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Abstra
t. Using the run-length en
oding �, the Fibona

i in�nite word F

possesses a natural representation obtained from the iterations of �. This

representation is the eventually periodi
 word 112(13)

!

whi
h 
an be extended

to the shifted Fibona

i words.

1. Introdu
tion

Let ' : f1; 2g

�

�! f1; 2g

�

be the morphism de�ned by

'(1) = 12 ; '(2) = 1;

and let F

n

= '

n

(1) be the n-th iterate, also 
alled the n-th Fibona

i word. We

then have

F

0

= 1;

F

1

= 12;

F

2

= 121;

F

3

= 12112;

F

4

= 12112121;

and the in�nite Fibona

i word F is obtained as the �xed point of ', that is

F = lim

n!1

F

n

= '

!

(1) = 1211212112112121121211211212112112 � � � :

The 
ombinatorial and arithmeti
 properties of F have been widely studied and it

has a dominant role in the theory of Sturmian words.

The run-length en
oding � is used in many appli
ations as a method for 
om-

pressing data. For instan
e, the �rst step in the algorithm used for 
ompressing the

data transmitted by Fax ma
hines 
onsists of a run-length en
oding of ea
h line

of pixels. It also has been used for the enumeration of fa
tors in the Thue-Morse

sequen
e [2℄. It is de�ned as follows. Let � = f�

1

; �

2

; : : : ; �

k

g be a �nite alphabet.

Then every word w 2 �

�


an be uniquely written as a produ
t of fa
tors as follows

w = �

e

1

m

1

�

e

2

m

2

�

e

3

m

3

� � �

where �

m

j

2 � and the exponents e

j

� 0: Hen
e the 
oding is realized by a fun
tion

(�; �) : �

�

�! N

�

� �

�

where the �rst 
omponent is the fun
tion � : �

�

�! N

�

; de�ned by

�(w) = e

1

e

2

e

3

� � � =

Y

j�0

e

j

;
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and the se
ond 
omponent is the fun
tion � : �

�

�! �

�

indu
ed by the 
ongruen
e

� de�ned by

�

2

� �; 8� 2 �:

Note that the alphabet � may be identi�ed with a subset of N and we shall denote

k = f1; 2; : : : ; kg � N for a �xed integer k. The operator � 
an be iterated,

provided the pro
ess is stopped when the resulting word has length 1, and 
an also

be extended to in�nite words. For instan
e we have

�

0

(F ) = 12112121121121211212 � � � ;

�

1

(F ) = 1121112121112111 � � � ;

�

2

(F ) = 213111313 � � � ;

�

3

(F ) = 1113111 � � � ;

�

4

(F ) = 313 � � � :

It is not diÆ
ult to see that the pro
ess 
an be reversed: �

i

(F ) may be retrieved

from �

i+1

(F ) with the knowledge of �(�

i

(F )). It turns out that in the 
ase of the

Fibona

i word F , not only the alphabet is bounded but also �(�

i

(F )) is eventually

periodi
. Therefore F is 
ompletely determined by the 
hara
teristi
 sequen
e

�(F ) = (�

i

(F )[0℄)

i=0::1

= 112(13)

!

:

We also show that the shifted sequen
es of F also share this property.

2. Definitions and notation

A word over a �nite alphabet of letters � is a �nite sequen
e of letters

w : [0; n� 1℄ �! � ; n 2 N;

of length n, and w[i℄ or w

i

denotes its letter of index i. The set of n-length words

over � is denoted �

n

. By 
onvention the empty word is denoted " and its length

is 0: The free monoid generated by � is de�ned by �

�

=

S

n�0

�

n

. The set of

right in�nite words is denoted by �

!

and �

1

= �

�

[ �

!

