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Numeration and discrete dynamical systems

V. Berthé

Abstract This survey aims at giving both a dynamical and computer arithmetic-oriented presentation
of several classical numeration systems, by focusing on the discrete dynamical systems that underly
them: this provides simple algorithmic generation processes, information on the statistics of digits, on
the mean behavior, and also on periodic expansions (whose study is motivated, among other things, by
finite machine simulations). We consider numeration systems in a broad sense, that is, representation
systems of numbers that also include continued fraction expansions. These numeration systems might
be positional or not, provide unique expansions or be redundant. Special attention will be payed to β-
numeration (one expands a positive real number with respect to the base β > 1), to continued fractions,
and to their Lyapounov exponents. In particular, we will compare both representation systems with
respect to the number of significant digits required to go from one type of expansion to the other one,
through the discussion of extensions of Lochs’ theorem.
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algorithm · Lyapounov exponent · Simulation
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1 Introduction: numeration dynamics

Let us first make precise what is meant by numeration dynamics, according to the terminology
introduced by M. Keane. Numeration emcompasses here a system of representation of numbers together
with a way of computing on them, i.e., a way of performing operations and applying elementary functions.
These numbers might be natural, rational, real, complex numbers, or else, vectors, polynomials, etc.
These systems might be positional or not, provide unique expansions or be redundant, and we expect
them to reflect the algebraic, arithmetic and computational properties of the numbers.
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When studying numeration systems, discrete dynamical systems occur in a natural way. (See Section
1.1 below for more on discrete dynamical systems.) As an example, consider the following question
that is inherently of a dynamic nature: if one knows how to represent the number n, how to represent
n+ 1, i.e., how to perform the addition by 1? This transformation is usually called “successor function”,
“odometer ” or else “adding machine”. It has received considerable attention in the literature from various
viewpoints; see e.g., in the context of numeration dynamics [49] and Section 5 in [7], or in the context
of automata and language theory [42,13]. Note also that the representation of arbitrarily large numbers
requires often the iteration of a recursive algorithmic process. Numeration and dynamical systems are
thus closely related such as illustrated in [7,30], which is why numeration dynamics aims at developing
a dynamical viewpoint on numeration. Numeration dynamics also enters the framework of arithmetic
dynamics. Arithmetic dynamics provides explicit expansions which have a dynamical meaning in order
to produce symbolic codings of dynamical systems which preserve their arithmetic structure; see [91] for
more details.

But numeration is also by essence a computational notion: numeration systems provide algorithmic
ways of coding numbers with finitely many symbols. Let us illustrate, through the following examples,
the relevance of numeration in computer arithmetic. Let us start with the possibility of performing
basic operations or of evaluating functions by the simplest machines, namely finite automata. Under
the assumption that the language of a numeration is regular, basic operations such as addition and
multiplication by a fixed positive integer, or else normalization or digit set conversion, are known to
be performed by finite automata (more precisely, transducers) (see [39–41]; see also [76] concerning the
limitations of functions that are computable in on-line arithmetic by a finite automaton). Transducers
also allow one to deduce the continued fraction expansion of an homographic image from the continued
fraction expansion of the original number (see [87]). The analytic theory of continued fractions has
now proved its efficiency for the evaluation of functions (see the classic references [55,97] and also [17,
28] for a priori truncation error estimates for continued fraction representations). Lastly, based on the
work of Gosper [47], exact real computer arithmetic with continued fractions has also been thoroughly
investigated (see [95], and also [60,66,73]).

The aim of this survey is to focus on the interaction between both viewpoints on numeration, namely,
between dynamical and computational aspects, in particular through the issues raised by the finite state
machine simulations of the discrete dynamical systems underlying these numeration systems. We have
no claim for exhaustivity, but we have tried to highlight the wide diversity of the literature related to
these interactions.

1.1 Discrete dynamical system

The term discrete dynamical system usually refers to a piecewise-continuous mapping T : X → X that
acts on a space X that will be usually assumed to be compact. The terminology discrete refers here to
the time: we consider trajectories (also called orbits) of points of X under the discrete-time deterministic
action of the mapping T ; the (one-sided) orbit of x ∈ X under the action of T is defined as {Tnx | n ∈ N}.
Discrete dynamical systems can be of a geometric nature (e.g., X = [0, 1]), or of a symbolic nature.

Let us briefly describe symbolic dynamical systems (for more details, see e.g., [58,69]). It is possible
to associate a dynamical system with any infinite word u = (un)n≥0 with values in a finite alphabet A.
The mapping acting on sets of infinite words is the shift S that maps an infinite word (un)n≥0 onto this
infinite word from which the first letter has been taken away, that is, on the infinite word (un+1)n≥0.
The topology is given by the usual metric on infinite words: two infinite words are close if they coincide
on their first terms. We then take as compact set on which the shift acts, the closure in AN of the orbit of
u, i.e., the closure of {Snu | n ∈ N}. A dynamical system defined on sets of words is said to be symbolic.
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Let us come back to the general case of a discrete dynamical system T : X → X. In order to
understand the behavior of trajectories, it is natural to partition the set X into a finite number (say
d) of subsets (Xi)1≤i≤d: X = ∪di=1Xi. We then code the trajectory of a point x ∈ X with respect to
the finite partition (Xi)1≤i≤d. One thus associates with each point x ∈ X an infinite word with values
in the finite alphabet {1, . . . , d} defined as follows: ∀n ∈ N, un = i if and only if Tn(x) ∈ Xi. Coding
trajectories allows one to go from geometric dynamical systems to symbolic dynamical systems and
backwards, provided the coding has been chosen in a nice way.

