A NEW CHARACTERIZATION OF THE FIBONACCI WORD

V. BERTHE, S. BRLEK, AND P. CHOQUETTE

ABSTRACT. Using the run-length encoding A, the Fibonacci infinite word F
possesses a natural representation obtained from the iterations of A. This
representation is the eventually periodic word 112(13)% which can be extended
to the shifted Fibonacci words.

1. INTRODUCTION
Let ¢ : {1,2}* — {1,2}* be the morphism defined by
() =12 5 ¢(2) =1,

and let F,, = ¢™(1) be the n-th iterate, also called the n-th Fibonacci word. We
then have

F, = 1,

F = 12,

F = 121,

F; = 12112,
Fy, = 12112121,

and the infinite Fibonacci word F' is obtained as the fixed point of ¢, that is
F = lim F,, = ¢¥(1) =1211212112112121121211211212112112- - - .
n— 00

The combinatorial and arithmetic properties of F' have been widely studied and it
has a dominant role in the theory of Sturmian words.

The run-length encoding A is used in many applications as a method for com-
pressing data. For instance, the first step in the algorithm used for compressing the
data transmitted by Fax machines consists of a run-length encoding of each line
of pixels. It also has been used for the enumeration of factors in the Thue-Morse
sequence [2]. It is defined as follows. Let ¥ = {a;, as,...,ar} be a finite alphabet.
Then every word w € ¥* can be uniquely written as a product of factors as follows

W= Qg o Qs e
where a,,,; € ¥ and the exponents e; > 0. Hence the coding is realized by a function
(A7) : 2" — N" x ¥*
where the first component is the function A : ¥* — N*, defined by
A(w) = ejezeg -+ = H ej,

>0
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and the second component is the function 7 : ¥* — ¥* induced by the congruence
= defined by

a’=a, VaeX.
Note that the alphabet ¥ may be identified with a subset of N and we shall denote
k = {1,2,...,k} C N for a fixed integer k. The operator A can be iterated,
provided the process is stopped when the resulting word has length 1, and can also
be extended to infinite words. For instance we have

AY(F) = 12112121121121211212---
AYF) = 1121112121112111- -
A2(F) = 213111313---,

A3(F) = 1113111---,

AYF) = 313---.

It is not difficult to see that the process can be reversed: A{(F) may be retrieved
from A*!(F) with the knowledge of 7(A*(F)). It turns out that in the case of the
Fibonacci word F', not only the alphabet is bounded but also 7(A?(F)) is eventually
periodic. Therefore F' is completely determined by the characteristic sequence

®(F) = (A"(F)[0])i=0..00 = 112(13)“.
We also show that the shifted sequences of F' also share this property.

2. DEFINITIONS AND NOTATION
A word over a finite alphabet of letters ¥ is a finite sequence of letters
w:0,n—1—%, neN,

of length n, and wi] or w; denotes its letter of index i. The set of n-length words
over Y is denoted X". By convention the empty word is denoted € and its length
is 0. The free monoid generated by X is defined by ¥* = J,~,X". The set of
right infinite words is denoted by £¢ and £ = ¥* U £“. Adopting a consistent
notation for sequences of integers, N* =, -, N" is the set of finite sequences and
N“ is those of infinite ones. Given a word w € ¥*, a factor f of w is a word f € X*
satisfying
dz,y € ¥, w = zfy.

If 2 = ¢ (resp. y = ¢ ) then f is called prefiz (resp. suffir). The set of all
factors of w, called the language of w, is denoted by L(w), and those of length
n is Ly(w) = L(w) N ¥". Finally Pref(w), Suff(w) denote respectively the set of
all prefixes and suffixes of w. The length of a word w is |w|, and the number
of occurrences of a factor f € X* is |w|s. A block of length k is a factor of the
particular form f = o, with a € . If w = pu, and |w| = n,|p| = k, then
plw = wlk]---w[n — 1] = u is the word obtained by erasing p. As a special case,
when |p| = 1 we obtain the shift function defined by s(w) = wy -+ - wp—1. Clearly
the shift extends to right infinite words.

The reversal (or mirror image) @ of u = uouy - - up—1 € L™ is the unique word
satisfying

Ui =Up-1-i, Vi,0<i<n—1.

