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Abstract. Arithmetic discrete planes can be considered as liftings in
the space of quasicrystals and tilings of the plane generated by a cut and
project construction. We first give an overview of methods and properties
that can be deduced from this viewpoint. Substitution rules are known to
be an efficient construction process for tilings. We then introduce a sub-
stitution rule acting on discrete planes, which maps faces of unit cubes
to unions of faces, and we discuss some applications to discrete geometry.
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1 Introduction

Discrete planes are known since the work of Réveillès [Rev91], see also [AAS97],
to be efficiently defined in arithmetic terms, which allows a precise and effective
understanding of most of their properties, see e.g. [BCK07]. More precisely, let
v ∈ Rd, μ, ω ∈ R. The arithmetic discrete (hyper)plane P(v, μ, ω) is defined as
the set of points x ∈ Zd satisfying 0 ≤ 〈x, v〉 + μ < ω . We assume now for the
sake of clarity that d = 3 but the results and methods mentioned in the present
paper hold for any d ≥ 3.

For the sake of simplicity v = (v1, v2, v3) is assumed in all that follows to be a
nonzero vector with nonnegative coordinates. We consider here integer as well as
irrational parameters v, μ, ω. We recall that the dimension of the lattice of the
period vectors of an arithmetic discrete plane is equal to the dimension of the
space d minus the dimension of the Q-vector space generated by the coordinates
of the normal vector v.

Our aim is to focus on the properties of arithmetic discrete planes obtained
when noticing that they can be described thanks to a so-called cut and project
construction which consists in projecting a subset of a lattice onto a plane.
Indeed, arithmetic discrete planes are obtained by selecting points of the lattice
Z3: we take a slice of width ω of Z3 along the Euclidean hyperplane P (v, μ)
with equation 〈x, v〉 + μ = 0. We thus have performed the cutting part of the
construction. The interval [0, ω) is called the selection window.

Consider now the projection part. Let π0 be the orthogonal projection onto
the hyperplane P0 with equation 〈x, (1, 1, 1)〉 = 0. Recall that v is assumed
to have nonnegative coordinates. By projecting by π0 the arithmetic discrete
plane P(v, μ, ω), one gets a set of points of P0 which is a Delone set, that is,
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it is relatively dense (there exists R > 0 such that any Euclidean ball of P0

of radius R contains a point of this set) and uniformly discrete (there exists
r > 0 such that any ball of radius r contains at most one point of this set). We
have recovered via this construction a so-called quasicrystal, that is, a discrete
structure which displays long-range order without having to be periodic. The
object of the present paper is to stress it. For more details, see for instance
[Sen95].

This selection and projection method is also widely used as an efficient method
for constructing tilings. Recall that a tiling by translation of the plane by a set
T of (proto)tiles is a union of translates of elements of T that covers the full
plane, with any two tiles intersecting either on an empty set, or on a vertex or
on an edge. For more details on tilings, see for instance [GS87].

Note that the choice of the projection π0 for the definition of the cut and
project set P0 is noncanonical. We have chosen here a projection π0 that maps
in a one-to-one way our selected set of points to a discrete set endowed with an
underlying lattice (see Section 2.1), whereas the orthogonal projection of this
set onto the line orthogonal to P0 is dense in the selection window [0, ω) when
v has irrational entries. We will use this latter denseness result in Section 2.3.
Such a choice for π0 enters the framework of cut and project schemes. For precise
definitions, see [BM2000].

This paper is organized as follows. Section 2 introduces a tiling and a two-
dimensional coding associated with arithmetic discrete planes. We will show
how to deduce properties of configurations and regularity properties such as
repetitivity. The idea will be to associate with finite configurations occuring in
the discrete plane subintervals of the selection window [0, ω). This allows us to
handle simultaneously arithmetic discrete planes having the same normal vector.
We then want to “compare” discrete planes having different normal vectors. We
thus introduce in Section 3 a substitution rule acting on discrete planes, and
whose action is described with respect to their normal vector v. We conclude
this survey of applications of tiling theory in the study of arithmetic discrete
planes by focusing in Section 4 on so-called boundary words.

