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Abstract. In this paper, we give a necessary condition for an infinite word defined by a non-
degenerate interval exchange on three intervals (3iet word) to be invariant by a substitution:
a natural parameter associated with this word must be a Sturm number. We deduce some
algebraic consequences from this condition concerning the incidence matrix of the associated
substitution. As a by-product of our proof, we give a combinatorial characterization of 3iet
words.

1. Introduction

The original definition of a Sturm number using continued fractions was introduced in 1993
when Crisp et al. [13] showed that a homogeneous sturmian word (i.e., a sturmian word with
slope ε and intercept x0 = 0) is invariant under a non-trivial substitution if and only if ε is a
Sturm number. In 1998, Allauzen [4] provided a simple characterization of Sturm numbers:

A quadratic irrational number ε with algebraic conjugate ε′ is called a Sturm number if

(1) ε ∈ (0, 1) and ε′ /∈ (0, 1) .

For general sturmian words (with arbitrary intercept x0), the fact that ε is a Sturm number
is only a necessary but not a sufficient condition for invariance under a substitution; this is clear
since there can only be a countable number of such invariant words, while sturmian words with
a given slope are determined by their intercept, hence they are uncountable in number. For a
complete characterization, see [21, 7, 9].

In this paper, we study invariance under substitution of infinite words coding non-degenerate
exchanges of three intervals with permutation (321).1 These words, which are here called non-
degenerate 3iet words, are one of the possible generalizations of sturmian words to a three-letter
alphabet. Some combinatorial properties characterizing the language of 3iet words are described
in [14]. It is well known that substitutive 3iet words, i.e., 3iet words that are image by a morphism
of a fixed point of a substitution correspond to quadratic parameters, see e.g. [1, 3, 11, 14, 19].
Note that, in the present paper, we consider fixed points of substitutions and not substitutive
words.

Sturmian words can be equivalently defined as aperiodic words coding a rotation, i.e., an
exchange of two intervals with lengths say α, β. The slope of the sturmian word, which we have
denoted by ε, is then equal to ε = α

α+β . The term ‘slope’ for parameter ε comes from the fact
that the sturmian word with slope ε can be constructed by projection of points of the lattice
Z2 to the straight line y = εx. It is proved convenient to abuse the language by speaking of the
slope of the rotation, which is the complement to 1 of the more usual angle of the rotation. Since
the sturmian word does not depend on the absolute lengths of the two intervals being exchanged
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1An exchange of intervals is non-degenerate if it satisfies i.d.o.c. [18]. For more details, see Section 4.3
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but on their ratio, then the lengths are often normalized to satisfy α + β = 1. In this case α
and ε coincide.

The same situation occurs for 3iet words which code exchange of three intervals with lengths,
say, α, β, γ. The commonly used normalization of parameters is α + β + γ = 1. However, the
normalization α + 2β + γ = 1 seems to be more suitable. Let us mention three arguments in
favor, which are results from papers [1, 6, 14, 15]. If u is an infinite word coding exchange of
three intervals of lengths α, β, γ, then:

• the infinite word u is aperiodic if and only if
α + β

α + 2β + γ
/∈ Q;

• if u is assumed to be aperiodic, then u codes a non-degenerate exchange of three intervals

if and only if
α + β + γ

α + 2β + γ
/∈ Z + Z

α + β

α + 2β + γ
;

• the infinite word u can be constructed by projection of points of the lattice Z2 on the

straight line y =
α + β

α + 2β + γ
x.

In Section 3 and 4, we give a short proof of these facts by recalling that such an exchange
of three intervals can always be obtained as an induced map of a rotation (exchange of two
intervals) on an interval of length α + 2β + γ; in the process, we give a complete combinatorial
characterization of 3iet words, as follows:

Theorem A. Let u be a sequence on the alphabet {A,B, C} whose letters have positive densities.
Let σ : {A,B, C}∗ → {0, 1}∗ and σ′ : {A,B, C}∗ → {0, 1}∗ be the morphisms defined by

σ(A) = 0, σ(B) = 01, σ(C) = 1

σ′(A) = 0, σ′(B) = 10, σ′(C) = 1.

The sequence u is an aperiodic 3iet word if and only if σ(u) and σ′(u) are sturmian words.

This paper adds yet another argument supporting the normalization α + 2β + γ = 1, by the
following necessary condition:

Theorem B. If a non-degenerate 3iet word is invariant under a primitive substitution, then

ε :=
α + β

α + 2β + γ
is a Sturm number.

Note that, in this case, the corresponding homogeneous sturmian word is also substitution
invariant. A forthcoming paper [8] will give a complete characterization of substitution invariant
3iet words. Note that it is a natural question to ask whether, when u is a substitution invariant
3iet word, one or both of the sturmian words σ(u), σ′(u) are also substitution invariant.

This paper is organized as follows. The introductory notation and definitions are given in
Section 2. Section 3 and 4 are devoted to the description of a classical exduction process in terms
of substitutions and to the proof of Theorem A. Section 5 and Section 6 gather the required
material for the proof of Theorem B, namely, properties of translation vectors and balance
properties. Theorem B is proved in Section 7.

