3σ2σ2σ2σ1σ3

Figure 4: Examples of Rauzy fractals associated with products of Arnoux-Rauzy
substitutions.
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3 Covering by a set of patterns
A pattern is a finite set of unit faces. In the following, we will not make the distinction
between a pattern and the union of its elements.

The aim of this section is to introduce the notion of L-covering of a pattern by a set
of patterns L (Definition 3.1), and the notion of stability of a set of patterns with respect
to a generalized substitution (Definition 3.3). We then use these concepts to give a simple
sufficient condition for the connectedness of a pattern (Proposition 3.5), which will be used
in Section 4. The notion of L-covering already appeared in [IO93, IO94, ABI02, ABS04],
but for patterns consisting of two faces only.

Definition 3.1 (L-covering). LetD be a union of unit faces and L be a set of patterns. An
L-chain from a face e ∈ D to a face f ∈ D is a finite sequence of patterns (p1, . . . , pn) ∈ Ln
such that:

1. e ∈ p1 and f ∈ pn;

2. pk and pk+1 share at least one face, for all k ∈ {1, . . . , n− 1};

3. pk ∈ D for all k ∈ {1, . . . , n}.

We say that D is L-covered if for all faces e, f ∈ D, there exists an L-chain from e to f .

Roughly speaking, D being L-covered means that we can connect any two faces of D
by a “path” made of patterns of L in which two consecutive patterns share at least one
face.

L =

{ }

Figure 5: Example of an L-chain. Dark grey indicates the intersection of two
patterns.

The following lemma states that concatenations of L-chains remain L-chains.

Lemma 3.2 ([IO94]). Let L be a set of patterns, D be a union of unit faces, and e, f, g
three faces of D. If there exists an L-chain from e to f and an L-chain from f to g, then
there exists an L-chain from e to g.

Proof. Let (p1, . . . , pn) be an L-chain from e to f , and (q1, . . . , qm) an L-chain from f to
g. An L-chain from e to g is given by (p1, . . . , pn, q1, . . . , qm), because f is in pn ∩ q1. D

Let Σ be a generalized substitution and D be an L-covered pattern. We want to know
when Σ(D) is L-covered. It turns out that there is a simple and easy to verify sufficient
condition to check this, namely the stability of L under Σ (Definition 3.3), as stated in
Proposition 3.4 below.
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Definition 3.3 (Stability). Let Σ be a generalized substitution. A set of patterns L is
stable under Σ if Σ(p) is L-covered for all p ∈ L.

Proposition 3.4. Let L be a set of patterns that is stable under a generalized substitution
Σ, and let D be an L-covered union of unit faces. Then Σ(D) is L-covered.

Proof. Let f and f ′ be two faces of Σ(D). To prove that Σ(D) is L-covered, we need to
construct an L-chain from f to f ′. Let e and e′ be two faces of D such that f ∈ Σ(e) and
f ′ ∈ Σ(e′). Since D is L-covered, there exists an L-chain (p1, . . . , pn) from e to e′. For all
k ∈ {2, . . . , n− 1}, let fk be a face of Σ(pk ∩ pk+1), and let f1 = f , fn = f ′. Such a face
fk exists because (p1, . . . , pn) is an L-chain.

For all k ∈ {1, . . . , n − 1}, there exists an L-chain from fk to fk+1, because fk and
fk+1 are in Σ(pk+1) and L is stable under Σ (see Figure 6). Lemma 3.2 implies that the
concatenation of the L-chains from fk to fk+1 is an L-chain from f to f ′. D

pk pk+1 pk+2D :

fk fk+1Σ(pk) Σ(pk+1) Σ(pk+2)Σ(D) :

Figure 6: Illustration of the proof of Proposition 3.4.

The stability of a given set L under Σ is easy to verify: it can be done in finite time,
since there are only a finite number of patterns to check, and a pattern can be covered
only in finitely many ways by patterns of L.

The following Proposition relates L-coverings and connectedness: if a pattern D is
L-covered by a set of patterns L whose elements have a connected projection by πc, then
πc(D) is also connected.

Proposition 3.5. Let L be a set of patterns and D be an L-covered union of unit faces.
If πc(p) is connected for all p ∈ L, then πc(D) is connected.