We have considered so far the notion of dynamical system in a topological context. This notion can
be extended to measurable spaces: we thus get measure-theoretic dynamical systems, that is, dynam-
ical systems endowed with a probabilistic structure. We will introduce and discuss measure-theoretic
dynamical systems in Section 3.1 by focusing on the Gauss map that produces the partial quotients in
continued fraction expansions (see also Section 1.2 for more on the Gauss map).

1.2 Some examples of numeration dynamical systems

Let us use the usual base q numeration, as an illustration of a numeration system that can be described
in terms of a dynamical system, where the integer q satisfies q ≥ 2. But first recall that there are two
well-known algorithmic ways of producing the digits ai ∈ {0, . . . , q − 1} of the expansion of a positive
integer N = akq

k + · · · + a0 in base q. The greedy algorithm produces the digits of N most significant
digit first: take k such that qk ≤ N < qk+1 and set ak := bN/qkc; one then reiterates the process with
N being replaced by N − akqk in order to get the digits in decreasing power order. Now, consider the
second generation method. Let the notation y mod q stand for the unique number in {0, 1, . . . , q − 1}
which is congruent to y modulo q. The dynamical system (N, Sq) with

Sq : N→ N, n 7→ n− (n mod q)

q

together with the coding map ψq : N → {0, 1, . . . , q − 1}, n 7→ n mod q (which is associated with the
natural partition of N given by the sets k + qN, for 0 ≤ k ≤ q − 1), produces the digits least significant
digit first: one has ai+1 = ψq(S

i
q(N)) for all i. Taking all sequences of digits produced by considering all

integers yields a symbolic dynamical system made of infinite words that all eventually take the value 0.

Similarly, the dynamical system producing the q-ary expansions of positive real numbers is defined
as ([0, 1], Tq), with

Tq : [0, 1]→ [0, 1], x 7→ qx− bqxc = {qx} = qx (mod 1),

together with the coding map ϕq : [0, 1] → N, x 7→ bqxc. Indeed, if x =
∑
i≥1 aiq

−i, then bqxc =

a1 +
∑
i≥1 ai+1q

−i, and {qx} =
∑
i≥1 ai+1q

−i. One thus has ai = bqT i−1q (x)c = ϕq(T
i−1
q (x)), for all

i ≥ 1. Note that the admissible expansions produced by Tq never terminate in (q − 1)(q − 1)(q − 1) · · · .
When q = 10 one recovers the decimal expansion, and the binary one for q = 2.

More generally, the so-called beta-numeration embraces and extends q-ary numeration. Taking a real
number β > 1, it consists in expanding numbers x ∈ [0, 1] as power series in base β−1 with digits in the
set {0, . . . , dβe − 1}. The mapping

Tβ : x 7→ {βx} = βx (mod 1)

together with the coding map ϕβ : x 7→ bβxc produces the digits ai = bβT i−1β (x)c = ϕβ(T i−1β (x)), for

i ≥ 1, which yields the expansion x =
∑
i≥1 aiβ

−i. For more on beta-numeration, see e.g., [14,89,30,38,
43]. Such expansions belong to the more general family of so-called f -expansions [88]: one expands real
numbers as

x = lim
n→∞

f(a1 + f(a2 + f(a3 + · · ·+ f(an) · · · ))), with ai ∈ N.
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We consider now another type of expansion. The Gauss map defined on [0, 1] by

TG : x 7→ {1/x} for x 6= 0, TG(0) = 0

together with the coding map ϕG : x 7→ b1/xc produces the partial quotients in the continued fraction
expansion of a real number x ∈ [0, 1] (see Section 3 for more details, and more generally [57,51,55]).
Let x ∈ (0, 1). If x1 = TG(x) = {1/x} = 1

x − b
1
xc = 1

x − a1, then x = 1
a1+x1

. Now, set an = b 1
Tn−1xc =

ϕG(Tn−1x) for n ≥ 1. One has

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

.

We also will use the notation x = [0; a1, · · · , an, · · · ]. The digits an are called partial quotients. Contin-
ued fractions are known to provide good rational approximations of real numbers. Indeed let pn/qn =
[0; a1, · · · , an] stand for the n-th truncation of the continued fraction of x. One has |x− pn/qn| < 1/q2n
for all n.

Note that continued fractions extend also to Laurent formal power series with coefficients in a finite
field, see e.g., the survey [12] and the references therein. As an application, let us mention some interesting
connections with pseudorandom numbers generated by the digital multistep method [78], with low-
discrepancy sequences [79], or with stream cipher theory and cryptography [80].

Let us briefly mention two other classical dynamical numeration systems (see also [7,38,43] and the
references therein). Canonical number systems allow one to expand numbers in algebraic bases, see e.g.,
[59,56]. Signed number systems, based on the use of negative digits, are known for their applications in
computer arithmetic and in cryptography. Indeed, they allow redundant or sparse representations: redun-
dancy facilitates arithmetical operations and allows their parallelism by the limitation of the propagation
of the carry when performing additions and subtractions (see e.g., [3,74,75,4,77]); sparse representations
(the non-adjacent signed binary expansion is known to have, on average, only one third of the digits
that are different from zero, see e.g., [18]) are used for the multiplication and the exponentiation in
cryptography (see [50,48,52] and the references therein).

