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Abstract. In this survey, we discuss decidability issues for symbolic
dynamical systems generated by substitutions. Symbolic dynamical sys-
tems are discrete dynamical systems made of infinite sequences of sym-
bols, with the shift acting on them. Substitutions are simple rules that
replace letters by string of letters and allow the generation of infinite
words. We focus here on symbolic dynamical systems that are gener-
ated by infinite compositions of substitutions, allowing to go beyond the
case of the iteration of a single substitution. This is the so-called S-adic
framework. Motivated by decidabillty and ergodic questions, we focus
on questions dealing with the convergence of products of nonnegative
matrices and associated Lyapounov exponents.
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1 Introduction

Discrete dynamical systems Dynamical systems describe the evolution of
systems over time: a dynamical system is endowed with an evolution rule that
describes the time dependence of the state of the elements of the system, allow-
ing to bring out a global average behaviour. One can thus model the evolution
of a system whose components interact in a simple way. In physics, this is for
instance a set of particles whose state obeys differential equations involving time
derivatives, with past determining the future. Modeling using dynamical systems
has largely proved its relevance in physics and engineering, and also for numer-
ous phenomena from the digital world, in deep connection with algorithmics:
dynamical systems can model the execution of an algorithm, as well as a loop in
a program.

In a digital framework, discrete systems arise naturally. More precisely, a
discrete (time) dynamical system is defined as the action of a map T acting on
a phase space X (usually assumed to be compact), where the rule T governs the
discrete time evolution of states in X. Note that the iterative nature of dynamical
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systems is particularly well adapted to model executions of algorithms. One then
studies the evolution of the system in discrete time steps: at time n, we consider
the nth iterate Tn. The evolution of the system when starting with the initial
condition x ∈ X is described by the orbit or the trajectory (X,Tx, T 2, · · · , Tn) of
x. Discrete dynamical systems can be of a geometric nature (e.g., X = [0, 1]), or
of a symbolic nature (e.g., X = {0, 1}N). Consider for instance cellular automata
or, here, symbolic dynamical systems, with discrete dynamical systems made of
infinite sequences of symbols.

Reachability vs. statistical properties of orbits Understanding the behav-
ior of orbits allows the global understanding of a dynamical system (X,T ). Two
types of questions arise naturally in this context. Reachability problems deal
with the question of knowing whether an orbit will enter a given subregion Z
of X or even reach a given point, whereas the understanding of the long-term
behavior allows one to answer the following: will a trajectory visit infinitely often
Z (recurrence) and how long will it stay in the subregion Z?

This second type of questions is handled through the use of ergodic the-
ory that describes the long-term statistical behaviour of dynamical systems. An
ergodic system is such that the time spent by a trajectory in some region is pro-
portional to the volume of this region; it has the same behavior averaged over
time as averaged over all the space. (For a more precise statement, see Section
2.)

For linear dynamical systems given by the action of a square matrix with
rational entries, reachability problems in the framework of the orbit problem
are known to lead to famous number-theoretic undecidable problems, such as
the Skolem problem (does a trajectory hit a hyperplane?), the Kannan-Lipton
problem [27] (does it hit a point?) and its variants in terms of positivity and
ultimate positivity. The synthesis of invariants providing certificates of non-
reachability (i.e., invariant sets under the action of T that contain a point x and
not y) has opened the way to a large set of applications in verification, control
theory, program analysis, etc. See e.g. [22] for the synthesis of semialgebraic
invariants.

Substitutions and positiveness We focus in the present survey on decision
questions that fall within the scope of the ergodic study of the long-term be-
haviour of orbits. They will conduct us to questions that are related to the
existence of occurrences of positive products of matrices.

Dynamically, our main object of study here are substitutions and the words
and symbolic dynamical systems they generate. Symbolic dynamical systems are
defined on sets of symbols and words with the shift acting on them: the shift
is the operation that deletes the first letter of an infinite word. A substitution
is a rule, either combinatorial or geometric, that replaces a letter by a string of
letters on a finite alphabet, or a tile by a geometric pattern. Iterating substitu-
tions enables the generation of hierarchically ordered structures (infinite words,
subshifts, point sets, tilings) that display strong self-similarity properties; one of
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the best known examples is the Penrose tiling. Substitutions are generalized as
S-adic dynamical systems via a nonstationary (i.e., time inhomogeneous) setting
which consists in iterating sequences of substitutions, and not only a single one
[8].

For the sake of clarity, we focus here on substitutions acting on words which
are more elementary in nature. These simple algorithmic constructions thus pro-
duce infinite words and symbolic dynamical systems whose study involves combi-
natorics on words, ergodic theory, spectral theory, geometry of tilings, Diophan-
tine approximation, number theory, aperiodic order, harmonic analysis, and so
on. There exist analogue notions of substitutions and S-adic systems defined on
tilings and point sets, and acting as inflation/subdivision rules; see e.g. [34].

Simple refers here to the combinatorial notion of factor complexity of an
infinite word with values in a finite alphabet, which counts the number of factors
(i.e., strings of consecutive letters that occur in this infinite word) of a given
length. This gives an indication of the degree of randomness of this infinite word.
The S-adic systems cover a wide class of symbolic dynamical systems with at
most linear factor complexity. They were in fact introduced as models for such
systems; this is the so-called S-adic conjecture [35,8].