Proof. Let x, y be two points of πc(D) and e, f two faces of D such that x ∈ πc(e) and
y ∈ πc(f). Let (p1, . . . , pn) be an L-chain from e to f . The sets πc(pi) are connected and
πc(pi) ∪ πc(pi+1) , ∅ for all i, so there exists an arc from x ∈ πc(p1) to y ∈ πc(pn). D

The following basic lemma will be useful in the next section.

Lemma 3.6. Let K1, K2, . . . be a sequence of compact subsets of R2 that converges to a
Hausforff limit K. If the Kn are connected, then K is connected.

4 Applications to Arnoux-Rauzy substitutions
In this section, we use the tools developed in Section 3 to prove the connectedness of
the images of U = [0, 1]∗ ∪ [0, 2]∗ ∪ [0, 3]∗ under any finite product of the generalized
substitutions Σ1, Σ2, Σ3 defined by

Σi = E∗1(σi) i ∈ {1, 2, 3}.
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To this end, we introduce a finite set of connected patterns LAR (Equation 1) that covers
U , and that is stable under Σ1, Σ2 and Σ3 (Proposition 4.1). The covering property
will then be transferred to all the forward images of U , which yields their connectedness
(Theorem 4.2), and the connectedness of the fractal associated with a periodic product
of Arnoux-Rauzy substitutions (Theorem 4.3).

Let

LAR =


 . (1)

We do not give the explicit formula defining each pattern of LAR, since it can clearly
be deduced from the above graphical representation (we require that each pattern is a
connected subset of R3). We also do not specify the position in Z3 of each pattern, because
it doesn’t matter: any choice is compatible with the proofs below.

Proposition 4.1. The set of patterns LAR is stable under the generalized substitutions
Σ1, Σ2 and Σ3.

Proof. We must prove that every pattern of Σi(LAR) is covered by LAR, for i = 1, 2, 3,
which makes a total of 36 patterns to check:

Σ1(LAR) =


 ;

Σ2(LAR) =


 ;

Σ3(LAR) =


 .

This can easily be checked for each of these patterns, as for the following pattern of
Σ1(LAR), for example:

: .

From this graphical representation, we can deduce that there is an LAR-chain between
each two faces of the pattern. All the other patterns of Σ1(LAR) are also LAR-covered,
and the patterns of the sets Σ2(LAR) and Σ3(LAR) (which are symmetrical copies of the
patterns of Σ1(LAR)) admit similar LAR-coverings. D

We now use the stability of LAR and the results of Section 3 to obtain our connectedness
results.

Theorem 4.2. The set πc(Σi1 · · ·Σin(U)) is connected, for every i1, . . . , in ∈ {1, 2, 3}.
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Proof. Proposition 3.4 implies that Σi1 · · ·Σin(U) is LAR-covered, because LAR is stable
under the Σi (Proposition 4.1) and U is LAR-covered. The projection by πc of every
pattern of LAR is connected, so Proposition 3.5 implies that the set πc(Σi1 · · ·Σin(U)) is
connected. D

Since connectedness is preserved in the Hausdorff limit (Lemma 3.6), it follows that
the fractals associated with Arnoux-Rauzy substitutions are connected.

Theorem 4.3. The Rauzy fractal associated with any Pisot irreducible finite product of
Arnoux-Rauzy substitutions is connected.

About the set LAR A first possible approach to obtain a stable set of patterns such as
LAR is to consider the set of all patterns made of two faces sharing an edge. This strategy
can be successful, as for example with substitutions associated with the Jacobi-Perron
algorithm [IO93]. In the case of Arnoux-Rauzy substitutions, this set of patterns is not
sufficient because there are some unavoidable patterns whose image is not edge-connected:

Σ17−→ or Σ37−→ .

We could try to fix the problem by adding to our set all the two-face patterns that share
a single vertex, but this is not enough because this new family is in turn not stable: we
get some disconnected image patterns.

We have been able to find a stable set for Arnoux-Rauzy substitutions by “completing”
the problematic patterns, i.e., by considering some patterns of more than two faces:

Σ17−→ or Σ37−→ .