A palindrome is a word p such that p = P, and for a language L, Pal(L) denotes the
set of its palindromic finite factors. Over any finite alphabet ¥ = {1, az, ..., ax},
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there is a usual length preserving morphism, defined for every permutation p :
¥ — ¥ of the letters, which extends to words by composition

0,n-1]-%x -5y,

defined by pu = pug puy pus - - puy_1 -

This definition extends as usual to infinite words N — ¥. The occurrences of
factors play an important role and an infinite word w is recurrent if it satisfies the
condition

u€ Llw) = |w], =00.
Clearly, every periodic word is recurrent, and there exist recurrent but non-periodic
words, the Thue-Morse word M being one of these [15]. Finally, two words v and
v are conjugate when there are words x,y such that v = xy and v = yx. The
conjugacy class of a word u is denoted by [u], and the length is invariant under
conjugacy so that it makes sense to define |[u]| = |ul.

Checking that A commutes with the mirror image, is stable under permutation
and preserves palindromicity is straightforward:

Proposition 1. The operator A satisfies the conditions

(a) A(u) = Zz/u), for all u € X%
(b) A(pu) = A(u), for all uw € ¥* and every permutation p : ¥ — 3;
(c) pePal(E*) = A(p) € Pal(N*).

Note that A is not distributive on concatenation in general. Nevertheless
(1) Aluwv) = Au) - Alv) <> 0] # v[0],

that is to say if and only if the last letter of u differs from the first letter of v. This
property can be extended to iterations and yields the following useful lemma.

Lemma 2 (Glueing Lemma). Let u-v € Pref(F},) for some n. If there exists an
index m such that, for all i,0 < i < m, the last letter of Ai(u) differs from the first
letter of A'(v), and A'(u) # 1, Al (v) # 1, then
(i) ®(uv) = ®(u)[0..m] - ® o A™H (uv);
(i) Al(uv) = Al(u)A¢(v).
The glueing operation is denoted by ®:
®(u) @, ®(v) = ®(w)[0..m] - @ 0 A™ T (uw),

and observe that the glueing lemma may also be generalized (by associativity) to
the concatenation of more than two words.

Example. Let v = 1211 and v = 21211. Iterating A on uw yields
A®(uwv) = 1211 - 21211

Al(w) = 112 - 1112
A?(wv) = 21 - 31
A3 (uwv) = 11 - 11
At(wr) = 4

In this case we have m = 2 and ®(1211-21211) = 112 - &(1111) = 112 - 14.



4 V. BERTHE, S. BRLEK, AND P. CHOQUETTE

The glueing Lemma 2 admits an extension to infinite words: let u € A®) (Pref(F))
and v € A® (Suff(F)). If there exists an index m such that the last letter of A (u)
differs from the first letter of A™(v), then

®(u) O ®(v) = ®(u)[0..m] - @ o A" (uv).

The glueing lemma is fundamental for establishing the claim results and most of the
proofs are based on induction, use canonical factorizations of the Fibonacci finite
words Fj,, where the glueing lemma applies.

3. RESuLTS

The Fibonacci words Fj, satisfy many characteristic properties and we state
without proof the ones that will be used hereafter:

Proposition 3. For all n > 0 the following properties hold:
(a) Fn+3:Fn+2'Fn+17 and Fn+4:Fn+2'Fn+1'Fn+2;
(b) 2 Fopyn-17Y and  1-Fy,qq - 271 are palindromic factors.
(c) The set {Fpi1,Fy} is an w-code, that is, every word in {1,2}* admits at
most one {Fy, Fj,_1 }-factorization.
In the finite case we have the following property.

Proposition 4. The sequence of finite Fibonacci words satisfies for all n > 0 the
conditions

() @(2- Fongn - 171) = 2(13)" Y

(il) ®(1- Fopyy -271) = 12(13)"
Proof. We proceed by induction. A straightforward verification establishes the base
of the induction for n = 0,1, 2,3. Assume now the conditions hold until n» — 1. In
order to establish (i) we use the recurrence relations of Proposition 3 for 2n + 2 and
obtain

B2 Fopy2-17Y) = @2 (FopFon_1Fo,)-171)

(2) = 02 - (Fy-1"'1-Fy, -27'2-F,)-17h
Recall that A preserves palindromicity (Proposition 1), and that 2 - Fy, o - 171
is palindromic (Proposition 3). Therefore, for every m < 2n — 1 by induction
hypothesis, the A-iterates satisfy

A™(2-Fy, -17H[0] = A™(2- Fy, - 17Y)[Last]