A substitution can efficiently be understood through its incidence matrix
(this is somehow the analogue of the incidence matrix of a graph or an automa-
ton). This linear viewpoint enables to exploit a very fruitful dictionary between
actions of linear maps and symbolic dynamics, through the matrix/substitution
relation produced by the fact that a matrix is the abelianized linear version of
a substitution. In particular when this matrix turns out to be primitive, that is,
when it admits a power with positive entries, this yields for substitutive subshifts
strong ergodic and combinatorial properties, as well as particularly convenient
tools for decision problems. Indeed, substitutions are particular cases of free
group morphisms (they are free monoid morphisms), with the main simplifi-
cation being that we have no problem of cancellations. In terms of associated
matrices, this gives matrices with nonnegative entries and Perron–Frobenius
theory enters into play. However, for the study of S-adic expansions, we do not
consider powers of a single matrix but infinite products of nonnegative matrices,
and there is no clear analogue of Perron-Frobenius theorem for infinite prod-
ucts of matrices. One relevant ergodic strategy is to go through the theory of
Lyapunov exponents at the cost that results are given in a metric way, almost
everywhere (see as an illustration Theorem 1). A crucial property in this setting
is the existence of occurrences of positive blocks of matrices.

If decision problems for substitutive shifts are well investigated (see Section
3.1), in particular thanks to the notion of primitivity, the situation is by nature
less effective in the S-adic setting. This survey suggests ways to extend in terms
of decidability the substitutive case to the S-adic case (see Section 3.2) and asks
several natural decision questions (see Section 3.3). We also allude to connections
with continued fractions, as a source of related questions in Section 3.4.
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From symbolic to arithmetic dynamics Let us end this introduction by
presenting some elements of motivation for the study of S-adic systems. Symbolic
dynamical systems come as codings of trajectories of points in a dynamical
system according to a given partition and they also occur in a natural way in
arithmetics for instance for the representation of numbers. Symbolic dynamics
originates in the work of J. Hadamard in 1898, through the study of geodesics on
surfaces of negative curvature. Since its inception, symbolic dynamics has gone
hand in hand with substitutions which appeared for the first time in papers of
A. Thue from 1906 and 1912, in particular with the study of the Thue-Morse
word. Symbolic dynamics and Sturmian words were developed by Morse and
Hedlund in the 40’s [32]. Substitutions then turned out to yield unexpected
prominent outcomes in the study of quasicrystals and tilings in the framework
of aperiodic order. Aperiodic order refers to the mathematical formalization of
quasicrystals, initiated by Y. Meyer. Since their discovery in 1982 (for which
Nobel prize was awarded to D. Shechtman in 2011), substitutions and aperiodic
tilings have proved to be at the heart of their study [5].

One motivation for developing the S-adic formalism comes from the study of
algorithms of an arithmetic nature related to specific numeration systems and
their applications, running from number theory to cryptography or computer
arithmetic. Indeed, in many examples of digital representations, the digits of
expansions are produced step by step by the iteration of a transformation and
their ergodic study yields information on their digit distribution. This is for in-
stance the case of decimal expansions, beta-numeration, or continued fractions
(see e.g. [9, Chapter 2]). As an illustration, consider the dynamical system pro-
ducing the q-ary expansions of positive real numbers defined as ([0, 1], Tq), with
Tq : [0, 1]→ [0, 1], x 7→ qx−bqxc = qx (mod 1). Indeed, if x =

∑
i≥1 aiq

−i, then

ai = bqT i−1q (x)c, for i ≥ 1. When the base q is replaced by some more compli-

cated base β (consider e.g. an algebraic base like the golden ratio β = 1+
√
5

2 ),
this allows one to expand real numbers in [0, 1] under the form of (possibly in-
finite) sums of negative powers of β of the form

∑
i≥1 εiβ

−i. This is called the
beta-numeration.

Algorithms of an arithmetic nature can often be decomposed as a succes-
sion of algorithmic steps, which in turn can be modeled by dynamical systems.
Kronecker translations x 7→ x + α modulo 1 provide analogues of the addi-
tion, whereas positive entropy systems such as beta-numeration x 7→ βx modulo
1 mirror multiplication. This thus requires a specific nonstationary modeling
which consists in working with iterated sequences of transformations that are
drawn according to a further dynamical system. More precisely, we do not iterate
always the same map T , but the map T can be changed with respect to time:
one thus iterates a sequence Tin of maps acting on phase spaces Xin . One impor-
tant feature is the order composition Ti1 ◦ · · · ◦ Tin . Such a time-inhomogeneous
formalism is inspired by the well-studied setting of random dynamics (including
random Markov chains and random products of matrices). Symbolic codings of
such transformations yields the S-adic formalism.
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This survey is organized as follows. Definitions and terminology are gathered
in Section 2. Specific questions raised by decision issues are then discussed in
Section 3.