1.3 Dynamics and computation

Let us come back to dynamical systems. An orbit (Tn(x))n∈N of the dynamical system (X,T ) is said to
be eventually periodic if there exists n such that Tn(x) = Tn+k(x), for k ∈ N. If n = 0, then the orbit is
said to be purely periodic. In order to define a stronger notion of “finiteness” for an orbit, we will assume
that (X,T ) has 0 as a fixed point: T (0) = 0. The orbit (Tn(x))n∈N is thus said to be finite if there
exists n such that Tn(x) = 0; this yields T k+n(x) = 0 for all k ∈ N. Finite orbits are thus particular
cases of periodic orbits. For instance, in base 10, rational numbers have periodic orbits, whereas decimal
numbers have finite orbits.

Note that among the orbits of a dynamical system, periodic ones are particularly interesting from a
computational viewpoint. Indeed the orbits produced by a finite state machine simulation of a dynamical
system are eventually periodic (the set of representable numbers is finite, we use here finite precision
computer arithmetic). By finite state machine simulation of the dynamical system (X,T ), we mean the
following: we consider a finite set X̂ (which is a set of finite sequences of, usually, binary digits), a coding
map ϕ : X → X̂, and a map T̂ that acts on X̂ (T̂ (X̂) ⊂ X̂), whose action is defined as a finite state
machine, i.e., the image of x ∈ X̂ by T̂ is computed by a finite state machine that takes as input the
sequence of digits of x and then outputs the sequence of digits of T̂ (x); we also want the behavior of T̂ to
be close to the behavior of T , that is, T̂ ◦ϕ to be close to ϕ ◦T . As an example, consider a floating-point
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simulation (see for instance (1) for the Gauss map). Of course, rounding and truncation errors are then
to be taken care of (see Section 3.3 for a discussion).

The following questions are thus natural, both from a computational and an arithmetic viewpoint:
what are the finite or the periodic expansions of the dynamical system (X,T )? how to describe them? do
periodic expansions have a typical behavior? how far are periodic orbits from typical ones? Assume now
we have a finite state machine simulation of the dynamical system (X,T ). What can be said concerning
the roundoff errors when simulating trajectories? how far are computed orbits from exact ones? are there
typical orbits among computable ones? We will come back to these questions in Section 3.3 through the
study of the Gauss map.

Contents of the paper

We now have gathered all the tools and notions required for presenting an overwiew of the present paper.
Section 2 will illustrate the use of dynamical methods for describing periodic orbits, and thus producing
Galois’ type theorems. We then will use as a guideline the Gauss map and continued fractions in Section
3 in order to introduce and discuss the notions of ergodicity (see Section 3.1), chaoticity (see Section
3.2), and of numerical simuations of dynamical systems trough a floating-point version of the Gauss map
in Section 3.3 (based on [25–27]). Section 4 is devoted to the classic Lochs’ theorem [70] which can be
summarized under the following form: continued fraction expansions are not significantly more efficient
at representing real numbers than the decimal expansion. We conclude this survey by alluding to the
multidimensional case in Section 5.

2 Periodic orbits and dynamics

Let us illustrate the efficiency of the dynamical approach by providing a simple dynamical proof of the
following well-known fact: the rational numbers having, when reduced, a denominator coprime with 10,
have a purely periodic decimal expansion.

We have seen that the digits ai ∈ {0, . . . , 9} of the decimal expansion of a positive real number
x =

∑
i≥1 ai10−i are produced by T10 : [0, 1] → [0, 1], x 7→ 10x − b10xc = {10x}. We will use the

notation T = T10 in this paragraph for the sake of simplicity. Let us fix a/b ∈ (0, 1] with b coprime with
10 and let us prove that the decimal expansion of a/b is purely periodic. One has

T (a/b) =
10a− b10 · a/bc · b

b
=

(10 · a) mod b

b
;

recall that y mod b stands for the unique number in {0, 1, . . . , b− 1} which is congruent to y modulo b.
More generally, for any positive integer k, the denominator of T k(a/b) is equal to b and its numerator
belongs to {0, 1, . . . , b−1}. The sequence of numerators of T k(a/b), for k ∈ N, is eventually periodic since
taking a finite number of values. We want to prove that this sequence is purely periodic. Assume that
this sequence is produced by iterating a one-to-one map; the fact that it is eventually periodic together
with injectivity implies pure periodicity. However, the map T is not one-to-one on (0, 1). But, luckily

enough, this is the case of the mapping T̃b : x 7→ 10 ·x mod b that produces the numerator of T (x/b), for
any x ∈ {0, 1, . . . , b−1}: we use the fact that b and 10 are coprime. This implies the expected result, that

is, the sequence T̃ kb (a/b), for k ∈ N, is not only eventually periodic but purely periodic. We thus have
proved that the decimal expansion of a rational number having, when reduced, a denominator coprime
with 10 is purely periodic. Note that the converse also holds true.

The key idea used here to obtain a description of purely periodic orbits is to transform the map T
of the dynamical system (that is a priori not one-to-one) into an injective one. This method does not
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only apply to decimal, or more generally q-adic numeration. It also applies e.g., for the characterization
of periodic and eventually periodic orbits of continued fractions and β-expansions, as will be explained
below.

We first start with the case of continued fractions. The arithmetic characterization of periodic orbits
is well-known. Lagrange theorem states that the continued fraction expansion of x ∈ (0, 1) is eventually
periodic if and only if either x ∈ Q, or x is a quadratic number. Furthermore, if x is a quadratic number,
and x′ stands for its algebraic conjugate, then the continued fraction expansion of x is purely periodic
if and only if x is an irrational quadratic number and x′ < −1: this is Galois’ theorem. Note that points
having periodic orbits are dense in [0, 1]. This is also the case of points having finite orbits: these are
exactly the rational numbers in [0, 1].