2 Discrete Planes Coded as Multidimensional Words

Let P(v, μ, ω) be an arithmetic discrete plane. We have obtained so far a dis-
crete set of points π0(P(v, μ, ω)) of the plane P0 which has a priori no specific
algebraic structure. Neverthless, we have obtained this set via a selection process
which involves the lattice Z3 and a projection π0 which also displays some kind
of regularity. We first show how to recover a lattice underlying the arithmetic
discrete plane P(v, μ, ω). We assume that we are in the standard case ω = ||v||1.

2.1 A Tiling by Lozenges

One way to recover this lattice is to associate with the quasicrystal π0(P(v, μ, ω))
a tiling of the plane P0 obtained by connecting with edges points of the qua-
sicrystal. One checks that one gets a tiling of the plane P0 by three kinds of tiles,
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namely the three regular lozenges being the projections by π0 of the three faces
of the unit cube depicted on Fig. 1 below. We call them Ti, for i = 1, 2, 3. We
will denote this tiling by T (v, μ, ω).

Fig. 1. Left: The three lozenge tiles T1, T2, T3. Middle and Right: From the stepped
plane P(v, μ, ||v||1) to the tiling T (v, μ, ||v||1).

We also associate with P(v, μ, ω) a surface P(v, μ, ω) in R3 called stepped
plane defined as the union of translates of faces of the unit cube whose ver-
tices belong to P(v, μ, ω). The projection by π0 of P(v, μ, ω) yields the tiling
T (v, μ, ω) (see Fig. 1).

Conversely, any tiling made of the three lozenge tiles Ti, for i = 1, 2, 3, admits
a unique lifting as a surface in R3 up to translation by the vector (1, 1, 1), with
this lifting being equal to P(v, μ, ω) if the tiling equals T (v, μ, ω). The idea of
the proof is to associate with every vertex of the tiling a height function that
is uniquely determined and whose definition is globally consistent. For more
details, see [Thu89] and for a proof in this context, see [ABFJ07]. Tilings by the
three tiles Ti are widely studied in the framework of dimers on the honeycomb
graph (see [KO05]).

We now pick for each tile Ti a particular vertex, called its distinguished vertex.
More precisely, let (e1, e2, e3) stand for the canonical basis of R3. We consider
the following faces of the unit cube: F1 = {λe2 + μe3 | 0 ≤ λ, μ ≤ 1}, F2 =
{−λe1 + μe3 | 0 ≤ λ, μ ≤ 1}, F3 = {−λe1 − μe2 | 0 ≤ λ, μ ≤ 1}. One has
Ti = π0(Fi), for i = 1, 2, 3. For x ∈ Z3, the distinguished vertex of x + Fi is
then defined as x, and similarly the distinguished vertex of the tile y +Ti of the
tiling T (v, μ, ω) is defined as y.

Note that one has a one-to-one correspondence between tiles Ti + y of the
tiling T (v, μ, ω) and faces Fi + x in R3 of the stepped plane (v, μ, ω): indeed,
for any tile Ti + y of the tiling T (v, μ, ω), there exists a unique x such that
π0(x) = y and 0 ≤ 〈x, v〉 + μ < ||v||1.

Now one checks that the set of distinguished vertices of P(v, μ, ω) is a lattice
(see [BV00]). We thus have found a lattice underlying the arithmetic discrete
plane P(v, μ, ||v||1) even if the coordinates of v are rationally independent, that
is, even if the arithmetic discrete plane has no nonzero period vector. Since the
set of distinguished vertices is a lattice that can be assimilated to Z2, we can
code as a Z2-word over the alphabet {1, 2, 3} any arithmetic discrete plane. See
[BV00] for more details and Fig. 2 below for an illustration.
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Fig. 2. From a discrete plane to its coding as a two-dimensional word

2.2 Configurations

We want now to localize with respect to the value 〈x, v〉 in the selection window
[0, ω) the distinguished vertices of faces of a given type. Recall that we work in
the standard case. One has 0 ≤ 〈x, v〉 + μ < ||v||1 = v1 + v2 + v3.

