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Abstract

A word u is called 1-balanced if for any two factors v and w of u of equal length, we have
−16|v|i − |w|i61 for each letter i, where |v|i denotes the number of occurrences of i in the
factor v. The aim of this paper is to extend the notion of balance to multi-dimensional words.
We 0rst characterize all 1-balanced words on Zn. In particular, we prove they are fully periodic
for n¿ 1. We then give a quantitative measure of non-balancedness for some words on Z2 with
irrational density, including two-dimensional Sturmian words. c© 2002 Elsevier Science B.V.
All rights reserved.

1. Introduction

A word u is called 1-balanced if for any two factors (i.e., 0nite subwords) v and w
of u of equal length, we have −16|v|i − |w|i61 for each letter i. Here |v|i denotes
the number of occurrences of i in the factor v. This notion has been widely studied
from many points of view, for instance in ergodic theory [6], in number theory [29],
in theoretical computer science [7], and in operations research [1]. In the literature,
a 1-balanced word is usually called balanced. We shall use the term balanced for a
weaker property.
1-Balanced words were 0rst studied by Morse and Hedlund in their seminal papers

[21, 22] published in 1938 and 1940. They studied 1-balanced words from a two-
letter alphabet with as possible domains the integers, the positive integers and a 0nite
interval I . We call such words Z-words, N-words and F-words, respectively. It is now
known [14] that every 1-balanced N-word and every 1-balanced F-word is a subword
of a 1-balanced Z-word. A classi0cation of all 1-balanced Z-words therefore induces
classi0cations of 1-balanced N-words and F-words. Morse and Hedlund showed that
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each letter of a 1-balanced word has a density (i.e., asymptotic frequency). They fur-
ther proved that there are three subclasses of 1-balanced Z-words: periodic, irrational
and skew. The letters of irrational words have irrational densities, the others have ra-
tional densities. For the reader’s convenience we give the complete classi0cation in
Section 3.1.
1-Balanced words have the remarkable property that they can be characterized in

some seemingly independent ways (cf. [19]). For 1-balanced Z-words and 1-balanced
N-words with letters 0 and 1 where the letter 1 has density 
 we have as alternative
de0nitions:

(a) the codings of a rotation of an (open, half-open or closed) interval of length
2�
 on the unit circle (so-called interval exchange);
(b) in case 
 is irrational, the words for which the number of distinct factors of length

n is at most n + 1 for every positive integer n (low-complexity words). 1-Balanced
words with rational density have also such low complexity.
Moreover, the periodic and irrational 1-balanced words with density 
¿0 are precisely
(c) the words for which there is some real constant � such that the symbol at place

n either equals �(n+ 1)
+ �� − �n
+ �� for all n, or �(n+ 1)
+ �� − �n
+ �� for
all n, (Beatty sequences);
(d) the words for which there exists a real constant � such that the letters 1 occur

at the places �n
−1 + �� for all n or at the places �n
−1 + �� for all n.

The original de0nition of 1-balanced word is of conceptual interest in queueing theory.
Because of (a) the 1-balanced irrational N-words, often called Sturmian words or
Sturmian sequences, play an important role in ergodic theory. Characterization (b) is
more relevant for theoretical computer science and characterizations (c) and (d) for
number theory.
It is easy to create from each 1-balanced word belonging to a given alphabet a

1-balanced word belonging to a larger alphabet by replacing one letter cyclically by
some other letters (see for instance [15, 27]). By doing so, the two least frequent
letters in the new word have the same densities. It is a classical open problem to
characterize all 1-balanced words to 0nite alphabets where the letters have distinct
densities (see [11]). For two-letter words this boils down to determining all 1-balanced
words of density �=1=2. According to Fraenkel’s conjecture, for every m¿2 there is
essentially only one 1-balanced word from m letters with distinct densities. This has
been established for m=3; 4; 5; 6 in [1, 29], cf. [15, 28]. Note that on the other hand
we can reduce 1-balanced words from m letters to 1-balanced words from 2 letters by
identifying all but one letters.
Some authors have generalised the notion of 1-balance to C-balance by requiring

−C6|v|i − |w|i6C, for all factors v, w with |v|= |w|, and for each letter i, where C
is some constant. It was believed that Arnoux–Rauzy sequences [2], and more gen-
erally Episturmian words to a 3-letter alphabet [8], would be 2-balanced. An exam-
ple of an Arnoux–Rauzy sequence is constructed in [6] which is not C-balanced for
any C¿0. As an application of this result, the authors of [6] deduce that there exist
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Arnoux–Rauzy sequences which are not natural codings of a rotation on the two-
dimensional torus. Similar studies have been made for interval exchanges in [31]. We
note that C-balancedness for C¿1 without further assumption seems to be uninterest-
ing because of the following observation. The number of 1-balanced words of length
n is polynomial in n [18, 20] and being 1-balanced is therefore rare. The number of
C-balanced words of length n for C¿1 is exponential in n [18, 13] and therefore being
C-balanced is relatively common. At the end of Section 3, we shall show a similar
phenomenon for higher dimensions.
The aim of this paper is to extend the notion of balance to multi-dimensional words.

Instead of intervals we require now that the number of occurrences of each letter in
two equal (rectangular) blocks diFer by at most 1. In Section 3 we shall characterize
all 1-balanced words on Zn. The following result is a consequence of our theorems.
The density of a 1-balanced word to {0; 1} denotes here the asymptotic frequency of
the letter 1.

Corollary. Let f :Zn →{0; 1} be 1-balanced. Then f has a density 
. Furthermore
when n=2;


 ∈ {0; 15 ; 13 ; 25 ; 12 ; 35 ; 23 ; 45 ; 1}:
When n¿3; then 
 ∈ {0; 13 ; 12 ; 23 ; 1}. If 
 �=0; 1; then f is fully periodic.

Here fully periodic means that the Z-module of periods has full rank. Note that there
are no 1-balanced Z-words with irrational density in the multi-dimensional case. Note
also that, since the Sturmian words cannot be extended to 1-balanced words on Z2, not
every 1-balanced Z-word can be extended to a 1-balanced Z2-word. In fact, we shall
characterize all 1-balanced words on all in0nite intervals and it will turn out that there
exist irrational words in multi-dimensional intervals if and only if the dimension is 2
and the width of the strip is 2 (cf. Theorem 3). In all other cases, the behaviour is as
in the corollary (cf. Theorem 4). The 1-balanced words in dimension 2; 3; and greater
than 3 are given in Sections 3.2–3.4, respectively.
All the examples we provide here have rational density. It is thus natural to ask

whether there do exist balanced words on Z2 to a two-letter alphabet with irrational
density. There is a natural candidate to be simultaneously balanced and of irrational
density: consider a word on Z2 de0ned by shifting from row to row a given Sturmian
word on Z with the periodicity vector (1;−1). We prove in Section 4.1 that such a word
cannot be balanced. The proof is based on the estimates of [5] for

∑
16j6N ({j
}−1=2),

involving Ostrowski’s numeration system (where {x} denotes the fractional part of x,
that is x− �x�). This leads us to ask whether the densities of the letters of a balanced
word on Z2 are rational.
We also consider in Section 4.2 balance properties for two-dimensional Sturmian

words. These words correspond to the approximation of a plane by a discrete plane
[30]. We prove they are not balanced and we provide a quantitative measure of their
non-balancedness, based on the expression of [24] for

∑
16j6N ({j
 + �} − 1=2).
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Consequently, these two-dimensional words do not fully generalise all the properties
of classical Sturmian words.

2. De�nitions and basic results

2.1. