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Introduction by the Organisers

Combinatorics on words studies properties of sequences of symbols, either finite
or infinite, taken from a finite alphabet. The focus on words might be algebraic,
combinatorial, or algorithmic. It is characteristic to the field that the motiva-
tion to study properties of sequences has arisen from very different mathematical
problems. As a result many fundamental properties of words, e.g., on avoidable
patterns, unavoidable regularities, and word equations have been established in
various mathematical areas. Over the last two decades the theory has developed
into a quickly growing topic of its own.

In this workshop the current status of the field was identified, the impact of
recent breakthrough results like on unavoidable repetitions in infinite words, word
equations, the structure of finite words of small index, and the transcendence of
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certain morphic words was discussed, as well as, perspectives for research on this
new and challenging field were created.

The talks of this workshop addressed a large portion of topics in combinatorics
on words. They ranged from complexity questions (inconstancy, palindromic and
factor complexity, rich words) over pattern avoidance, word equations, special
factorizations and periods to topics touching on number theory and graph theory.
One session was dedicated to the perspectives of combinatorics on words and open
problems.

It has to be noted that one could experience a very productive atmosphere dur-
ing the whole workshop. All talks were accompanied with interesting comments,
proposed conjectures and (sometimes) solutions, connections with other fields were
discovered, and lively discussions were held far beyond the time of the lectures.
Just to name two examples of discussed topics: (1) The Halbeisen-Hungerbuehler-
Pirillo-Varicchio problem asks for a word over some finite alphabet {0, 1, ..., k}
such that two consecutive factors of the same length never have the same sum.
New approaches to this problem were raised and investigated during the workshop.
(2) A new idea on the connection between solutions of word equations and semi-
linear sets was discussed and yields a fresh approach to the investigation of the
cumulative defect effect that may eventually lead to new progress on the Culik-
Karhumäki conjecture which has withstood a solution for about three decades.

The work of the participants at the workshop, as documented by the abstracts
in this report, shows that combinatorics on words is an active field with many
facets and surprising connections. We are grateful to all participants for their
contributions to this successful workshop as well as to the staff of the MFO for
their perfect service.
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Abstracts

Inconstancy and complexity of finite and infinite sequences

Jean-Paul Allouche

(joint work with Laurence Maillard-Teyssier)

This text is an extended abstract of a paper of the same authors [4].

1. Introduction

What is a “complicated” or “complex” (finite or infinite) sequence? The reader
will probably agree that the sequence 0000... is very “simple”, that the sequence
010101... is also simple though may be less simple, that an eventually periodic
sequence with a very long preperiod might be very complicated, and that a “ran-
dom” sequence must be complicated. One can imagine of several ways of defining
complexity in mathematical terms. Classical approaches include

• algorithmic complexities: in particular Kolmogorov-Solomonoff-Chaitin
complexity and its relation to compressibility: see, e.g., [16];

• combinatorial complexities: in particular block – or factor – complexity,
see, e.g., [1, 11], repetition complexity, see, e.g., [15], palindrome complex-
ity, see, e.g., [3], arithmetical complexity, see, e.g., [6], maximal pattern
complexity, see, e.g., [12, 13]. Also see the paper [14], and the talk of J.
Cassaigne at this mini-workshop. We also mention quasi-periodicity, re-
currence and uniform recurrence, some definitions of pseudo-randomness,
e.g., [17], the study of certain subsequences of the given sequence – in par-
ticular the measure of automaticity introduced by Shallit et al., see, e.g.,
Chapter 15 of [5];

• number-theoretical complexity: in relation with periodicity, but also with
algebraicity properties of real numbers, formal power series or continued
fractions associated with a given sequence, see, e.g., [2].

Now what is a fluctuating (finite or infinite) sequence? How is it possible to
detect and define sequences that admit large variations or fluctuations? A classical
criterion is the residual variance of a sequence: this is a measure of the “distance”
between the piecewise affine curve associated with the sequence and its regression
line. Residual variance does not discriminate between a sequence that oscillates
wildly and a sequence that grows very rapidly. We thus propose to bring to light an
old result of Cauchy and Crofton, in order to define what we call the inconstancy
of a sequence. This definition is based upon the idea that a complicated curve is
cut by a “random” straight line in many more points than a “quasi-affine” curve.

2. Cauchy-Crofton’s theorem. Inconstancy of a sequence

Let Γ be a plane curve. Let ℓ(Γ) denote its length and let δ(Γ) denote the
perimeter of its convex hull. Any straight line in the plane can be defined as the
set of (x, y) such that x cos θ + y sin θ − ρ = 0, where θ belongs to [0, π) and ρ
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is a real number, and hence is completely determined by (ρ, θ). Letting µ denote
the Lebesgue measure on the set {(ρ, θ), ρ ≥ 0, θ ∈ [0, π)}, the average number
of intersection points between the curve Γ and straight lines is defined to be the
quantity ∫

D∈Ω(Γ)

♯(Γ ∩D)
dρ dθ

µ(Ω(Γ))

where Ω(Γ) is the set of straight lines which intersect Γ.

The following result can be found in [10, p. 184–185], see also the papers of
Cauchy [8, 9].

Theorem 1 (Cauchy-Crofton). The average number of intersection points between
the curve Γ and the straight lines in Ω(Γ) satisfies the equality

∫

D∈Ω(Γ)

♯(Γ ∩D)
dρ dθ

µ(Ω(Γ))
=

2ℓ(Γ)

δ(Γ)
·

Remark 2. The reader will have noted the relation between this theorem and the
Buffon needle problem (see [7, p. 100–104]).

The theorem of Cauchy-Crofton leads us to the following definition.

Definition 3. Let Γ be a plane curve. Let ℓ(Γ) be its length and δ(Γ) the perimeter
of its convex hull. The inconstancy of the curve Γ, denoted I(Γ), is defined by

I(Γ) := 2ℓ(Γ)

δ(Γ)
·

Remark 4. The minimal value of I(Γ) is 1. It is obtained in particular when Γ is
a segment.

3. First results

In [4] we compare inconstancy with residual variance for very simple sequences.
Then we compute the inconstancy of classical infinite sequences. We give some of
our results below.

Theorem 5. Let (un)n≥0 be an infinite sequence taking two values 0 and h >
0, with u0 = 0. We make the assumption that the frequencies of occurrences
of the blocks 00, hh, 0h, h0 in the sequence exist and are respectively equal to
F00,Fhh,F0h,Fh0. Then

I((un)n≥0) = F00+Fhh+(
√
1 + h2)(F0h+Fh0) = 1+(

√
1 + h2− 1)(F0h+Fh0).

Remark 6. A similar result holds with sequences taking any finite number of values.

Corollary 7. We have in particular the following results for binary sequences
(taking only values 0 and 1). Let ((mn)n≥0) be the Thue-Morse sequence; let
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((rn)n≥0) be the Shapiro-Rudin sequence; let ((zn)n≥0) be the regular paperfolding
sequence.

I((01)∞) =
√
2 = 1.414...

I((021)∞) = 1+2
√
2

3 = 1.276...

I((mn)n≥0) = 1+2
√
2

3 = 1.276...

I((031)∞) = 1+
√
2

2 = 1.207...

I((rn)n≥0) = 1+
√
2

2 = 1.207...

I((zn)n≥0) = 1+
√
2

2 = 1.207...

I((un)n≥0) = 1+
√
2

2 = 1.207... (for almost all sequences u)
I(0∞)) = 1.

4. Possible applications

We began checking whether inconstancy is a pertinent measure of fluctuation,
or even a prediction tool in different domains: variations of BMI (body mass index)
and metabolic syndrome (in relation with cardio-vascular diseases, see, e.g., [18]),
smoothness of musical themes, and fluctuations of the stockmarket.
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Word combinatorics, S-adic sequences and multidimensional
continued fractions

Valérie Berthé

This survey lecture is about the numerous occurrences of Euclid’s algorithm and
continued fraction algorithms (in their usual form, or in generalized versions) in
word combinatorics. One motivation is the well-known and particularly fruitful
interaction between Sturmian sequences, rotations of T1, and regular continued
fractions. For generalizations, see also the survey [4].

As another motivation let us recall Fine and Wilf’s theorem. This theorem gives
a condition on the length of the periods a finite word can have. More precisely, if
w is a word having periods p and q with length greater than or equal to p + q −
gcd(p, q), then w has period gcd(p, q). Asume now p and q coprime. The family
of words with length p+ q− 2 that are p and q periodic is particularly interesting.
Such extremal words (with respect to Fine and Wilf’s theorem) are known to be
particular factors of Sturmian words, and their study involves once again Euclid’s
algorithm. For more details, see [9] and the references therein.

There exist two natural types of generalizations of Fine and Wilf’s theorem,
either by extending the size of the alphabet [7], or by considering multidimensional
words [12]. Extremal words for these generalizations can also be described in terms
of multidimensional continued fraction algorithms. In particular, in the former
case, an algorithm in the flavour of the fully subtractive algorithm [11] allows the
construction of extremal words [13]. See also the lecture by A. de Luca which
evokes duality properties for Christoffel words and generalizations, obtained by
reversing the corresponding generalized Euclid’s algorithm.

The connection between word combinatorics and multidimensional continued
fractions is particularly striking within the so-called S-adic framework. Let us
recall that a substitution is a non-erasing morphism of the free monoid. A se-
quence is said to be S-adic if it is generated by an infinite composition of a finite
number of substitutions. S-adic sequences generalize in a natural way substitutive
sequences. The S-adic expansion of a Sturmian word can be described thanks to
the continued fraction expansion of its slope [5]. More generally, infinite words
having an at most linear number of factors of a given length (they are said to be
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of linear complexity) are known to be S-adic, if they are furthermore assumed to
be minimal [8]. For more details, see also the lecture by J. Cassaigne. This covers
various families of infinite words with a rich dynamical behaviour. In order to
understand the geometric and symbolic nature of the dynamical systems that are
generated by such infinite words, we are mainly interested in the two following
problems: first, finding geometric interpretations of various symbolic dynamical
systems including those generated by substitutions or by S-adic generation, and
secondly, developing multidimensional continued fraction algorithms reflecting the
dynamics of the systems.

Several combinatorial questions can be formuated in an efficient way in this
S-adic/continued fraction framework. Given an S-adic sequence, one can ask
whether this sequence is substitutive, that is, whether it is a letter-to-letter projec-
tion of a fixed point of a substitution. Substitutive Sturmian sequences correspond
to quadratic angles (for more details, see [5]). This result can be considered as
a version of Galois’ theorem for continued fraction expansions. See also [6] for a
connected result: if all the parameters of an interval exchange belong to the same
quadratic extension, the sequence of induced interval exchanges (by performing
always the same induction process) is ultimately periodic.

More generally, convergence issues (and Diophantine approximation properties)
for a multidimensional continued fractions algorithm underlying a family of infinite
words correspond to the question of convergence toward frequencies of factors,
which can themselves be expressed in measure-theoretic terms (in particular if one
has unique ergodicity).