. Adopting a 
onsistent

notation for sequen
es of integers, N

�

=

S

n�0

N

n

is the set of �nite sequen
es and

N

!

is those of in�nite ones. Given a word w 2 �

�

; a fa
tor f of w is a word f 2 �

�

satisfying

9x; y 2 �

�

; w = xfy:

If x = " (resp. y = " ) then f is 
alled pre�x (resp. suÆx). The set of all

fa
tors of w, 
alled the language of w, is denoted by L(w); and those of length

n is L

n

(w) = L(w) \ �

n

: Finally Pref(w); Su�(w) denote respe
tively the set of

all pre�xes and suÆxes of w. The length of a word w is jwj, and the number

of o

urren
es of a fa
tor f 2 �

�

is jwj

f

. A blo
k of length k is a fa
tor of the

parti
ular form f = �

k

, with � 2 �. If w = pu, and jwj = n; jpj = k, then

p

�1

w = w[k℄ � � �w[n � 1℄ = u is the word obtained by erasing p. As a spe
ial 
ase,

when jpj = 1 we obtain the shift fun
tion de�ned by s(w) = w

1

� � �w

n�1

. Clearly

the shift extends to right in�nite words.

The reversal (or mirror image) eu of u = u

0

u

1

� � �u

n�1

2 �

n

is the unique word

satisfying

fu

i

= u

n�1�i

; 8 i; 0 � i � n� 1:

A palindrome is a word p su
h that p = ep , and for a language L, Pal(L) denotes the

set of its palindromi
 �nite fa
tors. Over any �nite alphabet � = f�

1

; �

2

; : : : ; �

k

g,



A NEW CHARACTERIZATION OF THE FIBONACCI WORD 3

there is a usual length preserving morphism, de�ned for every permutation � :

� �! � of the letters, whi
h extends to words by 
omposition

[0; n� 1℄

u

�! �

�

�! � ;

de�ned by �u = �u

0

�u

1

�u

2

� � � �u

n�1

:

This de�nition extends as usual to in�nite words N �! �. The o

urren
es of

fa
tors play an important role and an in�nite word w is re
urrent if it satis�es the


ondition

u 2 L(w) =) jwj

u

=1 :

Clearly, every periodi
 word is re
urrent, and there exist re
urrent but non-periodi


words, the Thue-Morse word M being one of these [15℄. Finally, two words u and

v are 
onjugate when there are words x; y su
h that u = xy and v = yx. The


onjuga
y 
lass of a word u is denoted by [u℄, and the length is invariant under


onjuga
y so that it makes sense to de�ne j[u℄j = juj:

Che
king that � 
ommutes with the mirror image, is stable under permutation

and preserves palindromi
ity is straightforward:

Proposition 1. The operator � satis�es the 
onditions

(a) �(eu) =

℄

�(u); for all u 2 �

�

;

(b) �(�u) = �(u); for all u 2 �

�

and every permutation � : � �! �;

(
) p 2 Pal(�

�

) =) �(p) 2 Pal(N

�

) :

Note that � is not distributive on 
on
atenation in general. Nevertheless

(1) �(uv) = �(u) ��(v) () eu[0℄ 6= v[0℄;

that is to say if and only if the last letter of u di�ers from the �rst letter of v. This

property 
an be extended to iterations and yields the following useful lemma.

Lemma 2 (Glueing Lemma). Let u � v 2 Pref(F

n

) for some n. If there exists an

index m su
h that, for all i; 0 � i � m; the last letter of �

i

(u) di�ers from the �rst

letter of �

i

(v), and �

i

(u) 6= 1, �

i

(v) 6= 1, then

(i) �(uv) = �(u)[0::m℄ � � Æ�

m+1

(uv);

(ii) �

i

(uv) = �

i

(u)�

i

(v):

The glueing operation is denoted by �:

�(u)�

m

�(v) = �(u)[0::m℄ �� Æ�

m+1

(uv);

and observe that the glueing lemma may also be generalized (by asso
iativity) to

the 
on
atenation of more than two words.