By using the same idea as previously, let us give a dynamical and short proof of Galois’ theorem
that can be considered as being part of the folklore literature on the subject. Let x ∈ (0, 1) with x being
a quadratic number. We want to prove that x has a purely periodic expansion if and only if x′ < −1.
We will transform the Gauss map into an invertible map defined on [0, 1] × (R \ {0}) by transforming
the Gauss map into a two-dimensional map, with the Gauss map acting on the first coordinate. We
thus introduce a so-called realization of the natural extension of the Gauss map; it is defined over
[0, 1]× (R \ {0}) as follows:

T̃G(x, y) = ({1/x}, 1/y − b1/xc) for x, y 6= 0, T̃G(0, y) = (0, 0) for y 6= 0.

The digits that are produced by the Gauss map on the first coordinate are lost when performing TG,
but not for T̃G that stores them thanks to the second coordinate.

In order to describe periodic orbits, one needs to find a stable set under T̃G on which the restriction of
T̃G is a bijection. This is the case of the set A = [0, 1]×(−∞,−1): it is stable by T̃G, and T̃G is one-to-one
and onto A. Furthermore, if x is a quadratic number, and x′ stands for its algebraic conjugate, one has
T̃G(x, x′) = (Tx, (Tx)′), and more generally T̃nG(x, x′) = (TnGx, (T

n
Gx)′), for all n. The notation y′ stands

for the algebraic conjugate; note that TnG(y) is a quadratic number as soon as y is a quadratic number.

Lastly, A is an atttractor for conjugate pairs, that is, there exists n such that T̃n+kG (x, x′) ∈ A for all
k ∈ N, with x′ being the conjugate of the quadratic number x (this comes from the fact that x and x′

have different continued fraction expansions since being distinct).

Assume first that x has a purely periodic expansion. Since A is an attractor, there exists n such
that T̃nG(x, x′) ∈ A, and thus T̃mG (x, x′) ∈ A, for m ≥ n. As A is stable and T̃G is one-to-one, one has
(x, x′) ∈ A.

Assume now that x has an eventually periodic expansion and that (x, x′) ∈ A. Let y be defined as
the real number in [0, 1] having as continued fraction expansion the purely periodic part of x. For n large

enough, one has T̃nG(x, x′) = T̃nG(y, y′) ∈ A. Since T̃nG is bijective, one gets x = y, and consequently, x has
a purely periodic continued fraction expansion, which ends the proof of Galois’ theorem for continued
fractions.

A similar characterization (and proof) holds for continued fractions and formal power series with
coefficients in a finite field (see [12]). The same type of methods also applies in the β-numeration case
allowing a characterization of periodic orbits for a Pisot number β. An algebraic integer α > 1, i.e., a
root of a monic polynomial with integer coefficients, is a Pisot-Vijayaraghavan number or a Pisot number
if all its algebraic conjugates λ other than α itself satisfy |λ| < 1. The analogue of Lagrange theorem has
been proved in [14,89]: if β is a Pisot number, then x ∈ [0, 1] has an eventually periodic expansion if and
only if x ∈ Q(β)∩ [0, 1]. Moreover, an analogue of Galois’ theorem is given in [1] (see also the references
therein): let β be a Pisot number; a real number x ∈ Q(β) ∩ [0, 1) has a purely periodic β-expansion
if and only if x and its conjugates belong to an explicit subset in a finite product of Euclidean and
p-adic spaces that depends on β; this set (called generalized Rauzy fractal) is a graph-directed self-affine
compact subset of non-zero measure; the primes p that occur are prime divisors of the norm of β. The
proof is here again based on an explicit realization of the natural extension of the β-transformation Tβ .
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3 Continued fractions

The continued fraction algorithm is obtained by applying the Gauss map TG : x 7→ {1/x}, which is closely
related to Euclid’s algorithm: let us start with two (coprime) positive integers u0 et u1; Euclid’s algorithm
works by subtracting as much as possible the smallest of both numbers from the largest one (that is,
one performs the Euclidean division of the largest one by the smallest); this yields u0 = u1bu0

u1
c + u2,

u1 = u2bu1

u2
c + u3, etc., until we reach um+1 = 1 = pgcd(u0, u1). By setting for i ∈ N, αi = ui

ui+1
and

ai = bαic, one gets αi−1 = ai−1 + 1
αi

and

α0 = u0/u1 = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+ 1
am−1+1/am

For general references on continued fractions, see e.g., [15,30,51,57].

3.1 Continued fractions and ergodicity

One interest of the dynamical approach is that it provides statistical information concerning the partial
quotients that are produced by the Gauss map and more generally, concerning the behavior of orbits,
through the notion of ergodicity: this yields metric results that hold almost everwyhere with respect to
the Lebesgue measure on [0, 1]. We recall in this section basic ergodic properties of the Gauss map.

More precisely, let us endow the dynamical system ([0, 1], TG) with a structure of a measure-theoretic
dynamical system. A measure-theoretic dynamical system is defined as a system (X,T, µ,B), where µ is
a probability measure defined on the σ-algebra B of subsets of X, and T : X → X is a measurable map
which preserves the measure µ (µ(T−1(B) = µ(B) for all B ∈ B). Here, we endow ([0, 1], TG) with the
Gauss measure µG which is the Borel probability measure defined as the absolutely continuous measure
with respect to the Lebesgue measure by

µG =
1

log 2

∫
1

1 + x
dx.