The study of S-adic words thus leads to numerous questions that are of a
combinatorial, arithmetic or else dynamical nature. Among them, the so-called
S-adic conjecture aims at finding a characterization of infinite words having linear
complexity in S-adic terms. This conjecture is still open. Note that during the
lecture, the following interesting decision problem has been raised by J. Shallit:
Given a finite set of substitutions φ1, φ2, · · · , φn, and a word w, decide if w appears
as a factor of some S-adic infinite word generated by the φi.
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Words of very low factor complexity

Julien Cassaigne

Let u ∈ AN be an infinite word. The factor complexity of u is the function
p : N → N defined by: p(n) is the number of words of length n occurring in u
(factors of u). Morse and Hedlund [5] proved that p(n) ≥ n+1 for non-eventually-
periodic words. Words for which p(n) = n+ 1 are called Sturmian words. Words
for which p(n) = n + c for some constant c can be deduced from them [3]. We
are interested in words “just above” this, roughly n + 1 ≤ p(n) ≤ 2n. Let αu =

lim inf p(n)
n and βu = lim sup p(n)

n , and Ω = {(αu, βu) : u ∈ AN} ⊆ (R+ ∪ {+∞})2.
Then the general problem, essentially open, is: what is the structure of Ω?

Heinis proved [4] that β − α ≥ (2−α)(α−1)
α . In particular, 1 < α = β < 2

is impossible.1 Aberkane [1] contructed a sequence of points of Ω converging to
(1, 1); on the other hand (32 ,

5
3 ) seems to be an isolated point.

The main tool to study these words is the sequence of Rauzy graphs : Γn is
the directed graph with vertices Ln(u) (the factors of length n of u) and edges
Ln+1(u), with an edge from x to y labelled with z if and only if z ∈ xA ∩ Ay.
For Sturmian words, only two shapes of graphs are possible. For recurrent words
with p(n) ≤ 4

3n+ 1, two new shapes appear. Such a word is then defined (up to
shift, etc.) by a path in the “graph of graphs”, and some of its properties (α and
β, frequencies, etc.) may be deduced from this path. The path also provides an
s-adic representation (infinite composition of substitutions), which can be viewed
as a generalized continued fraction expansion.
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Power-free Sequences: Topology, Reachability and Curling Numbers

James D. Currie

A word is repetitive if it contains two identical blocks. A word containing k con-
secutive identical blocks is said to contain a k power. Dejean [5] also introduced
the study of words containing fractional k powers.

Thue [11] showed that there are infinite words over the three letter alphabet
{a, b, c} which are non-repetitive. Infinite nonrepetitive words (sequences) have
been used to build counter-examples in algebra [8], ordered sets [12], symbolic
dynamics [7] and other areas. A non-empty set L of infinite words is perfect if
for any u ∈ S and any n there is a word v ∈ L, v 6= u such that u and v have a
common prefix of length at least n.

Open problem 1. Let L be the set of infinite words over Σ which avoid pattern
p. Is L perfect?

Abusing notation, consider L to contain also the finite factors of its words. We
consider the partial order where u < v iff u is a prefix of v. The diagram of L
under this order is a tree with root ǫ, the empty word. We will identify L with
this tree. The meet of finite words u, v is their longest common prefix, denoted
by u ∧ v.

Given words u ≤ v in L, the closed interval [u, v] is the set {w ∈ L : u ≤ w ≤ v}.
For notational convenience, we also define [u,∞] = {w ∈ L : u ≤ w}. Suppose
that u < v and

(1) [v̂,∞] is infinite for at most one upper cover v̂ of v.
(2) [u,∞]− [v,∞] is finite.

In this case any path in L from u to ∞ must traverse the vertices of [u, v̂]. We
refer to the set Bv̂(u, v) = B(u, v) = [u,∞]− [v̂,∞] as a bottleneck. The length
of B = B(u, v) is |B| = |v| − |u|+ 1. The index of B is ι(B) = |u|. Suppose that
B(u, v) is a bottleneck and û < v̂ are elements of [u, v]. It follows that at most
one cover of v̂ has an infinite extension and we can form a bottleneck B(û, v̂).

We consider the case where L is the language of square-free words over a three-
letter alphabet. Long bottlenecks in L must occur far out, i.e. for a bottleneck B
of L

(1) ι(B) ≥ f(|B|), whenever |B| > N0.

Here N0 is some constant, while f is eventually increasing and unbounded. Let
g be a function such that for any non-negative integer M we have f(x) > M
whenever x > g(M).
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Theorem 8. Language L is infinite if and only if it contains a word of length
max(N0, g(0)).

This is a special case (u = ǫ) of the following:

Theorem 9. Word u ∈ L is a prefix of infinitely many words in L if and only if
L contains a word v > u, with |v| − |u| = max(N0, g(|u|)).

Inequality (1) can also be used to show that L is perfect.

Theorem 10. If L is infinite, then L is perfect.

Thus the infinite tree L is constantly branching. The proof is readily sharpened
to put a bound on how far L can go without branching.

Theorem 11. Suppose that u has an infinite extension in L. Then there is a
word v > u, |v| ≤ |u| − 1+ g(|u|) such that v is the meet of two infinite extensions
of u in L.

Function f can be taken to have the form f(x) = ax3/2, some positive constant
a. Thus g can be taken to be g(x) = max(N + 1, (x/a)2/3). This implies the
following:

Corollary 12. The set of nonrepetitive words over {1, 2, 3} of length n grows
exponentially.

A striking aspect is that all of this structural information about L is demon-
strated non-constructively! [2, 3, 4] We will argue that these non-constructive
methods should be used to attack the following three open problems:

Open problem 2. (Restivo/Salemi) A reachability problem [9]: Suppose that u
is a prefix of infinitely many words of L, and v is a suffix of infinitely many words
of L. Does L contain a word of the form uwv?

Open problem 3. (Sloane et al.) Curling numbers [1]: Given a finite word w,
the curling number of w is the largest integer n such that w can be written uvn

for some words u and v. Starting with any word w, we can form the curling
number sequence of w: We let w0 = w, and wi+1 is formed by appending to wi

its curling number. The conjecture is that if one starts with any finite word and
begins to form the curling number sequence, one will eventually reach a 1.

Open problem 4. (Guay-Paquet and Shallit) Lexicographically least words [6]:
It is conjectured that the lexicographically least infinite word over N avoiding 5/2
powers uses only three letters.
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On a palindromization map on free monoids

Aldo de Luca

The right-palindromic closure of a word u of a free monoid A∗ over the alphabet
A, is the shortest palindrome u(+) of A∗ having u as a prefix. In a seminal paper
[6] of 1997, the author introduced in the case of a binary alphabet, an injective
map, called palindromization map, associating to each word v a palindrome by
an iterated application, ‘directed’ by the word v, of the right palindromic closure
operator. More precisely, the palindromization map ψ : A∗ → PAL, where PAL
is the set of palindromes of A∗, is inductively defined as: ψ(ε) = ε (ε denotes the
empty word) and for all u ∈ A∗ and x ∈ A,

ψ(ux) = (ψ(u)x)(+) .

For all words v if u is a prefix of v, then ψ(u) is a palindromic prefix (and suffix)
of ψ(v) and, conversely, every palindromic prefix of ψ(v) is of the form ψ(u) for
some prefix u of v. For any w ∈ ψ(A∗) the unique word u such that ψ(u) = w is
called the directive word of w. For instance, if A = {a, b, c} and v = aabc, one has
ψ(a) = a, ψ(aa) = aa, ψ(aab) = (aab)(+) = aabaa, and ψ(aabc) = (aabaac)(+) =
aabaacaabaa.

It was proved in [6] that if the palindromization map is extended to infinite
binary directive words such that each letter occurs infinitely many times in them,
then one can construct all standard Sturmian words.

If one extends the action of palindromization map to infinite words over arbi-
trary finite alphabets, one can generate a wider class of words, called standard
episturmian, introduced in 2001 by X. Droubay, J. Justin, and G. Pirillo in [12].
This class includes standard Sturmian words and Arnoux-Rauzy words [1]. In this
extension of Sturmian words some properties are lost (for instance, the balance
property) and other are preserved (for instance, the richness in palindromes of
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their factors). In any case episturmian words satisfy very interesting combinato-
rial and structural properties and, in fact, many papers have been written on the
subject (see, for instance, the overview papers [2, 13]).

In this theory a key role is played by the class of palindromic prefixes of all
standard episturmian words over a given alphabet called epicentral words, and
simply central in the case of a binary alphabet [15]. These words are precisely the
images of a finitely generated free monoid by the palindromization map. Epicen-
tral words satisfy interesting combinatorial properties since they can have several
different representations. In fact, besides directive words which are related to the
palindromization map, epicentral words can be represented by periods (period vec-
tor) and composition (Parikh vector). Further important representations can be
done by using matrices, trees, and graphs [10, 11].

The previous representations are also useful for the problem of counting the
epicentral words and the palindromes of any length in all episturmian words over
a given alphabet [5]. For any k, the map Pk which counts for any n the epicentral
words of length n on the k-letter alphabet, is a suitable extension to the case
k > 2 of Euler’s totient function ϕ. Indeed, for k = 2, P2(n) = φ(n + 2)[9]; for
k > 2 a general arithmetic interpretation for Pk(n) in terms of a multidimensional
generalization of the Euclidean algorithm is in [16] (see also [10]). The behavior of
the map Pk is quite irregular and oscillating. Some conjectures based on a table
of numerical values of Pk (3 ≤ k ≤ 6 and 1 ≤ n ≤ 500) are formulated. In [5]
a formula for the map gk counting for any n the palindromes of length n in all
episturmian words over a k letter alphabet is given. This formula for gk, extending
a result found in [7] in the case k = 2, depends on the map Pk.

The palindromization map has been recently extended to the case of free-group
F2 by C. Kassel and C. Reutenauer [14]. Moreover, in [8] a (right) θ-palindromic
closure operator, where ϑ is any involutory antimorphism of a free monoid, has
been introduced. The fixed points of ϑ are called ϑ-palindromes. For any word u
the ϑ-palindromic closure of u is the shortest ϑ-palindrome having u as a prefix.
Similarly to the case of the reversal operator, a ϑ-palindromization map can be
defined; it associates to each word v a ϑ-palindrome by an iterated application
of ϑ-closure operator ‘directed’ by the word v. By acting with this operator on
any infinite directive word one obtains a class of words larger than the class of
standard episturmian, that we called θ-standard words (or simply pseudostandard
if one does not refer to a particular ϑ); when θ is the reversal operator one obtains
the class of standard episturmian words.

In [4, 3] two more general families of words have been introduced. The first
is the family of the ϑ-standard words with seeds, that is the words obtained by
iteration of the operator of θ-palindromic closure starting with a non-empty word
called seed. A second family of words called generalized pseudostandard words, is
formed by the pseudostandard words directed by 2-words: the directive word and
a word describing the antimorphism to use at each iteration.
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On (almost) rich words

Amy Glen

In recent years there has been growing interest in palindromes in the field of combi-
natorics on words, especially since the work of A. de Luca [8] and also X. Droubay
and G. Pirillo [10], who showed that the well-known Sturmian words are charac-
terised by their palindromic complexity [1, 3, 5]. A strong motivation for the study
of palindromes, and in particular infinite words containing arbitrarily long palin-
dromes, stems from applications to the modelling of quasicrystals in theoretical
physics (see for instance [7, 17]) and to Diophantine approximation (e.g., see [14]).

