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Abstract

We introduce and study an algorithm which computes the gcd of d+1 entries. This is a natural

extension of the usual Euclid algorithm, and coincides with it for d = 1; it performs Euclidean

divisions, between the largest entry and the second largest entry, and then re-orderings. This

is the discrete version of a multidimensional continued fraction algorithm due to Brun, in d
dimensions. We perform the average-case analysis of this algorithm, and prove that the mean

number of steps is linear with respect to the size of the entry. The method is based on the study

of the underlying Brun dynamical system, and relies on dynamical analysis. All the constants

that arise in the analysis are mathematical constants which are defined via the Brun dynamical

system: for instance, the main constant of the analysis involves the entropy of the system, and

the other constants of the analysis are related to fine properties of the invariant measure of

the system. We are then led to the asymptotic behaviour of the Brun dynamical system, when

dimension d becomes large, which is of independent interest. We show that the asymptotic Brun

dynamical system almost always involves quotients that are equal to 1, and is then almost always

subtractive. This explains the ine↵ficiency of the Brun gcd algorithm, particularly when it is

compared in high dimensions to another extension of the Euclid algorithm, proposed by Knuth,

and already analyzed by the authors.
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1. Introduction.

General Context. We study a multiple gcd algorithm that is a natural extension of
the usual Euclid algorithm for (d+ 1) integers, and coincides with it for d = 1. This is a
discrete version of a multidimensional continued fraction algorithm introduced by Brun
in [9]. This algorithm is itself based on a dynamical system. The Brun continued fraction
algorithm and its associated dynamical system admit various descriptions, that can be
found for instance in [1, 27, 8]. It appears under various names; it is closely related to
the Podsypanin modified Jacobi–Perron algorithm [25], it is also called the d-dimensional
Gauss transformation in [15] or the ordered Jacobi–Perron algorithm in [14]. For more
precisions on the Brun algorithm, see the book [28].

This dynamical system belongs to the class of multidimensional unimodular continued
fraction algorithms, described in the book [28]. The algorithms of this class produce si-
multaneous diophantine approximations of a real vector. Then, the literature, for instance
in [21, 8, 29], mainly focuses on the convergence of these approximations, closely related
to the Lyapunov exponents of the underlying dynamical systems. These algorithms have
also important applications to discrete geometry [4, 18], where they are used in small
dimensions.

With each unimodular multidimensional continued fraction algorithm, a gcd algorithm
may be of course associated, such as underlined in [31]. However, the probabilistic anal-
ysis of such a class of gcd algorithms has not been yet considered. This is our general
project, and we begin by the BrunGcd Algorithm, as its associated dynamical system is
based on one of the most “natural” extensions of the Euclid dynamical system 2 and
shares many important properties with this last system. In particular, the Brun invari-
ant density admits a “semi-explicit” form which will be very useful in the analysis. The
BrunGcd algorithm was already studied in [22], in relation with e�cient exponentiation
with precomputation proposed by de Rooij [10], but only in the worst-case.

Main results. We perform the probabilistic analysis of the BrunGcd algorithm. We first
focus on the total number of steps and prove that it is on average linear in the size of
the input. The dominant constant equals (d+1)/E

d

where E
d

is the entropy of the Brun
dynamical system. This entropy is not precisely studied in the literature, but there exists
a conjecture due to Hardscastle and Khanin [14] that states that E

d

is ⇥(1) for d ! 1.
However, we show that E

d

satisfies E
d

⇠ log d for d ! 1 (see Theorem 2), so that the
dominant constant for the number of steps grows as d/ log d.

We then compare the BrunGcd with another multiple gcd algorithm, the PlainGcd

algorithm, described in Knuth’s book [20], which deals with the classical one-dimensional
Euclid dynamical system. The authors have already analyzed this algorithm in [6], and
prove that the mean number of steps is also linear in the size of the output 3 . However,
the dominant constant is independent of the dimension d and equals 2/E

1

, where E
1

is the
entropy of the usual Euclid dynamical system (in dimension d = 1). We conclude that

2
Another natural choice could have been the Jacobi–Perron algorithm, but its invariant density is not

known at all; we will return to this choice in the conclusion.

3
This is not exactly the same notion of size: in [6], the input size is the sum of the sizes of the input

components, whereas, in the present paper, the input size is the maximum of the sizes of the input

components.
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the PlainGcd algorithm is much more e�cient than the BrunGcd algorithm, in particular
for large dimensions d.

We finally explain the ine�ciency of the BrunGcd algorithm when d is large: almost
all the divisions deal with a quotient equal to 1. Then the main operation performed is
not a division but... a plain subtraction. This is reinforced by the comparison with the
subtractive version of the algorithm, whose number of steps is proven for d > 1 to be
also of linear complexity, moreover with a small multiplicative constant. This exhibits a
strong di↵erence with the classical Gcd algorithm (case d = 1).

Methods.We use here the methods of dynamical analysis such as developed in [3, 23, 30]:
a gcd algorithm is viewed as a dynamical system, with each iterative step being a linear
fractional transformation. Costs of interest are then described with Dirichlet generating
functions that are algebraically related to transfer operators of the system. The main
analytical property of these series, namely the existence of a dominant pole, is itself
closely related to the existence of a dominant eigenvalue, together with a spectral gap,
for the corresponding transfer operators. The asymptotic extraction of coe�cients is then
achieved by means of Tauberian theorems.

Plan of the paper. Section 2 introduces the algorithm and states the main results in
Theorems 1 and 2. Then, in Section 3, we study the underlying Brun dynamical system
in d dimensions, which involves the whole family of Brun dynamical systems in smaller
dimension. We provide a description of its rational trajectories. The following sections
perform the dynamical analysis of the algorithm, with its two steps, the combinatorial
step (Section 4) and the analytic step (Sections 5 and 6). The analytic step is based
on spectral properties of transfer operators and their quasi-inverses that are described
in Section 5, whereas Section 6 gathers all required elements to conclude the proof of
Theorem 1. Section 7 is devoted to the behaviour of the Brun dynamical system in high
dimensions, and leads to the proof of Theorem 2. The paper ends with a conclusion and
open problems.

This paper is an extended version of the short conference paper [5]. In this short paper,
most of the results of the two Sections 5 and 7 are just mentioned, and not proven. We
provide here a complete proof of these results. Moreover, we also present new results, as
for instance the study of the “remaining phases” (that is, the phases that intervene when
the number of entries decreases), performed in Sections 7.4 and 7.5.

Acknowledgements. We wish to thank Je↵rey Shallit for mentioning to us the article
[22]. We also wish to thank all the members of the project DynA3S for many discussions
about the class of multidimensional continued fractions algorithms, and specially Anne
Broise-Alamichel for exchanges on the Brun Algorithm.

2. The Brun Gcd Algorithm.

We describe the BrunGcd algorithm and state the main complexity results (in the
worst-case and in the average-case). We describe the main constants of the analysis in
terms of characteristics of the underlying dynamical system. We compare the present
algorithm with the PlainGcd algorithm introduced by Knuth.
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2.1. General description.

The algorithm BrunGcd(d) computes the gcd of (d+1) positive integers. It deals with
the input set ⌦

(d)

which gathers the ordered (d + 1)-uples u formed with positive and
distinct integer numbers

⌦
(d)

:= {u = (u
0

, u
1

, . . . , u
d

) | u
0

> u
1

> u
2

> . . . > u
d

> 0} .
During the execution of the algorithm, some components “disappear” and the algorithm
deals with the disjoint union

�
(d)

=
d�1

M

`=0

⌦
(d�`)

.

The algorithm BrunGcd(d) performs a sequence of steps, and each step deals with the
pair (u

0

, u
1

) (that contains the two largest entries of u) and the list Endu which gathers
all the components of u except u

0

; it divides the first component u
0

by the second
component u

1

, and creates a remainder v
0

4

v
0

:= u
0

�mu
1

, m :=



u
0

u
1

�

.

Then, the procedure InsDis (v
0

, Endu) inserts v
0

� 0 at a suitable position inside the
list Endu, so that the result remains an ordered uple of distinct positive values: the
second component u

1

becomes the largest one, and there are three possible cases for the
insertion (or not) of v

0

:

(G) (Generic case) if v
0

is not present in the list Endu, this is a usual insertion;
(Z) (Zero case) if v

0

= 0, we do not insert v
0

;
(E) (Equality case) if v

0

6= 0 is already present in the list Endu at position i, we do not
insert v

0

.
In each of the cases (Z) or (E), we do not insert v

0

, but we memorize the potential
insertion position (in case (E), we would have inserted v

0

“in front of” u
i

). Finally,
each step of the algorithm BrunGcd(d) is described by the map U

(d)

: �
(d)

! �
(d)

which
associates with u

U
(d)

(u) = InsDis (u
0

mod u
1

, Endu) . (1)

The algorithm BrunGcd(d), described in Figure 1, decomposes into d phases, labelled
from ` = 0 to ` = d�1. During each phase, a component is “lost”, and the `-th phase,
denoted by BrunGcd

(d,`)

, transforms an element of ⌦
(d�`)

into an element of ⌦
(d�`�1)

.
The phase ends as soon as it meets case (Z), or 5 case (E), where it looses a component.
The algorithm stops at the end of the (d�1)-th phase with an element of ⌦

(0)

which
equals the gcd.

In the analysis of the BrunGcd algorithm, as usual, we gather the inputs with respect
to their length. Here, we choose as the length of the input u := (u

0

, u
1

, . . . u
d

) the length
of its maximal component, namely u

0

. The size of the entry is then at most d log u
0

. We
then introduce the set of inputs

⌦
(d,N)

:= {u 2 ⌦
(d)

| u
0

 N} , (2)

4
The subtractive version of the BrunGcd algorithm is defined in the same way with a subtraction u1�u0

being performed instead of a division.

5
The (d�1)-th phase always ends with the case (Z).
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BrunGcd(d)
Input : u 2 ⌦

(d)

Ouput: u 2 N
For ` = 0 to d�1 do u := BrunGcd

(d,`)

(u);

BrunGcd

(d,`)

Input : u 2 ⌦
(d�`)

Repeat u := U
(d)

(u) until u 2 ⌦
(d�`�1)

.

Fig. 1. The BrunGcd algorithm.

and we study the maximum number of steps of the algorithm on ⌦
(d,N)

(in the worst-case
analysis) or the mean number of steps of the algorithm when ⌦

(d,N)

is endowed with the
uniform probability (in the average-case analysis).

2.2. Worst-case behaviour of the Brun Gcd Algorithm.

As shown in [22], the worst-case of the BrunGcd algorithm arises when the quotients are
the smallest possible (all equal to 1, except the last one, equal to 2), and the insertion
positions the largest possible. Then, the best worst-case bound involves an algebraic
number ⌧

d

which extends to general dimensions the inverse of the Golden ratio. The real
⌧
d

will also intervene in the study of the associated dynamical system (see for instance Eq.
(33) and (34)) and is central in a conjecture that is related to the average-case behaviour
of the algorithm (see Section 7.4).

Proposition 1. For any integer d, and any integer N , the maximum number Q
(d,N)

of
steps of the BrunGcd Algorithm on the set ⌦

(d,N)

defined in (2) satisfies

Q
(d,N)

⇠ 1

| log ⌧
d

| logN (N ! 1) , (3)

and involves the smallest real root ⌧
d

2]0, 1[ of the polynomial zd+1+z�1. When d ! 1,
the reals ⌧

d

and | log ⌧
d

| admit the estimates

⌧d+1

d

= 1� ⌧
d

=
1

d
(log d� log log d+ o(1)) ,

1

| log ⌧
d

| ⇠
d+ 1

log d
, (d ! 1) . (4)

Proof. The proof is mainly based on the precise description of the worst-case configu-
ration, which is provided in [22], and is now summarized. This worst-case configuration
arises when all the quotients are equal to 1, and the insertion positions the largest pos-
sible. It corresponds to the sequence x

(d)

= (x
(d),i

)
i��d

defined by the following linear
recurrence:

x
(d),i

= 1 (for �d  i  0), x
(d),i

= x
(d),i�1

+ x
(d),i�1�d

, (for i � 1) .

It is indeed proven in [22] that the BrunGcd algorithm performs exactly n steps on
the input (x

(d),n

, x
(d),n�1

, . . . , x
(d),n�d

) 2 ⌦
(d)

. This entails that the maximum number
Q

(d,N)

of steps performed by the BrunGcd Algorithm on ⌦
(d,N)

satisfies

Q
(d,N)

:= max{n 2 N | x
(d),n

 N}.
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As the sequence x

(d)

is defined by a linear recurrence, the generating function of the
sequence (x

(d),n

)
n�0

is a rational fraction F
(d)

(z) that satisfies

F
(d)

(z) :=
X

n�0

x
(d),n

zn =
zd+1 � 1

z � 1
· 1

1� z � zd+1

.