2. Preliminary considerations

We work with finite and infinite words over a finite alphabet A = {a1, . . . , ak}. The set of all
finite words over A is denoted by A∗. It is a free monoid equipped with the binary operation
of concatenation and the empty word. The length of a word w = w1w2 · · ·wn is denoted by
|w| = n, the number of letters ai in the word w is denoted by |w|ai .
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An infinite concatenation of letters of A forms the infinite word u = (un)n∈N,

u = u0u1u2 · · · .

A word w is said to be a factor of a word u = (un)n∈N if there is an index i ∈ N such that
w = uiui+1 · · ·ui+n−1. The set of all factors of u of length n is denoted by Ln(u). The language
L(u) of an infinite word u is the set of all its factors, that is

L(u) =
⋃
n∈N

Ln(u) .

The (factor) complexity Cu of an infinite word u is the function Cu : N → N defined as

Cu(n) := #Ln(u) .

The density of a letter a ∈ A, representing the frequency of occurrence of the letter a in an
infinite word u, is defined by

ρ(a) := lim
n→∞

#{i | 0 ≤ i < n, ui = a}
n

,

if the limit exists (this is always the case for 3iet words, which is easy to prove).
Let A and B be two alphabets. A mapping ϕ : A∗ → B∗ is said to be a morphism if

ϕ(wŵ) = ϕ(w)ϕ(ŵ) holds for any pair of finite words w, ŵ ∈ A∗. Obviously, a morphism is
uniquely determined by the images ϕ(a) for all letters a ∈ A. If A and B coincide and if the
images of the letters are never equal to the empty word, then ϕ is called a substitution.

The action of a morphism ϕ can be naturally extended to infinite words by the prescription

ϕ(u) = ϕ(u0u1u2 · · · ) := ϕ(u0)ϕ(u1)ϕ(u2) · · · .

An infinite word u ∈ AN is said to be a fixed point of the morphism ϕ if ϕ(u) = u.
The incidence matrix of a morphism ϕ over the alphabet A is an important tool which brings

a lot of information about the combinatorial properties of the fixed points of the morphism. It
is defined by

(Mϕ)ij = |ϕ(ai)|aj = number of letters aj in the word ϕ(ai) .

A morphism ϕ is called primitive if there exists an integer k such that the matrix Mk
ϕ is positive.

Assume that an infinite word u over the alphabet A = {a1, . . . , ak} is a fixed point of a
primitive substitution ϕ. It is known [20] that in such a case the densities of letters in u are well
defined. The vector

~ρu =
(
ρ(a1), . . . , ρ(ak)

)
.

is a left eigenvector of the incidence matrix Mϕ, i.e., ~ρuMϕ = Λ~ρu. Since the incidence matrix
Mϕ is a non-negative integral matrix, we can use the Perron-Frobenius Theorem stating that
Λ is the dominant eigenvalue of Mϕ. Moreover, all eigenvalues of Mϕ are algebraic integers.

3. Exchanges of three intervals as an induction of rotations

Let α, β, γ > 0 and denote by

IA := [0, α), IB := [α, α + β), IC := [α + β, α + β + γ), and I := IA ∪ IB ∪ IC ,

and let tA = β + γ, tB = γ − α, tC = −α− β ∈ R be translation vectors; we have:

IA ∪ IB ∪ IC = (IA + tA) ∪ (IB + tB) ∪ (IC + tC) .

The map T defined on I by T (x) = x + tX if x ∈ IX , X = A,B, C is the exchange of three
intervals IA, IB, IC with the permutation (321).
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As was already known a long time ago (see [17]), this map can be obtained as the induction
of a rotation on a suitable interval. We recall the construction; let ID = [α + β + γ, α + 2β + γ),
and define J = I ∪ ID. Let R be the rotation of angle β+γ

α+2β+γ on J , defined by R(x) = x+β +γ

if x ∈ IA ∪ IB, and R(x) = x− α− β if x ∈ IC ∪ ID; it exchanges the two intervals IA ∪ IB and
IC ∪ ID.

For a subset E of X, the first return time rE(x) of a point x ∈ E is defined as min{n > 0 |
Rnx ∈ E}. If the return time is always finite, we define the induced map or first return map of
R on E by RE(x) = RrE(x)(x).

Lemma 3.1. The map T is the first return map of R on I.

Proof. One checks that R(IA) = [γ+β, α+γ+β) = T (IA), R(IC) = [0, α) = T (IC), R(IB) = ID,
and R2(IB) = R(ID) = T (IB). �

Hence T can be obtained as the induction of a rotation on a left interval (for more details,
see e.g. [1, 14] or the survey [10]). It can also be obtained as an induction on a right interval,
and this remark will prove important below: define IE = [−β, 0), and J ′ = IE ∪ I; consider the
rotation R′ on J ′ by the same angle β+γ

α+2β+γ ; in the same way, one proves that T is obtained as
the first return map of R′ on I.