In [9], X. Droubay, J. Justin, and G. Pirillo observed that any finite word
w of length |w| contains at most |w|+1 distinct palindromes (including the empty
word). Even further, they proved that a word w contains exactly |w| + 1 distinct
palindromes if and only if the longest palindromic suffix of any prefix p of w
occurs exactly once in p (i.e., every prefix of w has Property Ju [9]). Such words
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are ‘rich’ in palindromes in the sense that they contain the maximum number of
different palindromic factors. Accordingly, we say that a finite word w is rich if it
contains exactly |w| + 1 distinct palindromes (or equivalently, if every prefix of w
has Property Ju). Naturally, an infinite word is rich if all of its factors are rich. In
independent work, P. Ambrož, C. Frougny, Z. Masáková, and E. Pelantová have
considered the same class of words which they call full words in [2], following the
earlier work of S. Brlek, S. Hamel, M. Nivat, and C. Reutenauer in [5].

In [9], X. Droubay et al. also showed that the family of episturmian
words [9, 18], which includes the well-known Sturmian words, comprises a spe-
cial class of rich infinite words. Specifically, they proved that if an infinite word
w is episturmian, then any factor u of w contains exactly |u| + 1 distinct palin-
dromic factors. (See [4, 15, 19] for recent surveys on the theory of Sturmian
and episturmian words.) Another special class of rich words consists of S. Fis-
chler’s sequences with “abundant palindromic prefixes”, which were introduced
and studied in [13] in relation to Diophantine approximation (see also [14]). Other
examples of rich words have appeared in many different contexts; they include
the complementation-symmetric Rote sequences [1], certain words associated with
β-expansions where β is a simple Parry number [2, 6], and symbolic codings of
trajectories of symmetric interval exchange transformations [11, 12].

The first unified study of combinatorial and structural properties of rich
words was carried out by myself and J. Justin, published in a joint paper with
S. Widmer and L.Q. Zamboni who studied a wider class of words for which suc-
cessive occurrences of any letter are separated by palindromes (called weakly rich
words) – see [16].

In this talk, I will begin by giving a brief overview of some fundamental
properties of rich words. In particular, I will show that rich words are charac-
terised by the property that all complete returns to any palindromic factor are
palindromes. I will also give a more explicit description of periodic rich infinite
words. I will then discuss so-called almost rich words: they are infinite words for
which only a finite number of prefixes do not satisfy Property Ju. Such words can
also be defined in terms of the defect of a finite word w, which is the difference
between |w|+1 and the number of distinct palindromic factors of w (see the work
of Brlek et al. in [5] where periodic infinite words with finite defect are charac-
terised). With respect to this notion, rich words are those with defect 0 and almost
rich words are infinite words with finite defect.

Lastly, I will consider the action of morphisms on (almost) rich words, with
particular interest in morphisms that preserve (almost) richness. We have shown
that such morphisms belong to the class of P -morphisms that was introduced by
A. Hof, O. Knill, and B. Simon in [17] (see also the nice survey on palindromic
complexity by J. Allouche et al. [1]), but it remains an open problem to char-
acterise them. This is related to the following long-standing open question posed
in [17]: are there (uniformly recurrent) infinite words containing arbitrarily long
palindromes that arise from primitive morphisms, none of which belongs to class
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P? The answer is believed to be no. Up until now, it has only been shown to hold
in the periodic case (see [1]) and also in the 2-letter case (see [20]).
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Weinbaum Factorizations

Tero Harju

(joint work with Volker Diekert, Dirk Nowotka)

C. M. Weinbaum [2] proved that for any primitive word w and a letter a occurring
in w, there exists a conjugate of w that has a decomposition as w′ = uv such that
(1) u ∈ aA∗ ∩A∗a but v /∈ aA∗ ∪A∗a, and (2) u and v have unique positions in w
as cyclic factors, i.e., there is exactly one conjugate of w having u as a prefix and
only one conjugate of w having v as a prefix.

Taken alone both conditions (1) and (2) are easily seen to be satisfied. For
instance, given that w = baababbabaa, we find that the decompositions w′ =
(aa)(babbabaab) and w′ = (aaba)(bbabaab) both satisfy (1) but not (2). On the
other hand, the decomposition w′ = (abba)(baabaab) satisfies both conditions
(1) and (2).

The following shows that the condition (2) is always satisfied.

Lemma 13. Let w = uv be a Lyndon word where v is the maximum suffix of w.
Then u and v are uniquely positioned in w. Moreover, if v′ is a cyclic factor of w
such that v ⊳ v′, then v ≤p v

′.

A simple proof of Weinbaum’s result is given in Diekert, Harju and Nowotka [1],
where also the following generalization of the result are proven.

Let w be a primitive word, and f , g its factors. A factorization w′ = uv of
a conjugate of w is a Weinbaum factorization of w for f and g, if u and v are
uniquely positioned in cyclic w and

u ∈ (fA∗ ∩ A∗f) \ (gA∗ ∪ A∗g),

v ∈ (gA∗ ∩A∗g) \ (fA∗ ∪ A∗f).

Note that if w′ = uv is a Weinbaum factorization of w in the original setting,
then it is a Weinbaum factorization of w for a and v.

Let now w be a primitive word, f a proper factor of w, and define

G(f) ={g | |fg| ≤ |w|, fgf is a cyclic factor of w2, fgf 6∈ A+fA+} ,
R(f) ={g ∈ G(f) | g does not occur in any other element of G(f), and

f and g do not intersect in w}.
A word f is called a Weinbaum factor of w, if R(f) 6= ∅.

Theorem 14 ([1]). Let w be a primitive word and let f be a Weinbaum factor
of w with g ∈ R(f). Then w has a Weinbaum factorization for f and g.

Let then Ri denote the i-th iteration of the operation R. We can show that
either Ri(g) = Ri+2(g) or the set Ri+2(g) contains a word having length at least
twice the length of a word in Ri(g). Hence, Ri(g) = Ri+2(g) for some i ≤ 2 log2(n).
The bound can be improved so that we obtain the following result, where Φ =
(1 +

√
5)/2 is the golden ratio.
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Theorem 15. Let w be a primitive word with a Weinbaum factor f , and let
g ∈ R(f). If 2ℓ ≥ logΦ(n), then R2ℓ−1(g) 6= ∅, for every u ∈ R2ℓ−1(g), the set
R(u) is a singleton; and for R(u) = {v} we obtain R(v) = {u} and a Weinbaum
factorization of w = uv for f and g.
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Periods and Unbordered Factors: The Ehrenfeucht-Silberger Problem

Štěpán Holub

(joint work with Dirk Nowotka)

The period of a word w, denoted by π(w), is the length of the shortest word u such
that w is a prefix of the infinite word uuu . . . . Obviously, such a shortest word u
is primitive, that is, it is not a power of a shorter word. An extremal situation is
when π(w) = |w|, where |w| denotes the length of w. In such a case, the word w
is called unbordered, otherwise it is called bordered. The name is justified by the
fact that a word w is bordered if and only if w = uvu for some nonempty word u,
called a border of w. More generally, a border of w is any nonempty word u that
is both a prefix and a suffix of w, and u 6= w allowing a border to be longer than
the half of the length of w. However, it is easy to conclude (see the picture below)
that any bordered word has a border shorter than the half of its length. It is also
obvious that the shortest border of a word is itself unbordered.

a b a b b a b a b b a b a b

z zz

y y

If w = uv, then w̃ = vu = u−1wu is called a conjugate of w. Any primitive
word w has an unbordered conjugate w′; it is enough to consider a conjugate of
w that is a Lyndon word, defined as the minimal conjugate w.r.t. to a chosen
lexicographic order ⊳. The proof of the fact that any Lyndon word is unbordered
illustrates how elegant and efficient proofs can be when using the properties of
lexicographic orders. Suppose that w = uvu is a Lyndon word w.r.t to ⊳. By
definition, the word w is primitive, whence uv 6= vu by the well known Periodicity
lemma. If uv ⊳ vu, then also u(uv) ⊳ u(vu); if, on the other hand, vu ⊳ uv, then
(vu)u ⊳ (uv)u; a contradiction in both cases.

The above property of Lyndon words in particular shows that any word uu,
with u primitive, contains an unbordered factor of length |u|. It is also obvious
that any longer factor of uu is bordered. Therefore, we have τ(uu) = π(uu),
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where τ(w) denotes the length of the longest unbordered factor of w. As already
suggested, the inequality τ(w) ≤ π(w) is obvious. Previous considerations also
show that τ(w) = π(w) as soon as |w| ≥ 2π(w). Moreover, the multiplicative
constant 2 is optimal: for the word w = anban+1bban+1ban we have π(w) = 2n+6,
τ(w) = 2n+ 5, and |w| = 2π(w)− 4.

It turns out that the question is much more difficult if we replace π(w) by τ(w)
obtaining the following problem:

The Ehrenfeucht-Silberger Problem: What is the smallest number c such
that |w| ≥ c τ(w) implies τ(w) = π(w)?

History. The problem was raised by Ehrenfeucht and Silberger in 1979 [3]. They
conjectured that c = 2, which was falsified shortly thereafter by Assous and
Pouzet [1] by the following example:

w = anban+1banban+2banban+1ban

where n > 1 and τ(w) = 3n + 6 and π(w) = 4n + 7 and |w| = 7n + 10, that
is, τ(w) < π(w) and |w| = 7

3 τ(w) − 4 > 2τ(w). Assous and Pouzet in turn
conjectured that c = 3. Duval [2] established in 1982 that c ≤ 4 and made a
conjecture for a special case: if w possesses an unbordered prefix of length τ(w),
then |w| ≥ 2τ(w) implies τ(w) = π(w). Duval’s conjecture was only solved in 2004
[4] with a new proof given in [5]. The proof of Duval’s conjecture lowered the bound
for Ehrenfeucht and Silberger’s problem to c ≤ 3 reaching the value conjectured
by Assous and Pouzet. However, there remained a gap of 2

3 between that bound
and the largest known example represented by the above Assous-Pouzet words. In
2009, Holub and Nowotka [6] proved that the bound 7

3 is in fact optimal, solving
the original Ehrenfeucht-Silberger problem.

The proof strategy. The proof has two main ideas. The first one is to factorize the
studied word w as

v′uzuv,

where |u| is the maximum length of an unbordered factor of w with at least two
occurrences in w, and |z| is the maximum distance between two such occurrences.
In other words, uzu is the longest word with the longest possible shortest border.

The second idea of the proof is the concept of the α-critical suffix, which is best
explained by the naive pattern matching algorithm. The algorithm scans a word
w looking for an occurrence of α. At each position, the scanning continues until a
mismatch with α is observed (or until α is found). When a mismatch occurs, the
algorithm backtracks and starts to scan the next possible position. The α-critical
suffix of w is defined as the position of the last mismatch.

The critical suffixes combined with the above mentioned factorization are an
efficient tool for finding long unbordered factors of w. The machinery is likely to
be useful even outside the Ehrenfeucht-Silberger problem. The factors found in the
process induce seven constraints, which are shown to force either |w| ≤ 7

3 (τ(w)−1)
or τ(w) = π(w).
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Open problems and challenges. Although the multiplicative constant 7
3 is

optimal, there remains space for improvement of the additive constant, bounded
by −4 due to the Assous-Pouzet words.

Open problem 1: Does |w| > 7
3τ(w) − 4 imply τ(w) = π(w)?