5 Further questions and counterexamples
In this section, we provide examples to show that some possible generalizations or exten-
sions of Theorem 4.3 are not true.

The converse of Theorem 4.3 We give an example of a substitution σ whose Rauzy
fractal is connected and such that no power of σ can be written as a product of Arnoux-
Rauzy substitutions. This proves that the converse of Theorem 4.3 does not hold, i.e., it is
not true that every connected Rauzy fractal is associated with a product of Arnoux-Rauzy
substitutions.

Let σ be the substitution defined by 1 7→ 32131, 2 7→ 321, 3 7→ 3213. It is easy to
check that there are at least 14 different words of length 6 in an infinite fixed point of σ.
Hence, no power of σ is a product of Arnoux-Rauzy substitutions, because Arnoux-Rauzy
sequences have complexity 2n + 1. It can be checked algorithmically that the Rauzy
fractal of σ is connected, using the methods described in [ST10] (see Figure 7a). Let us
remark that these methods also enable us to prove that the Rauzy fractal of σ is also
simply connected, which makes the counterexample even stronger.

Many other examples can easily be found, such as the substitution given in Figure 2a,
whose Rauzy fractal is connected (but not simply connected).
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Simple connectedness and Arnoux-Rauzy substitutions Simple connectedness of
the Rauzy fractal does not hold in general for products of Arnoux-Rauzy substitutions.
Indeed, the fractal associated with the substitution

σ = σ1σ1σ1σ1σ2σ2σ2σ2σ3σ3σ3σ3

is not simply connected because σ is equal to the cube of the substitution given in Fig-
ure 2c, so it has the same Rauzy fractal, which has uncountable fundamental group [ST10].

Connectedness and invertible substitutions In the case of two-letter substitutions,
it has been shown that the Rauzy fractal is connected if and only if the substitution is
invertible [EI98]. (A substitution is invertible if it extends to an automorphism of the free
group.)

We can see Theorem 4.3 as a partial analogue of this fact for three-letter substitu-
tions, because Arnoux-Rauzy substitutions are invertible. We are now going to see that
Theorem 4.3 seems difficult to generalize to a larger class of invertible substitutions. Let

εi,j :
{
j 7→ ij
k 7→ k if k , j

for i, j ∈ {1, 2, 3} and i , j. Every finite product of εi;j is invertible and Arnoux-
Rauzy substitutions can be written as products of εi;j: σ1 = ε1,2ε1,3, σ2 = ε2,1ε2,3, and
σ3 = ε3,1ε3,2. However the Rauzy fractal associated with the substitution

ε1,2ε3,1ε2,3ε1,3 :


1 7→ 13
2 7→ 21
3 7→ 32113

is not connected, as can be checked using the algorithms given in [ST10]. This fractal
is depicted in Figure 7b. Let us mention that invertible substitutions on three letters
have been characterized [TWZ04], and that finite products of εi;j constitute only a proper
subclass.

(a) 1 7→ 32131, 2 7→ 321, 3 7→
3213

(b) 1 7→ 13, 2 7→ 21, 3 7→ 32113

Figure 7: (a) A simply connected Rauzy fractal where no power of σ can be
written as a product of Arnoux-Rauzy substitutions. (b) A disconnected Rauzy
fractal where σ is a product of elementary substitutions.
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6 Conclusion
We have given a combinatorial proof of the connecteness of the Rauzy fractals associ-
ated with finite products of Arnoux-Rauzy substitutions. To do so, we have extended
combinatorial techniques by considering coverings by patterns of more than two faces.

There is a lot of room for future work. We believe that the techniques introduced
in this article will allow us to prove topological properties for some other families of
Rauzy fractals. It would also be interesting to characterize the products of Arnoux-Rauzy
substitutions which have simply connected Rauzy fractal.

There are also many interesting related decidability questions: given a unimodular
Pisot irreducible subsitution, is its Rauzy fractal connected? Simply connected? Is the
origin an inner point? Does it verify the tiling property? Some of these questions have
been addressed (see [ST10]), but the techniques used rely on incidence graphs of the
subtiles of the fractals. It would be interesting to investigate and revisit these questions
using the same techniques as in this article.
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