The underlying rotation R turns out to play an important role in the study of T ; this explains
the appearance of the number ε = α+β

α+2β+γ in the introduction: it is the slope of the rotation R.

Notation 3.1. From now on, we will take the normalization α + 2β + γ = 1.

This amounts to normalizing the interval of definition of R to 1, and will greatly simplify the
notation below.

4. Characterization of non-degenerate 3iet words

4.1. From 3iet words to sturmian words. With an initial point x0 ∈ I, we associate an
infinite word which codes the orbit of x0 under T with respect to the natural partition in three
intervals (see Definition 4.1 below). It turns out to be useful to shift the interval of definition, so
that the free choice of the initial point x0 for the orbit is replaced by the choice of a parameter
that we call c as the position of the interval. The initial point for the orbit can thus always be
chosen as the origin. For this, we introduce the new parameters

ε := α + β , l := α + β + γ , c := −x0 ,

The number ε is the slope of the underlying rotation R, and l determines the length of the
induction interval J . It is obvious that the above parameters satisfy

(2) ε ∈ (0, 1) , max(ε, 1− ε) < l < 1 , −l < c ≤ 0.

We redefine five intervals in this setting

IA = [c, c + α), IB = [c + α, c + ε), IC = [c + ε, c + l), ID = [c + l, c + 1), IE = [c− β, c).

We define I = IA ∪ IB ∪ IC ; the map T (introduced above in Section 3) is defined on I as the
exchange of three intervals IA, IB, IC according to the permutation (321).

We also define
J0 = IA ∪ IB, J1 = IC ∪ ID and J = J0 ∪ J1

J ′0 = IE ∪ IA, J ′1 = IB ∪ IC and J ′ = J ′0 ∪ J ′1.

Rotation R (resp. R′) is then defined on J (resp. J ′) by the exchange of J0 and J1 (resp. J ′0
and J ′1); it has angle 1− ε, J0 and J ′0 have length ε, whereas J1 and J ′1 have length 1− ε.

Let us formulate the definition of 3iet words with the use of these new parameters.
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Definition 4.1. Let ε, l, c ∈ R satisfy (2). The infinite word (un)n∈N defined by

(3) un =

 A if Tn(0) ∈ IA ,
B if Tn(0) ∈ IB ,
C if Tn(0) ∈ IC

is called the 3iet word with parameters ε, l, c.

There is a simple classical way to give a combinatorial interpretation of the induction process
of Lemma 3.1 in terms of substitutions. Consider indeed the orbit (Tn(0))n∈N of 0 under T ; it
is clear by Lemma 3.1 that it is a subset of the orbit (Rn(0))n∈N under R; the points of the
second orbit which are not in the first orbit are exactly the points in ID, and their preimages
are exactly the points in IB; the return time of these points to I is 2. Let u be the coding of
the orbit of 0 under T with respect to the partition in three intervals IA, IB, IC ; to obtain the
coding of the orbit of the same point under R, with respect to the partition IA, IB, IC , ID, this
argument shows that it is enough to introduce a letter D after each B, i.e., to replace B by
BD; to obtain the natural sturmian coding with respect to the partition J0, J1, we then project
letters A,B to 0 and C,D to 1.

Definition 4.2. We denote by σ (resp. σ′) the morphism from {A,B, C}∗ to {0, 1}∗ defined by
σ(A) = 0, σ(B) = 01, σ(C) = 1 (resp. σ′(A) = 0, σ′(B) = 10, σ′(C) = 1).

We thus have proved the following:

Lemma 4.3. Let u be the coding of the orbit of 0 under T , with respect to the partition IA, IB, IC ,
and let v (resp. v′) be the coding of the orbit of 0 under R (resp. R′) with respect to the partition
J0, J1 (resp. J ′0, J

′
1). Then v = σ(u), v′ = σ(u′).

This implies that, if ε is irrational, then σ(u) and σ(u′) are sturmian sequences whose density
of 0 equals ε.

4.2. Characterization theorem. We will now prove the reciprocal (Theorem A below); we
need some properties of sturmian sequences.

Let v be a sturmian sequence that codes the orbit of a rotation of angle 1− ε modulo 1 with
density of 0 equal to ε, and let Vn be the prefix of v of length n, i.e., Vn = v0 · · · vn−1. Define a
map

f : {0, 1}∗ → R by f(V ) = |V |0(1− ε)− |V |1ε.
From the definition, we see that

∀n, f(Vn) = |Vn|0 − nε,

hence the sequence (f(Vn))n∈N is the orbit of 0 under a rotation defined on an interval [c, c+1),
with c = inf{f(Vn)|n ∈ N}; in particular, we have, for all integers i, j, |f(Vi)− f(Vj)| < 1.

We have the following lemma:

Lemma 4.4. Let v be a sturmian sequence, and let (nk)k∈N be a strictly increasing sequence of
integers that satisfies vnk−1 = 0, vnk

= 1. Define a new sequence v′ by: v′nk−1 = 1, v′nk
= 0,

v′i = vi otherwise. The sequence v′ is sturmian if and only if for every i which is not in the
sequence (nk)k∈N, and for all j, we have f(Vnj ) > f(Vi).