2 General definitions for substitutive dynamical systems

Ergodic theory Ergodic theory studies the long-term average behavior of dy-
namical systems. One of its main tools is Birkhoff’s ergodic theorem which as-
serts the existence of a time average along each trajectory, provided that (X,T ) is
endowed with a T -invariant and ergodic measure µ. More precisely, a measure-
theoretic dynamical system is a dynamical system endowed with an invariant
measure (X,T, µ,B), where µ is a probability measure defined on the σ-algebra
B, and T : X → X is a measurable map which preserves the measure µ, that is,
µ(T−1(B)) = µ(B) for all B ∈ B. The measure µ is said to be T -invariant. It is
said ergodic if for every set B ∈ B, T−1(B) = B has either zero or full measure.

Birkhoff’s ergodic theorem states that the time average, that is, 1
n

∑n−1
k=0 f ◦

T k(x) for some observable function f , is the same for almost all initial points x,
and is equal to the space average, i.e.,

∫
X
f dµ, almost everywhere. The terms

almost all and almost everywhere refer to a set of points of X of full measure µ.
The ergodic theorem can thus be stated as

∀f ∈ L1(X,R) ,
1

n

n−1∑
k=0

f ◦ T k(x) −−−−→
n→∞

∫
X

f dµ µ− a.e.

If one takes for f the characteristic function of some subspace Y of X, one
deduces that, for almost all trajectories, the proportion of the time spent in
Y is equal to the size of Y divided by the size of X (that is, µ(Y )/µ(X)).
As a special case of the ergodic theorem, consider equidistribution theory for
sequences defined on the unit interval.

Symbolic dynamics Symbolic dynamics offers the advantage of working with
coded trajectories, together with combinatorial and topological methods. Con-
sider a finite set A, and let shift map S act on the set AN of infinite words
with values in the alphabet A as S((un)n∈N) = (un+1)n∈N. (Note that all the
notions and results here hold also for biinfinite words in AZ.) Here, the set AN

is equipped with the product topology of the discrete topology on each copy of
A. Thus, this set is a compact space. This topology is the topology defined by
the following distance: for u 6= v ∈ AN, d(u, v) = 2−min{n∈N; un 6=vn}. Thus, two
infinite words are close to each other if their first terms coincide.

A subshift is a closed shift invariant subset of some AN for A finite alphabet.
A factor of an infinite word u is a string of consecutive letters that occurs in
u. The factor complexity of an infinite word is the function that counts the
number of factors of a given length that occur in it. The set of factors Lu of an
infinite word u is called its language. This definition extends to the language of
a subshift (X,S): this is the set of factors of infinite words in X. One important
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feature of a subshift is that it is defined by its language, since it is closed and
shift-invariant. Subshifts of finite type are then defined as the subshifts whose
set of words (in their language) is finite. Sofic subshifts are images of subshifts
of finite type under a factor map, where a factor map π : X → Y between two
subshifts X and Y is a continuous, surjective map such that π ◦ S = S ◦ π. A
subshift (X,S) is minimal if X has no nontrivial closed shift-invariant subset;
then, all the infinite words in X have the same language.

The frequency of a letter i in an infinite word u is defined as the limit
when n tends towards infinity, if it exists, of the number of occurrences of i
in u0u1 · · ·un−1 divided by n. Frequencies of factors are defined analogously. Let
(X,S) be a minimal subshift. For a given (finite) word w of the language of X,
the cylinder [w] is the set of infinite words in X that have w as a prefix, i.e.,
[w] = {v ∈ X; v0 . . . vn−1 = w}. If µ is an ergodic measure on u, then we deduce
from Birkhoff’s ergodic theorem that, for µ-almost every infinite word in X, any
w has frequency µ([w]). If the shift (X,S) is uniquely ergodic (i.e., there exists
a unique shift-invariant probability measure on X), then the unique invariant
measure on X is ergodic and the convergence in Birkhoff’s ergodic theorem holds
uniformly for every infinite word in X. For more details on invariant measures
and ergodicity, we refer to [36] and [9, Chap. 7].

Primitive substitutions A substitution σ is an application from an alphabet
A into the set of nonempty finite words on A; it extends to a morphism of the
free monoid A∗ by concatenation, that is, σ(ww′) = σ(w)σ(w′). It also extends
in a natural way to a map defined over AN. The substitutive symbolic dynamical
system (Xσ, S) generated by σ is then defined as the set of infinite words w such
that there exists a letter a and a nonnnegative integer n such that w is a factor
of σn(a).

Substitutions are very efficient tools for producing infinite words. As an exam-
ple, consider the substitution σ on A = {a, b} defined by σ(a) = ab and σ(b) = a.
Then, the sequence of finite words (σn(a))n starts with σ0(a) = a, σ1(a) = ab,
σ2(a) = aba, σ3(a) = abaababa, . . . Each σn(a) is a prefix of σn+1(a), and the
limit word in AN is

abaababaabaababaababaabaababaabaababaababaabaababaababaabaab . . .

The above limit word is called the Fibonacci word (for more on the Fibonacci
word, see e.g. [31,35]).

For i ∈ A and for w ∈ A∗, let |w|i stand for the number of occurrences of
the letter i in the word w. Let d stand for the cardinality of A. The incidence
matrix Mσ of the substitution σ is the square matrix with entries |σ(j)|i. This is
a commutative linear version of the substitution σ and it offers the advantage to
bring all the strength of Perron-Frobenius theorem for nonnegative matrices (see
e.g. [39]). A substitution is said primitive if there exists a power of its incidence
matrix whose entries are all positive. According to Perron–Frobenius theorem,
if a substitution is primitive, then its incidence matrix admits a dominant eigen-
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value (it dominates strictly in modulus the other eigenvalues) that is (strictly)
positive. It is called its Perron–Frobenius eigenvalue.