£ A™(1-Fyy 1 -2 H[0] = A™(1- Fayyq -2 Y)[Last],
where Last abusively denotes the index of the last letter of a word. We may now
apply the glueing Lemma 2 to equation (2) in order to obtain
AN (2 - Fopyy - 171) = 313,

from which one concludes that

B2 Fopgo-171) = 2(13)" 11 @op_y @0 A?"(2- Fopyo-171)
= 2(13)"'1-$(313)
2(13)"+,
The proof of (ii) is similar and is left to the reader. O

In a similar way one can establish the following result.
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Proposition 5. The sequence of Fibonacci words satisfies for all n > 2 the condi-
tions

(i) ®(Fhy, -171) = 112(13)"1;
(i) ®(Fongy -2°1) = 112(13)" 1 - 12.

We proceed now with showing that the alphabet used in the iterations of A is
bounded.

Proposition 6. The words
Fop - 17Y, Fopgo-27", 2- Fapyo- 171 1 Fopyg - 275, neN,
are words in A™)(3).

Proof. First, we prove by induction on n > 1 that there exist two uniquely and well
defined words V,, and W,, such that

o(Vo) = (1), e(W,) = 3(13)%,
AWVe) = Wat, AW,) = Vi,
V. € {13} W, € {1,3}",

and two consecutive occurrences in V), or in W), of the letter 3 are separated by 111
or 1.

One has V; = 111, W; = 313, Vo, = 1113111, W, = 313111313. Assume that
the induction hypothesis holds for n > 2. The word V;,41 is uniquely determined
by its first letter 1 and the fact that A(Vy,4+1) = W,,. Similarly, W,,;1 is uniquely
determined. Since the 3's are separated by either 1 or 111, then 313 always code
1113111 in V,,41, whereas the word 31113 always codes 111313111, which implies
the desired property on V,,+1. The proof is similar for W, ;.

Observe that we have proved that V,, € {13,11}*, that is, V,, can be encoded
over the alphabet {A, B}, where A = 13, B = 11, and that V41 = ¢(V},,), where ¢
is defined by ¢ : A+~ ABA, B — AB (¢ is the square of the Fibonacci morphism
up to the alphabet).

Now, we have A3(Fy, - 171) = V1, A3(Fopqo - 271) is a prefix of V,,, A(2-
Fopio-17Y) = Vi, and A%(1- Fopyqq -271) =V, so that it only remains to check
that the first interations of A produce words over the alphabet 3 to conclude. O

The infinite Fibonacci word satisfies the following property, which is a direct
consequence of Proposition 5 and 6.

Proposition 7. The word F satisfies ®(F) = 112(13)% and A*(F) C 3“.

It is well known that the Fibonacci word F' does not contain cubes, and for the
A-iterates the following patterns are avoided.

Lemma 8. The factors 33 and 31313 never occur in A*(F), for every k > 2. The
factors 22 and 21212 never occur in A(F).

Proof. One checks that 33 and 22 never occur in A¥(F), for k < 2. According to
the proof of Proposition 6, 33 never occurs in V,,, for all n and hence in F'. Assume
now that the factor 31313 occurs in A¥(F), for some k > 2. Since 33 does not
occur in A*=1(F) (if k = 2, consider 22), then A(31313) = 11111 € A¥(F), which
implies that the letter 5 occurs in A¥*1(F), a contradiction. The same argument
applies for 21212. O
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Let F denote the Fibonacci shift, that is, the set of infinite words having exactly
the same factors as the Fibonacci word F; let us recall that F is the closure in
{1,2}* of the orbit {s*(F); k € N} of F.

Example. ®(2-F) = 213 - (s® o ®)(F) = 2(13)“. Indeed by applying the glueing
lemma, we have the following iterations of A on 2 - F'

A°2F) = 2-F = 2-1211212-112112121121211211212- - -
AY2F) = 1-A(F) = 1-11-2111-2121112111212111 - - -
AZ(2F) = 3-A(s?(A(F))) = 3-13-1113131113111---
A3(2F) = A3(F) = 1113111313---

that is,

P(2F) = 2D ®(1-A(F)) =213 @, ®(A3(2F)),
so that ®(2-F) = 213-®(A3(F)) = 213530 &(F).