Proof. For all n, let V ′
n stand for the prefix of v′ of length n. We have f(Vi) = f(V ′

i ), except if
i = nk, and then one checks that f(V ′

nk
) = f(Vnk

)− 1.
We first assume that v′ is sturmian. Suppose that f(Vi) ≥ f(Vnj ), for some i, j, with i not

in the sequence (nk)k∈N; then we must have f(V ′
i ) ≥ f(V ′

nj
) + 1; but this is impossible since v′
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is a sturmian sequence with the same density of 0’s as v. Hence for every i which is not in the
sequence (nk)k∈N, and for all j, we have f(Vi) < f(Vnj ).

Conversely, we assume that for every i which is not in the sequence (nk)k∈N, and for all j, we
have f(Vnj ) > f(Vi). One checks that for all integers i, j, |f(V ′

i ) − f(V ′
j )| < 1. Indeed, this is

immediate if i and j both belong to (nk)k∈N, or else if none of them belong to this sequence. If
i is not in the sequence (nk)k∈N, then |f(V ′

i ) − f(V ′
nj

)| = |f(Vi) − f(Vnj ) + 1| < 1. We deduce
that the sequence v′ is a balanced sequence. Indeed, take two factors W and W ′ of the same
length n of the sequence v′ that occur respectively at index i and j. One has

||W |0 − |W ′|0| = |(f(V ′
i+n)− f(V ′

j+n))− (f(V ′
i )− f(V ′

j ))| < 2.

We deduce that the densities of letters are well-defined in v′. By construction, they coincide
with the densities of letters for the sequence v. Since the latter is sturmian, these densities are
irrational, hence v′ is an aperiodic balanced sequence and is thus a sturmian sequence according
to [16]. �

We are now in position the prove the first theorem:

Theorem A. Let u be a sequence on the alphabet {A,B, C} whose letters have positive densities.
This sequence is an aperiodic 3iet word if and only if σ(u) and σ′(u) are sturmian words.

Proof. We have proved above (Lemma 4.3) that the condition is necessary. Let us prove it is
sufficient. Assume v = σ(u), v′ = σ′(u) are two sturmian words; by construction, they have the
same slope ε, and coincide except on a sequence of pairs of indices (nk − 1, nk), corresponding
to the images of B, where 0 is replaced by 1 and vice versa.

Define the function f as above, and define c = inf{f(Vk) | k ∈ N}, l = inf{f(Vnk
) | k ∈ N}−c.

From Lemma 4.4, we deduce that an index i is of the form nk if and only if f(Vi) ≥ l + c if
inf{f(Vnk

)} = min{f(Vnk
)} (resp. f(Vi) > l + c otherwise). Then one checks that the sequence

u is generated by the exchange T of the three intervals IA, IB, IC with either

IA = [c, c + ε + l − 1), IB = [c + ε + l − 1, c + ε), IC = [c + ε, c + l)

or
IA = (c, c + ε + l − 1], IB = (c + ε + l − 1, c + ε], IC = (c + ε, c + l],

with the choice of intervals being determined by the values of u, and thus of v and v′, at
the indices (if any) where the orbit of 0 under T meets discontinuity points. The interval IB

corresponds to the times nk− 1 for the sequence v, and IA and IC resp. to value 0 and 1 for the
other times. Since the image of u by the substitution σ is aperiodic by hypothesis, the sequence
u itself is aperiodic. �

Figure 1 gives a geometric interpretation of the proof; to the 3iet word u, we have associated
a stepped line (bold line), by associating letter A to vector (1, 0), B to (1, 1), and C to (0, 1).
Note that this stepped line is contained in a “corridor” of width less than 1; the two sturmian
lines associated with v and v′, obtained by enlarging the corridor on the right or the left to the
width of the unit square, are shown in dashed lines.

4.3. Complexity. It is known that the factor complexity of the infinite words (3) satisfies
C(n) ≤ 2n + 1 for all n ∈ N. A short proof can be given by considering the partition P in three
intervals; to count the number of factors of length n, it is enough to count the number of atoms
of the partition

∨n−1
k=0 T−kP. But it is easy to prove that these atoms are intervals bounded

by reciprocal images of the two discontinuity points. As there can be at most 2n such points
between time 0 and n− 1, there are at most 2n+1 intervals.
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Figure 1. The stepped line associated with a 3-iet word and its two sturmian extensions

The infinite words (un)n∈N, which have full complexity, are called non-degenerate (or regular)
3iet words; 3iet words for which there exists n such that C(n) < 2n + 1 are called degenerate.

The necessary and sufficient condition for a word (un)n∈N coding 3iet to be non-degenerate is
the so-called i.d.o.c. (infinite distinct orbit condition). This notion was introduced by Keane [18]
and requires, in this case, that the orbits of the two points of discontinuity of the transformation
T are disjoint, formally {Tn(c + l − 1 + ε)}n∈N ∩ {Tn(c + ε)}n∈N = ∅. If this condition holds
true, then the partition above is limited by exactly 2n points on the interval, hence has 2n + 1
atoms. The condition i.d.o.c is equivalent to

(4) ε /∈ Q and l /∈ Z + Zε =: Z[ε] ,

see [1, 15].