Assume first that 0 ≤ 〈x, v〉 + μ < v1. Then x + e2, x + e3, x + e2 + e3 all
belong to P(v, μ, ω). We thus deduce that the full face F1 + x is included in
P(v, μ, ω).

Similarly, assume v1 ≤ 〈x, v〉+μ < v1+v2 (respectively v1+v2 ≤ 〈x, v〉+μ <
v1 + v2 + v3). Then x − e1, x + e3, x − e1 + e3 (respectively x − e1, x − e2,
x − e1 − e2) all belong to P(v, μ, ω). We thus deduce that the full face F2 + x
(respectively F3 + x) is included in P(v, μ, ω).

In fact more can be said. One checks for x ∈ Z3 that

x + Fi ⊂ P(v, μ, ω) if and only if
∑
k<i

vk ≤ 〈x, v〉 + μ <
∑
k≤i

vk. (1)

Note that we have only sketched the proof of the “if ” direction. For a full proof
and more details, see [BV00].

In other words, our convention for the choice of a distinguished vertex of a face
implies that a face of type i with distinguished vertex x is included in P(v, μ, ω)
if and only if 〈x, v〉+ μ ∈ Ii. Hence, we have cut the selection interval [0, ||v||1)
into three subintervals,

I1 = [0, v1), I2 = [v1, v1 + v2), I3 = [v1 + v2, v1 + v2 + v3),

each of them corresponding to the occurrences of the distinguished vertex of
particular type of a face.

This holds not only for faces but also for finite unions of faces. A configuration
of the tiling T (v, μ, ω) is an edge-connected finite union of lozenge tiles contained
in the tiling. We asume that 0 is always a distinguished vertex of one of the
faces of a configuration. We then consider occurrences of configurations up to
translation. Note that liftings in P(v, μ, ω) of configurations correspond to usual
local configurations of discrete planes. By abuse of terminology, we also call
them here configurations. The configuration C is said to occur at y in the tiling
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T (v, μ, ω) if C +y is included in it. We then can associate with the configuration
C the set IC defined as the closure of the set

{〈x, v〉 + μ | y = π0(x), x ∈ P(v, μ, ω), C occurs in T (v, μ, ω) at y}.

One checks that the set IC is an interval if the dimension of the Q-vector space
generated by the coordinates of v is at least 2. We use the denseness in the
acceptance window [0, ω) of (〈x, v〉)x∈Z2 . If v has integer coprime entries and
μ is also an integer, IC is a set of consecutive integers. We use in this latter
case Bezout’s lemma. For a proof, see [BV00]. It also uses the fact that IC is
described as an intersection of intervals which are preimages of the intervals Ii

under the action of the translations x �→ x+ vj , for i, j ∈ {1, 2, 3}. We thus have
here again divided the selection window [0, ω) into unions of intervals associated
with configurations.

Let us illustrate it on one example. Consider the configuration C = T1∪(T1 +
e3). Configuration C occurs at y if and only if 〈x, v〉+μ ∈ I1 and 〈x+e3, v〉+μ =
〈x, v〉+ v3 +μ ∈ I1, that is, 〈x, v〉+μ ∈ I1 ∩ (I1 − v3). Hence IC �= ∅ if and only
if v1 > v3. If v1 > v3, then IC = [0, v1 − v3).

Note that this approach still holds when one works with arithmetic discrete
planes with general width [0, ω). One can similarly associate with a configuration
C a set IC defined here again as an intersection of intervals themselves intersected
with [0, ω).

2.3 Applications

We thus have been able to associate with a configuration C an interval IC of the
selection window [0, ω). Let us discuss several properties that can be deduced
from this correspondence.