One checks that this measure is TG-invariant, i.e., µG(B) = µG(T−1G B) for every Borel subset B of [0, 1].
The Gauss map is ergodic with respect to the Gauss measure, that is, every Borel subset B of [0, 1]
such that T−1G (B) = B has either zero or full measure. This implies that almost all orbits are dense in
[0, 1] (almost all means that the set of elements x whose orbit is not dense is contained in a set of zero
measure). More generally a property is said to hold almost everywhere (abbreviated as a.e.) if the set
of elements for which the property does not hold is contained in a set of zero measure; this property is
said to be generic (the points that satisfy this property are then also said to be generic). This helps us
to give a meaning to the notion of typical behavior for a dynamical system.

Ergodicity yields furthermore the following striking convergence result. Indeed, measure-theoretic
ergodic dynamical system satisfy the Birkhoff ergodic theorem, also called individual ergodic theorem,
which relates spatial means to temporal means.

Theorem 1 (Birkhoff Ergodic Theorem) Let (X,T, µ,B) be an ergodic measure-theoretic dynamical

system. Let f ∈ L1(X,R). Then the sequence ( 1
n

∑n−1
k=0 f ◦ T k)n≥0 converges a.e. to

∫
X
f dµ:

∀f ∈ L1(X,R) ,
1

n

n−1∑
k=0

f ◦ T k µ−a.e.−−−−→
n→∞

∫
X

f dµ .
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Points for which this convergence property holds for a given f are generic.

For more on ergodic aspects of the Gauss map, see [15,30]; see also [36,37] which focus on spectral
properties of transfer operators. More generally, for more about ergodic theory of discrete dynamical
systems, the reader is referred to [98]. Lastly, for computational aspects (with respect to numerical
simulation) of ergodic theory, see [24], and for algorithmic effectiveness, see for instance [96,44].

3.2 Continued fractions and chaoticity

This section aims at illustrating the chaotic nature of the Gauss map, motivated by the question of its
numerical simulation.

A dynamical system is said to be chaotic if it is sensitive to initial conditions, if its periodic points
are dense, and if it is topologically transitive. A dynamical system is said to be topologically transitive
if for any pair of open sets U, V ⊂ X, there exists a positive integer n such that Tn(U) ∩ V 6= ∅. This
condition can be seen as a topological indecomposability property. A map is said to be sensitive to
initial conditions if close initial points have divergent orbits, with the separation rate being exponential.
In particular, the Gauss map is sensitive to initial conditions: rational initial points form a dense set
and are attracted to 0, whereas quadratic irrational points are eventually attracted to a periodic orbit
(which is not finite).

The Lyapounov exponent measures the exponential rate of separation of orbits. It is defined for a
dynamical system (X,T ), with T being piecewise differentiable as

λ(x) = lim
n→∞

1

n
log

(
n∏
i=0

|T ′(T i(x))|

)
,

when this limit exists. Note that the formula given here comes from the chain rule applied to Tn+1(x)
in order to get its derivative. This allows us to get information on |Tn(x) − Tn(y)|. Indeed, intuitively
(and as nicely explained in Chap. 9 of [24]), |T (x) − T (y)| is approximatively equal to T ′(x) · |x − y|
(under suitable hypotheses such as x and y being close), whereas |Tn(x) − Tn(y)| has to be compared

with
∏n−1
i=0 |T ′(T ix)| · |x− y|. This implies

|Tn(x)− Tn(y)| ∼ expnλ(x) · |x− y|,

which allows one to connect the rate of divergence of distinct orbits to the Lyapounov exponent. By
applying the ergodic theorem to the Gauss map, one obtains that the Lyapounov exponent is a.e. equal

to π2

6 log 2 . Indeed, one has for a.e. x ∈ [0, 1]

−2 lim
n→∞

1

n

(
n∑
i=0

log(T iG(x))

)
= − 2

log 2

∫ 1

0

log x

1 + x
dµ =

π2

6 log 2
.

For β > 1, the Lyapounov exponent of the β-transformation Tβ is proven to be equal to log β as a
direct application of the formula and of the fact that Tβ is piecewise linear (the set of discontinuities is
countable).

For a survey on chaoticity, see [31,16]. See also [92] for a survey of the numerical method devoted
to the computation of Lyapounov exponents for dynamical systems. As an illustration of the chaoticity
of the Gauss map, see [25–27]. For a discussion on the number of significant digits required for the
numerical estimation of the Lyapounov exponent, see [24]. See also in the same vein Section 4 below.

Since measure-theoretical dynamical systems are defined up to sets of zero measure, the relevance
with respect to computation can be questioned. In particular, what can be said concerning the behavior of
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rational points under the Gauss map? We just know that their orbits are finite, and that they correspond
to the application of Euclid’s algorithm. We also know that points having finite, or periodic orbits are
dense. This does not imply a priori that their orbits behave in a generic way. For instance, there exist
periodic orbits with arbitrarily large Lyapounov exponents. This will be the subject of next section to
discuss these issues.

3.3 The floating-point Gauss map

We will follow here mainly [25–27] devoted to the Gauss map and to its following floating-point simulation

T̂G(0) = 0, T̂G(x) = 1/x mod 1 otherwise, (1)

the operations of division and reduction modulo 1 being defined on the floating-point domain (i.e., on
the finite set of numbers represented in this fixed-precision system). Note that orbits under the real
Gauss map TG are all finite (they reach 0) since machine-representable numbers are rational numbers.
If one looks at the orbits produced by the floating-point Gauss map, it is a priori unclear to know
whether they also reach 0. Further questions arise in a natural way. How far are calculated orbits from
exact orbits? is the chaotic behavior of the Gauss map preserved when working with its floating-point
simulation T̂G? is it possible to define a Lyapounov exponent for the map T̂G?