The dynamical system (Xσ, S) associated with a primitive substitution σ can
be endowed with a natural shift-invariant Borel probability measure µ defined
by its values on the cylinders. The measure of the cylinder [w] is defined as the
frequency of the finite word w in any infinite word of Xσ, which is proved to
exist, with a proof based again on Perron–Frobenius theorem [36].

Primitive substitutions have numerous interesting properties: the subshift
(Xσ, S) is minimal, linearly recurrent, uniquely ergodic and any of its elements
has at most linear factor complexity. (An infinite word u is said to be linearly
recurrent if there exists a constant C such that R(n) ≤ Cn, for all n.) For more
details, see [36].

S-adic words An S-adic dynamical system is defined in terms of a sequence
of substitutions. Let S be a set of substitutions. Let s = (σn)n∈N ∈ SN, with
σn : A∗n+1 → A∗n, be a sequence of substitutions, and let (an)n∈N be a sequence
of letters with an ∈ An for all n. We say that the infinite word u ∈ AN admits
((σn, an))n as an S-adic representation if

u = lim
n→∞

σ0σ1 · · ·σn−1(an).

The sequence s is called the directive sequence and the sequences of letters (an)n
will only play a minor role compared to the directive sequence. If the set S is
finite, it makes no difference to consider a constant alphabet (i.e., A∗n = A∗ for
all n and for all substitution σ in S). Note that the S-adic dynamical system
of a periodic directive sequence (σ0, · · · , σn−1)∞ is equal to the substitutive
dynamical system generated by the substitution σ0 ◦ · · · ◦ σn−1.

To be “S-adic” is not an intrinsic property of an infinite word, but a way to
construct it and an infinite word admits many possible S-adic representations [8].
But some S-adic representations might be useful to get information about the
word. One thus adds the following requirement. An S-adic representation defined
by the directive sequence (σn)n∈N is everywhere growing if for any sequence of
letters (an)n, one has

lim
n→+∞

|σ[0,n)(an)| = +∞,

with σ[0,n) := σ0 ◦ σk+1 . . . ◦ σn−1.
Given an everywhere growing directive sequence (σn)n∈N of substitutions

that are all defined over the same finite alphabet A, the subshift associated
with (σn)n is defined as the set of infinite words whose set of factors is included
in some σ[0,n)(i), for some i ∈ A.

As a prominent example, consider Sturmian words for which the Fibonacci
word is a particular case. The substitutions τa and τb are defined over the alpha-
bet A = {a, b} by τa : a 7→ a, b 7→ ab and τb : a 7→ ba, b 7→ b. Let (in) ∈ {a, b}N.
The following limits

u = lim
n→∞

τi0τi1 · · · τin−1
(a) = lim

n→∞
τi0τi1 · · · τin−1

(b) (1)
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exist and coincide whenever the directive sequence (in)n is not ultimately con-
stant (it is easily shown that the shortest of the two images by τi0τi1 . . . τin−1

is a prefix of the other). The infinite words thus produced belong to the class
of Sturmian words, and a Sturmian word is an infinite word whose set of fac-
tors coincides with the set of factors of a sequence u of the form (1), with the
sequence (in)n≥0 being not ultimately constant.

We have seen that the notion of primitivity plays an important role for sub-
stitutions. There are two ways of extending this notion in the S-adic setting. An
S-adic expansion with directive sequence (σn)n is said weakly primitive if, for
each n, there exists r such that the substitution σn · · · σn+r is positive. It is
said strongly primitive if the set of substitutions {σn} is finite, and if there exists
r such that the substitution σn · · · σn+r is positive, for each n.

The following statement from [16] illustrates the role of primitivity in the S-
adic context: if a directive sequence is weakly primitive, then the associated shift
is minimal. If it is strongly primitive, the associated shift is minimal, uniquely
ergodic, and it has at most linear factor complexity. With an extra condition
of properness one even obtains the following characterization of linear recur-
rence [16]: a subshift (X,S) is linearly recurrent if and only if it is a strongly
primitive and proper S-adic subshift. (A substitution over A is said proper if
there exist two letters b, e ∈ A such that for all a ∈ A, σ(a) begins with b and
ends with e. An S-adic system is said to be proper if the substitutions in S
are proper.) An essential ingredient in the proofs of these results is the uniform
growth of the matrices M(0,n) as for substitutive systems.

Discrepancy and balancedness properties Ergodic deviations control the
convergence of ergodic sums and measure the difference between 1/n

∑n−1
k=0 f ◦

T k(x) and the expected value
∫
fdµ. Of course, ergodic deviations depend on the

nature of the dynamical system and on the regularity of f . If f is the indicator
function of some given subset of X, this corresponds to the classical notion
of discrepancy in equidistribution theory. Discrepancy measures the difference
between the actual number of points in a subset and the expected number of
points. This makes particularly sense in a metric number-theoretic framework for
Kronecker sequences (nα)n mod 1. Low discrepancy sequences are widely used
in the Monte Carlo method and dynamical systems may be applied to generate
higher-dimensional low-discrepancy sequences.