Example. Let u = 1211 and v = 21211. Iterating � on uv yields

�

0

(uv) = 1211 � 21211

�

1

(uv) = 112 � 1112

�

2

(uv) = 21 � 31

�

3

(uv) = 11 � 11

�

4

(uv) = 4

In this 
ase we have m = 2 and �(1211 � 21211) = 112 � �(1111) = 112 � 14:
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The glueing Lemma 2 admits an extension to in�nite words: let u 2 �

(�)

(Pref(F ))

and v 2 �

(�)

(Su�(F )). If there exists an index m su
h that the last letter of �

m

(u)

di�ers from the �rst letter of �

m

(v), then

�(u)�

m

�(v) = �(u)[0::m℄ �� Æ�

m+1

(uv):

The glueing lemma is fundamental for establishing the 
laim results and most of the

proofs are based on indu
tion, use 
anoni
al fa
torizations of the Fibona

i �nite

words F

n

, where the glueing lemma applies.

3. Results

The Fibona

i words F

n

satisfy many 
hara
teristi
 properties and we state

without proof the ones that will be used hereafter:

Proposition 3. For all n � 0 the following properties hold:

(a) F

n+3

= F

n+2

� F

n+1

; and F

n+4

= F

n+2

� F

n+1

� F

n+2

;

(b) 2 � F

2n+2

� 1

�1

and 1 � F

2n+1

� 2

�1

are palindromi
 fa
tors.

(
) The set fF

n+1

; F

n

g is an !-
ode, that is, every word in f1; 2g

!

admits at

most one fF

n

; F

n�1

g-fa
torization.

In the �nite 
ase we have the following property.

Proposition 4. The sequen
e of �nite Fibona

i words satis�es for all n � 0 the


onditions

(i) �(2 � F

2n+2

� 1

�1

) = 2(13)

n+1

;

(ii) �(1 � F

2n+1

� 2

�1

) = 12(13)

n

:

Proof. We pro
eed by indu
tion. A straightforward veri�
ation establishes the base

of the indu
tion for n = 0; 1; 2; 3. Assume now the 
onditions hold until n� 1. In

order to establish (i) we use the re
urren
e relations of Proposition 3 for 2n+2 and

obtain

�(2 � F

2n+2

� 1

�1

) = �(2 � (F

2n

F

2n�1

F

2n

) � 1

�1

)

= �(2 � (F

2n

� 1

�1

1 � F

2n�1

� 2

�1

2 � F

2n

) � 1

�1

)(2)

Re
all that � preserves palindromi
ity (Proposition 1), and that 2 � F

2n+2

� 1

�1

is palindromi
 (Proposition 3). Therefore, for every m � 2n � 1 by indu
tion

hypothesis, the �-iterates satisfy

�

m

(2 � F

2n

� 1

�1

)[0℄ = �

m

(2 � F

2n

� 1

�1

)[Last ℄

6= �

m

(1 � F

2n�1

� 2

�1

)[0℄ = �

m

(1 � F

2n�1

� 2

�1

)[Last ℄;

where Last abusively denotes the index of the last letter of a word. We may now

apply the glueing Lemma 2 to equation (2) in order to obtain

�

2n�1

(2 � F

2n+2

� 1

�1

) = 313 ;

from whi
h one 
on
ludes that

�(2 � F

2n+2

� 1

�1

) = 2(13)

n�1

1�

2n�1

� Æ�

2n

(2 � F

2n+2

� 1

�1

)

= 2(13)

n�1

1 ��(313)

= 2(13)

n+1

:

The proof of (ii) is similar and is left to the reader. �

In a similar way one 
an establish the following result.
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Proposition 5. The sequen
e of Fibona

i words satis�es for all n � 2 the 
ondi-

tions

(i) �(F

2n

� 1

�1

) = 112(13)

n�1

;

(ii) �(F

2n+1

� 2

�1

) = 112(13)

n�1

� 12.

We pro
eed now with showing that the alphabet used in the iterations of � is

bounded.

Proposition 6. The words

F

2n

� 1

�1

; F

2n+2

� 2

�1

; 2 � F

2n+2

� 1

�1

; 1 � F

2n+1

� 2

�1

; n 2 N;

are words in �

(�)

(3):

Proof. First, we prove by indu
tion on n � 1 that there exist two uniquely and well

de�ned words V

n

and W

n

su
h that

�(V

n

) = (13)

n

; �(W

n

) = 3(13)

n

;

�(V

n

) = W

n�1

; �(W

n

) = V

n

;

V

n

2 f1; 3g

�

; W

n

2 f1; 3g

�

;

and two 
onse
utive o

urren
es in V

n

or in W

n

of the letter 3 are separated by 111

or 1.