These questions occur more generally when working with numerical simulations of dynamical systems.
There are two levels of difficulties that have to be handled. First, one has to check that the roundoff
errors do not accumulate. One way to handle this problem is to prove that orbits under the simulation
of the dynamical system have a counterpart in the exact dynamical system, i.e., that they are uniformly
close to exact orbits of T . These orbits are said to shadow the simulated orbits; see [84] for more on the
concept of shadowing (roughly speaking, approximate orbits of a dynamical system are closely followed
by exact orbits). But, a second problem occurs: even if orbits under a floating-point version of the
dynamical system are proved to be close to exact orbits, there is no reason for these orbits to be generic
with respect to T .

Let us come back to the Gauss map. It is proved in [25,27] that orbits under the floating-point
Gauss map are uniformly close to exact orbits with an explicit construction of the initial point of the
exact orbit. The proof relies on “backward error” analysis. Let us quote [26]: “the y whose actual orbit
is shadowing the numerical simulation is a quadratic irrational or rational number, and thus is from a
set of zero measure and in particular does not have a dense orbit or the correct Lyapounov exponent.”
Thus, this should indicate that the floating-point Gauss map cannot be used as a good approximation
of the real Gauss map. Yet it is in fact a good approximation. “The final resolution of this paradox must
somehow account for the fact that the true shadowing orbit behaves like a typical orbit, even though
it is not”, still by quoting [26]. This comes from the fact that shadowing orbits are usually long, they
thus have a tendency to behave like a generic one (even if the Lyapounov exponent is not defined when
starting from a rational point!). Furthermore, periods tend to be “long” as indicated in [26]: indeed,
according to [59,35], if N stands for the total number of floating-point numbers in the simulation, then
the average length of the period of an orbit is

√
πN/8 + O(1) for a map uniformly chosen randomly

among all the maps from {1, . . . , N} to itself (each map has probability 1/NN to be chosen). See also [45,
46] in the same vein. Furthermore, the equidistribution results for quadratic irrational numbers obtained
in [86], through the use of Parry’s prime orbit method [83], confirm this long orbit behavior, and the
fact that the periodic orbits capture some kind of genericity: taking averages on periodic orbits yields
the usual ergodic limits; if each individual periodic orbit behaves in a non-generic way, the distribution
of the quadratic irrational numbers ordered with respect to the lengths of their period follows the Gauss
measure.

As quoted from [25], all this even yields “a candidate for ‘the worlds’ worst’ algorithm for computing
π. [· · · ]. This method is likely worse than nearly any other in existence, since it does not converge to
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the correct value in any particular fixed-precision system, since all orbits are eventually periodic, and
the Lyapounov exponent of a periodic orbit is the logarithm of an algebraic number.[· · · ]. This method
is clearly related to the Monte-Carlo methods, with the roundoff error associated with the floating-point
arithmetic playing the part of the random number generator required”. (The approximate Lyapounov

exponent for the orbit (x̂)i under the floating-point map T̂G is here defined as −2 1
N log

(∑N
i=0 log(x̂i)|

)
.)

We find the same kind of paradox within the so-called framework of “dynamical analysis of algo-
rithms” which mixes analysis of algorithms (such as initiated by D. E. Knuth) and spectral study of
dynamical systems through their transfer operators, with probabilistic and ergodic methods. In partic-
ular, the dynamical analysis of Euclid’s algorithm (performed in full details in [23,72,5], see also [36,
37,94]), proves that the orbits of rational points behave indeed in a generic way. This confirms the per-
tinence of a dynamical approach in contexts where only integer parameters are to be considered, such
as in discrete geometry: continued fractions and Euclid’s algorithm are indeed known to describe dis-
cretizations of lines, and their possible generalizations describe similarly discrete planes (see also Section
5 and [10]).

4 Continued fractions vs. decimal expansions

The aim of this section is to compare in average the level of information required for computing the
continued fraction expansion of a positive real number x whose expansion in some numeration system
(decimal, binary, base β etc.) is given. More precisely, we want to know in average the number of digits
in one symbolic representation (here, the continued fraction expansion) that can be obtained from the
first n digits in another representation.

We first start with decimal expansions (this is the case that has been first handled in the literature,
it also yields the more striking result) and ask for the number of decimal digits required for expanding
x in continued fraction. We first fix the notation. Let x ∈ (0, 1) be an irrational number with continued
fraction x = [0; a1, · · · , an, · · · ], and with decimal expansion x =

∑
i≥1

εi
10i , with εi ∈ {0, 1, . . . , 9} for all

i ≥ 1. For n ≥ 1, let xn be the lower n-th decimal approximations of x: xn =
∑n
i=1

εi
10i .

If two numbers are sufficiently close, then their respective continued fraction expansions have the
same first partial quotients. Let us quantify this. For a fixed non-negative integer n, let kn(x) be the
largest non-negative integer k such that the first k partial quotients of xn are equal to the first k partial
quotients of x. The following classic result by G. Lochs [70] describes the a.e. behavior of the quantity
kn(x) and indicates that the n first decimals determine approximatively n of the first partial quotients,
which might seem at first view non-intuitive.