We know that ®(F) is eventually periodic so that the following question is nat-
ural: does such a behaviour extend to other words in the Fibonacci shift 77 More
precisely is this property characteristic of the Fibonacci language or does it hold
only for particular sequences of the Fibonacci shift? The next theorem answers this
question:

Theorem 9. Fvery word U € F satisfies the following properties:

(i) U is a word of 5%);

(ii) for every k> 2, s(AF(U)) € {1,3}*;

(iii) every factor of AF(U) having 3 or 111 for prefiz occurs in AF(F);

(iv) if U belongs to the two-sided orbit under the shift s of F', that is, if there ex-
ists n € N such that either U = s™(F) or F = s"(U), then ®(U) eventually

ends with (13)“.

Proof. The remaining of this section will be devoted to the proof of this theorem
which requires several steps. We need first a preliminary lemma to state the base
case of an induction property that we prove below.

Lemma 10. Let U € F. Then A(U) € {1,2}* and we have:

(i) two consecutive occurrences of the letter 2 in A(U) are separated by 1 or
111; 2 occurs infinitely often;
(ii) every factor having 2 or 111 for prefix occurs in A(F).

Proof. Since F' = (F) it follows that 22,111 ¢ L(F) = L(U). Therefore two
consecutive occurrences of 2 are separated by 1 or 11 in U, which implies that
A(U) e {1,2}~.

(i) Since 22 ¢ U, every occurrence of 2 in A(U) codes an occurrence of 11 in
U. Let us prove that 11111 ¢ L(A(U)). By contradiction, assume that 11111 is a
factor, then 11111 would code an occurrence of either 121212 or 212121 in U, but
neither word is a factor of F'. Furthermore, two consecutive occurrences of 2 in
A(U) cannot be separated by an even number of 1’s: indeed, either the first or the
last 2 would code 22 in U, which ends the proof of this statement.

(ii) Let w be a factor of A(U) whose prefix is either the letter 2 or the factor 111.
It codes uniquely a factor in U and in F, implying that it belongs to A(F). O
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Let us come back to the proof of Theorem 9. We prove by induction the following
assertions, where x = 2 if K =1 and 3 otherwise;

(1) A¥(U) is well defined;

(2) AM(U) € 5% (s0 AF)(U)) € {124}

(3) two successive occurrences of xy, are separated either by 1 or 111; the letter
xp, occurs infinitely often;

(4) every factor of A¥(U) having z, or 111 for prefix occurs in A¥(F).

The induction property holds for £ = 1 by Lemma 10. Fix now an integer k£ > 1
and assume that the induction property holds for both & and k — 1. For the sake of
simplicity, we assume that £ > 2 and replace z by its value 3. The proof proceeds
exactly in the same way when k = 1, x;, = 2. We only need to use the fact that 22
does not occur in A°(U) = U.

Observe first that the factors 33 and 31313 do not occur in A¥(U), and 33 does
not occur in A*~1(U), according to Assertion 4 and Lemma 8.

e From Assertions 1, 2 and 3 above, A¥+1(U) is easily seen to be well defined.
e We have three cases to consider.
— If AR(U)[0] = 3, then A*TL(U) € {1,3}~, by Assertion 3.
— If A¥(U) has 1¥3 (y > 1) for prefix, then A*1(U) = yA(s¥ 0 A¥(U)),
and s o AML(U) € {1,3}~.
— If A¥(U)[0] =y # 1,3, then A¥(U) has y1* (z > 1) for prefix, since
the factor 33 cannot occur in A*=1(U). If z is even, then Assertion 2
implies that y1*3 would code a factor of the form r¥(3131)*/2333 in
A¥(U) (r € 5), a contradiction with the fact that 33 ¢ L(A*(U)). If
z > 5, then y1#*3 would code a factor of the form r¥31313, a contradic-
tion with the fact that 31313 ¢ L(A¥(U)). We have thus proved that
y € {1,3}, which implies that (s o A¥1(U)) € {1,3}~.
Note that the first letter of A**1(U) is smaller than or equal to 5, since
31313 does not occur in A*=1(U). Hence, A1 (U) € 5«.

e The factor 33 ¢ L(A*+1(U)), otherwise 333 would occur in A*(U). Hence
every occurrence of the letter 3 in AFT1(U) codes 111 in A¥(U). The
factor 311113 ¢ L(A*+1(U)), otherwise it would code 1113131333 in A*(U),
contradicting the fact that 33 does not occur in A¥(U). Similarly, the factor
311111 ¢ L(A*(U)), otherwise it would code 11131313 in A¥(U), but
31313 does not occur in A*(U). At last, the factor 3113 ¢ L(A*1(U)),
since otherwise it would code 11131333 in A¥(U), again a contradiction.