The polynomial 1� z � zd+1 has a unique real root in ]0, 1[: it is simple, denoted by ⌧
d

,
and any other root y satisfies |y| > ⌧

d

. Then, the function F
(d)

has a dominant pole at
z = ⌧

d

, and the coe�cient x
(d),n

of zn in F
(d)

(z) is of exponential growth as n ! 1,
namely

x
(d),n

⇠ �
d

· ⌧�n

d

(n ! 1) . (5)

For d fixed, this entails the estimate given in (3). Now, the asymptotics of ⌧
d

(for d ! 1)
is obtained by letting ⌧

d

:= 1�"
d

in the equation ⌧d+1

d

+ ⌧
d

= 1. This gives the estimates
for ⌧

d

and log ⌧
d

given in (4). Replacing the estimate of ⌧
d

in the residue of F
(d)

at z = ⌧
d

gives an asymptotic estimate for �
d

, namely

�
d

⇠
✓

1

log d

◆

⌧�d

d

(d ! 1) . (6)

2

2.3. Probabilistic behaviour: main results

We now describe the precise probabilistic behaviour of the algorithm BrunGcd(d) on
the set ⌦

(d,N)

defined in (2).

Theorem 1. When the algorithm BrunGcd acts on the set ⌦
(d,N)

endowed with the
uniform distribution, the following holds when d is fixed and N tends to 1:

(a) The total number L
d

of steps and the number M
d

of steps performed during the
first phase satisfy

E
N

[L
d

] ⇠ E
N

[M
d

] ⇠ d+ 1

E
d

· logN, (N ! 1) ,

and involve the entropy E
d

of the underlying Brun dynamical system.

(b) The total number R
d

of steps performed during the remainder of the execution
(after the first phase) has a mean value that is asymptotic to a constant ⇢

d

. For each
` > 1, the number of steps R

d,`

performed during the `-th phase of the execution
has a mean value that is asymptotic to a constant 1 + ⇢

d,`

(with ⇢
d,`

> 0).

(c) Let O
d

be the number of quotients equal to 1 during the first phase. The ratio
between the means E

N

[O
d

] and E
N

[M
d

] is asymptotic to a constant ✓
d

< 1

E
N

[O
d

]

E
N

[M
d

]
! ✓

d

, (N ! 1) .

(d) Let ⌃
d

be the number of steps of the subtractive version of BrunGcd during the
first phase. For d > 1, the ratio between E

N

[⌃
d

] and E
N

[M
d

] is asymptotic to a
constant �

d

,
E
N

[⌃
d

]

E
N

[M
d

]
! �

d

, (N ! 1) ,

whereas for d = 1 (case of the Euclid Algorithm), this ratio is of order ⇥(logN).
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The main constants which appear in the analysis, namely the constants E
d

, ✓
d

,�
d

, ⇢
d

are mathematical constants, more precisely dynamical constants, as they are defined via
the dynamical system underlying the BrunGcd algorithm. This system will be precisely
described in Section 3. It is defined on the simplex

J
(d)

= {x = (x
1

, . . . , x
d

| 1 � x
1

� . . . � x
d

� 0} ,
and admits an invariant density  

d

on J
(d)

, described in Eq. (37) of Section 5.5. The
main constants which appear in Theorem 1 are expressed with this invariant density, as
it is now stated:

Theorem 2. Consider the measure ⌫
d

associated with the invariant density  
d

defined
on the simplex J

(d)

, and the function µ
d

: [0, 1] ! [0, 1] which associates with y the
measure ⌫

d

(yJ
(d)

) of the homothetic simplex yJ
(d)

. The following holds:

(a) The constants of the analysis admit expressions which involve the function µ
d

E
d

= (d+ 1)

Z

1

0

µ
d

(y)
dy

y
, ✓

d

= 1� µ
d

✓

1

2

◆

, �
d

=
X

m�1

µ
d

✓

1

m

◆

.

(b) Consider the two functions y(d) := (log d)/d and ✏(d) = A(log log d)�1 for some 6

constant A > 0. When d ! 1, the following asymptotic estimates hold for the
function µ

d

: y 7! µ
d

(y), and exhibit two di↵erent regimes
8

>

>

>

<

>

>

>

:

µ
d

(y) 2
"

✓

log dy

log d

◆

d�1/2+d ✏(d)

,

✓

log dy

log d

◆

d�1/2�d ✏(d)

#

for y 2 [y(d), 1] ,

µ
d

(y)  (log d)1/2
✓

dy

log d

◆

d

for y 2 [0, y(d)] .

(c) The following asymptotic estimates hold for the main constants of the analysis:

E
d

= log d
⇥

1 +O(log log d)�1

⇤

, ✓
d

= 1�(1/2)⇥(1)d log d, 1  �
d

 2+O(log log d)�1 .

The case of the constants ⇢
d,`

which intervene in Thm 1(b) is di↵erent. These constants
admit a (complicate) mathematical expression from which we did not succeed to derive
an exact asymptotics. However, we present a conjecture that is based on some plausible
heuristics and seems to be validated by experimental results (see Section 7.4).

Conjecture. Denote by ⌧
k

the algebraic number which is the unique root < 1 of the
equation xk+1 + x � 1 = 0 and appears in the worst-case analysis of the algorithm in k
dimensions. Then, there are two absolute constants a� > 0 and a

+

for which the constant
⇢
d,`

of Theorem 1(b) satisfies for any d > 1, ` 2 [1, d],

⇢
d,`

= A(d, `) · ⌧ `
d�`

1� ⌧ `
d�`

with a�  A(d, `)  a
+

.

6
The constant A can be explicitly computed.
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Fig. 2. Comparison between the mean number of steps performed by two algorithms, the BrunGcd
algorithm, and the PlainGcd algorithm, as a function of the dimension d. The size N is fixed.

2.4. Comments on the main results.

We now comment and explain our main results.

In Thm 1(a), the total number of steps L
d

is proven to remain on average linear in
the size logN . Moreover, (a) and (b) exhibit a strong di↵erence between the first phase
(where most of the computation is done), and the remainder of the execution (where the
total number of steps R

d

is on average asymptotically constant). The PlainGcd algorithm
exhibits exactly the same phenomena, as it is shown in [6].

Figure 2 compares the number of steps of the BrunGcd and the PlainGcd algorithms,
as a function of the dimension d, when the binary size is fixed to log

2

N = 5 · 103. The
complexity of the BrunGcd algorithm appears to be sublinear with respect to d (as proven
in Thm 1(a) and Thm 2(c)) whereas the complexity of the PlainGcd algorithm appears
to be independent of d (as proven in [6] in the average case).

The two dominant constants, the ratio (d+ 1)/E
d

which involves the entropy and inter-
venes in Thm 1(a), and Thm 2(c), on one hand, and the ratio 1/| log ⌧

d

| which arises in
the worst-case (see Proposition 1), on the other hand, both behave as d/ log d for d ! 1.
This exhibits the same behaviour for the algorithm in the average-case and in the worst-
case. As the worst-case is reached when the quotients are all equal to 1 (as proven in
[22]), this seems to show that the BrunGcd Algorithm deals with quotients which are very
often equal to 1.

This is indeed the case, as described in Thm 1(c) and Thm 2(c), and also illustrated in
Figure 3, that exhibits the proportion of quotients equal to 1 during the first phase as a
function of the dimension d. This proportion tends quickly to 1: when d = 16, more than
99% of the Euclidean divisions are in fact subtractions and for d = 50, the proportion is
99.99%. This is in adequation with the estimate given in Thm 2(c), where we show that
the speed is “quasi-exponential” as a function of d, namely of order O(2�⇥(1)d/ log d).

The result given in Thm 1(d) exhibits a strong di↵erence between the Euclid Algorithm
(case d = 1) and the BrunGcd algorithm for d � 2. In the Euclid algorithm, the mean

8



Fig. 3. Proportion of quotients equal to 1, during the first phase, as a function of the dimension

d. The size N is fixed.

value of the quotient is infinite, whereas, in the present case, this mean value �
d

is finite.
Moreover, Thm 2(c) provides an asymptotic estimate for the mean number of iterations of
the subtractive algorithm (for d ! 1), which shows that it is (asymptotically) sublinear
with respect to d.

Moreover, the results given in Thm 2(b) and Thm 2(c) are of independent interest,
as they describe the asymptotic behaviour of the Brun dynamical system (as d ! 1),
which is not often studied. In particular, the asymptotic estimates for the probability µ

d

or the entropy E
d

are new, and the estimate we provided for E
d

contradicts the conjecture
made by Hardcastle and Khanin in [14].

3. The underlying dynamical system.

We first describe a continuous extension of the algorithm, relate it with the Brun
dynamical system, and provide an exact characterization of the trajectories that are
related to the execution of the algorithm.

3.1. Continuous extension of the Brun Gcd algorithm.

We now extend the BrunGcd(d) algorithm into a continuous process. We use the pro-
jection ⇡ defined on �

(d)

\ {0} as

⇡(u) =
1

u
0

Endu ,

and the closure of the image ⇡(�
d

\ {0}) is exactly the disjoint union I
(d)

:=
d�1

M

`=0

J
(d�`)

,

where the simplex J
(k)

, is defined for k � 1 as

J
(k)

:= {x = (x
1

, . . . , x
k

) | 1 � x
1

� . . . � x
k

� 0} . (7)

The map V
(d)

: I
(d)

! I
(d)

is now defined on each J
(d�`)

by V
(d)

(0d�`) = 0d�`, and

V
(d)

(x) = InsDis

✓⇢

1

x
1

�

,
1

x
1

Endx

◆

for x 6= 0d�` ,
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where InsDis(y
0

,y) is now extended to I
(d)

. The map V
(d)

provides the extension of the
conjugate with the projection ⇡ of the map U

(d)

defined in (1) and used in the BrunGcd(d)
algorithm. Indeed, the equality V

(d)

� ⇡(u) = ⇡ � U
(d)

(u) leads to the definition of V
(d)

on the set ⇡(�
d

) \ {0}) which is further extended to I
(d)

“by continuity”.

The dynamical system (V
d

, I
(d)

) coincides with the usual ordered version of Brun
dynamical system, and is precisely described in [15] for instance. It is defined on the
simplex J

(d)

with the transformation T
(d)

defined by T
(d)

(0d) = 0d, and

T
(d)

(x) = Ins

✓⇢

1

x
1

�

,
1

x
1

Endx

◆

for x 6= 0d , (8)

where now the map Ins(y
0

,y) is the usual insertion “in front of”: it performs as InsDis,
without removing zeroes and equal components, and the cases (Z) and (E) may be
gathered into a unique case (ZE). There are now only two cases:
(G) if y

0

is not present in the list y, this is an usual insertion;
(ZE) if y

0

is already present in the list y, we insert y
0

in front of the block of components
equal to y

0

.

It is clear that V
(d)

(x) = T
(d)

(x) except in case (ZE). Then, the two dynamical systems
coincide “almost everywhere” and the trajectories which do not meet case (ZE) will
be the same for the two systems. But we are mainly interested in rational trajectories,
and the rational trajectories may meet case (ZE) and di↵er in the two systems. For
instance, the two trajectories of the input ⇡(4, 3, 2, 1) = (3/4, 2/4, 1/4) are (the inserted
component is in bold):

for V(d): (3/4, 2/4, 1/4) ! (2/3, 1/3) ! (1/2, 1/3) ! (1/3) ! (0)

for T(d): (3/4, 2/4, 1/4) ! (2/3,1/3, 1/3) ! (1/2, 1/2, 1/2) ! (1, 1,0) ! (1,0, 0) ! (0, 0, 0) .

However, we will prove in Section 3.3 that a rational trajectory under V
(d)

–which
exactly describes an execution of the BrunGcd(d) algorithm– mainly decomposes into
rational trajectories under T

(d�`)

. Indeed, except possibly at the end of each phase, it
uses Ins and not InsDis. This is why the BrunGcd algorithm will use, except at the end
of each phase, the Brun dynamical system, which we now describe.

3.2. The Brun dynamical system.

The pair (T
(d)

,J
(d)

) defines a dynamical system denoted as D
(d)

. For any x 2 J
(d)

,
the map T

(d)

defined in (8) uses digit (m, j) formed with a quotient m(x) � 1 and an
insertion index j(x) 2 [1..d]. The set of digits is thus A

(d)

:= N⇤ ⇥ [1..d]. We associate
with (m, j) the subset

K
(d,m,j)

:= {x 2 J
(d)

| m(x) = m, j(x) = j} .
When (m, j) varies in A

(d)

, the subsets K
(d,m,j)

form a topological partition of J
(d)

, and
the restriction T

(d,m,j)

of T
(d)

to K
(d,m,j)

is a bijection from K
(d,m,j)

onto J
(d)

, written
as

T
(d,m,j)

(x
1

, x
2

, . . . , x
d

) =

✓

x
2

x
1

, . . . ,
x
j�1

x
1

,
1

x
1

�m,
x
j+1

x
1

, . . . ,
x
d

x
1

◆

.

10



Its inverse is a bijection from J
(d)

onto K
(d,m,j)

written as

h
(d,m,j)

(y
1

, . . . , y
d

) =

✓

1

m+ y
j

,
y
1

m+ y
j

, . . . ,
y
j�1

m+ y
j

,
y
j+1

m+ y
j

, . . . ,
y
d

m+ y
j

◆

. (9)

Any inverse branch of the map T
(d)

is called an elementary inverse branch (or an inverse
branch of depth one) and the set of the elementary inverse branches is then

H
(d)

:=
�

h
(d,m,j)

| (m, j) 2 A
(d)

 

, (10)

whereas the inverse branches of the map T k

(d)

are said to be of depth k and belong to the

set Hk

(d)

. The set

H?