More generally:

Open problem 2: Find

inf{d | there is a word with |w| ≥ 7
3τ(w) − d and τ(w) < π(w)}.

The methods of the proof by Holub and Nowotka allow quite strong an insight
into the structure of words satisfying τ(w) < π(w) and |w| .= 7

3τ(w). The con-
straints suggest that Assous-Pouzet words can be the only words achieving the
extremal bound. Whence the following problem.

Open problem 3: Is it true that any word satisfying τ(w) < π(w) and |w| ≥
7
3τ(w) − 4 is an Assout-Pouzet word?

Or, again more generally:

Open problem 4: For given δ, describe all words satisfying τ(w) < π(w) and
|w| ≥ 7

3τ(w) − δ. What is the smallest δ such that there is more than one such a
word for arbitrary fixed length?
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Independent Systems of Word Equations and Related Topics

Juhani Karhumäki

Theory of word equations is a fundamental topic in Combinatorics on Words. In
one hand it provides deep results – some jewels of discrete mathematics – and on
the other hand amazing simply formulated problems. As a challenging example I
urge the reader to conclude that the equation x2y3x2 = u2v3u2 has only periodic
solutions, i.e. in any solution all unknowns are powers of a common word.

In this abstract we consider one fundamental property of word equations and,
in particular, open problems related to that. The property is so-called Ehrenfeucht
compactness property, formulated as:
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”Any system of word equations with a finite number of unknowns
over a free monoid Σ∗ is equivalent to some of its finite subsys-
tems.”

The property was formulated by A. Ehrenfeucht in 1970’s in slightly different
terms of formal languages. It was shown to hold by M. Albert and J. Lawrence [1]
and simultaneously by G.S. Guba [6]. Actually, the result is a consequence of two
well known facts: the existence of embeddings of free monoids into multiplicative
monoids of integer matrices, and Hilbert’s Basis Theorem for polynomial ideals,
see e.g. [7].

The compactness property immediately proposes a question

”What is the size of the above equivalent subsystem. Or more
concretely can it be bounded by any function on the number of
unknowns?”

This is the fundamental problem we are discussing here.
For clarity, we next recall the necessary terminology. Let Ξ be a finite set of

variables and Σ a finite alphabet. We denote by Σ∗ and Σ+ the free monoid
and free semigroup generated by Σ, respectively. Now, an equation is a pair
e = (u, v) ∈ Ξ+ × Ξ+ usually written as u = v. A solution of equation in Σ∗ is a
morphism h : Ξ∗ → Σ∗ satisfying h(u) = h(v). These notions extend in a natural
way to systems of equations.

Finally, we say that two systems of equations are equivalent if they possess
exactly the same set of solutions, and a system is independent if it is not equivalent
to any of its proper subsystems.

With these notions the compactness property can be reformulated:

”Each independent system of equations with a finite number of
unknowns over Σ∗ is finite.”

Accordingly, the second question, which is the main question in this presentation,
asks:

”Is the cardinality of the maximal independent system of equations
on n unknowns bounded by a function on n?”

Actually, this question can be asked separately for each value of n. Really amaz-
ingly we do not know the answer even in the case n = 3! The case n = 2 is
trivial.

Before we continue a few remarks are in order. Of course, the above questions
can be asked for any semigroup or monoid, and not only for free ones. And the
answer to the compactness question depends on the semigroup, see [8]. Particu-
larly interesting is the case of commutative semigroups, which are in some sense
complete opposites to free ones where no elements commute. For commutative
monoids the compactness property does hold, but even in the case of only one
unknown no bound for the size of the maximal independent system of equations
exists, that is there are arbitrarily large, but finite, such systems, see [10]. This
also implies indirectly that the known methods of using Hilbert’s Basis Theorem
to prove the compactness property cannot give a solution to our main question.
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We start the other remark with an example.

Example 16. Let Ξ = {x, y, z} and S the pair of equations S : xyz = zyx, xyyz =
zyyx.

We leave it to the reader to figure out that this pair is independent. It also
has a nonperiodic solution x = z = a and y = b. A question is can we add into
S a third equation with Ξ as the set of unknowns, such that it would still remain
independent and possess a nonperiodic solution

In this case this is not possible, but we have the following amazing open problem
from [2]:

”Does there exist an independent system of three equations with
three unknowns such that it possesses a nonperiodic solution?”

This problem has been studied quite intensively, see [4], [9], [5] or [3]. However, it
is only conjectured that the answer is ”no”. If this would be true it would follow
easily that independent systems of three unknown equations are of cardinality at
most 3 – a solution to our main question in the case n = 3.

However, as an indication of our very poor knowledge on word equations, it is
not known whether the maximal size of independent systems of equations exist –
even in case n = 3!

Nontrivial lower bounds for the size of maximal independent systems of equa-
tions with n unknowns were given in [10]. One of the examples was as follows:

Example 17. Let Ξ = {xi, yi, ui, wi, vi | i = 1, . . . , n} and S the following set of
equations

S : xiujwkvjyi = yiujwkvjxi for i, j, k = 1, . . . , n.

Hence S contains 5n unknowns and is of cardinality n3. We claim that S is
independent over free semigroup Σ+. Let us fix i, j, k and denote the corresponding
equation in S by S(i, j, k). Next we consider the morphism h defined by

h(xt) =

{

b2ab if t = i

a otherwise
h(up) =

{

ba if p = j

bab otherwise
h(wq) =

{

bab2 if q = k

b otherwise

h(yt) =

{

b if t = i

a otherwise
h(vp) =

{

ba if p = j

a otherwise

Straightforward calculations show that h is not a solution of the equation S(i, j, k),
but is that of any other equation of S. This means that S is independent.

The conclusion of the above example is:

”The size of maximal independent system of equations with n
unknowns is Ω(n3) in the free semigroup Σ+.”

Similarly, it is shown in [10] that in free monoids we can do a bit better:

”The size of maximal independent system of equations with n
unknowns is Ω(n4) in the free monoid Σ∗.”
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In [11] the hidden constants of the last result are slightly improved.
The above asymptotic lower bound does not give anything for small values of n,

say n = 3. As we hinted in this case we know only that independent systems can
contain three equations, and that all such systems are finite! A simple example of
an independent three unknown system of equations is: x2 = y, y2 = z and z2 = x.

We conclude with a related problem. Let Sol(S) denote the set of all solutions
of a system S of equations. For a sequence s1, . . . , sm, we say that it is descending
chain of equations if

Sol{si | i ≤ j} * Sol{si | i < j} for all j = 1, . . . ,m.

This means that whenever a new equation is introduced the set of solutions de-
creases. Therefore we are formalizing the question how many constrains for a set
of n words we can introduce such that in each step the set of words satisfying these
constrains becomes smaller.

An obvious connection between independent systems and descending chains of
equations is that any nonrepetitive sequence of equations from an independent
system is a descending chain. Apart from this no interesting connections seem to
be known.

In fact, the results for descending chains are similar to independent systems.
We state:

”Any descending chain of equations over Σ∗ or Σ+ is finite.”

The known asymptotic lower bounds for the maximal lengths of such chains are
those obtained for independent systems of equations. However, in the case of three
unknowns we can do better. As shown in [11] descending chain of length seven
can be constructed:

Example 18. The following sequence of seven equations provides a descending
chain. Here on the right a solution which is not anymore a solution of the next
one is shown.

xyz = zxy, x = a, y = b, z = abab

xyxzyz = zxzyxy, x = a, y = b, z = ab

xz = zx, x = a, y = b, z = 1

xy = yx, x = a, y = a, z = a

x = 1, x = 1, y = b, z = a

y = 1, x = 1, y = 1, z = a

z = 1, x = 1, y = 1, z = 1.

To conclude our knowledge on descending chains, we recall that all such chains
are finite, but we do not know whether they can be longer than seven.
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Word periods under involution

Dirk Nowotka

(joint work with Bastian Bischoff)

This talk addresses questions about unbordered words, local and global periods
generalized by considering involutions. Apart from general interest, this topic
draws its motivation from combinatorial questions in computational biology and
DNA computing. The complementation of a single stranded DNA, understood as
a word over the alphabet {A,C,G, T }, constitutes what we call an antimorphic
involution where A is mapped to T and C to G and the order of letters is reversed;
see also the work of Lila Kari et.al. [2, 5, 6]. The presented material results from
work in progress.

Let A denote an alphabet and A∗ the free monoid of all finite words over
A. Let w ∈ A∗ denote a word over A. Let |w| denote the length of w. Let
θ denote an involution on A∗, that is, θ(θ(w)) = w. Then θ is called morphic,
if θ(uv) = θ(u)θ(v), and antimorphic, if θ(uv) = θ(v)θ(u). A word w is called
primitive, if w = ui implies i = 1 for any u ∈ A∗. The primitive root of w is the
shortest word u such that w = ui for some i ≥ 1. A word w is called θ-primitive,
if w ∈ {u, θ(u)}i implies i = 1 for any u ∈ A∗. The θ-primitive root of w is the
shortest word u such that w ∈ {u, θ(u)}i for some i ≥ 1. If w is a prefix of uω

for some u then |u| is called (global) period of w. Let Π(w) denote the set of all
periods of w, and let π(w) denote the shortest period of w.
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The notion of periodicity under involution can be defined in several ways. If
w is a prefix of {u, θ(u)}ω for some u then |u| is called θ-period of w. Let Πθ(w)
denote the set of all θ-periods of w, and let πθ(w) denote the shortest θ-period of
w. If w is a prefix of (u θ(u))ω for some u then |u| is called alternating θ-period
of w. Let Πalt

θ (w) denote the set of all alternating θ-periods of w, and let πalt
θ (w)

denote the shortest alternating θ-period of w.
Another θ-generalization of the notion of periodicity is the following. We say

that a natural p is called weak θ-period of w, if w[i] = w[i+p] or w[i] = θ(w[i+p])

for all 1 ≤ i ≤ |w|− p where w[j] denotes the jth letter of w. Let Πweak
θ (w) denote

the set of all weak θ-periods of w. However, the following result shows that weak
θ-periods do not seem to imply anything different than ordinary periods.

Theorem 19. Let θ be an involution on A∗ and w ∈ A∗. Let ψ be a suitable
substitution for θ. Then Πweak

θ (w) = Π(ψ(w)).

A suitable substitution ψ for θ is a substitution with the following properties: Let
A′ be an alphabet such that (1) a ∈ A′ or θ(a) ∈ A′ for all a ∈ A and (2) a ∈ A′

and a 6= θ(a) implies θ(a) 6∈ A′. Then ψ is a substitution where ψ(a) = a, if
a ∈ A′, and ψ(a) = θ(a), if a 6∈ A′. We consider only (alternating) θ-periods in
the following.

A very natural question regarding periods of words is the effects caused by
overlaps. The classical result by Fine and Wilf [4] considers periods without invo-
lutions.

Theorem 20 ([4]). Let p, q ∈ Π(w) for some word w. If |w| ≥ p+ q − gcd{p, q}
then gcd{p, q} ∈ Π(w).

Czeizler et.al. consider in [2] the general antimorphic case and state:

Theorem 21 ([2]). Let θ be an anti-morphic involution on A∗ and w ∈ A∗ and
p, q ∈ Πθ(w) where p > q. Let u and v be prefixes of w of length p and q,
respectively. If |w| ≥ 2p + q − gcd{p, q} then u and v have the same θ-primitive
root, that is they have a common period not longer than q.