Hence two consecutive occurrences in AT (U) of 3 are separated either
by 1 or 111, and the letter 3 occurs infinitely often.

e Let w be a factor of A¥*1(U) whose prefix is either 3 or the factor 111. It
codes uniquely a factor in A¥(U) also starting with either 3 or 111, and
belonging thus by Assertion 4 to AF(F); therefore w belongs to A1 (F),

It remains now to prove that ®(U) ultimately ends in (13)¢ if U is an image or a
preimage of F' under the action of the shift s to complete the proof of Theorem 9.

Assume first that U is a shifted image of the Fibonacci word F, that is, there
exists k € N such that U = s*(F). Let us now introduce a suitable factorization
of 2F. For that purpose, let us first observe that F = ©?"T1(F) can be uniquely
decomposed over the w-code {Fsy, Font1} (see Proposition 3), and even over the
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w-code {Fapta - Fanta - Fapt1, Fonto - Fony1}. Hence we may factorize 2F over

{2 Fonyo Fonyo Fong1 - 21,2 Foppn - Foppq - 2711
Furthermore, the first term of this factorization is easily seen by induction to be
2-Fopyo-Fonta 27! whereas its second term is 2 - Fopio-Fopto-Fopia -271. One

has U = s**1(2F). Let n > 2 be large enough such that |Fh, 43| > k+ 1. Let us
write 2F2n+2 -F2n+12_1 as

2 Fopqa - Font1 = Py - Q,
where Py, is the prefix of 2F of length k 4+ 1; hence 2F = P, - U, and
U=Q-ssl(2. F),
ie.,
U€Qk {2 Fongo Fongo Fong1-271,2 Foppo - Fopyr - 271},
the first term of this factorization being 2 - Fb,yo - Fonio - Fopypq - 271
Let us observe that

2-Fopio Fonyo-Fopi1:2 1 = (2. Fapiol 1) (L-Fapgr1 2 1) (2 Fon 1 H)(L Fopy1 27 1Y),
and
2 Fopgo - Fong1 27 = (2 Fopyo - 171) - (L Fopgg - 271).

Let us first prove that ®(s!*2»+3l(2F)) = 2(13)"*1112(13)“. Following Propo-
sition 4 and Proposition 6, the glueing lemma applies, and implies that the first
terms of ®(s!™2n+31(2F)) are 2(13)"; let us note that A?"t1(2. Fy, 5 - 171) = 111,
A2 Py o271 = 3, A2HL(2. By, - 171) = 1. Hence

A2 Fypin - Fopyy -271) = 111+ 3.
A2 Fypin - Fopgo - Fopyy -274) =111-3-1-3.
One concludes by considering the next values of A¥, 2n 42 < k < 2n +6 and using
the fact that ®(2F) = ®(2 - Foyypn - Fopyy - 271 - slF2et3l(2F)) = 2(13)~.

Let us prove that ®(Qy, - s/F»+31(2F)) and ®(s/">»+3[(2F)) ulimately coincide.
Let m be the smallest integer such that A™(Qr) = 1. One checks that m <
2n + 5. Let us distinguish two cases according to the parity of m, and apply the
glueing lemma, by noticing that the first term of the decomposition of s!*2r+3l(2F)
is 2- Fopya - Fonyo - Fopgn - 275

e Assume that m is even. Assume furthermore m < 2n. Then the factor
A" (sIPn43l(2F)) admits 313111313 as a prefix since ®(slf2r+3l(2F)) =
2(13)"+1112(13)¥. Hence A™T(Qy - s/F2n+31(2F)) admits 11113111 as a
prefix, which implies that A™2(Qy, - s/F2n+3l(2F)) admits 413 as a prefix;
one deduces that ®(Qy - s/P2»+3[(2F)) and ®(s/"2»+3/(2F)) coincide for in-
dices larger than m + 3. If m = 2n + 2, then A?"(s/*2r+3/(2F)) admits
3111313 as a prefix, and similarly one checks that ®(Qy, - s/F>»+3/(2F)) ends
in (13)“ from indices larger than or equal to 2n + 5. If m = 2n + 4, then
one checks that ®(Qy-s/™»+3!(2F)) and ®(s!"2»+3l(2F)) coincide for indices
larger than 2n + 6.

e Assume that m is odd. This implies that A™ 1(Qx) = 2. Assume that
m < 2n 4 1. One checks that A™(Qy - s/™+3/(2F)) admits 11113 as
a prefix, and thus ®(Qy, - s/F27+3/(2F)) and ®(s/F2»+3/(2F)) coincide for
indices larger than m + 2. If m = 2n + 3, ®(Qy, - s/™>»+3/(2F)) ends in
(13)¢ from for indices larger than 2n 4+ 6. If m = 2n + 5, one checks that
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®(Qy, - s/ +3l(2F)) and ®(s!*2n+31(2F)) coincide for indices larger than
2n + 8.