(d)

:=
M

k�0

Hk

(d)

(11)

describes all the truncated finite trajectories of the system D
(d)

.

3.3. Return to the Gcd Algorithm.

On an input u 2 ⌦
(d)

, the execution of the BrunGcd(d) algorithm is described by the
trajectory of u under the map U

(d)

which ends at gcd(u). It proves useful to consider
one more step, and now, the trajectory of u under the map U

(d)

ends at 0. It gives rise
to the rational trajectory of the vector x := ⇡(u) under V

(d)

, that also ends at 0. This
trajectory uses at each step a branch of the map V

(d)

. We wish to precisely describe the
set B

(d)

of compositions of inverse branches of the map V
(d)

which are possibly used by
such particular “stopping” trajectories. Then the equality ⇡(u) = h(0) (for h 2 B

(d)

)
gives rise to a bijection between ⇡(⌦

(d)

) and B
(d)

. Moreover, there is also a bijection
between ⇡(⌦

(d)

) and the set of coprime inputs

⌦
(d)

:= {u 2 ⌦
(d)

| gcd(u) = 1} , (12)

and thus a bijection between B
(d)

and ⌦
(d)

.

We now describe B
(d)

, and first focus, for each ` 2 [0..d� 1], on the set P
(d�`)

used by
the part of the trajectory associated with the `-th phase, when the iterates of u under
U
(d)

belong to ⌦
(d�`)

. Then, the iterates of x under V
(d)

belong to the simplex J
(d�`)

.
We study in a separate way
(a) the steps of the phase of index `, which are not the last one, which constitute what

we will call the strict phase of index `;
(b) and the last step of the phase of index `.

Consider first (a). In this case, such a step does not loose a component, and only
involves a step of type (G). Then, the trajectory uses branches of the map T

(d�`)

, and
each step uses possibly any inverse branch in the set H

(d�`)

defined in (10). Hence, the
set of the inverse branches used during the strict `-phase is the set H?

(d�`)

.

Consider (b). Now, a component is lost since the insertion is not done, and there are
two possible cases, namely Case (Z) and Case (E).

Case (Z). The quotient 1/x
1

is equal to an integer m � 2, the position of potential
insertion is j = d � `. The equality V

(d)

(x) = m · Endx holds and the inverse branch
associates with the (d� `� 1)-uple y the (d� `)-uple

z
(d�`,m)

(y) =
1

m
(1,y) . (13)

11



The set Z
(d�`)

of inverse branches used in case (Z) is thus

Z
(d�`)

:= {z
(d�`,m)

| m � 2} .
Case (E). An equality of the form (1/x

1

) �m = x
i

/x
1

holds with a quotient m � 1
and a potential insertion position 7 j = i � 1 < d � `. Then, Case (E) cannot occur for
` = d�1. The equality V

(d)

(x) = (Endx)/(1�x
i

) holds and the inverse branch associates
with the (d� `� 1)-uple y the (d� `)-uple

s
(d�`,m,j)

(y) =
1

m+ y
j

(1,y) . (14)

The set of inverse branches S
(d�`)

used in case (E) is thus

S
(d�`)

:= ; (for ` = d� 1), S
(d�`)

:= {s
(d�`,m,j)

| m � 1, j < d�`} (for ` < d� 1).

In summary, the set of possible inverse branches used during the last step of the `-th
phase is

F
(d�`)

:= S
(d�`)

[ Z
(d�`)

. (15)

Finally, we have proven the following (recall that H?

(d�`)

is defined in (11)):

Proposition 2. The BrunGcd(d) algorithm builds a bijection between the set ⌦
(d)

of
coprime inputs of ⌦

(d)

and the set B
(d)

of inverse branches possibly used by the rational
trajectories of the shift V

(d)

. This set is written as

B
(d)

:= P
(d)

� P
(d�1)

� . . . � P
(1)

= P
(d)

� B
(d�1)

and involves the sets P
(d�`)

of inverse branches used by the BrunGcd

(d,`)

, characterized
as

P
(d�`)

:= H?

(d�`)

� F
(d�`)

.

3.4. Why InsDis rather than Ins?

We have decided to deal with the set �
(d)

. We are then led to use InsDis to stay inside
�
(d)

. But there is a natural question: why not dealing with the set �
(=,d)

with possible
blocks of equal non-zero components? Then, we could use Ins and stay inside �

(=,d)

.
This defines another algorithm, the BrunGcd

=

(d) algorithm, whose continuous extension
directly leads to the Brun dynamical system. Even though the whole path seems more
natural, we have to memorize the position of each block of equal components, and this
leads to a quite involved analogue set B

(=,d)

that describes the rational trajectories of
the BrunGcd

=

(d) algorithm.

4. Dynamical analysis (I).

We now begin the analysis of the algorithm, and introduce the main objects: the
class of costs of interest, the (Dirichlet) generating functions, the generating operators.
The main result of this section (Theorem 3) relates generating functions and generating
operators.

7
We recall that we would have inserted “in front of”.
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4.1. Additive costs.

We consider here costs that are said to be additive. One begins with a nonnegative
elementary cost c defined on each inverse branch in B

(d)

of depth one 8 . Such a cost is
then extended in an additive way on B

(d)

, namely

c(h
1

� h
2

� · · · � h
p

) :=
P

p

i=1

c(h
i

).

Now, a cost C defined on ⌦
(d)

is said to be additive if it is associated with such a cost c,
and satisfies

C(u) := c(h) when ⇡(u) = h(0).

Then C(u) equals the total cost on the trajectory of ⇡(u) and satisfies C(u) = C(�u)
for any integer � 6= 0.

There are three main additive costs of interest here.
(i) The total number C

d,`

of steps during the strict `-th phase, associated with the
characteristic function c of the set H

(d�`)

; with the family C
d,`

, we return to the
number of steps mentioned in Theorem 1, with the relations

L
d

= M
d

+R
d

, M
d

= 1 + C
d,0

, R
d

=
d�1

X

`=1

R
d,`

R
d,`

= 1 + C
d,`

. (16)

(ii) The numberO
d

of steps of the strict first phase with a quotient equal to 1, associated
with the characteristic function c of the subset

{h
(d,m,j)

2 H
(d)

| m = 1} .
(iii) The number ⌃

d

of steps of the subtractive algorithm during the strict first phase,
associated with the cost c which associates with an inverse branch h of the first
phase its quotient m.

The associated elementary costs deal with a specific strict phase : the strict `-phase for
C

d,`

and the strict first phase of index ` = 0 for M
d

, O
d

, R
d

. The cost C is said to be
concentrated on this (strict) phase: more precisely, the cost C

d,`

is concentrated on the
strict phase of index `, and the costs M

d

, O
d

on the strict first phase of index 0.

4.2. Dirichlet generating functions.

The (basic) Dirichlet generating function S
(d)

(s), of the input set ⌦
(d)

relative to the
length kuk := u

0

, is defined as

S
(d)

(s) :=
X

u2⌦

d

1

||u||s . (17)

In the same vein, with a cost C : ⌦
(d)

! N, we associate the cumulative generating
function of the cost

bS
(d,C)

(s) :=
X

u2⌦

d

C(u)

||u||s =
X

n�1

n�s

X

kuk=n

C(u) . (18)

When ⌦
(d,N)

is endowed with the uniform distribution, the mean E
N

[C] of cost C on
⌦

(d,N)

is expressed with a quotient which involves the coe�cients of the two previous

8
Conditions required on the growth of the cost c in the general case are highlighted in Section 5.7.
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generating functions, as

E
N

[C] =
1

�
N

⇥

S
(d)

⇤�
N

h

bS
(d,C)

i

, (19)

where �
N

[f ] is defined as

�
N

[f ] =
X

nN

a
n

when f(s) =
X

n�1

a
n

ns

. (20)

Generally speaking, singularity analysis relates the asymptotics of the coe�cients of a
generating function to the nature and the position of its dominant singularity (as we will
see in Section 6.2). Then, we need an alternative expression of the series which highlights
the singularities. Such an expression exists for the series S

(d)

(s), namely

S
(d)

(s) =
1

d!

X

n�d+1

1

ns

(n� 1)(n� 2) . . . (n� d).

As its “dominant” series is (1/d!)⇣(s� d), the series S
(d)

(s) has a dominant simple pole
at s = d+ 1 with residue 1/d!.

However, such a “dominant” behaviour is not known for the other Dirichlet series. The
remaining of the paper is devoted to this task and is based on the dynamical analysis
approach where generating functions are expressed with generating transfer operators.
For this aim, we introduce an intermediate tool, the Dirichlet (bivariate) generating
function,

S
(d,C)

(s, w) :=
X

u2⌦

d

wC(u)

||u||s (21)

whose derivative is related to the cumulative generating function. One has

bS
(d,C)

= �[S
(d,C)

]

and involves the functional � defined as

�[A](s) :=
@

@w
A(s, w)

�

�

�

w=1

. (22)

As we wish to use the bijection described in Proposition 2, we also introduce the
three underlined series that are the exact counterparts of series defined in (17), (18),
(21), now with respect to the set ⌦

(d)

of coprime inputs. As C is an additive cost, the
non-underlined series are related to their underlined counterparts as

S
(d)

(s)

S
(d)

(s)
=

S
(d,C)

(s, w)

S
(d,C)

(s, w)
=
bS
(d,C)

(s)

bS
(d,C)

(s)
= ⇣(s) . (23)

4.3. Generating operators.

Let G be a set of inverse branches; we say that h is a factor of G if h is a factor of an
element of G (with respect to the composition), and we denote this situation as h / G.
For instance in the same vein, a set H is said to be a factor of G if each element of H is
a factor of G, and this will be denoted as H / G. We will consider in the sequel factors
of B

(d)

. The following easy result is central in this work.
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Lemma 1. Any inverse branch h / B
(d)

(defined in Prop. 2) is a linear fractional
transformation (LFT), and any factor of h / P

(d�`)

is written as

h =
1

D[h]

⇣

N
1

[h], N
2

[h], . . . , N
d�`

[h]
⌘

,

where the denominator D[h] and the numerators N
i

[h] are co-prime a�ne functions.
When h 2 H

(d�`)

, the determinant J [h] of its Jacobian matrix is related to the denomi-
nator D[h] via the equality

|J [h]| = |D[h]|�(d�`+1) . (24)

Proof. The proof (by recurrence on the depth of h) begins with the expression of the
branches of depth 1 given in (9),(13),(14). 2

Transfer operators are central tools for studying probabilistic properties of trajectories
in dynamical systems; see e.g. [3, 23, 30]. Here, we adapt these tools to our needs, strongly
use the fact that inverse branches are LFT, and also consider an additive cost c.

It proves useful to deal first with component operators: with a linear fractional trans-
formation h and a cost c, we associate the (plain) operator and its cumulative version,
i.e.,

G
s,hhi[f ](x) := |D[h](x)|�s f � h(x), bG

s,hhi[f ](x) := c(h)|D[h](x)|�s f � h(x) ,
and also its (bivariate) weighted version,

G
s,w,[c],hhi[f ](x) := |D[h](x)|�s wc(h)f � h(x) .

Now, we associate with a subset G / B
(d)

the generating operator of the subset G, under
its three versions, the plain, the cumulative, and the weighted versions, namely

G
s,hGi =

X

h2G
G

s,hhi, bGs,[c],hGi =
X

h2G
c(h)G

s,hhi, G
s,w,[c],hGi :=

X

h2G
G

s,w,[c],hhi . (25)

As for series, the first two operators are related to the third one via the equalities

G
s,hGi = G

s,1,[c],hGi, bG
s,[c],hGi = �[w 7! G

s,w,[c],hGi] .

4.4. Dynamical dictionary.

Then, there exists a “dynamical” dictionary on the generating operators that is similar
to the analytic combinatorics dictionary, described for instance in the book of Flajolet
and Sedgewick [12]. First, for disjoint factors G

1

and G
2

of B
(d)

, one has

G
s,w,[c],hG1+G2i = G

s,w,[c],hG1i +G
s,w,[c],hG2i .

If now G
1

and G
2

may be composed and satisfy (G
1

�G
2

) / B
(d)

, multiplicative properties
of the denominator, together with additive properties of the cost, entail the equality

G
s,w,[c],hG1�G2i = G

s,w,[c],hG2i �Gs,w,[c],hG1i .

In particular, when G? / B
(d)

, the generating operator of G? is the quasi-inverse

G
s,w,[c],hG?i =

�

I�G
s,w,[c],hGi

��1

.

This occurs in our context for each strict phase of index `, with the set H
(d�`)

/ B
(d)

of inverse branches of the Brun dynamical system D
(d�`)

= (T
(d�`)

,J
(d�`)

), and the
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generating operator of the strict phase of index ` is
⇣

I�G
s,w,[c],hH(d�`)i

⌘�1

.

Moreover, the generating operatorG
s,w,[c],hH(d�`)i is closely related to the (usual) weighted

transfer operator H
s,w,[c],(d�`)

of the Brun dynamical system D
(d�`)

defined by

H
s,w,[c],(d�`)

[f ](x) :=
X

h2H(d�`)

|J [h](x)|s wc(h)f � h(x) , (26)

and, with the scale change s 7! s/(d� `+1) together with (24), the generating operator
of the strict phase of index ` is finally

(I �H
s/(d�`+1),w,[c],(d�`)

)�1 .