A configuration C occurs if and only if IC is nonempty. Let us come back to the
example of the previous section. The lifting F1∪(F1 +e3) of the configuration C
occurs up to translation in P(v, μ, ω) if and only if IC = [0, v1−v3) is nonempty,
that is, v1 > v3. Note that this does not depend on the parameter μ.

We thus recover an effective way to check whether a configuration occurs in a
given arithmetic discrete plane. Indeed, the set IC can be effectively determined
such as shown in Section 2.2. It thus remains to check whether the coresponding
intersection is nonempty.

More generally, we deduce that two discrete planes with the same normal
vector and same width have the same configurations. Indeed, intervals IC do not
depend on μ and only depend on v. We furthermore can count the number of
configurations of a given size and shape. Indeed we have to determine the bounds
of the intervals IC and then count them. We can also determine the frequencies
of occurrence of configurations: they are given by the lengths of the intervals IC .
In this latter case, we use not only denseness results but equidistribution results.
For more details, see e.g. [BV00] and [BFJP07]. Note that these methods hold
for general widths ω.
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These methods are classic in word combinatorics, symbolic dynamics, or tiling
theory. Let us recall that standard and naive arithmetic discrete lines are coded
thanks to the Freeman code as Sturmian words [Lot02, PF02].

Consider now repetitivity results. The radius of a configuration is defined as
the minimal radius of a disk containing this configuration. Two configurations
in the plane P0 are said identical if they only differ by a translation vector. A
tiling is said repetitive if for every configuration C of radius r there exists a
positive number R such that every configuration of radius R contains C. This
is a counterpart of the notion of uniform recurrence in word combinatorics and
symbolic dynamics. In other words, configurations appear “with bounded gaps”.
Repetitive tilings can be considered as ordered structures.

Let C be a given configuration that occurs in the tiling T . We consider the
interval associated with C. Repetitivity can then be deduced from the following
fact. Given any interval I of R/Z, the sequence (nα)n∈N enters the interval I
with bounded gaps, that is, there exists N ∈ N such that any sequence of N
successive values of the sequence contains a value in I [Sla67]. We apply it to the
interval IC and work modulo ω in R/ωZ. We thus deduce that the configuration
C occurs in the tiling T with bounded gaps.

3 Substitutions

We have been so far able to describe properties of arithmetic discrete planes
sharing the same normal vector v. We now want to be able to relate two discrete
planes with different normal vectors v and v′. We focus on the case v = Mv′,
where M is a 3 by 3 square matrix with entries in N having determinant equal
to 1 or −1 (such a matrix is called unimodular).

3.1 Multidimensional Continued Fractions

Our motivation relies on the fact that unimodular transformations are the basic
steps when expanding vectors under the action of a unimodular multidimensional
continued fraction algorithm, such as Jacobi-Perron or Brun algorithms (here we
expand a normal vector v of a plane). It is well known that arithmetic discrete
lines and their codings as Sturmian words are perfectly well described by Euclid’s
algorithm and by the continued fraction expansion of their slope [Lot02, PF02].
We want to generalize this to the higher-dimensional case.

It is also well-known that there exists no canonical multidimensional continued
fraction algorithm. We focus here on unimodular algorithms such as described
in [Bre81, Sch00]. Such multidimensional continued fraction algorithms produce
sequences of matrices in GL(d, Z) as follows.

Let X ⊂ Rd. A d-dimensional continued fraction map over X is a map T :
X → X such that T (X) ⊂ X and, for any x ∈ X , there is a matrix in GL(d, Z)
depending on x (we thus denote it by M(x)) satisfying: x = M(x).T (x). The
associated continued fraction algorithm consists in iteratively applying the map
T on a vector x ∈ X . This yields the following sequence of matrices, called
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the continued fraction expansion of x: (M(T n(x)))n∈N. If the matrices have
nonnegative entries, the algorithm is said nonnegative.