We add the following for the morphic case.

Theorem 22. Let θ be a morphic involution on A∗ and w ∈ A∗.
If |w| ≥ p+ q − gcd{p, q} with p, q ∈ Πθ(w) then gcd{p, q} ∈ Πθ(w).
If |w| ≥ p+ q with p, q ∈ Πalt

θ (w) then gcd{p, q} ∈ Πalt
θ (w).

All bounds given so far are tight. The only open case is the one for alternating
θ-periods where θ is antimorphic.

Theorem 23. Let θ be an antimorphic involution on A∗ and w ∈ A∗.
If |w| ≥ p+ q with p, q ∈ Πalt

θ (w) then gcd{p, q} ∈ Πalt
θ (w).

This bound however could not shown to be tight. We conjecture that the alter-
nating antimorphic case has actually the bound |w| ≥ p + q − gcd{p, q}. This
conjecture is still open.
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The Critical Factorization theorem (CFT) is fundamental in the investigation
of local periods. Let u ∼p v denote the fact that either u is a prefix of v or vice
versa. Similarly, we write u ∼s v, if u is a suffix of v or vice versa. Consider a
factorization w = uv, then x is called a repetition word for this factorization of w,
if u ∼s x and v ∼p x. The length of x is called local period for the factorization uv.
The smallest local period is denoted by π(u, v). It is straightforward to see that
π(u, v) ≤ π(w). A factorization is called critical if π(u, v) = π(w). The critical
factorization theorem was developed in several papers, see [7, 1, 3], and can be
stated as follows.

Theorem 24 (CFT). Among any π(w) many consecutive factorizations uv of
a word w exists at least one that is critical, that is, where π(u, v) = π(w).

It is a natural generalization to consider local periods under an involution as we
did for the global periods. Given a factorization uv of w, we call x a θ-repetition
word, if u ∼s x and v ∼p θ(x). The length of x is called local θ-period for the
factorization uv. The smallest local θ-period is denoted by πθ(u, v). However, this
notion does not yield a structural property like the CFT, neither when πθ(u, v)
is related to the ordinary nor the θ-period of w, and neither for the morphic nor
antimorphic case, and neither for the alternating nor non-alternating case. Let the
following propositions exemplify this for the case of alternating θ-periods where θ
is morphic.

Proposition 25. Let |A| ≥ 3 and θ be a morphic involution (not the identity)
on A∗. Then there exists for all p ≥ 1 a word w such that p = πalt

θ (w) and
p = πθ(u, v) for all factorizations uv of w.

Proposition 26. Let θ be a morphic involution (not the identity) on A∗. Then
there exists for all p 6= 3 a word w such that p = πalt

θ (w) and πθ(u, v) ∈ {1, 2} for
all factorizations uv of w.

The inability to directly transfer a strong result on local periods to the case
of local θ-periods suggests a deeper investigation of the local θ-periodic structure
of words. Unbordered factors are an obvious subject of interest here. A word is
bordered if there exists a proper prefix that is also a suffix. Otherwise, a word is
called unbordered. Let τ(w) denote the maximal length of unbordered factors in w.
The following are straightforward observations: τ(w) ≤ π(w), the shortest border
of a bordered word is unbordered, a shortest local repetition word is unbordered.
Moreover, a short argument using Lyndon words establishes that, if |w| ≥ 2π(w)−1
then τ(w) = π(w). A more involved proof shows that, if |w| ≥ 7/3 τ(w) then
τ(w) = π(w) (see the abstract by Štěpán Holub on page 2213). How does that
property of unbordered factors relate to the θ-bordered case? A word w is called
θ-bordered, if w has a proper prefix u such that θ(u) is a suffix of w. Otherwise, w
is called θ-unbordered. Consider the morphic case and alternating θ-periods. The
following sequence of words has a ration of word length to the maximal length of
unbordered factors that approaches 3 and in the limit yet τθ(wi) 6= πalt

θ (w) thereby
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showing that the 7/3 τθ(w) bound does not hold. Let

wi = (ab)iabb(ab)iaab(ab)ia

for any i ≥ 2, and let θ(a) = b and θ(b) = a. Then |wi| = 6(i + 1) + 1 and
τθ(wi) = 2i+ 4 and πalt

θ (wi) = 4i+ 5. We have |wi| ≥ 7/3 τθ(wi) for all i ≥ 2 and
limi→∞ |wi|/τθ(wi) = 3. We conjecture that this example is the best possible.

Conjecture 27. Let θ be a morphic involution on A∗ and w ∈ A∗.
If |w| ≥ 3τθ(w) then τθ(w) = πalt

θ (w).
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Repetition-free colorings of trees

Pascal Ochem

The notion of square-freeness of words naturally extends to colored graphs. A fac-
tor of a colored graph is given by the sequence of colors on a non-intersecting
path. A coloring of a graph is non-repetitive if and only if none of these factors
is a square. The non-repetitive chromatic number of a graph class is the smallest
integer k such that every graph in the class has a non-repetitive coloring using at
most k colors.
The famous result of Thue [7] that there exists an infinite square-free word over a
3-letter alphabet is equivalent to the statement that the non-repetitive chromatic
number of paths is 3. A major open question in this area is whether the non-
repetitive chromatic number of planar graphs is bounded [4]. It is known to
be O(∆2) for graphs with maximum degree ∆ [2] and at most 4t for graphs with
treewidth k [5]. So planar graphs form an interesting class to study in this respect,
since it is a small and natural class such that both the maximum degree and the
treewidth are unbounded. The non-repetitive chromatic number of planar graphs
is at least 10, and this lower bound already holds for the weaker star coloring [1],
such that the only forbidden squares are aa and abab for any letters a and b.
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In this talk, I focus on trees, which form an intermediate class between paths
and planar graphs. First, a negative result about the list version of non-repetitive
coloring. Given an integer ℓ and a list assignment on the vertices such that each
list contains exactly ℓ colors, we wonder whether we can obtain a non-repetitive
coloring of the graph such that the color of a vertex is chosen from its associated
list.

Theorem 28 ([3]). For every integer ℓ, there exists a tree T and a list assignment
L with lists of size ℓ, such that every coloring of T obtained from L contains
a square.

Theorem 28 implies that some classical methods will fail to prove that the non-
repetitive chromatic number of planar graphs is bounded: those methods that
produce the same upper bound for both the ”list” and the ”non-list” version of
the studied coloring.

In the case of words or paths, we do not only know that the non-repetitive
chromatic number is 3. Now that Dejean’s conjecture is proved, we know the
repetition threshold of words over a k letter alphabet for every k ≥ 2. For an
integer k and graph class C, we similarly define the repetition threshold RT (k, C).
The next result gives the repetition thresholds for the class of trees T .

Theorem 29 ([6]).

(1) RT (2, T ) = 7
2

(2) RT (3, T ) = 5
2

(3) RT (k, T ) = 3
2 , for k ≥ 4.
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On the Minimal Uncompletable Word Problem

Elena V. Pribavkina

A finite set S of (finite) words over an alphabet Σ is said to be complete if Fact(S∗),
the set of factors of S∗, is equal to Σ∗, that is, if every word of Σ∗ is a factor of, or
can be completed by multiplication on the left and on the right as, a word of S∗.
If S is not complete, Σ∗ \Fact(S∗) is not empty and a word in this set of minimal
length is called a minimal uncompletable word (with respect to the non-complete
set S).

Here we state some open questions related to the notion of a non-complete set
and give a brief overview of partial results obtained so far towards solving these
questions. The first natural question related to complete sets is the following:

Question 30. Is it decidable whether a given set S is complete?

To answer this question we can associate with the set S a non-deterministic

finite-state automaton F̂ (S) recognizing S∗ in such a way that testing the property
of completeness of the set S is equivalent to testing the synchronizability property
of the associated automaton. For more details on this question see the paper [2].
Once Question 30 is solved, another natural question is whether there is an efficient
algorithm of testing Fact(S∗) = Σ∗. In other terms,

Question 31. What is the computational complexity of testing Fact(S∗) = Σ∗?

Some results related to Question 31 were obtained by Rampersad, Shallit and
Xu in [3]. Given a language L they studied the computational complexity of
problems Pref(L) = Σ∗, Suff(L) = Σ∗ and Fact(L) = Σ∗. They showed that
if L is given by a DFA M , then testing Pref(L(M)) = Σ∗ can be performed in
linear time, the decision problem Suff(L(M)) = Σ∗ is PSPACE-complete and the
problem Fact(L(M)) = Σ∗ is solvable in polynomial time. In contrast, if the
language L is given by an NFA, all three problems become PSPACE-complete. In
[3] it is also proved, that in particular case L = S∗ one can test Pref(S∗) = Σ∗

and Suff(S∗) = Σ∗ in linear time, while the computational complexity of testing
Fact(S∗) = Σ∗ is still unknown.

Another rather natural question that might give some hint on solving the Ques-
tion 31 is about the possible length of words that cannot be completed in S.
Formally we state it as follows:

Question 32. Given a non-complete set S, what is the minimal length uwl(S) of
words in Σ∗ \ Fact(S∗)?

From the connection between the set S and synchronizability property of the

associated automaton F̂ (S) one can deduce an exponential upper bound on the
value uwl(S):

uwl(S) ≤ 2‖S‖−m+1,

where m is the number of elements in S and ‖S‖ is the size of S, i.e. the sum of
lengths of all elements in S. However this bound is not likely to be precise.
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The Question 32 was introduced by Restivo in 1981. In his paper [4] he con-
jectured that a non-complete set S always possesses an uncompletable word w
of length at most 2k2, where k is the maximal length of words in S, and w is
of the form w = uv1uv2 · · ·uvk−1u, where u /∈ S, |u| = k and |vi| ≤ k for all
i = 1, 2, . . . , k − 1. This conjecture is appeared to be false by means of a coun-
terexample found in [1]. Namely, let k > 6 and let

Sk = Σk \ {ak−2bb} ∪ Σbak−4Σ ∪ Σba ∪ b4 ∪ Jk

where Jk =
⋃k−3

i=1 (ba
iΣ ∪ aib). In [1] the authors computed for 7 ≤ k ≤ 12 that

the word

w = (ak−2bb)ak−1(ak−2bb)bak−4((ak−2bb)ba(ak−2bb)bbak−5)k−6

(ak−2bb)ab(ak−2bb)bbak−3(ak−2bb)bak−3(ak−2bb)

is a minimal uncompletable word for Sk, and its length is |w| = 3k2 − 9k + 1.
Nevertheless it is not proved that such a word is a minimal uncompletable (or even
uncompletable) for each k > 6. Thus the possible directions of the future work
towards solving the Question 32 are the following:

• show that the word w is a minimal uncompletable word for the set Sk for
each k > 6;

• find another infinite series of non-complete sets having minimal uncom-
pletable words of length greater that 2k2;

• perform a series of computational experiments to find non-complete sets
among all such sets with a fixed parameter k having the maximal possible
length of minimal uncompletable words;

• give some (polynomial, if possible) upper bound on the length of minimal
uncompletable word in terms of k.
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Ambiguity in a certain context-free grammar

Eric Rowland

(joint work with Bobbe Cooper, Doron Zeilberger)

Let G be the context-free grammar with start symbols 0, 1, 2 and formation rules
0 → 12, 0 → 21, 1 → 02, 1 → 20, 2 → 01, 2 → 10. An n-leaf tree T parses a
length-n word w on {0, 1, 2} if T is a valid derivation tree for w under the grammar
G; that is, there is a labeling of the vertices of T compatible with the formation
rules such that the leaves of T , from left to right, are labeled with the letters of
w. For example, the tree

parses the word 0110212:

1

0 2

1 0

2

1 0

1

0

2 1

2

The grammar G is ambiguous — there exist distinct trees that parse the same
word; for example, the trees

both parse 010. However, something much stronger can be said about this gram-
mar.