4.5. Generating operators used in the BrunGcd(d) algorithm.

With Proposition 2, this yields the following characterization of the generating oper-
ator of the set B

(d)

used by the BrunGcd(d) algorithm.

Proposition 3. Let c be an additive cost on the set B
(d)

.
(a) The generating operatorB

s,w,[c],(d)

of the set B
(d)

used by the BrunGcd(d) algorithm
decomposes as

B
s,w,[c],(d)

= P
s,w,[c],(1)

�P
s,w,[c],(2)

� · · · �P
s,w,[c],(d)

,

and involves the generating operatorP
s,w,[c],(k)

of the set P
(k)

used by the BrunGcd(d)
algorithm during its phase of index d�k, for 1  k  d. The following recurrence
relation holds:

B
s,w,[c],(d)

= B
s,w,[c],(d�1)

�P
s,w,[c],(d)

.

(b) For any k 2 [1..d], the operator P
s,w,[c],(k)

, which is relative to the phase of index
d�k, involves the quasi-inverse of the generating operator G

s,w,[c],(k)

of the set
H

(k)

and the generating operator F
s,w,[c],(k)

associated with the final set F
(k)

of
the phase of index d�k, and is equal to

P
s,w,[c],(k)

= F
s,w,[c],(k)

� (I �G
s,w,[c],(k)

)�1 .

(c) For any k 2 [1..d], the generating operator G
s,w,[c],(k)

of the set H
(k)

is closely
related to the (weighted) transfer operator H

s,w,[c],(k)

of the dynamical system
D

(k)

defined in (26) via the change of scale t
k

: s 7! s/(k + 1), namely

G
s,w,[c],(k)

= H
t

k

(s),w,[c],(k)

= H
s/(k+1),w,[c],(k)

. (27)

4.6. Relating generating functions to generating operators.

The following result is one of the key ingredients of the paper. It is typical in dynamical
analysis as it relates generating functions and generating operators.

Theorem 3. Consider the BrunGcd(d) algorithm acting on the set ⌦
(d)

, together with
an additive cost C, related to some elementary cost c. Then, the three following relations
hold between
(i) the three generating functions S

(d)

, bS
(d,C)

, S
(d,C)

, defined in (17),(18),(21),
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(ii) the three analogous generating operators of the set B
(d)

, i.e., the plain, the cu-
mulative and the weighted one, defined in (25) and in Proposition 3, and denoted

respectively as B
s,(d)

, bB
s,[c],(d)

,B
s,w,[c],(d)

:

S
(d)

(s) = ⇣(s) ·B
s,(d)

[1](0) ,

bS
(d,C)

(s) = ⇣(s) · bB
s,[c],(d)

[1](0) ,

S
(d,C)

(s, w) = ⇣(s) ·B
s,w,[c],(d)

[1](0) .

Proof. The proof is indeed quite short. Let h 2 B
(d)

. The equality

⇡(u) =

✓

u
1

u
0

,
u
2

u
0

, . . . ,
u
d

u
0

◆

= h(0)

together with gcd(u) = 1 proves that the denominator of the LFT h satisfies |D[h](0)| =
u
0

. Moreover, as C is an additive cost associated with cost c, the equality C(u) = c(h)
holds. Now, the bijection between ⌦

(d)

and the set B
(d)

, together with Eq. (23), entail
the relations

S
(d,C)

(s, w) = ⇣(s) · S
(d,C)

(s) = ⇣(s) ·
X

u2⌦(d)

wC(u)

us

0

= ⇣(s) ·
X

h2B(d)

wc(h) |D[h](0)|�s = ⇣(s) ·B
s,w,[c],(d)

[1](0) .

2

4.7. Derivatives of quasi-inverses.

When the cost C is a cost concentrated on the strict phase of index d�k, the functional
� defined in (22) is applied to the quasi-inverse (I �G

s,w,[c],(k)

)�1 and produces what
we call a “double quasi-inverse”, formed with two (plain) quasi-inverses and a middle
cumulative operator associated with the cost c. Now, via (27), we return to the usual
weighted transfer operatorH

t,w,[c],(k)

, defined in (26), with the scale-change t = s/(k+1),
and obtain

�[w 7! (I �G
s,w,[c],(k)

)�1] = (I �H
t,(k)

)�1 � bH
t,[c],(k)

� (I �H
t,(k)

)�1 , (28)

which involves the (usual) plain operator and its cumulative version, i.e.,

H
t,(k)

[f ] :=
X

h2H(k)

|J [h]|t · f � h, bH
t,[c],(k)

[f ] :=
X

h2H(k)

c(h) · |J [h]|t · f � h . (29)

We now focus on the quasi-inverses of the transfer operators (simple or double) which
will play a central role in the analysis, and define

Q
t,(k)

:= (I�H
t,(k)

)�1, Q
[2]

t,[c],(k)

:= (I�H
t,(k)

)�1 � bH
t,[c],(k)

� (I�H
t,(k)

)�1 . (30)

According to Proposition 3(a) and (b), the plain Dirichlet series S
(d)

(s), associated
with the plain operator B

s,(d)

, involves one quasi-inverse for each strict phase, whereas
the cumulative Dirichlet series relative to a cost C concentrated on the strict phase of
index d�k involves a double quasi-inverse for the phase of index d�k, and only a plain
quasi-inverse for each other phase. This is now precisely stated:
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Proposition 4. Associate with k 2 [1..d] the scale change t
k

: s 7! s/(k + 1). Then the
following holds:

(a) The plain Dirichlet series S
(d)

(s) involves a unique quasi-inverse Q
t

k

(s),(k)

= (I �
H

t,(k)

)�1 for each phase of index d�k with k 2 [1..d].

(b) If C is a cost concentrated on the strict phase of index d�k (with k 2 [1..d]), the
cumulative series bS

(d,C)

(s) of cost C involves one (plain) quasi-inverse Q
t

j

(s),(j)

for

each phase of index d�j with j 6= k and a “double” quasi-inverse Q
[2]

t

k

(s),[c],(k)

for
the phase of index d�k.

5. Study of quasi-inverses.

This ends the first part of our analysis, of a combinatorial nature. We begin the second
part of our analysis, of an analytic nature. We then have now to study the Dirichlet series,
from an analytic point of view, and discover their singularities. With Proposition 4, their
singularities are brought by quasi-inverses. This is why this section is devoted to the
study of the transfer operator

H
t,(k)

:=
X

h2H(k)

|J [h]|t f � h =
X

h2H(k)

|D[h]|�t(k+1) f � h

and its quasi-inverse (I � H
t,(k)

)�1. We will apply this study to the Dirichlet series in
the following Section 6.

5.1. Functional space.

For k = 1, the space C1([0, 1]) of continuously di↵erentiable functions on the unit
interval proves to be “well-adapted” to the analysis of the transfer operator of the Euclid
system, as the “upper” part of its spectrum is formed with isolated eigenvalues. This
fact was proven and used for instance in [2, 3, 7]. Here, we deal with the space C1(J

(k)

)
which gathers the continuously di↵erentiable functions on the simplex J

(k)

. For such a
function f , we denote by Df(x) the di↵erential of the function f at x. We consider any
fixed norm on the space Rk, denoted as || · ||

(k)

, and we define the two following norms
on the space C1(J

(k)

), namely the norms || · ||
0

and || · ||
1

defined as

||f ||
0

:= sup
x2J(k)

|f(x)|, ||f ||
1

= ||f ||
0

+ sup
x2J(k)

||Df(x)||
(k)

.

Then, the operator H
t,(k)

is well-defined for <t > 1/(k + 1) as Eq. (24) relates its norm
||H

t,(k)

]]
0

with the Riemann Zeta function ⇣(t/(k + 1)). It acts on the Banach space
�

C1(J
(k)

), k · k
1

�

, it is bounded, and the map t 7! H
t,(k)

is analytic.

We now describe the main properties of the operator H
t,(k)

, and will show how they
generalize the properties of the one-dimensional case d = 1.

5.2. Contraction and distorsion properties

The contraction ratio �
k

of the dynamical system D
(k)

, defined as

�
k

:= lim sup
n!1

sup
h2Hn

(k)
x2J(k)

||Dh(x)||1/n
(k)

, (31)
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involves the di↵erential Dh(x) and its norm derived from the norm || · ||
(k)

. This con-
traction ratio is considered in [8] where the strict inequality �

k

< 1 is proved: the Brun
dynamical system D

(k)

is thus contracting. Moreover, as the inverse branches are linear
fractional transformations with positive coe�cients, the distortion property holds: there
exists L

k

> 0 which relates the di↵erential of the Jacobian to the Jacobian itself,

||DJ [h](x)||
(k)

 L
k

|J [h](x)|, 8h 2 H?

(k)

, 8x 2 J
(k)

.

These properties entail an inequality of Lasota-Yorke type for the operatorH
t,(k)

, namely,

||Hn

t,(k)

[f ]||
1

 K · �|t| · �n
k

· ||f ||
1

+ ||f ||
0

� · ||Hn

<t,(k)

||
0

(32)

for some constant K > 0 (related to the distortion constant), and a real �
k

2]�
k

, 1[.
With theorems due to Hennion [16], and Ionescu Tulcea and Marinescu [17], such a
Lasota-Yorke inequality entails the quasi-compacity of the operator H

t,(k)

for real values
of parameter t. We recall this notion in the next section (see also the book [2]).

5.3. Quasi-compacity

The spectrum of an operator G is the set of the complex numbers � for which �I �G
is not invertible. The spectral radius R(G) of an operator G is defined as

R(G) = sup{|�|, | � 2 Sp(G)} .
An operator is said quasi-compact if the “upper” part of its spectrum is formed with
isolated eigenvalues of finite multiplicity: there exists a radius r < R(G) for which any
� 2 Sp(G) with |�| � r is an isolated eigenvalue with finite multiplicity. Inequality (32)
proves the existence of such a radius r for any real t: the inequality r  �

k

R(H
t,(k)

) holds
and entails the quasi-compacity for the operator H

t,(k)

.

Proposition 5. The following holds:

(i) For a real t > 1/(k+1), the transfer operatorH
t,(k)

is quasi-compact. This property
extends when t belongs to a complex neighborhood of the real line t > 1/(k + 1).

(ii) Consider the algebraic number ⌧
k

associated with the worst-case behaviour of the
BrunGcd Algorithm. The equality holds

⌧k+1

k

= lim
n!1 sup

h2Hn

(k)

|J [h](x)|1/n for any x 2 J
(k)

. (33)

(iii) The spectral radius R(H
t,(k)

) is strictly decreasing as a function of t, and the
inequality holds

R(H
t+u,(k)

)  ⌧ (k+1)u

k

R(H
t,(k)

) for u � 0, t > 1/(k + 1) . (34)

(iv) An aperiodicity property holds: For any complex number t, with <t > 1/(k + 1),
the spectral radius satisfies the strict inequality

R(H
t,(k)

) < R(H<t,(k)

) for any non-real number t .

Remark. There is a relation between the two constants �
k

and ⌧
k

: the contraction
ratio �

k

is associated with the dominant eigenvalue of a linear mapping (namely, the
di↵erential Dh(x)) whereas the constant ⌧k+1

k

is associated with the absolute value of
its determinant. Then the relation ⌧k+1

k

 �k
k

holds.
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Proof. (i): It uses analytic perturbation (see the book [19]).
(ii): As we saw in (5), the algebraic number ⌧

k

associated with the worst-case bound is
defined as

⌧�1

k

= lim
n!1 inf

h2Hn

(k)

|D[h](0)|1/n

and Eq.(24), together with the distortion property, lead to the result.
(iii): We begin with the inequality that uses the estimates given in (5) and (6)

Hn

t+u,(k)

[1](0) =
X

h2Hn

(k)

|J [h]|t+u(0)


⇣

sup
h2Hn

(k)

|J [h]|u(0)
⌘

·
⇣

X

h2Hn

(k)

|J [h]|t(0)
⌘

 ��(k+1)u

k

· ⌧n(k+1)u

k

·Hn

t,(k)

[1](0) ,

and we use the Radius Spectral Theorem.
The proof of (iv) is of a di↵erent flavour. It mainly uses the fact that inverse branches
are linear fractional transformations. It is similar to the proof in case k = 1 (the Euclid
algorithm) which is given in [30]. 2

5.4. Spectral decomposition

For real t, the operator H
t,(k)

is quasi-compact. Moreover, the dynamical system is
ergodic, as proven e.g. in [1]. This entails the following: the transfer operator H

t,(k)

admits a unique simple dominant eigenvalue �
(k)

(t), separated from the remainder of the
spectrum by a spectral gap. Moreover, there exists a spectral decomposition

H
t,(k)

= �
(k)

(t)A
t,(k)

+K
t,(k)

,

that involves the dominant eigenvalue �
(k)

(t), the projection A
t,(k)

on the dominant
eigenspace, and a “remainder” operator K

s,(k)

whose spectral radius is strictly smaller
than �

(k)

(t). Then, the relation A
t,(k)

�K
t,(k)

= K
t,(k)

�A
t,(k)

= 0 leads to the spectral
decomposition for the quasi-inverse

Q
t,(k)

= (I �H
t,(k)

)�1 =
�
(k)

(t)

1� �
(k)

(t)
A

t,(k)

+ (I�K
t,(k)

)�1 , (35)

where the norm of the “remainder quasi-inverse” (I�K
t,(k)

)�1 satisfies

||I�K
t,(k)

)�1||
1

 1

1� �
(k)

(t)
. (36)

5.5. Dominant spectral objects at t = 1.

For t = 1, the transfer operator is the density transformer, and 1 is an eigenvalue
of maximum modulus, the unique simple dominant eigenvalue of maximum modulus,
moreover isolated from the remainder of the spectrum by a spectral gap. When t = 1,
the dominant eigenfunction is explicitly exhibited in [1], and involves the set S

k

of
permutations on [1..k],

 
k

(x) =
X

�2S
k

k

Y

i=1

1

1 + x
�(1)

+ x
�(2)

+ . . .+ x
�(i)

. (37)
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However, as an explicit expression for the integral


k

:=

Z

J(d)

 
k

(x) dx (38)

is not known, except for small values of k, the density  
k

associated with this eigenfunc-
tion is itself not completely explicitly known. At t = 1, the projection A

1,(k)

involves
the dominant eigenvalue  

k

defined in (37), the integral I
k

on the simplex J
(k)

and the
constant 

k

= I
k

[ 
k

]. Indeed the projection A
1,(k)

is defined as

A
1,(k)

[f ](x) = I
k

[f ] · 
k

(x) , (39)

where I
k

[f ] :=

Z

J(k)

f(u)du, 
k

= I
k

[ 
k

],  
k

(x) :=
 
k

(x)


k

.