One has V

1

= 111, W

1

= 313, V

2

= 1113111, W

2

= 313111313. Assume that

the indu
tion hypothesis holds for n � 2. The word V

n+1

is uniquely determined

by its �rst letter 1 and the fa
t that �(V

n+1

) = W

n

. Similarly, W

n+1

is uniquely

determined. Sin
e the 3

0

s are separated by either 1 or 111, then 313 always 
ode

1113111 in V

n+1

, whereas the word 31113 always 
odes 111313111, whi
h implies

the desired property on V

n+1

. The proof is similar for W

n+1

.

Observe that we have proved that V

n

2 f13; 11g

�

, that is, V

n


an be en
oded

over the alphabet fA;Bg, where A = 13, B = 11, and that V

n+1

= �(V

n

), where �

is de�ned by � : A 7! ABA, B 7! AB (� is the square of the Fibona

i morphism

up to the alphabet).

Now, we have �

3

(F

2n

� 1

�1

) = V

n�1

; �

3

(F

2n+2

� 2

�1

) is a pre�x of V

n

, �(2 �

F

2n+2

� 1

�1

) = V

n+1

, and �

2

(1 �F

2n+1

� 2

�1

) = V

n

, so that it only remains to 
he
k

that the �rst interations of � produ
e words over the alphabet 3 to 
on
lude. �

The in�nite Fibona

i word satis�es the following property, whi
h is a dire
t


onsequen
e of Proposition 5 and 6.

Proposition 7. The word F satis�es �(F ) = 112(13)

!

and �

�

(F ) � 3

!

.

It is well known that the Fibona

i word F does not 
ontain 
ubes, and for the

�-iterates the following patterns are avoided.

Lemma 8. The fa
tors 33 and 31313 never o

ur in �

k

(F ), for every k � 2. The

fa
tors 22 and 21212 never o

ur in �(F ).

Proof. One 
he
ks that 33 and 22 never o

ur in �

k

(F ), for k � 2. A

ording to

the proof of Proposition 6, 33 never o

urs in V

n

, for all n and hen
e in F . Assume

now that the fa
tor 31313 o

urs in �

k

(F ), for some k � 2. Sin
e 33 does not

o

ur in �

k�1

(F ) (if k = 2, 
onsider 22), then �(31313) = 11111 2 �

k

(F ), whi
h

implies that the letter 5 o

urs in �

k+1

(F ), a 
ontradi
tion. The same argument

applies for 21212. �
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Let F denote the Fibona

i shift, that is, the set of in�nite words having exa
tly

the same fa
tors as the Fibona

i word F ; let us re
all that F is the 
losure in

f1; 2g

!

of the orbit fs

k

(F ); k 2 Ng of F .

Example. �(2 � F ) = 213 � (s

3

Æ �)(F ) = 2(13)

!

. Indeed by applying the glueing

lemma, we have the following iterations of � on 2 � F

�

0

(2F ) = 2 � F = 2 � 1211212 � 112112121121211211212 � � �

�

1

(2F ) = 1 ��(F ) = 1 � 11 � 2111 � 2121112111212111 � � �

�

2

(2F ) = 3 ��(s

2

(�(F ))) = 3 � 13 � 1113131113111 � � �

�

3

(2F ) = �

3

(F ) = 1113111313 � � �

that is,

�(2F ) = 2�

0

�(1 ��(F )) = 213�

2

�(�

3

(2F ));

so that �(2 � F ) = 213 � �(�

3

(F )) = 213 � s

3

Æ�(F ).