Remark 4.5. If ε is irrational, it is usual that rotation R is uniquely ergodic, which implies
that T is also uniquely ergodic. In this case, the densities of letters in the 3iet aperiodic word
are well defined and ~%u is proportional to the vector of lengths of intervals IA, IB, IC .

If ε is rational, the sequence u is periodic, hence the densities exist in a trivial way.

5. Translation vectors

Let u be a 3iet word as defined in Definition 4.1. In our considerations, the column vector of
translations will play a crucial role. We denote it by

~t =

tA
tB
tC

 =

 1− ε
1− 2ε
−ε

 .

A first remark is that the vector of translations is orthogonal to the vector of densities. This
can be checked directly, and interpreted as the fact that the mean translation is 0, because the
orbit under the action of the map T is bounded.
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We furthermore assume that u is fixed by some substitution ϕ. We will now obtain a more
subtle equation using the substitution ϕ. Let us define a function g (in flavour of the map f
defined in Section 4.2) on prefixes of the infinite word u, the fixed point of ϕ. For the prefix
w = u0u1 · · ·un−1, n ≥ 0, we put

g(u0u1 · · ·un−1) := Tn(0) = |w|AtA + |wB|tB + |wC |tC .

In particular, the image of the empty word equals 0 . For X ∈ {A,B, C}, put

EX :=
{

g
(
u0u1 · · ·un−1

) ∣∣∣ un = X
}

=
{

(|w|A, |w|B, |w|C)~t
∣∣∣ wX is a prefix of u

}
.

Clearly, the closure of the set EX satisfies EX = IX .
The infinite word u0u1u2 · · · = ϕ(u0)ϕ(u1)ϕ(u2) · · · can be imagined as a concatenation of

blocks ϕ(A), ϕ(B), ϕ(C). Positions where these blocks start and the corresponding iterations
of T , are given by the following sets. For X ∈ {A,B, C}, put

Eϕ(X) :=
{

g
(
ϕ(u0u1 · · ·un−1)

) ∣∣∣ un = X
}

=
{

g
(
ϕ(w)

) ∣∣∣ wX is a prefix of u
}

.

From the definition of the matrix Mϕ, it follows that

(5) Eϕ(X) =
{

(|w|A, |w|B, |w|C)Mϕ~t
∣∣∣ wX is a prefix of u

}
.

Obviously,
Eϕ(A) ∪ Eϕ(B) ∪ Eϕ(C) ⊂ {Tn(0) | n ∈ N} ⊂ I ,

and the union is disjoint. The fact that T k(0) belongs to Eϕ(A) is equivalent to

• ukuk+1uk+2 · · · has the prefix ϕ(A);
• u0u1 · · ·uk−1 = ϕ(u0u1 · · ·ui−1) for some i ∈ N;
• ui = A.

A similar statement is true for elements of the sets Eϕ(B) and Eϕ(C). Moreover, from the
construction of Eϕ(X) it follows that if T k(0) ∈ Eϕ(X), then the smallest n > k for which
Tn(0) ∈ Eϕ(A) ∪ Eϕ(B) ∪ Eϕ(C) satisfies n− k = |ϕ(X)|.

The infinite word u can therefore be interpreted as a word coding exchange of three sets
Eϕ(A), Eϕ(B), Eϕ(C), with translations

tϕ(X) := |ϕ(X)|AtA + |ϕ(X)|BtB + |ϕ(X)|CtC .

Obviously, one has(
Eϕ(A) + tϕ(A)

)
∪

(
Eϕ(B) + tϕ(B)

)
∪

(
Eϕ(C) + tϕ(C)

)
= Eϕ(A) ∪ Eϕ(B) ∪ Eϕ(C) ⊂ I .

From the definition of tϕ(X), it follows that the translation vector ~tϕ = (tϕ(A), tϕ(B), tϕ(C))T

satisfies

(6) ~tϕ = Mϕ~t .

6. Balance properties of fixed points of substitutions

Definition 6.1. We say that an infinite word u = (un)n∈N has bounded balances if there exists
0 < K < +∞ such that for all n ∈ N, and for all pairs of factors w, ŵ ∈ Ln(u), it holds that∣∣|w|a − |ŵ|a

∣∣ ≤ K , for all a ∈ A .
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The above definition is a generalization of the notion of balanced words, which correspond
to a constant K equal to 1.We have used the fact that aperiodic balanced words over a binary
alphabet are precisely the sturmian words in the proof of Lemma 4.4 [16]. The balance properties
of the considered generalization of sturmian words, i.e., 3iet words, are more complicated. The
following is a consequence of results in [1].

Proposition 6.2. Let u be a 3iet word. Then u has bounded balances if and only if it is
degenerated.