Remark that Eq. (34) relates the dominant eigenvalue �
(k)

and the algebraic number ⌧
k

which intervenes in the worst case, via the inequality

�
(k)

(1 + u)  ⌧ (k+1)u

k

for any real u � 0. (40)

5.6. Quasi-inverses.

With perturbation arguments [19], there exists a complex neighborhood of the real
axis for which the decomposition holds. With the equality �

(k)

(1) = 1, this proves that
the quasi-inverse has a pole at t = 1, with a residue which involves in particular the
entropy E

k

= ��0
(k)

(1) and the projection A
t,(k)

, whose expression was given in (39).

Moreover, with Assertions (ii) and (iii) of Proposition 5, the map t 7! Q
t,(k)

is analytic
on the punctured half-plane {<t > 1, t 6= 1}.

Using now for each phase of index d�k the scale change t
k

(s) = s/(k+1), we describe
the behaviour of the quasi inverse s 7! Q

t

k

(s),(k)

.

Proposition 6. Consider the phase of index d�k with k 2 [1..d] and the scale change
s 7! s/(k + 1). Then, the quasi-inverse s 7! Q

t

k

(s),(k)

relative to the phase of index d�k
is analytic on the punctured half-plane {<s � k+1, s 6= k+1} and admits a simple pole
at s = k + 1, with a residue T

(k)

defined as

T
(k)

[g](x) =
k + 1

E
k

· I
k

[g] · 
k

(x) (41)

which involves the entropy E
k

, the integral I
k

on the simplex J
(k)

and the invariant
density  

k

defined in (39).

5.7. Double quasi-inverses.

As we saw in Section 4.7, the analysis of the cumulative Dirichlet series bS
C

(s) asso-
ciated with an elementary cost c that is concentrated on the phase of index d�k deals
with the “double quasi-inverse”

Q
[2]

t,[c],(k)

= (I �H
t,(k)

)�1 � bH
t,[c],(k)

� (I �H
t,(k)

)�1 t = t
k

(s) := s/(k + 1) . (42)

Each quasi-inverse “brings” a simple pole at t = 1 (i.e., s = k + 1), and the double
quasi-inverse is singular at s = k + 1, with at least a pole of order 2.
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We first focus on the middle operator. After an easy change of variables, we remark
that, for any density  , the integral

Z

J(k)

bH
1,[c],(k)

[ ](x)dx =
X

h2H(k)

c(h)

Z

h(J(k))

 (y) dy

coincides with the mean value of the elementary cost c with respect to the measure ⌫ of
density  . We adopt the notation E

(k)

[·] for the mean value, when it is relative to the
invariant measure ⌫

k

of density  
k

. Then the equality holds

E
(k)

[c] =

Z

J(k)

bH
1,[c],(k)

[ 
k

](x)dx = I
k

h

bH
1,[c],(k)

[ 
k

]
i

.

We now assume that the mean value E
(k)

[c] is finite and return to the study of the
double quasi-inverse which admits in this case a pole of order 2 at s = k + 1; moreover,
the “dominant” constant is obtained via the spectral decomposition of each quasi-inverse
at s = k + 1, which involves the projection given in (39), and

(k + 1)2

|�0
(k)

(1)|2 A
1,(k)

� bH
1,[c],(k)

�A
1,(k)

[g](x)

=

✓

k + 1

E
k

◆

2

I
k

[g] · I
k

h

bH
1,[c],(k)

[ 
k

]
i

·  
k

(x) .

We have thus shown:

Proposition 7. Consider a cost C concentrated on the phase of index d � k with k 2
[1..d], and associated with an elementary cost c whose mean value E

(k)

[c] with respect
to the measure ⌫

k

is finite. Consider the scale change t = s/(k + 1). Then, the double
quasi-inverse relative to the phase of index d�k and defined in (42) is analytic on the
punctured half-plane {<s � k + 1, s 6= k + 1} and admits a pole of order 2 at s = k + 1,
with a dominant operator U

[c],(k)

defined as

U
[c],(k)

[g](x) =

✓

k + 1

E
k

◆

2

· I
k

[g] · E
(k)

[c] · 
k

(x) , (43)

which involves the entropy E
k

, the integral I
k

on the simplex J
(k)

, the invariant density
 

k

and the mean value E
(k)

[c].

Remark. The mean value E
(k)

[c] of cost c occurs in the study of weighted real trajectories
by applying Birkho↵’s ergodic theorem. The occurrence of the same mean value E

(k)

[c] in
the dominant operator (43), and thus in the study of weighted rational trajectories, is one
of the key features in dynamical analysis. It leads to the following statement : “Rational
trajectories behave in the average-case exactly as the truncated real trajectories behave
generically”.

5.8. Mean values of costs associated with digits.

Consider the simplex J
(d)

and the variable m defined on J
(d)

which associates with
x 2 J

(d)

the quotient m(x) computed by the BrunGcd algorithm on the input x. For
x = (x

1

, x
2

, . . . , x
d

), the quotient m(x) is equal to b1/x
1

c, and the event [m(x) � m]
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coincides with the event [x
1

 1/m]. As x 2 J
(d)

, all the components x
i

satisfy x
i


(1/m) too, and the equality between the two subsets {x | m(x) � m} and = (1/m)J

(d)

holds. Then, the study of the variable m leads to consider homothetic images yJ
(d)

of
the simplex J

(d)

. Moreover, the previous section highlights the role that the measure ⌫
d

associated with the invariant density  
d

plays in our analyses of the BrunGcd algorithm.
This is why the function µ

d

which associates with y 2 [0, 1] the measure ⌫
d

�

yJ
(d)

�

will
play a central role in the distribution of quotients, in particular in Section 7 below. The
next result will be important in our analysis.

Proposition 8. The following equalities hold for d � 1

P
(d)

[m = 1] = µ
d

(1/2), E
(d)

[m] :=
X

m�1

µ
d

(1/m) . (44)

For d � 2, the mean value E
(d)

[m] is finite, and it is infinite for d = 1.

Proof. The first assertion is clear. The second assertion is due to the fact that µ
d

(y) is
⇥(yd) for y ! 0 and any d (with hidden constants in the ⇥ which depend on d). Then
the sum of the series which appears in the expression of E

(d)

[m] is finite for d � 2 and
infinite for d = 1 (the case of the Euclid algorithm). 2

6. Dynamical analysis (II).

We now return to the number of steps that the BrunGcd algorithm performs during
its various phases, and to the proof of Theorem 1.

6.1. Analytic properties of Dirichlet series.

With Theorem 3 and Proposition 4 which relate generating functions and generating
operators, Eq. (16) which recalls the additive costs of interest, Propositions 6 and 7 which
describe the behaviour of quasi-inverses and double quasi-inverses near their singularities,
we describe the analytic properties of the Dirichlet series of interest.

Proposition 9. Consider the BrunGcd algorithm when acting on ⌦
(d)

, for a dimension
d � 2, together with the following costs:

– the total number L
d

of steps,
– the number M

d

of steps in the first phase (of index ` = 0),
– the number O

d

of quotients equal to 1 during the first phase,
– the number ⌃

d

of subtractive steps during the first phase,
– the number R

d,`

of steps during the phase of index ` > 0.
with the six Dirichlet generating functions of interest, namely, the plain series and the five
cumulative series relative with the number of steps L

d

,M
d

, O
d

,⌃
d

, R
d,`

. The following
holds:

(a) The six series are analytic in the punctured half-plane {<s � d+ 1, s 6= d+ 1}.
(b) The plain series and the cumulative series relative to R

d,`

with ` > 0 admit a simple
pole at s = d+ 1. Their residues are denoted as T

d

and ⇢
d,`

· T
d

.
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(c) The cumulative series relative to L
d

,M
d

, O
d

,⌃
d

admit a pole of order 2 at s = d+1,
and their dominant constants Dom are expressed with the residue T

d

and three other
constants a

d

, ✓
d

,�
d

. One has:

Dom[L
d

] = Dom[M
d

] = a
d

T
d

, Dom[O
d

] = a
d

✓
d

T
d

, Dom[⌃
d

] = a
d

�
d

T
d

.

(d) The constants a
d

, ✓
d

and �
d

involve the entropy E
d

, the function µ
d

(y), defined in
Section 5.8, and the expectations of Proposition 8,

a
d

=
d+ 1

E
d

, ✓
d

= P
(d)

[m = 1] = 1� µ
d

(1/2) , �
d

= E
(d)

[m] =
X

m�1

µ
d

(1/m) .

(45)

Proof. The generating operator associated with the complete execution of the BrunGcd

algorithm is the operator B
s,(d)

described in Theorem 3. We consider now two parts of
the execution: the strict first phase (namely, the first phase, except its last step) and the
remaining of the execution. The generating operator relative to the strict first phase is
the quasi-inverse Q

t

d

(s),(d)

= (I � H
s/(d+1),(k)

)�1 whereas the operator relative to the
remaining of the execution is D

s,(d)

:= B
s,(d�1)

�F
s,(d)

. This remaining operator contains
one quasi-inverse for each phase. For k 2 [1..d�1], the quasi-inverse of the phase of index
d�k is Q

t

k

(s),(k)

. Note also, that, according to Section 4.1, it is su�cient to consider
costs concentrated either on the first phase, or on another phase.

Plain series. With Proposition 6, the operator Q
t

d

(s),(d)

of the strict first phase has a
dominant pole at s = d + 1, whereas the remaining operator D

s,(d)

remains regular
at s = d + 1. Then the “total” operator B

s,(d)

has a pole with a residue equal to
D

d+1,(d)

�T
(d)

which involves the operator T
(d)

described in (41). According to Theorem
3, the generating function S

(d)

(s) has thus a simple pole at s = d+ 1 with a residue

T
d

= ⇣(d+1) ·D
d+1,(d)

�T
(d)

[1](0) = b
d

·
✓

d+ 1

E
d

◆

with b
d

= ⇣(d+1)D
d+1,(d)

[ 
d

](0) .

Cumulative generating function relative to a cost concentrated on the first phase. Consider
a cost C concentrated on the strict first phase, associated with an elementary cost c. Then
the cumulative generating operator relative to this cost C is

D
s,(d)

�Q[2]

t

d

(s),[c],(d)

.

With Proposition 7, it has a pole of order 2 at s = d + 1, with a dominant operator
equal to D

d+1,(d)

� U
[c],(d)

which involves the operator U
[c],(d)

described in (43). With
Theorem 3, the cumulative generating series S

(d,C)

(s) has a pole at s = d+ 1 of order 2
with a dominant constant

Dom[C] = ⇣(d+ 1) ·D
d+1,(d)

�U
[c],d

[1](0) = b
d

·
✓

d+ 1

E
d

◆

2

· E
(d)

[c] .

The mean values E
(d)

[c] of costs c associated with M
d

, O
d

and ⌃
d

are expressed in terms
of µ

d

in Proposition 8 and proven there to be finite.

Cumulative generating function relative to a cost concentrated on another phase. Consider
now a cost C concentrated on a remaining phase (not the first one) of index ` = d�k
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with k < d. Then, the cumulative generating operator relative to this cost is almost the

same as the plain generating operator: there is only a double quasi-inverse Q
[2]

t

k

(s),[c],(k)

that replaces the (simple) quasi-inverse Q
t

k

(s),(k)

. This incursion of a new quasi-inverse
does not change the nature of the dominant singularity, which remains a simple pole at
s = d+1. However, the residue of the generating function changes and we now denote it
by T

d

⇢
d,`

. Note that the insertion of the quasi-inverse “in the middle” creates di�culties
for the asymptotic estimates of the constant ⇢

d,`

. We will return to this question in
Section 7.4 2

6.2. Extraction of coe�cients and final step in the proof of Theorem 1.

It remains to relate the asymptotics of the coe�cients of the Dirichlet series and their
dominant singularities, and this is done via the Delange Tauberian Theorem.