Theorem 33. Let n ≥ 1, and let T1 and T2 be n-leaf binary trees. Then T1 and
T2 parse a common word under G.

Kauffman [4] proved this theorem by showing that it is equivalent to the four
color theorem — the statement that every planar graph is four-colorable. The four
color theorem was proved by Appel, Haken, and Koch [1, 2] and employed a large
case analysis carried out by machine. The hope of the present authors [3] is that
a direct proof will be shorter than the known proofs of the four color theorem,
thereby providing a shorter proof of the four color theorem. In this direction, we
enumerate the common parse words for some infinite families of tree pairs and
discuss ways to reduce the problem of finding a parse word for a pair of trees to
that for a smaller pair.

Let ParseWords(T1, T2) be the set of equivalence classes, under permutations
of the alphabet {0, 1, 2}, of words parsed by both trees T1 and T2. We will abuse
notation slightly by writing a representative of each equivalence class.
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A path tree is a binary tree with at most two vertices in each level. The 5-leaf
path trees are as follows.

lll llr lrl lrr rll rlr rrl rrr

The illustrated bijection between n-leaf path trees and length-(n− 2) words on
{l, r} can be used to define families of trees. For example, let LeftCombTree(n) be
the n-leaf path tree corresponding to the word ln−2, and let RightCombTree(n)
be the n-leaf path tree corresponding to rn−2. There is only one equivalence class
of words parsed by both a left comb tree and a right comb tree.

Theorem 34. ParseWords(LeftCombTree(n),RightCombTree(n)) =
{{

01n−22
}

if n ≥ 2 is even{
01n−20

}
if n ≥ 3 is odd.

Similar results for other pairs of one-parameter families of trees can be estab-
lished.

A simple two-parameter family is the (m + n)-leaf path tree corresponding to
lmrn−2, which we call LeftTurnTree(m,n). Let RightTurnTree(m,n) be the left–
right reflection of LeftTurnTree(m,n) — the tree corresponding to rmln−2. The
next three theorems collectively determine the number of parse words of LeftTurn-
Tree(m,n) and RightTurnTree(k,m+ n− k).

Theorem 35. For m ≥ 1, k ≥ 1, and max(2, k −m+ 2) ≤ n ≤ k,

|ParseWords(LeftTurnTree(m,n),RightTurnTree(k,m+ n− k))| = 1.

Let

a(m, k) = |ParseWords(LeftTurnTree(m, k + 1),RightTurnTree(k,m+ 1))|.
By considering the left–right reflections of these two trees, we see that a(m, k) =
a(k,m).

Theorem 36. For m ≥ 1 and k ≥ 1,

a(m+ 3, k)− 2a(m+ 2, k)− a(m+ 1, k) + 2a(m, k) = 0.

This recurrence can be written

(M − 2)(M − 1)(M + 1) a(m, k) = 0,

where M is the forward shift operator in m, so for fixed k the solution a(m, k)
is a linear combination of 2m, 1, (−1)m. Unfortunately, we do not know a simple
combinatorial proof of the recurrence.

Theorem 37. For m ≥ 1, k ≥ 1, and n ≥ k + 2,

|ParseWords(LeftTurnTree(m,n),RightTurnTree(k,m+ n− k))| = 2a(m, k).
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In addition to enumerating parse words, we are interested in pursuing existence
results. There are several ways to reduce the problem of finding a parse word for
a pair of trees to finding parse words for smaller pairs. Here we describe two —
one easily provable and one conjectural.

If T1 and T2 are n-leaf trees that have a common branch system in the same
position, then we can decompose the pair into two smaller pairs. For example, the
8-leaf trees

T1 = T2 =

share the branch system

S =

in the second through fifth leaves, which we may remove to obtain the 5-leaf trees

.

Given a common parse word w1w2w3w4w5 of this pair of 5-leaf trees, we can find a
common parse word of the original pair of 8-leaf trees by taking any valid labeling
of S and permuting the alphabet so that the root receives the label w2.

More generally, to decompose a pair of trees we only require a vertex in T1
with dangling subtree S1 and a vertex in T2 with dangling subtree S2 such that
same set of leaves appears in S1 and S2. A parse word for T1 and T2 can then be
constructed from a parse word for S1 and S2 and a parse word for the chopped
trees T ′

1 and T ′
2.

A pair of n-leaf trees T1 and T2 is mutually crooked if there is no pair of consec-
utive leaves that have an uncle–nephew relationship in both trees. For example,

are mutually crooked, while the following are not.

We conjecture that a pair of trees that is not mutually crooked has a common
parse word in which the uncle and nephew leaves receive the same label. There is
reason to believe that finding this parse word is reducible to finding a parse word
for the pair obtained by deleting the structure holding one of the two leaves.
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The enumeration of squares and runs in the Fibonacci words revisited

Kalle Saari

The problem of enumerating repetitions of different types in finite words is a re-
current research topic in combinatorics on words. Here are three seminal results in
this area: Crochemore [1] showed that the number of primitively rooted squares,
counting multiplicities, in a word of length n is in O(n log n); Fraenkel and Simp-
son [2] showed that a word of length n contains no more than 2n distinct squares;
Kolpakov and Kucherov [4] showed that the number of runs, counting multiplic-
ities, in a word is linearly bounded. For more information about repetitions in
words and resent results, consult the surveys [5, Ch. 8] and [6, Ch. 8] and the
website [7].

The exact number of repetitions in interesting classes of words is naturally also
of interest. Let us recall that Fibonacci words fn for n ≥ 0 are defined by

f0 = 0, f1 = 01, fn = fn−1fn−2 (n ≥ 2);

their connection to Fibonacci numbers F0 = 0, F1 = 1, . . . is that the length of fn
equals Fn+2.

The number of squares and runs in Fibonacci words were worked out by Fraenkel
and Simpson [3] and Kolpakov and Kucherov [4], respectively. The number of
distinct squares in fn is given by the formula 2(Fn − 1) for all n ≥ 4; the number
of runs in fn, counting multiplicities, is precisely 2Fn − 3, and this holds for all
n ≥ 3.

The purpose of this abstract is to outline a novel way for enumerating squares
and runs, both distinct and with multiplicities, in finite Fibonacci words. Our
technique uses properties of central and singular factors of the infinite Fibonacci
word limn→∞ fn. Central factors, denoted by pn, are obtained from fn by erasing
the last two letters; singular factors, denoted by cn, are obtained from fn by
removing the last letter and appending its complement to the beginning. Thus,
for all n ≥ 1, we have fn = pnab and cn = apna, where ab ∈ {01, 10}. It turns out
that runs occurring within a central factor pn coincide with occurrences of factors
of the form ck+1ckck+1 and ckck+1ck. Also, the runs that occur as prefixes or
suffixes of pn are the central factors p4, p5, . . . , pn. Furthermore, each occurrence
of ck+1 in pn extends to an occurrence of ckck+1ck. Finally, it can be shown that



2230 Oberwolfach Report 37/2010

the number of occurrences of a singular factor ck in a central factor pn equals
Fn−k − 1.

Using these observations, counting the number of squares and runs in a central
factor pn is straightforward, and extending these formulas for fn is easy. In par-
ticular, it can be verified that the number of squares with multiplicities in fn is
given by

R(n) :=
2

5
(n− 5)(Fn+2 + Fn) +

4

5
Fn + n+ 2 (n ≥ 3).

A formula for R(n) was first derived by Fraenkel and Simpson in [3], but their
formula has a misprint: it differs from ours by 3Fn.
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On Patterns and Pattern Avoidance

Jeffrey Shallit

This talk centered around four themes, all concerned with patterns and pattern
avoidance: (1) the complexity of matching words specified by abstract machines to
patterns; (2) some aspects of the Thue-Morse word; (3) avoiding powers overN, the
natural numbers; and (4) the Pirillo-Varicchio-Halbeisen-Hungerbühler problem.

1. Complexity of pattern matching

Let Σ be an alphabet, i.e., a nonempty, finite set of symbols. By Σ∗ we denote
the set of all finite words over Σ, and by ǫ, the empty word. If w = xyz, then y is
said to be a factor of w.

A pattern is a non-empty word p over a pattern alphabet ∆. The letters of ∆ are
called variables. A morphism is a map h : Σ∗ → ∆∗ such that h(xy) = h(x)h(y)
for all x, y ∈ Σ; a morphism is non-erasing if h(a) 6= ǫ for all a ∈ Σ. A word
w ∈ Σ∗ matches a pattern p if there exists a non-erasing morphism h : ∆∗ → Σ∗

such that h(p) = w. For example, the word w = oberwolfachmatches the pattern
xyxz.



Mini-Workshop: Combinatorics on Words 2231

Some patterns play special roles in combinatorics on words. For example, words
matching the pattern xx are called squares. An example in German is nennen,
and in French is chercher. Words matching xxx are called cubes; an example is
the English sort-of-word shshsh.

An overlap is a word of the form axaxa where a is a single symbol and x is a
(possibly empty) word. No single pattern captures the notion of overlap, but it
is easy to see that a word w has a factor that is an overlap iff some factor of w
matches either of the two patterns xxx and xyxyx.

Much study has been devoted to fractional powers. We say a word x is an exact
p
q -power, for integers p > q ≥ 1, if x can be written in the form yey′ for some

e ≥ 1, and y′ is a prefix of y, and |x| = p, |y| = q. For example, the German word
schematische is a 12

8 -power. If x has a factor that is an exact p
q −power, for some

p
q ≥ α, we say that x has an occurrence of an α-power.

This suggests the following:

Problem 38. Let α > 1 be a real number that is not an integer. Is there any set
of patterns P , finite or infinite, such that x has an occurrence of an α-power iff
some factor of x matches some pattern p ∈ P?

Remark. After my talk both James Currie and Julien Cassaigne suggested ways
to show this is not possible, at least for some restricted ranges of α. But some
further work is still needed to cover all α > 1.

The complexity of pattern matching is an old problem, going back to funda-
mental results of Ehrenfeucht and Rozenberg [9] and (independently) Angluin [4].
They showed that the problem of determining if an arbitrary word w matches an
arbitrary pattern p is NP-complete.