In this paper, we focus on substitution invariant non-degenerate 3iet words. We shall make
use of the following result of Adamczewski [2], which describes the balance properties of fixed
points of substitutions dependently on the spectrum of the incidence matrix. We mention only
the part of his Theorem 13 which will be useful in our considerations.

Proposition 6.3. Let the infinite word u be invariant under a primitive substitution ϕ with
incidence matrix Mϕ. Let Λ be the dominant eigenvalue of Mϕ. If |λ| < 1 for all other
eigenvalues λ of Mϕ, then u has bounded balances.

7. Necessary conditions for substitution invariance of 3iet words

We now have gathered all the required material for the proof of Theorem B which provides
necessary conditions on the parameters of the studied 3iet words to be invariant under substi-
tution.

Theorem B. Let u = (un)n∈N be a non-degenerate 3iet word with parameters ε, l, c satisfying (2)
and (4). Let ϕ be a primitive substitution such that ϕ(u) = u. Then parameter ε is a Sturm
number.

Proof. The density vector of the word u is the vector ~%u =
(
1 − 1−ε

l , 1
l − 1, 1 − ε

l

)
. The vector

~%u is a left eigenvector corresponding to the Perron-Frobenius eigenvalue Λ. Since ~%u is not
a multiple of any rational vector by Remark 4.5 and Mϕ is an integral matrix, Λ is either a
cubic or a quadratic irrational number. If Λ is cubic, then the eigenvalues of Mϕ are Λ and its
algebraic conjugates. If Λ is quadratic, then the eigenvalues are Λ, its algebraic conjugate, and
a rational number. In both cases, Mϕ has 3 different eigenvalues. Denote the other eigenvalues
of Mϕ by λ1, λ2 and by ~x1, ~x2 the right eigenvectors of the matrix Mϕ corresponding to λ1 and
λ2, respectively, i.e.,

(7) Mϕ~x1 = λ1~x1 and Mϕ~x2 = λ2~x2 .

A left eigenvector and a right eigenvector of a matrix corresponding to different eigenvalues
are mutually orthogonal. Therefore the vectors ~x1, ~x2 form a basis of the orthogonal plane to
the left eigenvector corresponding to Λ. Since the vector ~t = (1 − ε, 1 − 2ε,−ε)T is orthogonal
to ~%u, we can write

(8) ~t = µ~x1 + ν~x2 for some µ, ν ∈ C .

Our aim is now to show that either µ = 0 or ν = 0, i.e., that the vector ~t is a right eigenvector
of the matrix Mϕ.

Recall that the translation vector ~tϕ satisfies (6). Since this holds for any substitution which
has u0u1u2 · · · for its fixed point, one can write

(9) ~tϕn = Mϕn ~t = Mn
ϕ

~t .
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Since ~tϕn represents translations of subsets of a bounded interval I, the vector ~tϕn must have
bounded components. Combining (7), (8), and (9) indicates that the sequence of vectors

(10) Mn
ϕ

~t = µλn
1~x1 + νλn

2~x2

is bounded.
We shall now distinguish two cases. Recall that the Perron eigenvalue Λ must be an algebraic

integer of degree three or two.

The cubic case. Suppose that Λ is a cubic number. Then λ1, λ2 are its algebraic conjugates. By
assumption, u is a non-degenerate 3iet word, and thus, using Proposition 6.2 and Proposition 6.3
and the fact that Salem numbers2 of degree 3 do not exist, we derive that one of the eigenvalues
λ1, λ2 is in modulus greater than 1, say |λ2| > 1. The boundedness of the sequence of vectors
(Mn

ϕ
~t)n∈N in (10) implies that ν = 0 and thus ~t is a right eigenvector of the matrix Mϕ, so

without loss of generality, let ~x1 = ~t.
Then the components of the vector ~x1 = ~t = (1−ε, 1−2ε,−ε)T belong to the field Q(λ1), but

the first plus the last components of the vector ~x1 are equal to the middle one. If a matrix M
has such an eigenvector corresponding to the eigenvalue λ, then the vector arising as the sum
of the first and second columns of the matrix M − λI and the vector arising as the sum of the
second and the third columns of the matrix M − λI are colinear. This implies that λ is a root
of a monic polynomial of degree 2. This is a contradiction with cubicity of λ1.

The quadratic case. We have shown that Λ is a quadratic number. In this case, the other
eigenvalues of Mϕ are the conjugate λ1 = Λ′ of Λ and λ2 = r ∈ Z. The irrationality of the
vector ~t implies that µ 6= 0. Let us also suppose that ν 6= 0. The boundedness of Mn

ϕ
~t in (10)

implies that |Λ′| < 1 and |r| ≤ 1. By Proposition 6.3, we have |r| ≥ 1 and thus r = ±1. Without
loss of generality, we can assume that r = 1, otherwise we consider the morphism ϕ2 instead of
ϕ. For the vector ~tϕn of translations of the sets Eϕn(A), Eϕn(B), Eϕn(C), it holds that

~tϕn = µ(Λ′)n~x1 + ν~x2 −→
n→∞

ν~x2 6= ~0 .