We know that �(F ) is eventually periodi
 so that the following question is nat-

ural: does su
h a behaviour extend to other words in the Fibona

i shift F? More

pre
isely is this property 
hara
teristi
 of the Fibona

i language or does it hold

only for parti
ular sequen
es of the Fibona

i shift? The next theorem answers this

question:

Theorem 9. Every word U 2 F satis�es the following properties:

(i) U is a word of 5

!

);

(ii) for every k � 2, s(�

k

(U)) 2 f1; 3g

�

;

(iii) every fa
tor of �

k

(U) having 3 or 111 for pre�x o

urs in �

k

(F );

(iv) if U belongs to the two-sided orbit under the shift s of F , that is, if there ex-

ists n 2 N su
h that either U = s

n

(F ) or F = s

n

(U), then �(U) eventually

ends with (13)

!

.

Proof. The remaining of this se
tion will be devoted to the proof of this theorem

whi
h requires several steps. We need �rst a preliminary lemma to state the base


ase of an indu
tion property that we prove below.

Lemma 10. Let U 2 F . Then �(U) 2 f1; 2g

!

and we have:

(i) two 
onse
utive o

urren
es of the letter 2 in �(U) are separated by 1 or

111; 2 o

urs in�nitely often;

(ii) every fa
tor having 2 or 111 for pre�x o

urs in �(F ).

Proof. Sin
e F = '(F ) it follows that 22; 111 62 L(F ) = L(U). Therefore two


onse
utive o

urren
es of 2 are separated by 1 or 11 in U , whi
h implies that

�(U) 2 f1; 2g

!

.

(i) Sin
e 22 62 U , every o

urren
e of 2 in �(U) 
odes an o

urren
e of 11 in

U . Let us prove that 11111 62 L(�(U)). By 
ontradi
tion, assume that 11111 is a

fa
tor, then 11111 would 
ode an o

urren
e of either 121212 or 212121 in U , but

neither word is a fa
tor of F . Furthermore, two 
onse
utive o

urren
es of 2 in

�(U) 
annot be separated by an even number of 1's: indeed, either the �rst or the

last 2 would 
ode 22 in U , whi
h ends the proof of this statement.

(ii) Let w be a fa
tor of �(U) whose pre�x is either the letter 2 or the fa
tor 111.

It 
odes uniquely a fa
tor in U and in F , implying that it belongs to �(F ). �
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Let us 
ome ba
k to the proof of Theorem 9. We prove by indu
tion the following

assertions, where x

k

= 2 if k = 1 and 3 otherwise;

(1) �

k

(U) is well de�ned;

(2) �

k

(U) 2 5

!

; (s Æ�

k

)(U)) 2 f1; x

k

g

!

;

(3) two su

essive o

urren
es of x

k

are separated either by 1 or 111; the letter

x

k

o

urs in�nitely often;

(4) every fa
tor of �

k

(U) having x

k

or 111 for pre�x o

urs in �

k

(F ).

The indu
tion property holds for k = 1 by Lemma 10. Fix now an integer k � 1

and assume that the indu
tion property holds for both k and k� 1. For the sake of

simpli
ity, we assume that k � 2 and repla
e x

k

by its value 3. The proof pro
eeds

exa
tly in the same way when k = 1, x

k

= 2. We only need to use the fa
t that 22

does not o

ur in �

0

(U) = U .

Observe �rst that the fa
tors 33 and 31313 do not o

ur in �

k

(U), and 33 does

not o

ur in �

k�1

(U), a

ording to Assertion 4 and Lemma 8.

� From Assertions 1, 2 and 3 above, �

k+1

(U) is easily seen to be well de�ned.

� We have three 
ases to 
onsider.

{ If �

k

(U)[0℄ = 3, then �

k+1

(U) 2 f1; 3g

!

, by Assertion 3.

{ If �

k

(U) has 1

y

3 (y � 1) for pre�x, then �

k+1

(U) = y�(s

y

Æ�

k

(U)),

and s Æ�

k+1

(U) 2 f1; 3g

!

.