Recently I (and co-authors) have explored the computational complexity of
other kinds of pattern matching, where we replace a word by a set of words specified
by some abstract machine M (e.g., DFA, NFA, or PDA). For example, Anderson
et al. [3] showed that the problem of deciding if some word in L(M) matches a
given pattern p is PSPACE-complete, if M is an NFA. Furthermore, the problem
remains PSPACE-complete even the NFA is deterministic and the pattern p is
restricted to belong the class of patterns {xx, xxx, xxxx, . . .}. The idea behind
the proof is very simple. Given NFA’s M1,M2, . . .Mn, we construct an NFA
accepting L = L(M1)# · · ·#L(Mn)#. Then a word of L matches xn if and only if
x ∈ L(M1) ∩ · · · ∩ L(Mn). This shows PSPACE-hardness. It is slightly harder
to verify that the problem is in PSPACE. Here the idea is to show that if a match
occurs, it cannot be too larger. One way to show membership in PSPACE is to
guess, for each variable xi in the pattern, a boolean matrix Bi that specifies the
transition table in the automaton induced by xi. Then we simply need to verify
that indeed each Bi has a corresponding word, and multiply the matrices together.

On the other hand, if M is a PDA (or CFG), then the problem becomes unde-
cidable, even if p is the single fixed pattern xx. The idea here is to reduce from
the Post correspondence problem.
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It seems reasonable to guess that at least some of this problem’s complexity
comes from the fact that L(M) can be infinite. So we also explored finite analogues
of the problem. Here we are given a DFA or NFA M accepting a finite language,
and we ask if some word of L(M) matches a given pattern p. In this case we
recently showed [13] that the problem is NP-complete.

In the case thatM is a PDA (or CFG), the finite problem is PSPACE-complete,
even in the case where p = ww. Again, the hard part is showing membership in
PSPACE. The idea is to guess the configuration C after reading the first copy of
w. This configuration consists of a state and the contents of the stack, so we need
to make sure that the stack contents cannot be arbitrarily large.

2. Around the Thue-Morse sequence

The Thue-Morse sequence t = t0t1t2 · · · = 0110100110010110 · · · is a familiar
object in combinatorics on words. For one thing, it avoids overlaps. Recently
I showed (with co-authors) that t is fragile with respect to this property. More
precisely, t is overlap-free, but if the bits in any finite nonempty set of positions
are flipped (0 becoming 1 and vice versa), then the resulting sequence t′ is no
longer overlap-free [7].

This suggests considering the same problem for squares. For example,

Problem 39. Are there infinite words over {0, 1, 2} that are fragile with respect
to the property of squarefreeness?

My guess is that you can get such a word by the usual trick of counting the
number of 1’s between consecutive 0’s in the Thue-Morse word, and then dropping
the first symbol, but I haven’t proved it yet.

One can also consider words at the opposite spectrum. Call an infinite word w
robust with respect to property P if

(1) w has property P ; and
(2) there are infinitely many disjoint finite sets S of positions, such that chang-

ing every symbol at the positions in S to some other symbol results in a
word that still has property P .

This suggests

Problem 40. Are there infinite words over {0, 1, 2} that are robust with respect
to the property of squarefreeness?

Remarks. After my talk Pascal Ochem showed how to find such words. For
example, Brinkhuis [6] constructs a substitution (in the genuine sense of theoretical
computer science!) on three letters as follows:

h(0) = {0120210201021201020120210, 0120212010210120102120210}
h(1) = {1201021012102012101201021, 1201020121021201210201021}
h(2) = {2012102120210120212012102, 2012101202102012021012102}
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Then hω(0) is an infinite set of infinite squarefree words, and furthermore by
replacing any aligned block of size 25 with its corresponding block retains the
property of squarefreeness.

James Currie also found a solution to Problem 40.

T. Cusick recently asked me a very interesting problem related to Thue-Morse.
Let s2(n) denote the number of 1’s in the binary expansion of n (not reduced
modulo 2). For integers k, t ≥ 1 define

γk(t) =
1

2k
|{n : 0 ≤ n < 2k and s2(n+ t) ≥ s2(n)}|.

It is not hard to see that as k → ∞, the values of γk(t) stabilize to some fixed
value γ∞(t). (In fact, it suffices to pick k ≥ 2⌈log2 t⌉.) So γ∞(t) measures the
fraction of binary numbers n for which adding t gives more 1’s in n+ t than in n.
It is now not so difficult to prove that γ∞(1) = 3/4, and indeed γ∞(2t) = γ∞(t).
Cusick asked,

Problem 41. Is it true that γ∞(t) > 1/2 for all t ≥ 1? What is lim inft→∞ γ∞(t)?

We might also ask:

Problem 42. Find a simple way to compute γ∞(t).

Finally, I close this section with another problem related to Thue-Morse —
more precisely, the overlap-free property. Let a = (ai)i≥0 be an infinite sequence
of integers. The Hankel determinant of order n beginning at position k is the
determinant ∣∣∣∣∣∣∣∣∣

ak ak+1 · · · ak+n−1

ak+1 ak+2 · · · ak+n

...
...

. . .
...

ak+n−1 ak+n · · · ak+2n−2

∣∣∣∣∣∣∣∣∣
.

Evidently if a has an overlap cxcxc, then there is a 0 Hankel determinant —
namely, the one corresponding to a matrix whose first and last rows are cxc. So
we can ask,

Problem 43. Is there an infinite sequence a over a finite subset of Z with the
property that the Hankel determinants of all orders, beginning at all positions, are
nonzero?

I’ve done some computations on this problem. A simple backtracking algorithm
shows that there is no such sequence over a subset of size 2, so we need at least
three letters. I have constructed what appears to be the lexicographically least
sequence with hundreds of letters over {1, 2, 3}, namely:

1121122121121231121122121122322112231121122121121231121122121122322112 · · ·

Interestingly, no backtracking was required to generate this!
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I have also constructed a morphism that appears to generate such a sequence,
namely:

1 → 12

2 → 23

3 → 14

4 → 32

I have tested this for hundreds of terms, and all Hankel determinants were nonzero.

Problem 44. Can you show that this morphism generates a sequence with all
Hankel determinants nonzero?

A natural approach to this kind of problem would be to consider the Hankel
determinants modulo m for some integer m ≥ 2. However, this approach does not
seem to work. In fact, I conjecture that the following is true:

Conjecture 45. For all integer moduli m ≥ 2, there is no infinite sequence over
a finite subset of Z such that all Hankel determinants are nonzero (modulo m).

3. Avoiding patterns over the natural numbers

Suppose we try to avoid squares, but don’t allow backtracking. Having gener-
ated w, at each new position we write down the least natural number i such that
wi is squarefree. It seems to be part of the folklore, and not too hard to prove,
that the resulting word

w2 = (ci)i≥1 = 01020103010201014 · · ·
is the so-called “ruler sequence”, defined by ci = ν2(i), the exponent of the largest
power of 2 dividing i. This is the lexicographically least sequence over N avoiding
squares (and also, by the way, the lexicographically least sequence avoiding abelian
squares). It can be generated by the morphism that maps i to 0, (i+ 1).

Recently Guay-Paquet and I [10] considered the same question for overlap-free
sequences over N. Here the lexicographically least sequence

w2+ = 0010011001002 · · ·
has a much more complicated structure. For example, we find that

0 occurs for the first time at position 1
1 occurs for the first time at position 3
2 occurs for the first time at position 13
3 occurs for the first time at position 79
4 occurs for the first time at position 633

and the sequence (di)i≥1 = 1, 3, 13, 79, 633, . . . satisfies the recurrence di+1 = 2idi+
1. These numbers are also the coefficients of the exponential generating function
ex/(1− 2x). Furthermore, they are given by the formula ⌊2n · n! · (√e− 1)⌋. The
word w2+ is a natural example of a word with transcendental letter frequencies.
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The word w2+ can be written as ϕω(0) where

ϕ(0) = 001

ϕ(1) = 1001002

ϕ(2) = 200100110010020010011001003

...

where |ϕ(i)| = 2di+1 + 1. Here

ϕ(h) = (S(ϕh(00)) · (h+ 1)

where S(xc) is the shift operator defined by S(xc) = cx for x ∈ Σ∗, c ∈ Σ.
We proved many other results about the wordw2+ and the morphism ϕ. Similar

results can be proved for words avoiding k’th powers and k+-powers, for any integer
k ≥ 2.

However, similar results for fractional powers have so far eluded us. For exam-
ple, we computed the first 1, 000, 000 terms of the lexicographically least sequence
avoiding 5

2 -powers and did not find any term greater than 3. Nor were we able to
characterize this sequence.

This leads to the following problem:

Problem 46. Characterize the lexicographically least infinite α-power-free se-
quence over N for some fractional α.

Remarks. After my talk Eric Rowland observed that the lexicographically least
3
2 -power-free sequence was “pseudoperiodic” with period 10, and we were able to
show [14] that this sequence is in fact 6-regular in the sense of Allouche and Shallit
[1, 2]. Rowland observed similar results for 4

3 but this has yet to be proved.

4. The Pirillo-Varricchio-Halbeisen-Hungerbühler problem

Pirillo & Varricchio [12], and, independently, Halbeisen & Hungerbühler [11]
posed the following problem:

Problem 47. Is there an infinite seqence over a finite subset of Z with the property
that it has no factors of the form xx′ with |x| = |x′| and ∑

x =
∑
x′?

We might call such a factor xx′ a PVHH-square. Recently there has been some
attention paid to this problem [8], but it is still open.

Recently we found some results related to this problem [5]. For example, al-
though with Van der Waerden’s theorem one can show that for any m it is impos-
sible to avoid xx′ with |x| = |x′| and ∑

x =
∑
x′ (mod m), it becomes possible if

we allow the congruence to hold only if both sides are 0 (mod m).
We also considered the analogous problem for cubes instead of squares. Thomas

Stoll and I performed some extensive calculations that suggest that a word avoiding
PVHH cubes exists. We conjecture
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Conjecture 48. The fixed point generated by the morphism

0 → 03

1 → 43

3 → 1

4 → 01

avoids xx′x′′ with |x| = |x′| = |x′′| and ∑
x =

∑
x′ =

∑
x′′.

However, we have not yet been able to prove this.

Remarks. During the workshop Julien Cassaigne suggested another strategy which
may suffice to prove the conjecture.
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On the sum of digits of n and n
h

Thomas Stoll

1. Introduction

Let q ≥ 2 and denote by sq(n) the sum of digits in the q-ary representation of an
integer n. In recent years, much effort has been made to get a better understanding
of the distribution properties of sq regarding certain subsequences of the positive
integers. We mention the classical work by Gelfond [5], and the recents papers by
C. Mauduit and J. Rivat on the distribution in arithmetic progressions of sq of
primes [10] and of squares [11]. These questions are intimately connected to find
the frequency of letters −1 and +1 in the classical Thue-Morse sequence

(tn)n∈N = ((−1)s2(n))n∈N = +1,−1,−1,+1,−1,+1,+1,−1, . . .

with respect to special subsequences of indices (e.g., n ≡ a mod k, n = p prime,
or n = m2). In the case of indices of the form P (n), where P (n) denotes a fixed
integer-valued polynomial of degree h ≥ 3, very little is known. For the current
state of knowledge, we refer to the work of C. Dartyge and G. Tenenbaum [2], who
provided some lower density estimates for the evaluation of sq(P (n)) in arithmetic
progressions.

2. Oberwolfach talk

A related problem, however, of a more elementary nature, is to study extremal
properties of sq(P (n)). In the binary case when q = 2, B. Lindström [9] showed
that

(1) lim sup
n→∞

s2(P (n))

log2 n
= h.