Theorem 4 (Delange). For � > 0, consider a Dirichlet series S(s) with non-negative
coe�cients which converges for <s > �. Assume that the following holds:
(i) S(s) is analytic on <s = �, s 6= �;
(ii) near �, S(s) satisfies S(s) = A(s)/(s � �)�+1 where A is analytic in �, A(�) 6= 0

and � � 0.
Then as N ! 1, the following asymptotics holds

�
N

[S] ⇠ A(�)

��(� + 1)
N�(logN)� , for �

N

defined in (20).

With Proposition 9, all the Dirichlet series of interest satisfy the hypotheses of the
Delange Tauberian Theorem with � = d + 1, the series of (b) with � = 0 and the series
of (c) with � = 1. With Eq. (19), the mean value of any cost C of interest equals a
ratio whose numerator and denominator can be estimated with the Delange Tauberian
Theorem. This concludes the proof of Theorem 1, and the main constants involved are
constants ⇢

d,`

, a
d

, ✓
d

,�
d

.
We do not know much about the asymptotics of ⇢

d,`

(we return to this point in Section
7.4), but we focus in the next section on the study of the other constants, namely a

d

(closely related to the entropy E
d

), ✓
d

,�
d

, and their asymptotics for d ! 1.

7. Behaviour of the Brun dynamical system in high dimensions.

We now study the dependency of the main constants of the analysis 
d

, E
d

, ✓
d

, �
d

with respect to the dimension d and prove Theorem 2. Even if these constants occur in
the analysis of the BrunGcd algorithm, they are only defined via the Brun dynamical
system in d dimensions. The two main constants, namely 

d

and E
d

, are considered in
7.1 with a proof of Theorem 2(a). Asymptotic estimates for the function µ

d

with a proof
of Theorem 2(b) are handled in Section 7.2, whereas Section 7.3 is devoted to the proof
of Theorem 2(c). Lastly, in Section 7.4, we state a conjecture on the constants ⇢

d,`

that
is based on some natural heuristics and validated by some preliminary experiments.
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7.1. The main constants of the analysis: integral expressions for 
d

and E
d

.

We already explained in Section 5.8 the role played by the simplex yJ
(d)

, and its
measure µ

d

(y) := ⌫
d

�

(yJ
(d)

�

with respect to the measure ⌫
d

associated with the invariant
density  

d

. We then introduce the function


d

(y) :=

Z

yJ(d)

 
d

(x)dx (46)

which involves the eigenfunction  
d

(whose expression is given in (37)). This integral
extends the integral 

d

defined in (38), in the sense that 
d

= 
d

(1). As the equality
µ
d

(y) = 
d

(y)/
d

holds, the study of y 7! 
d

(y) is the main step in the study of the
function µ

d

.

We first provide one-dimensional integral expressions for the distribution constant

d

(y) and the entropy E
d

. The expression for 
d

(y) is obtained via the Laplace transform
and the expression of the entropy is obtained via the Rohlin formula.

Proposition 10. The constant 
d

(y) and the entropy E
d

are expressed as one-dimensional
integrals which involve the functions ↵ and � defined as

↵(u) :=

Z

1

0

e�tudt =
1� e�u

u
, �(u) :=

Z

u

0

↵(v)dv , (47)

and the following holds


d

(y) =
1

d!

Z 1

0

e�u�(uy)ddu, E
d

= (d+ 1)

Z

1

0

1

y


d

(y)


d

dy .

Proof.
Expression for 

d

(y). As the function  
d

defined in (37) involves the set of permutations,
we remark that 

d

(y) defined in (46) admits an alternative form


d

(y) =

Z

[0,y]

d

'
d

(x)dx, with '
d

(x) =
1

1 + x
1

. . .
1

1 + x
1

+ x
2

+ · · ·+ x
d

. (48)

For x � 0, the equality

1

1 + x
=

Z

+1

0

e�txe�tdt

gives rise to the equality

'
d

(x) =

Z

[0,+1]

d

H(t,x)dt , where H(t,x) := e�(t1+t2+...t

d

) G(t,x)

involves the function G(t,x) = e�t1x1 . . . e�t

d

(x1+x2+...+x

d

) = e�x1(t1+t2+...t

d

) . . . e�x

d

t

d .

Under this last form, G(t,x) is a product of factors, each of them only involving the
variable x

i

, and the following d-dimensional integral is a product of one-dimensional
integrals, namely

Z

[0,y]

d

G(t,x)dx = ydA(y, t) ,

where the function A is written in terms of the function ↵ defined in (47) as

A(y, t) = ↵(yt
d

) · ↵(y(t
d

+ t
d�1

)) · . . . · ↵(y(t
1

+ . . . t
d

)) .
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Returning to the integral 
d

(y), and after interverting integrations, we obtain


d

(y) =

Z

[0,+1]

d

e�(t1+t2+...t

d

) dt

 

Z

[0,y]

d

G(t,x)dx

!

= yd
Z

[0,+1]

d

e�(t1+...+t

d

) A(y, t)dt .

Letting u
d

= t
d

, u
d�1

= t
d�1

+ t
d

, . . . , u
1

= t
1

+ . . . + t
d

, and dealing with the simplex
S
u

:= {0  u
d

 u
d�1

 u
2

 u}, we obtain


d

(y)

yd
=

Z 1

0

e�u↵(yu)du

 

Z

S
u

"

d

Y

i=2

↵(yu
i

)

#

du
2

du
3

du
d

!

.

The second integral involves a function that is symmetric with respect to the variables
u
i

for i 2 [2, d] on the simplex S
u

. Then the equality holds

Z

S
u

"

d

Y

i=2

↵(yu
i

)

#

du
2

du
3

du
d

=
1

(d� 1)!

 

Z

[0,u]

↵(yv)dv

!

d�1

=
1

(d� 1)!



�(yu)

y

�

d�1

and involves the function �(u) =
R

u

0

↵(v)dv. Finally, we obtain

d!
d

(y) =

Z 1

0

e�ud y ↵(yu)�(yu)d�1 du

and an integration by parts leads to the final expression for 
d

(y).

Expression for E
d

. The Rohlin formula relates the entropy of a dynamical system to the
integral of the Jacobian of the shift T with respect to the invariant measure, and

E
d

=
1


d

Z

J
d

|log |J [T ](x)||  
d

(x) dx =
d+ 1


d

Z

J
d

| log x
1

| 
d

(x) dx .

The function

L(y) :=

Z

x2J
d

x1=y

 
d

(x)dx

coincides with the derivative of the map y 7! 
d

(y). Then, with an integration by part,
we obtain

E
d

:=
d+ 1


d

Z

1

0

| log y|L(y)dy =
d+ 1


d

Z

1

0


d

(y)

y
dy .

Together with (45), this end the proof of Theorem 2(a). 2

7.2. Asymptotic estimates for the function µ
d

. Proof of Theorem 2(b).

We already mentioned that the integral 
d

(y) is not exactly computable, except for
small values of d, and Eq. (48) leads to easy bounds

1

d!
yd  

d

(y)  yd , (49)

which are not of great use when d ! 1. This is why we will conduct a finer asymptotic
study, mainly based on Laplace estimates.
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Proposition 11. Consider the two functions y(d) := (log d)/d and ✏(d) = A(log log d)�1,
for some constant A. The following asymptotic estimates hold for the function y 7! µ

d

(y),
when d ! 1, and exhibit two di↵erent regimes

8

>

>

>

<

>

>

>

:

µ
d

(y) 2
"

✓

log dy

log d

◆

d�1/2+d✏(d)

,

✓

log dy

log d

◆

d�1/2�d✏(d)

#

for y 2 [y(d), 1] ,

µ
d

(y)  (log d)1/2
✓

dy

log d

◆

d

for y 2 [0, y(d)] .

Proof. The integral which defines 
d

(y) involves the function

exp[h
d,y

(u)], with h
d,y

(u) = d log �(uy)� u . (50)

As we will see, the function h
d,y

admits a maximum, attained at a point u
d,y

where its
second derivative is not zero. The Laplace method provides asymptotic estimates for the
integral, and relates the asymptotics of the integral to the maximum value h

d,y

(u
d,y

).
We now recall these Laplace estimates, described for instance in [12] page 758.

Consider the integral

I
d

=

Z 1

0

exp [F
d

(v)] dv

which involves a function F
d

of class C1. Assume moreover the following 9

(a) it admits a unique maximum on [0,1[, attained at a point denoted as v = v
d

,
(b) its second derivative F 00

d

is not zero at v
d

,
(c) the quotient �

d

:=
�

�F 000
d

(v
d

)/(F 00
d

(v
d

))3/2
�

� tends to zero.

Then, the following estimate holds:

I
d

⇠
p
2⇡ ·

h

|F 00
d

(v
d

)|�1/2 · exp [F
d

(v
d

)]
i ⇣

1 +O(�
d

)
⌘

.

We first check that the previous properties hold for the function h
d,y

described in (50).
As the derivative of the function h

d,y

is expressed with the derivative � := ↵/� of the
function log �, which involves the functions ↵ and � defined in (47), we first study the
properties of � and its derivatives.

Properties of �. The main properties of � are easily deduced from properties of ↵ and �.
For u ! 1, the maps ↵ and � admit the estimates

↵(u) ⇠ 1

u
�(u) ⇠ log u �(u) ⇠ 1

u log u
.

Moreover, the function � : [0,+1[! R is decreasing from 1 to 0, and, for x > 0, there
exists a unique real u = u(x) for which �(u(x)) = 1/x. Furthermore, there exists a
function P (x) for which

u(x) =
x

P (x)
with P (x) ⇠ log x (x ! 1) .

We will use in the sequel the following properties of the map x 7! P (x), valid for x ! 1:

9
The classical framework deals with the case when Fd is written as Fd = dF , and this will not be the

case here.
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(i) P (x) = log x+O(log log x),
(ii) The maps x 7! P (x) and x 7! x/P (x) are increasing.

The first two derivatives of � satisfy
(

|�0(u)| ⇠ u�2(log u)�1 (u ! 1), |�0(u(x))| ⇠ |log x| · x�2 (x ! 1) .

|�00(u)| ⇠ 2u�3(log u)�1 (u ! 1), |�00(u(x))| ⇠ 2 |log x|2 · x�3 (x ! 1) .

Properties of h
d,y

. The equality h0
d,y

(u) = d · y · �(uy)� 1 holds; then, the function h
d,y

admits a maximum at u
d,y

= (1/y)u(dy), Property (a) holds, and the maximum value
h
d,y

(u
d,y

) is written as dH(dy) with

H(x) = � 1

P (x)
+ log↵(u(x)) + log x = � 1

P (x)
+ log(1� e�u(x)) + logP (x) .

We restrict ourselves to the case when x ! 1. In this case, the term log(1 � e�u(x))
is exponentially small and completely negligible, and we “forget” it. We then study the
simplified form of H, namely

bH(x) = logP (x)� 1

P (x)
. (51)

The two terms relative to the second and the third derivatives then satisfy
(

h00
d,y

(u
d,y

) = dy2�0(u(dy)), |h00
d,y

(u
d,y

)| ⇠ |log dy| · d�1 .

h00
d,y

(u
d,y

) = dy3�00(u(dy)), |h000
d,y

(u
d,y

)| ⇠ 2 |log dy|2 · d�2 .

Finally, Properties (b) and (c) hold with a sequence �
d

of order d�1/2 (log dy)1/2 .

Estimates for µ
d

(y) for any y. For d ! 1, with (51), the inequality bH(d) > log log d� 1
holds. The Laplace method applies to 

d

itself, and this entails, together with the Stirling
estimate, the lower bound for 

d

,


d

>
p
2⇡

✓

d

log d

◆

1/2 1

d!

✓

log d

e

◆

d

=) 
d

>

✓

1

log d

◆

1/2

✓

log d

d

◆

d

.

With the trivial bound 
d

(y)  yd described in (49) which holds for any y 2 [0, 1] and is
interesting when y is small, this provides an upper bound for µ

d

(y), for any y  1,

µ
d

(y)  (log d)1/2
✓

yd

log d

◆

d

.

Of course, this bound is not very useful as soon as y � y(d), and we now study this case.

Estimates for µ
d

(y) for y � y(d). With (51), the equality holds

bH(dy)� bH(d) = log

✓

P (dy)

P (d)

◆

+
1

P (d)
� 1

P (dy)
.

Letting v = P (dy)/P (d), and using the estimate v ⇠ log dy/ log d (for d ! 1), one has

bH(dy)� bH(d) = (log v) [1� ⌘(d, v)] , with ⌘(d, v) =
1

P (d)

(1� v)

v log v
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When y belongs to [y(d), 1], then the estimate v = ⌦(log log d/ log d) holds, and entails
the estimate |⌘(d, v)| = o(log log d)�1. Now, using more precise estimates of P (x), namely
P (x) = log x (1 +O(log log x/ log x)), one has

logP (dy) = log log dy +O

✓

log log dy

log dy

◆

= log log dy



1 +O

✓

1

log dy

◆�

and finally

log
P (dy)

P (d)
= log

log dy

log d



1 +O

✓

1

log log d

◆�

.