In symbolic dynamics, ergodic deviations measure the convergence toward
frequencies, via symbolic discrepancy. Counting frequencies of words in a given
symbolic dynamical system (or in a tiling space) is among the most fundamental
questions of the field. Recurrence (repetitiveness for tilings and point-sets) is a
closely related fundamental notion of order which describes how often a finite
given configuration occurs (see e.g. [9, Chap. 7]).

The symbolic version of discrepancy is defined as follows [1]. Let u ∈ AN be
an infinite word and assume that each letter i has frequency fi in u. The letter
discrepancy of u is ∆n(u) = supi∈A ||u0u1 . . . un−1|i−nfi|. It can also be defined
by general factors (not only letters).
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Symbolic letter discrepancy is closely related to balancedness, which is a mea-
sure of disorder which counts the difference between the numbers of occurrences
of a given word in factors of the same length. An infinite word u ∈ AN is said
to be C-balanced if for any pair v, w of factors of the same length of u, and for
any letter i ∈ A, one has ||v|i − |w|i| ≤ C. It is said balanced if there exists
C > 0 such that it is C-balanced. Then, if the letters have frequencies in u, u is
balanced if and only if its letter discrepancy is finite (uniformly in n).

As examples of balanced words, Sturmian words are known to be 1-balanced;
they even are exactly the 1-balanced infinite words that are not eventually peri-
odic [31]. Balance for substitutions can also be studied via the incidence matrix
and a characterization of balanced words generated by primitive substitutions
is given in [1]. Indeed, let σ be a primitive substitution and λ be its Perron-
Frobenius eigenvalue; if its second eigenvalue is smaller than 1, then the letter
discrepancy is finite. These results can be extended from letters to words.

Generalized Perron-Frobenius eigenvectors Given a directive sequence
(σn)n that is everywhere growing, the cone

⋂
nM[0,n)Rd+ determined by the

incidence matrices of the substitutions σn is intimately related to letter frequen-
cies in the corresponding S-adic shift: it is the convex hull of the set of half lines
R+f generated by the vector f whose components are the frequencies of letters
of infinite words in the associated S-adic shift.

In the primitive substitutive case, letter frequencies are given by the Perron-
Frobenius eigenvector [36]. For a primitive matrix M , the cones MnRd+ nest
down to a single line directed by this eigenvector at an exponential convergence
speed, according to Perron–Frobenius theorem (see e.g. [39]).

Concerning primitivity, the situation is more contrasted for S-adic systems.
For instance, weak primitivity is known not to imply unique ergodicity [28]. Let
M[0,n) := M0M1 · · ·Mn−1. The following convenient sufficient condition from

[23] for the sequence of cones M[0,n)Rd+ to nest down to a single strictly positive
direction as n tends to infinity (provided that the square matrices Mn have all
non-negative entries) is a (weak) analogue of Perron-Frobenius theorem; in other
words, the columns of the product M[0,n) tend to be proportional. It is stated
in terms of infinite occurrences of a positive block of matrices. Let (Mn)n be
a sequence of non-negative integer matrices of size d. Assume that there exist
a strictly positive matrix B and indices j1 < k1 ≤ j2 < k2 ≤ · · · such that
B = Mj1 · · ·Mk1−1 = Mj2 · · ·Mk2−1 = · · · . Then, there exists a vector f ∈ Rd+
with positive entries such that the sequence of cones M[0,n)Rd+ nests down to

the direction carried by f as n tends to infinity, i.e.,
⋂
n∈NM[0,n)Rd+ = R+f . It

is widely used in symbolic dynamics [12,44].
The proof of this theorem relies on classical methods for non-negative ma-

trices, namely Birkhoff contraction coefficient estimates and projective Hilbert
metric. The vector f is a generalized right eigenvector of σ. In particular, the
letter frequency vector is a generalized right eigenvector for an infinite S-adic
word generated by a sequence of substitutions whose incidence matrices sat-
isfy the above conditions. Note that there is no way to define a generalized left



10 Valérie Berthé

eigenvector as the sequence of rows vary significantly in the sequence of matrices
(M[0,n))n, in contrast to the columns. In the case of a single matrix, one simply
takes the transpose, with the cones nesting down for rows as well as for columns.

Lyapunov exponents We can go beyond the previous sufficient condition
(yielding the existence of a generalized right eigenvector), at the cost of working
in average. Lyapunov exponents then replace (logarithms) of Perron–Frobenius
eigenvalues. They describe the asymptotic behaviour of the singular values of
large products of random matrices, under the ergodic hypothesis.

Let S be a finite set of substitutions with invertible incidence matrices, and
let (D,S, µ) with D ⊂ SN be an ergodic subshift equipped with a probability
measure µ. It can be for instance a shift of finite type or a sofic shift. Here S
stands also for the shift acting on D. We thus have a second dynamical system
governing the substitutions to be iterated. Given an infinite sequence of substi-
tutions σ = (σn)n ∈ D, we define M[0,n](σ) := M0M1 · · ·Mn−1, where Mi is the
incidence matrix of the substitution σi. The Lyapunov exponents of the prod-
ucts M[0,n](σ) with respect to the ergodic probability measure µ provide the
exponential growth of eigenvalues of the matrices M[0,n](σ) along a µ-generic
sequence σ. The existence of Lyapunov exponents generalizes Birkhoff’s ergodic
theorem in a non-commutative setting. The fact that S is a finite set of sub-
stitutions with invertible incidence matrices ensures log-integrability, that is,∫
D

log max(‖M1(σ)‖, ‖M1(γ)−1‖)dµ(σ) < ∞. By ergodicity of µ, the first Lya-
punov exponent of (D,S, ν) is the µ-almost everywhere1 limit

θµ1 = lim
n→∞

log ‖M[0,n)(σ)‖
n

.