The special case P (n) = n2 of (1) has been reproved by M. Drmota and J. Rivat [4]
with constructions due to J. Cassaigne and G. Baron. Moreover, it is well-known [3,
13] that the average order of magnitude of sq(n) and sq(n

h) is

(2)
∑

n<N

sq(n) ∼
1

h

∑

n<N

sq(n
h) ∼ q − 1

2 log q
N logN,

so that the average value of sq(n
h) is h times larger than the average value of

sq(n). It is an interesting question how often the ratio sq(n
h)/sq(n) can be very

large or very small and to quantify these notions. By naive methods, it can be
quite hard to find even a single value n such that s2(n

h) < s2(n) for some h.
For instance, an extremely brute force calculation shows that the minimal n such
that s2(n

3) < s2(n) is n = 407182835067 ≈ 239 where one finds s2(n
3) = 28 and

s2(n) = 29.
In my Oberwolfach talk, I reported on recent work by K. G. Hare, S. Laishram

and myself [7, 8] that settles an old conjecture of Stolarsky [14] from 1978. We find
(up to a multiplicative absolute constant) the exact extremal orders of magnitude
of the ratio sq(n

h)/sq(n).
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Theorem ([7]). There exist c1 and c2, depending at most on q and h, such that
for all n ≥ 2,

c2
logn

≤ sq(n
h)

sq(n)
≤ c1(logn)

1−1/h.

This is best possible in that there exist c′1 and c′2, depending at most on q and h,
such that

sq(n
h)

sq(n)
> c′1(logn)

1−1/h,

respectively,
sq(n

h)

sq(n)
<

c′2
logn

infinitely often.

The constants c1, c2, c
′
1 and c′2 are explicitly computable. The proofs involve

the Bose-Chowla theorem on sets with the distinct sum property [1] and a combi-
natorial argument using a certain polynomial of degree four. For any ε > 0 we get
a bound on the minimal n such that the ratio sq(n

h)/sq(n) < ε. For the example
given above, the approach allows to show that

min{n : s2(n
3) < s2(n)} < 2178.

In the talk I also outlined the answer to the analogous question in the case of the
Zeckendorf representation of integers [15].

3. Oberwolfach research

During the stay in Oberwolfach I worked with Jeffrey Shallit on the following
related problem for the Thue-Morse word: Let k ≥ 1, and denote Nk = {n : tkn =
1} and f(k) = min{n : n ∈ Nk}. In other words, this is the first multiple of k such
that we see a “+1” in the subword (tkn)n≥1 of the Thue-Morse word. The first
few values of (f(k))k≥1 are given by

1, 1, 7, 1, 5, 7, 1, 1, 9, 5, 1, 7, 1, 1, 19, 1, 17, 9, 1, 5 . . .

From a well-known theorem of Gelfond [5] we get that f(k) <∞ for all k, but can
we give a sharp upper bound for f(k) in terms of k? J.-P. Allouche and J. Shallit
had already discussed the problem for some time, but the conjecture f(k) ≤ k+4
was still open. In Oberwolfach we tried to make some progress but we were finally
left with some cases for k where we could not find such an n. After the Oberwolfach
week we made some fresh effort with Johannes Morgenbesser (Marseille) to handle
these tedious cases, too. So, we finally came up with a complete solution to the
problem (joint work in progress).

Theorem 49. For all k ≥ 1 we have f(k) ≤ k + 4. Moreover, we have

(1) f(k) = k + 4 if and only if k = 22r − 1 for some r ≥ 1,
(2) There are no k’s with f(k) = k + 3 or f(k) = k + 2.
(3) f(k) = k + 1 if and only if k = 6.
(4) f(k) = k if and only if k = 1 or k = 2r + 1 for some r ≥ 2.
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In fact, by construction, for all k there is an n ∈ Nk with n ≤ k + 4 and
s2(n) ≤ 3. We currently try to generalize our approach to a more general setting
for sq(n).

4. Open questions

We end this report with some challenging open questions in this field.

• Determine the frequency of +1 and −1 in the Thue-Morse word for the
subsequence of indices P (n) = n3. More generally, find the distribution in
arithmetic progressions of sq(n

h), n ≥ 1, for fixed h ≥ 3 (see [5]).
• Find 1

N

∑
n<N s2(n

h)/s2(n) (see [14]).

• Find #{n < N, n odd : s2(n
2) = s2(n)} (see [12]).

• Fix k ∈ {9, 10, 11, 14, 15}. Decide whether the set

{n < N, n odd : s2(n
2) = s2(n) = k}

is finite or infinite (see [8]).
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A Note on Coloring Factors of Words

Luca Q. Zamboni

1. A Theorem of Ramsey

For each set A, we denote by A2 the set of all subsets of A consisting of 2
elements. We recall a well known theorem of Ramsey:

Theorem 50. Let N be an infinite subset of the natural numbers N, C a finite
non-empty set (the set of colors), and c : N 2 → C. Then there exists an element
B ∈ C and an infinite subset N ∗ of N , such that c(X) = B for all X ∈ N ∗

2.

As a consequence of Theorem 50, we deduce the following:

Corollary 51. Let A be a non-empty set (not necessarily finite), and let W =

W1W2W3 · · · ∈ AN be an infinite word on the alphabet A. Let C be a finite non-
empty set, and c : F+(W ) → C a coloring of the set of all non-empty factors of W.
Then there exists a factorization of W of the form W = V U0U1U2 · · · such that
c(Ui) = c(Uj) for all i and j.

We now consider two variants of Corollary 51: Let W be a non-periodic word
on a finite alphabet.

Question 52. Does there exist a finite coloring

c : F+(W ) → C
with the property that for any factoring W = U0U1U2 · · · , there exists i 6= j for
which c(Ui) 6= C(Uj) ?

Question 53. Let c : F+(W ) → C be any (finite) coloring of the set of all non-
empty factors of W, and k a positive integer. Then does W contain a factor of the
form U1U2 . . . Uk with c(Ui) = c(Uj) and |Ui| = |Uj | for all 1 ≤ i, j ≤ k ?

We note that both questions are easily answered in caseW is periodic: the answer
is negative in the case of Question 52 and positive in the case of Question 53.
Indeed ifW = UUUU · · · then given any finite coloring c : F+(W ) → C, relative to
the factorizationW = U0U1U2 · · · , where each Ui = U, we have that c(Ui) = c(Uj)
for all i, j ≥ 0.

2. On Question 52

Let A be a non-empty finite set, and W =W1W2W3 · · · ∈ AN. It is easy to see
that there exist non recurrent infinite wordsW, and colorings of F+(W ) such that
for any factoringW = U0U1U2 · · · , there exists i 6= j for which c(Ui) 6= C(Uj). For
instance, consider the infinite wordW = 10∞. Given a factor U ofW, set c(U) = 1
if U contains 1, and c(U) = 0 otherwise. Then for any factoringW = U0U1U2 · · · ,
we have c(U0) = 1 while c(Ui) = 0 for all i > 0.

We next show the existence of recurrent infinite words W and a finite coloring
of F+(W ) such that for every factoring of W = U0U1U2 · · · , there exists i 6= j
such that c(Ui) 6= c(Uj).
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Proposition 54. Let W be any square free infinite word. Define c : F+(W ) →
{blue, green} by

• c(U) = green if U is a prefix of W,
• c(U) = blue otherwise.

Then for any factoring W = U0U1U2 · · · we have that c(Ui) 6= c(Uj) for some
i 6= j.

Proof. Consider any factoring W = U0U1U2 · · · . Suppose to the contrary that
each Ui has the same color. Then as U0 is a prefix of W, it follows that each Ui is
colored green, i.e., each Ui is a prefix of W. If |Ui| ≤ |Ui+1| for some i ≥ 0, then
Ui would be a prefix of Ui+1 and W would contain the factor UiUi, contradicting
that W is square free. Thus, we must have that |Ui+1| < |Ui|, a contradiction. �

Let W ∈ {0, 1}N be the Thue-Morse infinite word beginning in 0, that is the
fixed point beginning in 0 of the morphism

0 7→ 01 and 1 7→ 10.

It is well known that W does not contain overlaps, i.e., factors of the form UUu
with u a non-empty prefix of U. Unlike in the previous example,W may be written
as a concatenation of prefixes of W (e.g., W may be expressed as a concatenation
of the prefixes 0, 01 and 011); however, we will show that:

Lemma 55. Let W be the Thue-Morse infinite word beginning in 0, and W =
U0U1U2 · · · any factoring of W with each Ui a non-empty prefix of W. Then there
exist indices i 6= j for which Ui and Uj terminate in a different letter.

Proof. Suppose to the contrary that each Ui ends in the same letter a ∈ {0, 1}. It
follows that |Un| > |Un+1| for every n ≥ 1. In fact, if |Un+1| ≥ |Un|, then W would
contain the factor aUnUn as Un is a prefix of Un+1. Since Un ends in the letter a,
we have that W contains an overlap, a contradiction.

�

Proposition 56. Let W be the Thue Morse infinite word beginning in 0, and
define

c : F+(W ) → {red, blue, green}
by

• c(U) = red if U is a prefix of W ending in 0,
• c(U) = blue if U is a prefix of W ending in 1,
• c(U) = green otherwise.

Then, for any factoring of W = U0U1U2 · · · we have that c(Ui) 6= c(Uj) for some
i 6= j.

Proof. Let W = U0U1U2 · · · be a factoring of W and suppose to the contrary that
c(Ui) = c(Uj) for all i, j. Then, since U0 is a prefix, it follows that each Ui is a
prefix ending in the same letter as U0. This contradicts the result of the previous
lemma. �
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Remark 57. A variation of the previous example applies to any binary overlap-free
word W.

We now show that the same coloring scheme as in Proposition 56 may be used to
show that a characteristic Sturmian word cannot be factored as a concatenation of
words all having the same color. The following lemma is an analogue of Lemma 55
for characteristic Sturmian words:

Lemma 58. Let W be a characteristic Sturmian word and W = U0U1U2 · · · any
factoring of W with each Ui a non-empty prefix of W. Then there exist indices
i 6= j for which Ui and Uj terminate in a different letter.

Proposition 59. Let W ∈ {0, 1}∞ be a characteristic Sturmian word and let

c : F+(W ) → {red, blue, green}
by

• c(U) = red if U is a prefix of W ending in 0,
• c(U) = blue if U is a prefix of W ending in 1,
• c(U) = green otherwise.

Then for every factorization W = U0U1U2 · · · , we have that c(Ui) 6= c(Uj) for
some i 6= j.

Proof. Suppose to the contrary that there exists a characteristic Sturmian wordW
admitting a factorization W = U0U1U2 · · · for which c(Ui) = c(Uj) for all i, j ≥ 0.
Then since U0 is a prefix of W, it follows that each Ui is a prefix of W ending in
the same letter contradicting the result of the previous lemma. �

The above naturally suggest the following questions:

Question 60. Given a Sturmian word W, does there exist a finite coloring

c : F+(W ) → C
with the property that for any factoring W = U0U1U2 · · · , there exists i 6= j for
which c(Ui) 6= C(Uj) ? If so, what is the smallest cardinality of C ?

Question 61. Let W be any aperiodic infinite word. Does there exist a 2-coloring

c : F+(W ) → {red, blue}
such that for any factoring of W = U0U1U2 · · · there exists i 6= j with c(Ui) 6=
c(Uj).
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