Theorem 2 [70] For almost every irrational number x ∈ [0, 1] (with respect to the Lebesgue measure)

lim
n→∞

kn(x)

n
=

6 log 10 log 2

π2
∼ 0.9702. (2)

In particular, Lochs has shown in [71] that the first 1000 decimals of π give the first 968 partial
quotients of the continued fraction expansion of π− 3. For refinements of this result, still in the decimal

case, see [32–34,99,100]. In particular, it is proved in [34] that if x is such that the sequence ( log qn(x)
n )n

converges (we denote as β(x) this limit called Lévy constant) and if the growth of its partial quotients
satisfies an(x) = O(αn), for all α > 1, then

lim
kn(x)

n
=

log 10

2β(x)
.

This covers in particular the case of quadratic numbers.
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Note that we recognize in (2) the Lyapounov exponent λG of the Gauss map, i.e.,

lim
n→∞

kn(x)

n
=

log 10

λG
.

This is in fact not surprising to have the Lyapounov exponent λG intervening in the statement of
Lochs’ theorem. Indeed, the sensitive dependence on initial conditions (i.e., the fact of having a positive
Lyapounov exponent) governs the accuracy of computations and makes it even decrease exponentially
fast. As quoted from [24], “Due to the sensitive dependence on initial conditions [· · · ] there is a possibility
of obtaining meaningless output after many iterations of a transformation in computer experiment. Once
we begin with sufficiently many digits, however, iterations can be done without paying much attention to
the sensitive dependence on initial data. The optimal number of significant digits can be given in terms
of the Lyapounov exponent.” Still following [24], the divergence speed for a dynamical system (X,T ),
and for 0 ≤ x ≤ 1− 10−n with a fixed n ≥ 1, is defined as

Vn(x) = min{j ≥ 1 | |T j(x)− T j(x+ 10−n)| ≥ 10−1}.

This quantity is related to the Lyapounov exponent: Vn(x) ∼ n/λ(x), which implies that on average,
the number of significant digits for T (x) becomes n−λ(x). The computations made in [24] are based on
the maximal number of iterations that can be performed with no loss of precision when working with n
significant digits, which can be quantified thanks to the Lyapounov exponent.

A natural question is to understand the dependence of Lochs’ theorem with respect to the choice of
the basis, namely, here, 10. Lochs’s theorem was generalized to more general numerations and transfor-
mations in [19,29,68,8], where it was shown that these generalizations of Lochs’ theorem can be expressed
in terms of the ratio of the entropies (i.e., of the Lyapounov exponents) of the maps involved. In par-
ticular, the question of the comparison with β-expansions (β > 1) is thoroughly answered in [8] (thus
also covering the case of q-adic expansions). One expands x as

∑
i≥1

εi
βi , where εi ∈ {0, 1, . . . , dβe − 1}

for all i ≥ 1. Recall that the Lyapounov exponent λβ of the β-transformation Tβ is equal to log β.
Lochs’ theorem becomes in this more general framework, with kn(x) being defined in a similar way as
in the decimal case:

Theorem 3 [8] For every x ∈ |0, 1]

lim
n→∞

kn(x)

n
=
λβ(x)

λG(x)
=

6 log 2 log β

π2
,

whenever both limit exist simultaneously.

Note that the Lyapounov exponent λG of the Gauss map is also expressed as the following limit (when
it exists):

λG(x) = − lim
n→∞

1

n
log |x− pn/qn|,

where pn/qn = [0; a1, · · · , an]. It thus also measures the exponential speed of convergence of the con-
vergents. Theorem 3 makes Lochs’ theorem more intuitive since, as underlined in [8], “if x is well
approximated by rational numbers, then the amount of information about the continued fraction ex-
pansion that can be obtained from its β-expansion is small. Moreover, the larger β is (that is, the more
symbols we use to code a number x), the more information about the continued fraction expansion we
obtain”. Moreover, [8] also provides the Hausdorff dimension of level sets via multifractal analysis and
thermodynamic formalism, and proves that a similar result holds for more general Markov maps. Lochs’
theorem has also been the object of further extensions for formal power series with coefficients in a finite
field (see [67]).
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5 Toward multidimensional expansions

Let us end this survey by briefly discussing possible higher-dimensional extensions of the Gauss map.
Consider as an illustration the following two maps

T0 : (α, β) 7→ ({1/α}, {β/α})

TJP : (α, β) 7→ ({β/α}, {1/α}).
They are a priori very similar but we will see that they display totally different behaviors. The first one
is know as Ostrowski map. One associates with it two numeration systems, one on integers, and the other
one on real numbers (see e.g., [9,6]). Let α ∈ (0, 1) be an irrational number. Let α = [0; a1, a2, · · · , an, · · · ]
be its continued fraction expansion with convergents pn/qn = [0; a1, a2, · · · , an]. Every integer N can be
expanded uniquely in the form

N =

m∑
k=1

bkqk−1,

where 0 ≤ b1 ≤ a1−1, 0 ≤ bk ≤ ak for k ≥ 2, bk = 0 if bk+1 = ak+1. Real numbers are expanded according
to the base given by the sequence (θn)n≥0, where θn = (qnα− pn). Every real number −α ≤ β < 1− α
can be expanded uniquely in the form

β =

+∞∑
k=1

ckθk−1,

where 0 ≤ c1 ≤ a1 − 1, 0 ≤ ck ≤ ak for k ≥ 2, ck = 0 if ck+1 = ak+1, ck 6= ak for infinitely many even
and odd integers.

Ostrowski’s numeration system is used to approximate β modulo 1 by numbers of the form Nα,
with N ∈ N. Indeed, the sequence of integers Nn =

∑n
k=1 ckqk−1 provides good approximations of

β =
∑+∞
k=1 ckθk−1, since Nnα =

∑n
k=1 ckqk−1α ≡

∑n
k=1 ck(qk−1α− pk−1) mod 1.