Then, with ✏(d) = O(log log d)�1, one has finally

bH(dy)� bH(d) 2


log
log dy

log d
(1 + ✏(d)) , log

log dy

log d
(1� ✏(d))

�

.

Now, the ratio of the second derivatives satisfies
�

�

�

�

�

h00
d

(u
d

)

h00
d,y

(u
d,y

)

�

�

�

�

�

1/2

⇠
✓

log d

log dy

◆

1/2

,

and the estimate for �
d

on the segment [y(d), 1] is of order O(log log d)�1. One obtains
the first estimate of the proposition.

Now if y belongs to some interval [y
0

(d), 1] where y
0

(d) is d⇠(d) with ⇠(d) ! 0, then
the estimate becomes more precise: one has indeed in this case

log
log dy

log d
= log

✓

1 +
log y

log d

◆

=
log y

log d

h

1 +O(|⇠(d)|)
i

,

and

log
P (dy)

P (d)
=

log y

log d



1 +O

✓

|⇠(d)|+ 1

log log d

◆�

. (52)

This is in particular the case when y is constant, with ⇠(d) = 0. 2

7.3. Final estimates for the constants of the analysis. Proof of Theorem 2(c).

We finally provide the asymptotic estimates stated in Theorem 2 for the entropy E
d

,
together with the constants ✓

d

and �
d

. The estimate for the entropy E
d

contradicts a
conjecture of Hardcastle and Khanin [14] which states that the entropy is asymptotically
constant.

Proposition 12. The asymptotic estimates hold for the main constants of the analysis,

E
d

= log d
⇥

1 +O(log log d)�1

⇤

, ✓
d

= 1� (1/2)⇥(1)d log d, 1  �
d

 2 +O(log log d)�1 .

Proof. (a) We begin with the integral expression of E
d

in terms of the function µ
d

, and we
“insert” there the previous estimates. We first consider the part brought by the integral
of the function y 7! (1/y)µ

d

(y) over the interval [y(d), 1]. We deal with some exponent
c which will be equal later to d(1� 1/2± ✏(d)), and we perform the change of variables
u := log dy/ log d. Then, the equalities hold, with a(d) = (log log d)/(log d),

Z

1

y(d)

✓

log dy

log d

◆

c dy

y
= log d

Z

1

a(d)

ucdu =
log d

c+ 1

⇥

1� a(d)c+1

⇤ ⇠ log d

c+ 1
. (53)
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Fig. 4. Comparison between the mathematical curve d 7! Ed and the value of the entropy

provided by the mean number of steps of the BrunGcd algorithm.

The part brought by the integral of the function y 7! (1/y)µ
d

(y) over the interval [0, y(d)]

is at most

(log d)1/2
✓

d

log d

◆

d

Z

y(d)

0

yd�1dy = (log d)1/2
✓

d

log d

◆

d y(d)d

d
 1

d
(log d)1/2 (54)

With (53) applied with c = d(1� 1/2± ✏(d)) together with (54), we obtain the estimate

for the entropy.

(b) When y is fixed, with (52), the estimate becomes µ
d

(y) = y⇥(1)·(d/ log d).

(c) We now study the constant �
d

and begin with the series of general term µ
d

(1/m)

which is compared to the corresponding integral via the inequalities

1 
X

m�1

µ
d

✓

1

m

◆

 1 + I with I :=

Z 1

1

µ
d

(1/x) dx =

Z

1

0

µ
d

(y)
dy

y2

We now estimate the integral I, separately dealing with the interval [y(d), 1] where we

use the bound 1/y  d/(log d) together with the computation of (53), and we obtain
Z

1

y(d)

µ
d

(y)
dy

y2
= 1 +O(log log d)�1 ,

whereas on the interval [0, y(d)] the integral is at most

(log d)1/2
✓

d

log d

◆

d

Z

y(d)

0

yd�2dy  (log d)1/2
✓

d

log d

◆

d

y(d)d�1

1

d� 1
 1

(log d)1/2
.

2

Figure 4 compares the theoretical curve E
d

= log d with experimental values of E
d

which are obtained via the number of steps during the first phase.
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7.4. A conjecture on the constants ⇢
d,`

.

We consider the strict `-th phase in d dimensions, with ` � 1 and we wish to study
the cost C

d,`

= R
d,`

� 1 equal to the number of iterations of the BrunGcd algorithm(d)
during this strict `-th phase. The transfer operator of the remaining execution of the
algorithm after the strict first phase ` = 0 is the operator D

s,(d)

defined in Proposition
9, and, as we are interested on the strict `-th phase, we decompose the operator D

s,(d)

as
V

s

� (I �H
t

k

(s),(k)

)�1 �W
s

, t
k

(s) = s/(k + 1) , (with ` := d�k) ,
whereas the cumulative transfer operator relative to the cost C

d,`

is

V
s

�H
t

k

(s),(k)

� (I �H
t

k

(s),(k)

)�2 �W
s

.

Here, the operator V
s

describes the execution of the algorithm after the strict `-th
phase, and the operator W

s

describes the algorithm after the strict first-phase, until the
beginning of the `-th phase. Moreover, with Proposition 9, we are interested in the value
of these two operators at s = (d+ 1), and this leads to the study of the quasi-inverse

(I �H
t,(k)

)�1, with t = t
k

(d+ 1) := d+1

k+1

. (55)

Proposition 9 proves that the mean value E
N

[C
d,`

] is asymptotic to a quotient, namely

E
N

[C
d,`

] ⇠ ⇢
d,`

(N ! 1), with ⇢
d,`

=
V[ ](0)

V['](0)
, (56)

which involves the operator V = V
d+1

, together with the functions  and ', themselves
defined as

' := (I �H
t,(k)

)�1[�], � := W �T
(d)

[1] (57)

 := H
t,(k)

� (I �H
t,(k)

)�1['] = H
t,(k)

� (I �H
t,(k)

)�2[�] .

Moreover, the real t is defined in (55), we let W := W
d+1

, and the residue operator T
(d)

is defined in Eq. (41) of Proposition 6.

We now study the ratio in (56), with three main steps.

First step. We relate this ratio to the spectral decomposition of the operator H
t,(k)

.
With this spectral decomposition described in (35), we obtain

(I �H
t,(k)

)�1[G](x) =
�
(k)

(t)

1� �
(k)

(t)

h

 
t,(k)

](x) · I
t,(k)

[G] +Y
(1)

t,(k)

[G](x)
i

,

H
t,(k)

(I �H
t,(k)

)�2[G](x) =
�2
(k)

(t)

(1� �
(k)

(t))2

h

 
t,(k)

](x) · I
t,(k)

[G] +Y
(2)

t,(k)

[G](x)
i

.

Here, the operators which intervene in the remainder term are defined from the operator
K

t,(k)

of (36) as

Y
(1)

t,(k)

= X
t,(k)

, Y
(2)

t,(k)

= K
t,(k)

X
t,(k)

, with X
t,(k)

:=
1� �

(k)

(t)

�
(k)

(t)
· (I �K

t,(k)

)�1 .

Applied to G = �, this gives the decompositions
8

>

>

<

>

>

:

'(x) =
�
(k)

(t)

1� �
(k)

(t)

h

 
t,(k)

(x) · I
t,(k)

[�] +Y
(1)

t,(k)

[�](x)
i

,

 (x) =
�2
(k)

(t)

(1� �
(k)

(t))2

h

 
t,(k)

(x) · I
t,(k)

[�] +Y
(2)

t,(k)

[�](x)
i

.
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The images by the operator V decompose as
8

>

>

<

>

>

:

V['](0) =
�
(k)

(t)

1� �
(k)

(t)

h

V[ 
t,(k)

](0) · I
t,(k)

[�] +V �Y(1)

t,(k)

[�](0)
i

,

V[ ](0) =
�2
(k)

(t)

(1� �
(k)

(t))2

h

V[ 
t,(k)

](0) · I
t,(k)

[�] +V �Y(2)

t,(k)

[�](0)
i

.

Then the ratio of the two functions which appears in (56) decomposes as

V[ ](0)

V['](0)
=

✓

1 + ✏

2

(t, k,�)

1 + ✏

1

(t, k,�)

◆

·
✓

�
(k)

(t)

1� �
(k)

(t)

◆

, (58)

and the first factor involves itself two positive ratios,

✏

i

(t, k,�) =
V �Y(i)

t,(k)

[�](0)

V[ 
t,(k)

](0) · I
t,(k)

[�]
. (59)

We now return to the study of the (strict) `-th phase of the algorithm in d dimensions.
With ` := d�k, the triple (t, k,�) depends on the pair (d, `) with k = d�̀ , t = (d+1)/(k+1)
and � itself also depends on the pair (d, `), as the decomposition in (57) depends on this
pair. The ratio of (58) is written as

⇢
d,`

= B(d, `)

✓

�(d, `)

1� �(d, `)

◆

; (60)

the second factor involves the eigenvalue

�(d, `) := �
(d�`)

( d+1

d�`+1

) = �
(d�`)

(1 + `

d�`+1

) ,

whereas the first factor

B(d, `) :=
1 + ✏

2

(t, k,�)

1 + ✏

1

(t, k,�)
, with k = d� `, t = d+1

k+1

(61)

is expressed itself with two ratios ✏
i

defined in (59).

Second step. We first consider the second factor, and we “replace” the eigenvalue by
the algebraic number of the worst case, which is indeed reached when all the quotients
are equal to 1 (and we know that this almost always happens in high dimensions). We
indeed use Eq. (40) which relates here the eigenvalue �(d, `) and the algebraic number
of the worst case ⌧

d�`

, and provides the sharp bounds

exp[�E `

d�`+1

]  �(d, `)  ⌧ `
d�`

,
�(d, `)

1� �(d, `)
 ⌧ `

d�`

1� ⌧ `
d�`

. (62)

We thus let

⇢
d,`

= A(d, `) · b⇢
d,`

with b⇢
d,`

=
⌧ `
d�`

1� ⌧ `
d�`

, (63)

where the constants A(d, `) are smaller than the initial constants B(d, `).

We now study the ratio b⇢
d,`

. Using the asymptotic estimate of ⌧
k

given in (4), we
first exhibit three di↵erent regimes for the function ` 7! ⌧ `

d�`

according to whether ` be
“small”, “moderate” or “large”.
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(i) When ` = o(d/ log d), one has ⌧ `
d�`

! 1

⌧ `
d�`

:= exp(` log ⌧
d�`

) ⇠ exp

✓

� `

d
log d

◆

with
`

d
log d ! 0 .

(ii) When ` = ⇥(d), one lets ` := ad, one has ⌧ `
d�`

! 0 and

⌧ `
d�`

:= exp(` log ⌧
d�`

) ⇠ �K(a)

✓

log d

d

◆

a/(1�a)

with K(a) = (1� a)�a/(1�a) .

(iii) When d� ` is bounded by some constant K, one has ⌧ `
d�`

 ⌧ `
K

.

The following result thus provides proven results for the function b⇢
d,`

.

Proposition 13. For a fixed dimension d, there are (at least) three regimes for the
function ` 7! b⇢

d,`

defined in (63):
8

>

>

>

>

>

<

>

>

>

>

>

:

For ` small, ` = o(d/ log d) : b⇢
d,`

⇠
✓

d

log d

◆

1

`
,

For ` moderate, ` = ad : b⇢
d,`

⇠ K(a)

✓

log d

d

◆

a/(1�a)

,

For ` large, ` > d�K : b⇢
d,`

 ⌧ `
K

.

Remark. For a fixed dimension d, the three regimes for the function ` 7! b⇢
d,`

can
be informally described as follows: for small values of the phase index `, the function
decreases as (1/`); for moderate values of `, the function is polynomially decreasing
(with an exponent which depends on the position of ` in the range); finally, in the large
range, the function has an exponential decrease.

Third step. We now state our conjecture.

Conjecture. Denote by ⌧
k

the algebraic number which is the unique root < 1 of the
equation xk+1 + x � 1 = 0 and appears in the worst-case analysis of the algorithm in k
dimensions. Then, there are two absolute constants a� > 0 and a

+

for which the constant
⇢
d,`

which appears in Theorem 1(b) satisfies for any d > 1, ` 2 [1, d],

⇢
d,`

= A(d, `) · ⌧ `
d�`

1� ⌧ `
d�`

with a�  A(d, `)  a
+

. (64)

Fourth Step. We now (try to) study the family A(d, `). We recall that A(d, `) satisfies
A(d, `)  B(d, `), and B(d, `) is itself expressed in (60) and (61) with ratios ✏

i

. We have
then to estimate each ratio defined in (59), and we provide estimates of values V[F ](0)
which intervene in such ratios.

Lemma 2. For any d � 2, any k 2 [2..d�1], any F of class C1 on J
(k)

, the following
estimate of V[F ](0) involves the integral I

(k)

[F ] of F on J
(k)

,

V[F ](0) =
⇣(d+ 1� k)

⇣(k)
I
(k)

[F ] + I
(k)

[1]Z(d, k) O (|F ||
1

)
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where Z(d, k) = ⇣(d) for k � 3 and Z(d, 2) = ⇣ 0(2). Moreover, the constant in the O-term
is uniform, and does not depend on d, k, F .