{ If �

k

(U)[0℄ = y 6= 1; 3, then �

k

(U) has y1

z

(z � 1) for pre�x, sin
e

the fa
tor 33 
annot o

ur in �

k�1

(U). If z is even, then Assertion 2

implies that y1

z

3 would 
ode a fa
tor of the form r

y

(3131)

z=2

333 in

�

k

(U) (r 2 5), a 
ontradi
tion with the fa
t that 33 62 L(�

k

(U)). If

z � 5, then y1

z

3 would 
ode a fa
tor of the form r

y

31313, a 
ontradi
-

tion with the fa
t that 31313 62 L(�

k

(U)). We have thus proved that

y 2 f1; 3g, whi
h implies that (s Æ�

k+1

(U)) 2 f1; 3g

!

.

Note that the �rst letter of �

k+1

(U) is smaller than or equal to 5, sin
e

31313 does not o

ur in �

k�1

(U). Hen
e, �

k+1

(U) 2 5

!

.

� The fa
tor 33 62 L(�

k+1

(U)), otherwise 333 would o

ur in �

k

(U). Hen
e

every o

urren
e of the letter 3 in �

k+1

(U) 
odes 111 in �

k

(U). The

fa
tor 311113 62 L(�

k+1

(U)); otherwise it would 
ode 1113131333 in �

k

(U),


ontradi
ting the fa
t that 33 does not o

ur in �

k

(U). Similarly, the fa
tor

311111 62 L(�

k+1

(U)); otherwise it would 
ode 11131313 in �

k

(U), but

31313 does not o

ur in �

k

(U). At last, the fa
tor 3113 62 L(�

k+1

(U));

sin
e otherwise it would 
ode 11131333 in �

k

(U), again a 
ontradi
tion.

Hen
e two 
onse
utive o

urren
es in �

k+1

(U) of 3 are separated either

by 1 or 111, and the letter 3 o

urs in�nitely often.

� Let w be a fa
tor of �

k+1

(U) whose pre�x is either 3 or the fa
tor 111. It


odes uniquely a fa
tor in �

k

(U) also starting with either 3 or 111, and

belonging thus by Assertion 4 to �

k

(F ); therefore w belongs to �

k+1

(F ).

It remains now to prove that �(U) ultimately ends in (13)

!

if U is an image or a

preimage of F under the a
tion of the shift s to 
omplete the proof of Theorem 9.

Assume �rst that U is a shifted image of the Fibona

i word F , that is, there

exists k 2 N su
h that U = s

k

(F ). Let us now introdu
e a suitable fa
torization

of 2F . For that purpose, let us �rst observe that F = '

2n+1

(F ) 
an be uniquely

de
omposed over the !-
ode fF

2n

; F

2n+1

g (see Proposition 3), and even over the
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!-
ode fF

2n+2

� F

2n+2

� F

2n+1

; F

2n+2

� F

2n+1

g: Hen
e we may fa
torize 2F over

f2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

; 2 � F

2n+2

� F

2n+1

� 2

�1

g:

Furthermore, the �rst term of this fa
torization is easily seen by indu
tion to be

2 �F

2n+2

�F

2n+1

� 2

�1

, whereas its se
ond term is 2 �F

2n+2

�F

2n+2

�F

2n+1

� 2

�1

. One

has U = s

k+1

(2F ). Let n � 2 be large enough su
h that jF

2n+3

j > k + 1. Let us

write 2F

2n+2

� F

2n+1

2

�1

as

2 � F

2n+2

� F

2n+1

= P

k

�Q

k

;

where P

k

is the pre�x of 2F of length k + 1; hen
e 2F = P

k

� U , and

U = Q

k

� s

jF

2n+3

j

(2 � F );

i.e.,

U 2 Q

k

� f2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

; 2 � F

2n+2

� F

2n+1

� 2

�1

g

!

;

the �rst term of this fa
torization being 2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

.

Let us observe that

2�F

2n+2

�F

2n+2

�F

2n+1

�2

�1

= (2�F

2n+2

�1

�1

)�(1�F

2n+1

�2

�1

)�(2�F

2n

�1

�1

)�(1�F

2n+1

�2

�1

);

and

2 � F

2n+2

� F

2n+1

� 2

�1

= (2 � F

2n+2

� 1

�1

) � (1 � F

2n+1

� 2

�1

):

Let us �rst prove that �(s

jF

2n+3

j

(2F )) = 2(13)

n+1

112(13)

!