Consider for instance the Jacobi-Perron algorithm. Its projective version is
defined on the unit square [0, 1) × [0, 1) by:

(α, β) �→
(

β

α
−

⌊
β

α

⌋
,
1
α
−

⌊
1
α

⌋)
= ({β/α}, {1/α}) .

Its linear version is defined on the positive cone X = {(a, b, c) ∈ R3|0 ≤ a, b < c}
by:

T (a, b, c) = (b − �b/a�a, c− �c/a�a, a).

We set (a0, b0, c0) := (a, b, c) and (an+1, bn+1, cn+1) := T n(an, bn, cn), for n ∈ N.
Let Bn+1 = �bn/an�an, Cn = �cn/an�. One has

⎛
⎝an

bn

cn

⎞
⎠ =

⎛
⎝0 0 1

1 0 Bn+1

0 1 Cn+1

⎞
⎠

⎛
⎝an+1

bn+1

cn+1

⎞
⎠ .

The Jacobi-Perron algorithm is thus a unimodular nonnegative continued frac-
tion algorithm. With the previous notation, M(x) = MB1,C1 for x = (a0, b0, c0),

by setting MB,C :=

⎛
⎝0 0 1

1 0 B
0 1 C

⎞
⎠ for B, C ∈ N.

Note that the sequence of admissible Jacobi-Perron digits (Bn, Cn)n≥1 satis-
fies 0 ≤ Bn ≤ Cn and Bn = Cn implies Bn+1 ≥ 1 for all n.

The idea is now to consider the expansion of a given normal vector v ∈ X .
Let v(n) stand for T n(v). One expands v as

v = MB1,C1 · · ·MBn,Cnv(n).

3.2 Substitution Rules

Let us come back to our geometric framework. We fix a matrix M ∈ SL(3, N)
(for instance M = MB,C). We assume furthermore that we are in the standard
case ω = ||v||1. We want to find an algorithmic way to go from PMv,μ,||Mv||1 to
Pv,μ,||v||1 .

The idea is to use the fact that

〈x, M v〉 = 〈tM x, v〉 for any x ∈ Z3. (2)

Furthermore, for computational reasons, we change our convention for faces.
We now define faces as follows: E1 = {λe2+μe3 | 0 ≤ λ, μ ≤ 1}, E2 = {λe1+μe3 |
0 ≤ λ, μ ≤ 1}, E3 = {λe1 + μe2 | 0 ≤ λ, μ ≤ 1}. We loose the notion of
distinguished vertex but we obtain here a characterization of faces that are
contained in P(v, μ, ||v||1) that will be here easier to handle than (1): the face
y + Ej is a subset of P(v, μ, ||v||1) if and only if

0 ≤ 〈y, v〉 + μ < vj = 〈ej , v〉.
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Let us assume now that the face y+Fj is a subset of P(M v, μ, ||M v||1). One
has

0 ≤ 〈y, M v〉 + μ = 〈tM y, v〉 + μ < 〈ej , M v〉 = 〈tM ej , v〉.
The interval [0, 〈tM ej , v〉) is nonempty according to the assumptions made on
M . Since M has nonegative entries, we can divide the interval [0, 〈tM ej , v〉) into
subintervals of respective lengths 〈ei, v〉 = vi, for i = 1, 2, 3. We know that the
point 〈tM y, v〉 + μ belongs to one of these intervals. Hence there exist a vector
S and i ∈ {1, 2, 3} such that

0 ≤ 〈tM y, v〉 + μ − 〈S, v〉 < vi,

which implies that the face tMy − S + Ei is a subset of P(v, μ, ||v1||).
We thus have associated with a face y+Ej of P(Mv, μ, ||Mv||1) a face x+Ei

where x = tMy − S in P(v, μ, ||v||1), and the entry mji of M satisfies mji �= 0.
One checks that this map is onto (we use the fact that M is an invertible

matrix as a matrix acting on Z3) but not one-to-one. This is why we will work
below (see Eq. (3)) with the inverse of this map.