The other Lyapunov exponents θµ2 ≥ θµ3 . . . ≥ θµd are defined recursively by the
following µ-almost everywhere limits, for k = 1, . . . , d :

θµ1 + θµ2 + · · ·+ θµk = lim
n→∞

1

n

∫
D

log ‖ ∧kM[0,n)‖ dν

where ∧k stands for the k-th exterior product (the k-fold wedge product). We
are mostly interested by the two first Lyapunov exponents θµ1 and θµ2 that govern
the convergence of column vectors for the products M[0,n).

Lyapunov exponents enable to state convergence results (see Theorem 1 be-
low). By following the vocabulary of Markov chains [39], or of continued frac-
tions [38], it is natural to consider the following definitions for convergence for the
columns of the products of nonnegative matrices M[0,n). Assume the existence of
a generalized right eigenvector f . We work on the alphabet A = {1, . . . , d}. Let

f
(n)
i stand for the column vectors of M[0,n). The column vectors f

(n)
i , 1 ≤ i ≤ d,

produce d sequences of rational convergents (f
(n)
i /‖f (n)i ‖1)n∈N that converge to f .

More precisely,

1 Here µ-almost everywhere refers to directive sequences of substitutions chosen in D
with respect to the measure µ.
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– the convergence is said to be weak if limn→∞ f
(n)
i /‖f (n)i ‖1 = f holds for all

i ∈ {1, . . . , d};
– it is said to be strong if limn→∞ ‖f (n)i − ‖f (n)i ‖1 f‖ = 0 holds for all i ∈
{1, . . . , d};

– it is said exponential if there are positive constants κ, δ ∈ R such that ‖f (n)i −
‖f (n)i ‖1 x‖ < κe−δn holds for all i ∈ {1, . . . , d} and all n ∈ N.

Weak convergence means that the angle between the column vectors and
f tends to 0 whereas strong convergence means that the distance between the
column vectors and f tends to 0. In the case of a single primitive nonnegative
matrix, Perron–Frobenius theorem yields exponential convergence.

Working with Lyapunov exponents provides the following statement [8]. Note
that one of its limits, in terms of effectiveness, relies in the fact that it holds
almost every where, that is, for a set of full measure with respect to the measure
µ. This is often a very delicate task to be able to describe in effective terms such
a full measure set.

Theorem 1. Let S be a finite set of substitutions with invertible incidence
matrices, and let (D,S, µ), with D ⊂ SN, be an ergodic shift. Assume that
there exists a product of substitutions σ0 . . . σk−1 with positive incidence matrix
Mσ0 · · ·Mσk−1

whose associated cylinder in D has positive measure for µ. For
µ-almost every directive sequence of substitutions σ ∈ D, the corresponding S-
adic system Xσ is minimal and uniquely ergodic and one has weak convergence.
Furthermore, θµ1 > 0 and θµ1 > θµ2 . If θµ2 < 0, then, for µ-almost every S-adic
sequence in D, (Xσ, S) has bounded letter discrepancy and the convergence is
strong.

The quantity 1− θ
µ
2

θµ1
can also be found in the context of continued fractions [29]

as the uniform approximation exponent for multidimensional continued fractions
algorithms such as the Jacobi-Perron algorithm. We will come back to it in
Section 3.4. The existence of a product of substitutions σ0 . . . σk−1 with positive
incidence matrix is crucial here and plays the role of primitivity.

3 From substitutions to S-adic systems

Since substitutions are finite in nature, many of their properties are decidable.
In particular, we can decide whether a matrix is primitive and we have seen
with Section 2 the interest of being primitive for substitutions. We first recall
decidability properties for primitive substitutions in Section 3.1. The next ques-
tion is to have a suitable decision framework for S-adic shifts. Elements in this
direction are given in Section 3.2. Specific decision questions are listed in Section
3.3. We conclude by developing an analogy with continued fractions in Section
3.4.
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3.1 Some decisions problems for substitutions

Numerous decidability results exist for fixed points of substitutions and their
images by general morphisms (see e.g. [20, Section 10]). For primitive substi-
tutions, various decision problems have been proved recently using the notion
of return words and derived sequences. A return word to a factor u of an infi-
nite word is a factor w of this infinite word such that uw admits exactly two
occurrences of u, with the second occurrence of u being a suffix of uw. One
then can recode infinite words generated by a primitive substitution via return
words, obtaining derived sequences (see e.g. [16]). This has allowed the resolu-
tion of several long-standing decision problems. Let us quote the decidability of
the equality between two substitutive infinite words [17]; see also [9, Chapter
10]. The decidability of the ultimate periodicity of substitutive infinite words is
also decidable (see [17] for the primitive case, and [18] for the general case) as
well as the uniform recurrence of substitutive words [19]. This problem is closely
related to the decidability of the ultimate periodicity of recognizable sets of inte-
gers in some abstract numeration systems [6]. One can even decide whether two
minimal substitution subshifts are topologically isomorphic and even whether
one is a factor of the other [20]. In the particular case of constant-length sub-
stitutions (automatic sequences), the connections between first-order logic and
automata produce efficient decision procedures (see e.g. [15,41,10]) relying on
the equivalence between being p-recognizable and p-definability [14].