Proof. By Lemma 1, the operator V transforms a (general) function F defined on J
(k)

into the function
X

h2M
|D[h]|�(d+1) F � h

defined on J
(1)

. Here, the set M gathers all the inverse branches which intervene in the
execution of the algorithm after the strict `-th phase. Then, the equality holds
n

h(0) | h 2 M
o

=
[

q�1

A
q

, with A
q

:=

⇢✓

p
1

q
, . . . ,

p
k

q

◆

2 J
(k)

| gcd(p
1

, p
2

, . . . , p
k

, q) = 1

�

,

and entails another expression for V[F ](0), i.e.,

V[F ](0) :=
X

h2M
|D[h](0)|�(d+1)F � h(0) =

X

q�1

1

qd+1�k

0

@

1

qk

X

x2A

q

F (x)

1

A . (65)

Here, the last factor is the “coprime” Riemann sum (with denominator q) associated with
the integral I

(k)

[F ] of the function F on the simplex J
(k)

. It is denoted as bR
q

[F,J
(k)

]
and studied for instance in [26]. Applied to our context, this proves that the “coprime”
Riemann sum satisfies

bR
q

[F,J
(k)

] =
1

⇣(k)
I
(k)

[F ] +

✓

1

qk�1

◆

I
(k)

[1]O (|F ||
1

) , for k � 3 ,

bR
q

[F,J
(2)

] =
1

⇣(2)
I
(2)

[F ] +

✓

log q

q

◆

I
(2)

[F ]O (|F ||
1

) .

With Eq. (65), this leads to the final estimate of V[F ](0). 2

When replacing the general function F of the Lemma by our functions of interest (which
themselves depend on d and k), the Lemma provides an estimate of each ✏

i

of Eq. (59),
which is probably useful. But, our knowledge of the function � is not precise enough,
and we do not know how to use it for proving that each ✏

i

is bounded. We thus do not
succeed in proving that the family A(d, `) is bounded.

Final result. We now collect the four steps of our study, and obtain our final result:

Proposition 14. There are (at least) three regimes for the function ` 7! ⇢
d,`

which
involve the family of constants A(d, `) together with the constants a 7! K(a) which
appear in the “moderate” case of Proposition 13.

8

>

>

>

>

>

<

>

>

>

>

>

:

For ` small, ` = o(d/ log d) : ⇢
d,`

⇠ A(d, `)

✓

d

log d

◆

1

`
,

For ` moderate, ` = ad : ⇢
d,`

⇠ A(d, ad)K(a)

✓

log d

d

◆

a/(1�a)

,

For ` large, ` > d�K : ⇢
d,`

 A(d, d�`) ⌧ `
K

.

Under the validity of the conjecture, the family A(d, `) is uniformy bounded for any (d, `)
with d � 2, and ` 2 [2, d].
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7.5. Experimental studies for the family of constants ⇢
d,`

.

We have performed an experimental study that is summarized in Figures 5 and 6.
These experiments provide experimental values for ⇢

d,`

:= E
N

[C
d,`

] which are denoted
as e⇢

d,`

. Comparing experimental values e⇢
d,`

with the theoretical values b⇢
d,`

will give hints
on the behaviour of the family A(d, `) and thus on the validity of our conjecture.

Figure 5 exhibits three experimental curves which are the graphs of the function
` 7! 1+ e⇢

d,`

. They are performed for dimensions d 2 {1000, 2000, 4000}, and small phase
indices ` 2 [1..50]. They are obtained with an input size log

2

N = 103 and a number
M = 104 of experiments. The conjecture predicts that the curves are hyperbols, and this
appears to be actually the case.
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Fig. 5. Three experimental curves ` 7! ⇢d,` obtained with an input size log2 N = 10

3
for

dimensions d 2 {1000, 2000, 4000}, and small phase indices ` 2 [1..50]

The table of Figure 6 gathers experimental values e⇢
d

for ⇢
d

:= E
N

[R
d

] and e⇢
d,`

for
⇢
d,`

:= E
N

[R
d,`

]�1 for dimensions d 2 {20, 50, 100, 250} and two groups of phase indices
`: the columns on the left gather experiments performed for small values of `, whereas
the colums on the right gather experiments obtained for moderate values of `. The values
in parentheses are the theoretical values b⇢

d,`

obtained in Proposition 13. The values in

brackets are the ratios eA(d, `) := e⇢
d,`

/b⇢
d,`

: they should be close to 1. Moreover, for small
values of `, the values in h·i are the ratios (1 + e⇢

d,`

)/(1 + e⇢
d,1

) between experimental
values for successive phases: they have to be compared to the sequence ` 7! 1/`.

We observe the following two experimental facts:

(a) Small values of phase indices `. The conjecture predicts that, for small values
of `, the ratios (1 + e⇢

d,`

)/(1 + e⇢
d,1

) will be close to 1/`. There is a very good fit
indeed between the values in h·i of the fourth line and the sequence ` 7! 1/`.
Always for small values of the index phase `, the experimental ratios eA(d, `) :=
e⇢
d,`

/b⇢
d,`

(shown in brackets at the third line on the left) appear to be close enough
to 1 (when d is large enough).
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(b) Moderate values of phase indices `. The experimental values eA(d, `) for the
ratio A(d, `) (shown in brackets at the third line) seem to show the existence of an
upper bound for the family A(d, `), that seems at most equal to 2. However, the
existence of a strictly positive lower bound a� as stated in the conjecture appears
to be more problematic: the function d 7! eA(d, `) seems to be decreasing both
on a fixed column (when `/d is fixed and d is increasing) and on a fixed line too
(when d is fixed and ` is increasing). This existence of a� seems possible on the
“lower moderate” range (for values `  d/2), but is not clear at all in the “higher
moderate” range ....

EN [Rd] ⇢d,` := EN [Rd,`]� 1

HHHHd
`

1 2 3 4 d/5 2d/5 d/2 3d/5

20 35.3 7.07 3.16 1.88 1.24 1.25 0.33 0.17 0.08

(6.67) (3.34) (2.23) (1.67) (0.66) (0.39) (0.30) (0.23)

[1.05] [0.94] [0.84] [0.74] [1.89] [0.84] [0.56] [0.34]

h1.0i h0.51i h0.36i h0.28i

50 91.5 14.58 6.91 4.38 3.10 0.85 0.17 0.07 0.028

(12.8) (6.39) (4.26) (3.19) (0.56) (0.26) (0.16) (0.09)

[1.13] [1.08] [1.02] [0.97] [1.51] [0.65] [0.43] [0.31]

h1.0i h0.51i h0.35i h0.26i

100 185.9 25.5 12.4 8.02 5.79 0.652 0.105 0.036 0.0109

(21.7) (10.9) (7.24) (5.43) (0.49) (0.181) (0.092) (0.039)

[1.17] [1.13] [1.10] [1.06] [1.35] [0.58] [0.39] [0.28]

h1.0i h0.506i h0.340i h0.256i

250 470.83 53.79 26.71 17.46 13.02 0.46 0.049 0.0121 0.002

(45.2) (22.6) (15.1) (11.32) (0.41) (0.11) (0.044) (0.013)

[1.19] [1.18] [1.15] [1.15] [1.12] [0.44] [0.27] [0.15]

h1.0i h0.505i h0.337i h0.256i

Fig. 6. This table gathers experimental values for the family of mean values, namely, e⇢d for

⇢d := EN [Rd] and e⇢d,` for ⇢d,` := EN [Rd,`] � 1. These experiments are obtained with an input

size log2 N = 5 · 103 for dimensions d 2 {20, 50, 100, 250} and two groups of phase indices `:
the columns on the left gather experiments performed for small values of `, whereas the colums

on the right gather experiments obtained for moderate values of `. The values in parentheses

are the theoretical values b⇢d,` obtained in Proposition 13. The values in brackets are the ratios

eA(d, `) := e⇢d,`/b⇢d,`: they should be close to 1. Moreover, for small values of `, the values in h·i
are the ratios (1 + e⇢d,`)/(1 + e⇢d,1) between experimental values for successive phases: they have

to be compared to the sequence ` 7! 1/`.

In conclusion, our conjecture seems to be true in the “small” range. In the “moderate”
range, the family A(d, `) appears to admit an upper bound, but the existence of a lower
bound is not clear.
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8. Conclusion and open problems.

We have precisely described the probabilistic behaviour of the BrunGcd(d) algorithm,
on the set ⌦

(d,N)

which gathers the vectors in d + 1 dimensions whose components are
all at most equal to N . We have then studied its behaviour when d is fixed and N ! 1,
which is defined via a set of constants a

d

, ✓
d

,�
d

, ⇢
d

which only depends on the ambient
dimension. We have used fine properties of the invariant measure of the underlying dy-
namical system, which has not the same behaviour as in the one dimensional-case (the
Euclid algorithm associated with the Gauss map). This proves in particular that the
mean number of subtractive steps is finite, contrarily to the case d = 1. We have also
elucidated the asymptotics of these constants when d ! 1 (at least for the first three
constants). All these constants play an important role in the description of the Brun
dynamical system in d dimensions, and our study leads to a better understanding of the
Brun dynamics when the dimension d tends to 1, which had never been thoroughly
studied, except for some aspects in [14].

The present study also leads us to a precise description of the Brun rational tra-
jectories. As highlighted in Section 5.7, our dynamical methods prove that these finite
trajectories behave in the average-case exactly as the truncated Brun real trajectories.
We may use this knowledge in order to study simultaneous approximations associated
with rational vectors, which corresponds to the real algorithmic situation.

However, we stress that we do not analyze the behaviour of the algorithm BrunGcd (d)
on the set ⌦

(d,N)

when both the size N of the inputs and the ambient dimension d tend
to 1. The methods presented here do not allow such an analysis, as they only provide
the dominant terms of the asymptotics, without remainder terms. For performing a more
detailed analysis, which would lead to asymptotic estimates for (d,N) ! 1, we need to
know the behaviour of our quasi-inverses Q

t,(d)

when t is on the left of the vertical line
<t = 1. If there exists a vertical strip on the left of <t = 1 where the quasi-inverse is of
polynomial growth when |=t| ! 1 (what we call a VSPG), then is possible to “replace”
the Delange Theorem by the Perron formula, which now provides remainder terms. In
the case of the Euclid algorithm (case d = 1), the existence of a VSPG is based on deep
results due to Dolgopyat [11] and was proven in [3]. The article [3] exhibits an asymptotic
expansion for the mean number of steps

E
N

[M
1

] = a
1

logN + p
1

+O(N�↵) (N ! 1) .

Here, the exponent ↵ is related to the width of the vertical strip, and the constant p
1

is a
variant of the Porter constant: this is a computable constant, with an intricate expression
due to Porter which involves many characteristics of the Gauss dynamical system. (See
[13] for a precise discussion on variants of the Porter constant.)

If we dream a little bit, we could expect a VSPG in d dimensions associated with a
width ↵

d

; in this case, there would be an asymptotic expansion for the mean number of
steps during the first phase, namely

E
N

[M
d

] = a
d

logN + p
d

+O
d

(N�↵

d) (N ! 1) ,

where the exponent ↵
d

is the width of the VSPG in d dimensions, and the constant p
d

is the extension of the Porter constant in d dimensions. In the same vein, we would also
obtain a similar result for the mean number of steps during the other phases

E
N

[R
d

] = ⇢
d

+O
d

(N�↵

d) (N ! 1) .
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Then, the mean value of the total number of steps would be

E
N

[L
d

] = a
d

logN + (p
d

+ ⇢
d

) +O
d

(N�↵

d) (N ! 1) .

Even in the case when such asymptotic estimates (for N ! 1) could be proven for each
dimension d, a complete analysis for (d,N) ! 1 would depend on the asymptotics of
the three constants a

d

, ⇢
d

, p
d

for d ! 1. The first one is known, and we have stated a
plausible conjecture about the second one. However, the asymptotic study of the Porter
constant p

d

seems very di�cult to perform, and we have no idea, even about a possible
conjecture.

The present article also proves that the BrunGcd algorithm is not e�cient. This is
probably the case for all the gcd algorithms which are based on multidimensional con-
tinued fraction algorithms in high ambient dimensions. For instance, the Gcd algorithm
based on the Jacobi-Perron dynamical system has probably the same principal features
as the BrunGcd algorithm, even if it is more complex to study: it is indeed not com-
plete (although Markovian), and its invariant density is not known at all, whereas we
strongly rely here on the “semi-explicit” form of the Brun invariant density to derive the
behaviour of the Brun algorithm in high dimensions.

Finally, it would be interesting to compare with the extended gcd algorithm based
on the LLL algorithm and described in [24]. The analysis of such an algorithm is surely
intricate, as its underlying system is quite complex to deal with.
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[16] H. Hennion. Sur un théorème spectral et son application aux noyaux lipchitziens.
Proc. Amer. Math. Soc., 118(2):627–634, 1993.

[17] C. T. Ionescu Tulcea and G. Marinescu. Théorie ergodique pour des classes
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