: Following Propo-

sition 4 and Proposition 6, the glueing lemma applies, and implies that the �rst

terms of �(s

jF

2n+3

j

(2F )) are 2(13)

n

; let us note that �

2n+1

(2 � F

2n+2

� 1

�1

) = 111,

�

2n+1

(1 � F

2n+1

� 2

�1

) = 3, �

2n+1

(2 � F

2n

� 1

�1

) = 1. Hen
e

�

2n+1

(2 � F

2n+2

� F

2n+1

� 2

�1

) = 111 � 3:

�

2n+1

(2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

) = 111 � 3 � 1 � 3:

One 
on
ludes by 
onsidering the next values of �

k

, 2n+2 � k � 2n+6 and using

the fa
t that �(2F ) = �(2 � F

2n+2

� F

2n+1

� 2

�1

� s

jF

2n+3

j

(2F )) = 2(13)

!

.

Let us prove that �(Q

k

� s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) ulimately 
oin
ide.

Let m be the smallest integer su
h that �

m

(Q

k

) = 1. One 
he
ks that m �

2n + 5. Let us distinguish two 
ases a

ording to the parity of m, and apply the

glueing lemma, by noti
ing that the �rst term of the de
omposition of s

jF

2n+3

j

(2F )

is 2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

.

� Assume that m is even. Assume furthermore m � 2n. Then the fa
tor

�

m

(s

jF

2n+3

j

(2F )) admits 313111313 as a pre�x sin
e �(s

jF

2n+3

j

(2F )) =

2(13)

n+1

112(13)

!

: Hen
e �

m+1

(Q

k

� s

jF

2n+3

j

(2F )) admits 11113111 as a

pre�x, whi
h implies that �

m+2

(Q

k

� s

jF

2n+3

j

(2F )) admits 413 as a pre�x;

one dedu
es that �(Q

k

� s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) 
oin
ide for in-

di
es larger than m + 3. If m = 2n + 2, then �

2n

(s

jF

2n+3

j

(2F )) admits

3111313 as a pre�x, and similarly one 
he
ks that �(Q

k

�s

jF

2n+3

j

(2F )) ends

in (13)

!

from indi
es larger than or equal to 2n + 5. If m = 2n + 4, then

one 
he
ks that �(Q

k

�s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) 
oin
ide for indi
es

larger than 2n+ 6.

� Assume that m is odd. This implies that �

m�1

(Q

k

) = 2. Assume that

m � 2n + 1. One 
he
ks that �

m

(Q

k

� s

jF

2n+3

j

(2F )) admits 11113 as

a pre�x, and thus �(Q

k

� s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) 
oin
ide for

indi
es larger than m + 2. If m = 2n + 3, �(Q

k

� s

jF

2n+3

j

(2F )) ends in

(13)

!

from for indi
es larger than 2n+ 6. If m = 2n+ 5, one 
he
ks that
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�(Q

k

� s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) 
oin
ide for indi
es larger than

2n+ 8.

One thus dedu
es that �(U) ultimately terminates in (13)

!

.

Assume now that U is a preimage of F under an iterate of s, that is, there

exists k su
h that s

k

(U) = F . Sin
e both 2F and 1F belong to F , then U is

either a preimage or 2F or of 1F , that is, there exists a �nite word P

U

su
h

that either U = P

U

� 2F or U = P

U

� 1F . Using the fa
torizations, respe
tively,

of 2F over f2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

; 2 � F

2n+2

� F

2n+1

� 2

�1

g or 1F over

f1 �F

2n+1

�F

2n+1

�F

2n

� 2

�1

; 1 �F

2n+1

�F

2n

� 2

�1

g we may apply the same reasoning

as above. Let us re
all that �(2F ) = 2(13)

!