Ostrowski’s numeration system has many applications. As an example, a fast algorithm for computing
a lower bound on the distance between a straight line and the points of a regular grid is given in [65,64],
which is used to find worst cases when trying to round correctly the elementary functions in floating-
point arithmetic; this is the so-called Table Maker’s Dilemma [65], see also [77]. This algorithm is closely
related to the algorithm (based on Ostrowski’s map T0) which is presented in [11], and which provides a
greedy representation algorithm for double-base number systems. Note that Ostrowski’s numeration has
deep relations with the study of discrete lines in discrete geometry (via the study of Sturmian words),
as discussed in [9].

Pairs of real numbers (α, β) having periodic expansions with respect to Ostrowski’s numeration
system are characterized in [54] with the same method as the one discussed in Section 2: these are
quadratic numbers. In fact, the map TO is a skew product of the continued fraction transformation,
which allows its metrical study (see e.g., [53,54]); in other words, the first coordinate governs the actions
made on the second one.

The second map, called Jacobi-Perron, is one of the most classic multidimensional continued fraction
algorithms. It was introduced by Jacobi, and then later by Perron, in order to characterize cubic numbers
as numbers having periodic expansions. Numerical evidence does not support this belief anymore (see
[93] for an algorithm aiming at characterizing cubic numbers). Nevertheless, Jacobi-Perron algorithm
and Ostrowski algorithms behave in completely different ways, arithmetically or as dynamical systems.
Indeed, Jacobi-Perron map “mixes” the actions performed on both coordinates, whereas Ostrowski
always performs the Gauss map on the first coordinate.

Continued fractions together with the Gauss map have proved their efficiency in arithmetics, Dio-
phantine approximation, as well as in computer arithmetic. What is the situation for multidimensional
continued fractions? What is expected from them? Note first that there is no canonical generalization
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of continued fractions to higher dimensions (see the discussion and the references in [10]). Several ap-
proaches are possible, which are based either on lattice reduction algorithms (see the references in [82]),
on best simultaneous approximation properties (see e.g., [61–63]), on Klein polyhedra and sails [2], or
else on unimodular multidimensional Euclid’s algorithms in the sense of [20,90]. Jacobi-Perron algorithm
enters this latter class, it is said to be a vectorial algorithm (according to the terminology in [20]). From
an arithmetic viewpoint, a multidimensional continued fraction algorithm is expected to detect linear
relations between the parameters, to give algebraic characterizations of periodic expansions, to have
“good” properties of convergence, and to provide “good” simultaneous rational approximations. From a
dynamical viewpoint, we also would like to have reasonable ergodic properties (concerning ergodic invari-
ant measures, realizations of the natural extension, entropy, Lyapounov exponents, etc.), to be able to
control the almost everywhere behavior like the a.e. speed of convergence, the distribution of the digits,
to understand the “depth” and the number of executions of the algorithm if the parameters are rational,
and to be able to perform a dynamical analysis according to the scheme discussed in [94]. In particular,
Jacobi-Perron algorithm is known to have an invariant ergodic probability measure equivalent to the
Lebesgue measure (see for instance [90]). However, this measure is not known explicitly for Jacobi-Perron
(the density of the measure is shown to be a piecewise analytical function in [21]). For a thorough study
of the Lyapounov exponents of the Jacobi-Perron algorithm, see [22]. Nevertheless, as underlined in [20],
concerning the class of so-called vectorial algorithms to which Jacobi-Perron algorithm belongs, “All
continued fraction algorithms which have been proposed since the beginning (Jacobi, 1868), and up to
about 1970 belong to this class. [...]. A great disadvantage is that the expansions of vectorial algorithms
often converge too slowly or not at all.” Yet they are easier to study from an ergodic viewpoint for
instance. In particular, the existence of an ergodic absolutely continuous invariant measure allows to
understand the way the digits are distributed. We thus can consider these algorithms, and in particular
Jacobi-Perron algorithm, as satisfying compromises between efficient computation and sharpness of the
provided simultaneous rational approximations.
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45. P. Góra, A. Boyarsky, Why computers like Lebesgue measure, Comput. Math. Appl. 16, 321–329 (1988).
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65. V. Lefèvre, J.-M. Muller, and A. Tisserand, Towards correctly rounded transcendentals, IEEE Transactions on Com-

puters, 47, 1235–1243 (1998).
66. D. R. Lester, Effective continued fractions, In N. Burgess and L. Ciminiera, editors, 15th IEEE Symposium on Com-

puter Arithmetic: ARITH-15 163–172 (2001).
67. B. Li, J. Wu, Beta-expansion and continued fraction expansion over formal Laurent series, Finite Fields Appl., 14

635–647 (2008).
68. B. Li, J. Wu, Beta-expansion and continued fraction expansion, J. Math. Anal. Appl., 339 1322–1331 (2008).
69. D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge,

(1995).
70. G. Lochs, Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch, Abh. Math. Sem. Univ. Hamburg, 27

142–144 (1964).
71. G. Lochs, Die ersten 968 Kettenbruchnenner von π, Monatsh. Math., 67 311–316 (1963).
72. L. Lhote, B. Vallée, Gaussian laws for the main parameters of the Euclid algorithms, Algorithmica, 50, 497–554 (2008).
73. V. Ménissier-Morain, Arithmétique exacte, conception, algorithmique et performances d’une implémentation informa-
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