We shall make use of the following property of infinite words coding 3iet. For arbitrary
factor w ∈ L(u), let Iw denote the closure of the set {Tn(0) | w is a prefix of unun+1un+2 · · · }.
It is known that Iw is an interval. With growing length of w, the length |Iw| of the interval
Iw approaches 0. Since the morphism ϕ is primitive, the length ϕn(X) grows to infinity with
growing n for every letter X. Obviously Eϕn(X) ⊂ Iϕn(X) and limn→∞ |Iϕn(X)| = 0.

Recall that Eϕn(A), Eϕn(B), Eϕn(C) are disjoint and their union is equal to
(
Eϕn(A)+tϕn(A)

)
∪(

Eϕn(B) + tϕn(B)

)
∪

(
Eϕn(C) + tϕn(C)

)
. Since by assumption limn→∞~tϕn = ν~x2 6= ~0, for

sufficiently large n, one of the following facts is true:
– either there exist X, Y ∈ {A,B, C}, X 6= Y such that

Eϕn(X) = Eϕn(Y ) + tϕn(Y ) ,

– or for mutually distinct letters X, Y, Z of the alphabet, we have

Eϕn(X) ∪ Eϕn(Z) = Eϕn(Y ) + tϕn(Y ) .

This would, however, mean for the densities of letters that %(Z) = %(X) = %(Y ), or %(Y ) =
%(X)+%(Z), respectively. This contradicts the fact that u is a non-degenerate 3iet word. Hence
the assumption ν 6= 0 leads to a contradiction.

2An algebraic integer is called a Salem number, if it is a real number > 1, and all its algebraic conjugates are
in modulus ≤ 1 with at least one of them laying on the unit circle. It is known [12] that all Salem numbers are
of even degree greater than or equal to 4.
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Thus by (8), vector ~t is a right eigenvector of the matrix Mϕ corresponding to the eigenvalue
Λ′.

Since Λ is a quadratic number, ε is also a quadratic number and Λ ∈ Q(ε′) = Q(ε), where ε′

is the algebraic conjugate of ε. Applying the Galois automorphism of the field Q(ε), we deduce
that the vector ~t′ := (1− ε′, 1− 2ε′,−ε′)T is a right eigenvector corresponding to Λ, i.e., it has
either all positive or all negative components. Therefore we have (1 − ε′)ε′ < 0, which means
that ε is a Sturm number. �

The proof of Theorem B provides several direct consequences.

Corollary 7.1. Let u = (un)n∈N be a non-degenerate 3iet word with parameters ε, l, c satisfy-
ing (2) and (4). Let ϕ be a primitive substitution such that ϕ(u) = u. Then

• the incidence matrix Mϕ of ϕ is non-singular;
• its Perron-Frobenius eigenvalue is a quadratic number Λ ∈ Q(ε);
• its right eigenvector corresponding to Λ is equal to (1− ε′, 1− 2ε′,−ε′)T , where ε′ is the

algebraic conjugate of ε.

Another consequence of the proof of Theorem 7 is that the Perron-Frobenius eigenvalue of the
incidence matrix Mϕ of the substitution ϕ under which a 3iet word is invariant is an algebraic
unit. Before stating this result, recall that since ~t is an eigenvector of Mϕ corresponding to Λ′,
the definition of the set EX and equation (5) imply

(11) Eϕ(X) = Λ′EX .

In accordance with the definition of translations tX and tϕ(X) for a letter X in the alphabet
A = {A,B, C}, we can more generally introduce the translation tw for any finite word w ∈ L(u),
as

tw := |w|AtA + |w|BtB + |w|CtC .

With this notation, we can describe several properties of the sets Eϕ(X)+tw, where w is a proper
prefix of ϕ(X), X ∈ A. (The number of these sets is |ϕ(A)|+ |ϕ(B)|+ |ϕ(C)|.) The substitution
invariance of u under ϕ, u0u1u2 · · · = ϕ(u0)ϕ(u1)ϕ(u2) · · · , implies the following facts:

(1) Eϕ(X) + tw = T |w|(Eϕ(X)).
(2) The sets Eϕ(X) + tw, where w is a proper prefix of ϕ(X), X ∈ A, are mutually disjoint.
(3) For any letter X ∈ A and for every proper prefix w of ϕ(X), there exists a letter Y ∈ A

such that Eϕ(X) + tw ⊆ EY .

(4)
⋃
x∈A

⋃
w is a proper
prefix of ϕ(X)

(
Eϕ(X) + tw

)
= EA ∪ EB ∪ EC .

Corollary 7.2. Let u = (un)n∈N be a non-degenerate 3iet word with parameters ε, l, c satis-
fying (2) and (4). Let ϕ be a primitive substitution such that ϕ(u) = u. Then the dominant
eigenvalue of the incidence matrix Mϕ of ϕ is a quadratic unit and parameters c, l belong to
Q(ε).