, whereas one 
he
ks that �(1F ) =

12(13)

!

. One thus obtains that �(P

U

�2F ) and �(P

U

�1F ) ultimately 
oin
ide with

respe
tively �(2F ) or �(1F ), whi
h ends the proof. �

We have thus proved that words that are images or preimages of F under the

shift s eventually end with (13)

!

. The next proposition states that this property

does not hold for all words in F , that is, there exist words U with the same set of

fa
tors as F for whi
h �(U) presents a di�erent behaviour.

Proposition 11. There exist words U in F su
h that �(U) 
ontains in�nitely

many o

urren
es of the letter 2.

Proof. Let us exhibit an example of a Sturmian word U in F su
h that �(U) does

not ultimately end in (13)

!

. Let U be the limit word in f1; 2g

!

of the sequen
e of

�nite words

U

n

= (1 � (F

7

� F

10

) � � � (F

2

k

�1

� F

2

k

+2

) � � � (F

2

n

�1

� F

2

n

+2

) � 1

�1

); n � 3:

This sequen
e of words 
onverges for the usal topology on f1; 2g

!

and for every

n, U

n

is a fa
tor of the Fibona

i word F as we shall see now. Indeed, following

[9℄, every �nite 
on
atenation of F

n

's with de
reasing order of indi
es and where

no two 
onse
utive indi
es o

ur, is a pre�x of the Fibona

i word F . Hen
e

F

2

n

+2

� F

2

n

�1

� � �F

10

� F

7

is a pre�x of F . Sin
e 2F is also a Sturmian word in F , 2 �F

2

n

+2

�F

2

n

�1

� � �F

10

�F

7

is also a fa
tor of F . But

2 � F

2

n

+2

� F

2

n

�1

� � �F

10

� F

7

� 2

�1

=

(2 � F

2

n

+2

� 1

�1

) � (1 � F

2

n

�1

� 2

�1

) � � � (2 � F

10

� 1

�1

) � (1 � F

7

� 2

�1

)

is a 
on
atenation of palindromes by Proposition 3. The set of fa
tors of F being

stable under mirror image (see for instan
e [13℄), we have

(1 � F

7

� 2

�1

) � (2 � F

10

� 1

�1

) � � � (1 � F

2

n

�1

� 2

�1

) � (2 � F

2

n

+2

� 1

�1

)

= 1 � (F

7

� F

10

) � � � (F

2

n

�1

� F

2

n

+2

) � 1

�1

is a fa
tor of F . Hen
e the word U belongs to F sin
e it is a limit of fa
tors of the

Fibona

i word, and admits for every n, U

n

as a pre�x. Consider now the following

fa
torization

(1 � F

2

n

�1

� 2

�1

) � (2 � F

2

n

+2

� 1

�1

) =

(1 � F

2

n

�1

� 2

�1

) � (2 � F

2

n

� 1

�1

) � (1 � F

2

n

�1

� 2

�1

)(2 � F

2

n

� 1

�1

):
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Following Proposition 4 and Proposition 6, the glueing lemma applies. One has

�

2

n

(1 � F

2

n

�1

� 2

�1

) = 1, �

2

n

(1 � F

2

n

+1

� 2

�1

) = 111, and �

2

n

(2 � F

2

n

� 1

�1

) = 3.

Hen
e

�

2

n

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 1 � 3 � 111 � 3;

�

2

n

+1

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 1 � 1 � 3 � 1;

�

2

n

+2

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 2 � 1 � 1

�

2

n

+3

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 1 � 2

�

2

n

+4

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 1 � 1

�

2

n

+5

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 2:

By applying the glueing lemma, one proves by indu
tion that

�

2

n�1

+8

(U

n

) = �

2

n�1

+8

((1 � F

2

n

�1

� 2

�1

) � (2 � F

2

n

+2

� 1

�1

));

whi
h implies �(U)[2

n

+ 2℄ = 2, for all n � 3. �

Remark One 
an in fa
t prove that there exist un
ountably many words U in F

su
h that �(U) does not ultimately end in (13)

!

.
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