3.3 Substitutions in Word Combinatorics

Let us formalize this map. In particular, we need to define more precisely the
way we divide the interval [0, 〈tM ej , v〉) into subintervals of respective lengths
〈ei, v〉 = vi. In other words, we have to choose a way of tiling the larger interval
by these smaller intervals. For that purpose, we first recall basic definitions from
word combinatorics. For more details, see [Lot02, PF02].

We consider the set of finite words over the alphabet {1, 2, 3}. We denote
this set as {1, 2, 3}∗. Endowed with the concatenation, it is a free monoid. A
substitution is a morphism of the free monoid. A substitution σ thus replaces
letters by words, and moreover, since it is a morphism, it satisfies σ(uv) =
σ(u)σ(v), for any u, v words in {1, 2, 3}∗. Consider for example the substitution
σ defined by σ(1) = 12, σ(2) = 13, σ(3) = 1. The incidence matrix Mσ of
σ is defined as the 3 by 3 square matrix with entry (i, j) entry equal to the

number of occurrences of the letter i in σ(j). With our example, Mσ =

⎡
⎣1 1 1

1 0 0
0 1 0

⎤
⎦.

A substitution is said unimodular if the determinant of its incidence matrix
equals 1 or −1. Lastly, let l : {1, 2, 3}∗ → N3 be the abelianization map l(w) =
t(|w|1, |w|2, |w|3).

We now can introduce the notion of generalized substitution, such as intro-
duced in [AI02]. Let σ be a unimodular substitution. The map E∗

1 (σ) maps faces
on unions of faces. It is defined respectively on faces x + Ei and on sets of faces
G, H as follows

E∗
1 (σ)(x + Ei) =

∑
j∈{1,2,3}

∑
P, σ(j)=PiS

(
M−1

σ (x + l(S)) + Ej

)
, (3)

E∗
1 (G ∪ H) = E∗

1 (G) ∪ E∗
1 (H).
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Let us explain the notation “P, σ(j) = PiS” used above. We consider letters j
such that σ(j) contains i and make the summation on all occurrences of the letter
i in σ(j). We thus decompose σ(j) as PiS, where P, S are words in {1, 2, 3}∗
and we “ label” each occurrence of i by the prefix P that precedes it. One of the
main interests of this kind of geometric replacement map is that it maps stepped
planes onto stepped planes:

Theorem 1. [AI02, Fer06] Let σ be a unimodular substitution. Let v ∈ Rd
+ be

a positive vector. The generalized substitution E∗
1 (σ) maps without overlaps the

stepped plane Pv,μ,||v||1 onto PtMσv,μ,||tMσv||1 .

The proof of the theorem is based on the ideas sketched above in Section 3.2. Note
that if y = M−1

σ (x + l(S)), then x = Mσy − l(S). We recover the expression
obtained in Section 3.2.

3.4 Back to Discrete Planes

Let us see now how to use Theorem 1 in discrete geometry.
We first start with the question of the generation of discrete planes. We il-

lustrate our strategy with the Jacobi-Perron algorithm. We also fix μ = 0. We
use the notation P(v) for P(v, 0, ||v||1). We associate with the matrix MB,C the
substitution σB,C : 1 �→ 1, 2 �→ 1B3, 3 �→ 1C2 having the transpose of MB,C as
incidence matrix. Let v ∈ X . By Theorem 1, one has

E∗
1 (σB,C)(P(T (v)) = P(v).

Assume now we are given the sequence of Jacobi-Perron digits (Bn, Cn)n≥1 pro-
duced by the Jacobi-Perron expansion of the vector v. One has

E∗
1 (σ(B1,C1)) ◦ E∗

1 (σ(B2,C2)) · · · ◦ E∗
1 (σ(Bn,Cn))(P(v(n)) = P(v).