Proof. We already know that the Perron-Frobenius eigenvalue Λ of the matrix Mϕ is a quadratic
number. For contradiction, assume that Λ is not a unit. Since Mϕ~t = Λ′~t, we have Λ′Z[ε] ⊆ Z[ε].
If Λ is not a unit, then Λ′Z[ε] is a proper subset of Z[ε] and the quotient abelian group Z[ε]

/
Λ′Z[ε]

has at least two classes of equivalence. For the purposes of this proof, /J denotes the left end-
point of a given interval J .

Note that EX ⊂ Z[ε], Eϕ(X) = Λ′EX ⊂ Λ′Z[ε] and EX 6⊂ Λ′Z[ε] for all X ∈ A. Facts (2)—(4)
above imply that the left boundary point of interval IA, i.e., the point /IA = c must coincide
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with /
(
Eϕ(X1) + tw1

)
, and /

(
Eϕ(X2) + tw2

)
, for some letters X1, X2 ∈ A and some prefixes w1, w2

of ϕ(X1), ϕ(X2), respectively. The above property (1) and equation (11) imply

/
(
Eϕ(Xi) + twi

)
= T |wi|

(
/(Λ′EXi)

)
.

Since Tn(x) 6= x for all n 6= 0 and all x ∈ I, we necessarily have X1 6= X2. The same reasons
imply for the left boundary point of the interval IB, that there exist at least two distinct letters
Y1 6= Y2, such that /

(
Eϕ(Yi) + tvi

)
coincide with /IB = c + l − (1 − ε) for some proper prefixes

vi of ϕ(Yi).
Since the distance l − 1 + ε between /IA and /IB is not an element of Z[ε], we must have

Yi 6= Xj for i, j = 1, 2. This contradicts the fact that the alphabet has only 3 letters. Therefore
Λ′ is a unit.

The fact that /IA = c, /IB = c + l− 1 + ε, /IC = c + ε coincides with iterations of points Λ′c,
Λ′(c + l − 1 + ε), Λ′(c + ε) implies that c, l ∈ Q(ε). �

8. Conclusions

(1) One might ask wether there are other pairs of morphisms than (σ, σ′) that could be used
in theorem A. This is indeed the case, and we could in fact compose with any sturmian
morphism. Indeed, rotations can be “exduced” in many ways to larger rotations, and
this amounts to applying an arbitrary sturmian substitution. In contrast, they can be
induced essentially only in one way, which is driven by the continued fraction expansion
of the slope.

However, the substitutions σ and σ′ are the simplest ones that can be used. A geomet-
ric way to understand this is the following: with any interval exchange, we can associate
a broken line, as explained in Figure 1. This broken line is given as a cut-and-project
scheme, its vertices are exactly the rational points in a slice; the smallest slice containing
it which gives a sturmian line is the slice obtained by sliding the unit square, as shown
in Figure 1, and this leads to the two substitutions σ and σ′. It is of course possible to
take a larger slice, by a change of basis in Z2, and we obtain in this way other, more
complicated, substitutions.

(2) In this paper we have focused on non-degenerate 3iet words. In fact, for the proof of
the result stated in Theorem B we need non-vanishing determinant of the substitution
matrix, which is ensured only for substitutions fixing non-degenerate 3iet words. For,
substitution with degenerate 3iet words as a fixed point may have both singular and non-
singular incidence matrix. As an example, consider the transformation T : [0, 2) 7→ [0, 2)
exchanging intervals of lengths α = τ2, β = τ and γ = 1, where τ = 1

2(
√

5 − 1). Note
that τ2 + τ = 1.

If we consider the pointed biinfinite word u(1) coding the orbit of the point x0 = 0,
we obtain, by the Rauzy induction on the interval J = [0, τ2), the substitution A 7→
AC,B 7→ ACBC,C 7→ BC with the incidence matrix

(
1 0 1
1 1 2
0 1 1

)
, which is singular.

On the other hand, if x0 = 1, we find by induction on the interval J = [1− τ2, 1 + τ2)
that the corresponding pointed word u(2) is invariant under the substitution A 7→ B,B 7→
BCB,C 7→ CAC with the incidence matrix

(
0 1 0
0 2 1
1 0 2

)
of unit determinant.

The pointed biinfinite words u(1) and u(2) differ just by the position of the delimiter,
namely

u(1) : · · ·ACBCBC|ACBCACBCBC · · ·
u(2) : · · ·ACBCB|CACBCACBCBC · · ·
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In the same time, it is obvious, that the words are degenerate, since the letter C occurs
exactly on the odd (resp. even) positions, and by erasing it, we obtain a sturmian word,
namely the Fibonacci word.

(3) Our paper does not study the properties of morphisms with 3iet fixed points. Rather,
it describes properties of the corresponding incidence matrices, as summarized in Corol-
laries 7.1 and 7.2. We can deduce that the eigenvalues of a substitution matrix Mϕ are
a quadratic unit λ, its algebraic conjugate λ′ = ±λ−1 and m ∈ Z. The arguments given
in this paper do not allow us to derive the value of m. However, using the fact (see [5])
that a substitution fixing a non-degenerate 3iet word is 3iet preserving, we can use the
results of [6], to derive that m = ±1. Note that we call a morphism 3iet preserving, if it
preserves the set of 3iet words.
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