More generally, decidability in symbolic dynamics has already a long his-
tory since the undecidability of the emptiness problem (the domino problem) for
multi-dimensional subshifts of finite type [7,37]; see also [9, Chapter 8]. Since the
beginning, substitutions were used to input computation in tilings and they pro-
duced the first examples of aperiodic tilings, such as Robinson or Penrose tilings,
proving the undecidability of the domino problem. Moreover, computability is a
notion that has appeared as a major understanding tool in the study of multi-
dimensional subshifts of finite type with the breakthrough characterization of
the entropies of multi-dimensional subshifts of finite type as the non-negative
right recursively enumerable numbers [25]. Let us mention also the realization of
effective subshifts (with factor and projective subaction operation) from higher-
dimensional subshifts of finite type [24,3,21]; see also [9, Chapter 9] and [26].

3.2 On effectiveness in the S-adic framework

Decision problems for substitutions make particular sense since the data that
describe substitutions are finite. However, the description of an S-adic system is
not finite, it is based on the infinite directive sequence of substitutions. The first
issue which arises in this context is thus to give a meaning to effectiveness. There
are several notions that can be considered and that are intimately related [11]:
effectiveness of the directive sequence, computability of frequencies/invariant
measures, and decidability of the language. We describe them below.

We recall that a subshift X can be defined by providing its language, that
is, the set of finite words that occur in infinite words in X. It can be defined
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equivalently by providing the set of forbidden factors. This leads to the following
definitions. A subshift is said to be Π1-computable or effective if its language is
co-recursively enumerable; it is said Σ1-computable if its language is recursively
enumerable; it is said ∆1-computable or decidable if its language is recursive.
A subshift (X,S) is said to have computable frequencies if the frequencies of
factors exist and are uniformly computable. A shift-invariant measure is said to
be computable if the measure of any cylinder is uniformly computable. A closed
subset D ⊂ SN is effectively closed if the set of (finite) words which do not appear
as prefixes of elements of S is recursively enumerable (one enumerates forbidden
prefixes). An effectively closed set is not necessarily a subshift.

The following relations between these concepts offers a convenient framework
for decision problems for S-adic shifts (see [11]). Let X be a subshift. If X is
effective and uniquely ergodic, then its invariant measure is computable and X is
decidable. If X is minimal and its frequencies are computable, then its language
is recursively enumerable. If X is minimal and effective, then it is decidable. If
it is minimal, uniquely ergodic ergodic, and defined with respect to a directive
sequence σ ∈ SN, then the following conditions are equivalent: there exists a
computable directive sequence σ′ such that Xσ = Xσ′ ; the unique invariant
measure of Xσ is computable; the subshift Xσ is decidable.

3.3 Around decision problems for S-adic systems

The concepts described in Section 2 lead to numerous decision questions. For
instance, can we decide rational independence for the coordinates of a generalized
right eigenvector? Note that sufficient conditions can be given in terms of strong
convergence [12]. Concerning classification issues, can the isomorphism between
two (effective) S-adic systems be decided (in the spirit of [20] which handles the
substitutive case)? Can we decide whether balancedness on letters holds? and on
factors? Can we decide recurrence properties such as having linear recurrence?
Due to the fact that we lose the self-similarity properties present for substitutive
systems, such results require new ideas and do not run along the lines of the
substitutive setting.

We have seen the importance of Lyapunov exponents. Their computation also
raises specific questions. Hardness is considered in [42] where the largest Lya-
punov exponent is proved not to be algorithmically approximable. Practically,
ergodic theorems provide efficient ways of estimating numerically Lyapunov ex-
ponents by following trajectories and then taking averages over truncated trajec-
tories. Moreover, with ergodic theory and probability come methods issued from
thermodynamic formalism, and more particularly transfer operators. Indeed, the
theory of transfer operators can be considered as the analogue for invariant den-
sities of dynamical systems of Perron–Frobenius theory for nonnegative matrices.
They govern the evolution in time of the mass distribution of points and their
action on densities models the action a dynamical system on input distributions.
Since they are bounded linear operators, this makes them suitable for computer
approximations (via truncations with respect to functional spaces) [33,30]. Note
that the study of extremal matrix products and of the joint spectral radius (the
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largest asymptotic rate of growth that can be obtained by forming long prod-
ucts of matrices) is also particularly relevant in symbolic dynamics (see e.g. [9,
Chapter 11]).