One thus deduces that ®(U) ultimately terminates in (13)%.

Assume now that U is a preimage of F' under an iterate of s, that is, there
exists k such that s*(U) = F. Since both 2F and 1F belong to F, then U is
either a preimage or 2F or of 1F, that is, there exists a finite word Py such
that either U = Py - 2F or U = Py - 1F. Using the factorizations, respectively,
of 2F over {2 . F2n+2 . F2n+2 . F2n+1 . 2_1,2 . F2n+2 . F2n+1 . 2_1} or 1F over
{1 Fopg1 - Fopyr - Fop - 2711 Fypyq - Fopp - 271} we may apply the same reasoning
as above. Let us recall that ®(2F) = 2(13)¥, whereas one checks that ®(1F) =
12(13)“. One thus obtains that ®(Py -2F) and ®(Py -1F) ultimately coincide with
respectively ®(2F') or ®(1F’), which ends the proof. O

We have thus proved that words that are images or preimages of F' under the
shift s eventually end with (13)%. The next proposition states that this property
does not hold for all words in F, that is, there exist words U with the same set of
factors as F' for which ®(U) presents a different behaviour.

Proposition 11. There exist words U in F such that ®(U) contains infinitely
many occurrences of the letter 2.

Proof. Let us exhibit an example of a Sturmian word U in F such that ®(U) does
not ultimately end in (13)“. Let U be the limit word in {1,2}* of the sequence of
finite words

Up=(1-(Fr - Fio) -+ (Fyx_1 - Faiyp) - (Fan 1 - Fanyo) - 17,0 > 3.

This sequence of words converges for the usal topology on {1,2}* and for every
n, U, is a factor of the Fibonacci word F' as we shall see now. Indeed, following
[9], every finite concatenation of F),’s with decreasing order of indices and where
no two consecutive indices occur, is a prefix of the Fibonacci word F. Hence

Fonyo-Fon y---Fio- Fy
is a prefix of F'. Since 2F is also a Sturmian word in F, 2+ Fon o Fon_1 -+ Fio9- F7
is also a factor of F. But
2 . F2n+2 . anfl - 'F10 . F7 - 271 -
(2-Foyngn-17Y-(1-Fon_y-27Y) - (2-Fp- 1Y - (1-Fp-271)

is a concatenation of palindromes by Proposition 3. The set of factors of F' being
stable under mirror image (see for instance [13]), we have

(1-Fr-27Y-(2-Fio-17") -+ (1-Fpn 1 -27Y)-(2-Fanyp-17Y)
= 1-(F; Fio) - (Fon_y - Fonys)-171
is a factor of F'. Hence the word U belongs to F since it is a limit of factors of the
Fibonacci word, and admits for every n, U,, as a prefix. Consider now the following
factorization
(1-Fopn_1-271) (2 Faynyp-171) =
(1-Fopn_1 271 (2 - Fyn -17Y) - (1 Fyny - 271)(2- Fon - 171).
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Following Proposition 4 and Proposition 6, the glueing lemma applies. One has
A (1 Fon_q-27Y) =1, A2 (1 - Fynyq -271) = 111, and A%" (2 Fon - 171) = 3.
Hence

<111 -3,
A2 (1. Fon 1 - Fonyy- -3-1,
].'F2n_1‘F2n+2'

CEE
2 1

A2n+3(1 - Fon_q - F2n+2 . 271) =
( 271
( 271

I
— N =W

A" 41 Fyn_y - Fon gy -
A" 51 - Fyn g - Fyngy -

By applying the glueing lemma, one proves by induction that

AT U,) = AT (1 Fyn g - 27Y) (2 Fyngg - 171),

which implies ®(U)[2" + 2] = 2, for all n > 3. O

Remark One can in fact prove that there exist uncountably many words U in F
such that ®(U) does not ultimately end in (13)%.

(1]
(2]
(3]
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