Note that the lower unit cube U := E1 + E2 + E3 belongs to every arithmetic
discrete plane with parameter μ = 0. We deduce that

E∗
1 (σ(B1,C1)) ◦ · · · ◦ E∗

1 (σ(Bn,Cn))(U) ⊂ P(v).

The question is now whether the patterns E∗
1 (σ(B1,C1)) ◦ · · · ◦ E∗

1 (σ(Bn,Cn))(U)
generate the whole plane P(v), that is, whether

lim
n→∞E∗

1 (σ(B1,C1)) ◦ · · · ◦ E∗
1 (σ(Bn,Cn))(U) = P(v).

If yes, then we get a simple algorithmic generation process of the arithmetic
discrete plane P(v). This is illustrated in Fig. 3 below.

This question has been answered in the Jacobi-Perron case in [I093]. Indeed,
it has been proved that if there exists no integer n such that for all k

Bn+3k = Cn+3k, Cn+3k+1 − Bn+3k+1 ≥ 1, Bn+3k+1 �= 0, Bn+3k+2 = 0,
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Fig. 3. Some iterations of a generalized substitution acting on the lower unit cube U

the sequence of patterns E∗
1 (σ(B1,C1))◦· · ·◦E∗

1 (σ(Bn,Cn))(U) generates the whole
plane P(v). Otherwise, it is not possible to generate the whole plane by starting
only from U , but there exists a finite set of faces V with U ⊂ V such that the
whole plane is generated starting from V instead of U , that is, the sequence of
patterns E∗

1 (σ(B1,C1)) ◦ · · · ◦ E∗
1 (σ(Bn,Cn))(V) generates the whole plane P(v).

Let us stress that we are not only able to substitute, i.e., to replace faces by
unions of faces, but also to desubstitute, i.e., to perform the converse operation,
by using the algebraic property E∗

1 (σ)−1 = E∗
1 (σ−1) (where σ is considered

as a morphism of the free group is an automorphism). For more details, see
[BF09] in the case of Brun algorithm. This idea is also used in [Fer09], still for
Brun algorithm, where algorithms are given for the digital plane recognition and
digital plane generation problems.

Let us quote a further classical question in the study of discrete planes that
can be handled under the formalism of generalized substitutions E∗

1 (σ). The
question is to find the smallest width ω for which the plane Pv,μ,ω is connected
(either edge connected or vertex connected). The case of rational parameters
has been solved in [JT09a]. For the case of irrational parameters, see [DJT09].
The method used in both papers relies on the use of a particular unimodular
multidimensional continued fraction algorithm (the so-called fully subtractive
algorithm) and on the use of Eq. (2).

4 Conclusion

We have discussed here several ideas concerning the study of arithmetic dis-
crete planes inspired by tiling theory and word combinatorics. We have focused
on a multidimensional coding (via faces) of configurations and discrete planes.
We can also associate with configurations of discrete planes a boundary word
coding as a finite word their boundary. The use of word combinatorics and the
study of boundary words has recently proven to be particularly useful in discrete
geometry. Let us also quote in particular [BLPR08] which gives a nice character-
ization of digitally convex polyominoes in terms of the Lyndon decomposition
of the word coding their boundary. See also [BKP09] which gives an efficient
recognition algorithm of nonintersecting paths based on the use of suffix trees.

Boundary words also allow us to describe the topology of the configurations
of discrete planes we generate via the method described in Section 3.4. Let us
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recall the following result of [Ei03]. Let σ be an invertible three-letter substitution
(by invertible, we mean that σ considered as a morphism of the free group is
an automorphism). The boundary word of E∗

1 (σ)(U) is produced by the mirror
image of the inverse of σ. We thus can apply this result to get a description of the
boundary of the generating patterns [BLPP09]. Note that these patterns can be
described in terms of pseudo-squares and pseudo-hexagons such as introduced in
[BN91] which gives a characterization of polyominoes which tile the plane. See
also [BFP09] for corresponding efficient recognition algorithms and [BBGL09]
for a study of a family of so-called double pseudo-squares.
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