Pisot dynamics is a further specific setting that leads to numerous decision
problems. A Pisot number is an algebraic integer whose algebraic conjugates
(other than itself) are smaller than 1. In the eighties, Pisot substitutions (i.e.,
primitive substitutions whose Perron–Frobenius factor is a Pisot number) at-
tracted much attention in the context of mathematical quasicrystals. We recall
that quasicrystals are solids that are ordered but not periodic, and since their
discovery, fruitful mathematical formulations have been proposed for the under-
standing of how atoms must be arranged in a material for it to diffract like a
quasicrystal [5]. Pisot substitutions play a crucial role here since they create a
hierarchical structure with a significant amount of long range order. They are
conjectured to have pure discrete spectrum, that is, to be isomorphic (in the
measure-theoretic sense) to a translation on a compact abelian group [9,2]. In
a nutshell, algebraicity plus the Pisot arithmetic condition equals order. Order
is expressed here in spectral and dynamical terms as being isomorphic to the
simplest dynamical systems, namely group translations. This conjecture remains
open since the 80’s. For Pisot substitutions, several tools based on graphs are
proposed in order to decide pure discrete spectrum [40]. In [12], the Pisot con-
jecture is extended to the S-adic setting going beyond algebraicity. The Pisot
condition is then replaced by the requirement that the second Lyapunov expo-
nent of the dynamical system is negative. Deciding pure discrete spectrum has
to be formulated in this context.

Note that the study of Sturmian words and their various extensions is a
setting that has confirmed the crucial role played by primitivity. Indeed, the S-
adic expansion of Sturmian words is governed by continued fractions that play
a renormalization role via the geodesic flow [35]. This has been very successfully
extended with the study of interval exchanges in relation with the Teichmüller
flow. Finding occurrences of positive matrices in the associated infinite products
of matrices is at the heart of their study (see e.g. [4,43,44]).

3.4 Continued fractions and S-adic expansions

Decision questions in the S-adic setting are nourished by the dictionary that
exists between continued fractions and S-adic expansions. Indeed, one impor-
tant principle governing the S-adic approach relies in the the translation of a
continued fraction expansion in symbolic terms via the matrix/substitution cor-
respondence between a substitution and its incidence matrix. A continued frac-
tion algorithm in dimension d generates products of nonnegative square matrices
(Mn)n of size d, with the expanded vector belonging to the cone ∩nM1 · · ·MnRd+.
A continued fraction algorithm then provides an S-adic subshift.

More generally, continued fraction expansions provide increasingly good ra-
tional approximations of real numbers. A continued fraction is expected to yield
simultaneous better and better rational approximations with the same denom-
inator for d-uples (α1, · · · , αd) in [0, 1]d, in an effective way and with a good
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approximation quality. It has to produce a sequence of positive integers (qn)n
such that the distance to the nearest integer |||qn(α1, · · · , αd)||| converges ex-

ponentially fast to 0 with respect to qn, and ideally in q
− 1
d

n , with respect to
Dirichlet’s theorem.

There is no canonical extension of regular continued fractions to higher di-
mensions (the monoid SL(3,N) is not free, contrarily to SL(2,N)), and the zool-
ogy of existing types of algorithms is particularly rich. Indeed, regular continued
fractions rely on Euclid algorithm: starting with two numbers, one subtracts the
smallest from the largest. If we start with at least three numbers, it is not clear
to decide which operation has to be performed on these numbers in order to
get something analogous to Euclid algorithm, hence the diversity and multiplic-
ity of existing generalizations. Famous examples are the Jacobi-Perron, Brun or
Selmer algorithms [38].

Note that in this correspondence, substitutions are associated with matrices
in a noncanonical way. Indeed, a matrix can be the incidence matrix of sev-
eral substitutions. A substitution offers in fact more information than a matrix.
Given a continued fraction algorithm, a first step is thus to choose correctly the
substitutions associated with matrices. Once a suitable choice of substitutions
will be provided, a continued fraction algorithm will provide an S-adic system, it
remains to investigate its combinatorial properties (factor complexity, recurrence
and frequencies, symbolic discrepancy).

The main advantage of most classical unimodular continued fractions is that
they can be expressed as dynamical systems whose ergodic study has already
been well understood [38]. Convergence issues are then to be discussed and state-
ments such as Theorem 1 have to be made effective. However, in higher dimen-
sion, continued fraction algorithms seem to present a major drawback concerning
the quality of approximation. The convergence is governed by the quantity 1− θ2

θ1
[29], where θ1 and θ2 are the two largest Lyapunov exponents of the associated
dynamical system) (cf. Theorem 1). It has to be compared with Dirichlet’s expo-
nent 1 + 1/d. However, recent striking numerical experimentations [13] indicate
that the second Lyapunov exponent is not even negative for the most classical
continued fraction algorithms, such as the Brun, Jacobi-Perron or Selmer algo-
rithms in dimension d with d ≥ 10, contrarily to what was expected. In other
words, strong convergence is lost when increasing the dimension. A first chal-
lenge is to confirm these experimental results theoretically. This also raises the
need for designing efficient strongly convergent continued fraction algorithms in
dimension larger than 2, conducting to S-adic systems, thus providing further
decision questions to explore.
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12. Berthé, V., Steiner, W. Thuswaldner, J.: Geometry, dynamics, and arithmetic of
s-adic shifts. Annales de l’Institut Fourier 69, 1347–1409 (2019)
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Berthé, Ferenczi, S., Mauduit, C., Siegel, A. (eds.) Lecture Notes in Mathematics,
vol. 1794, Springer Verlag, (2002)
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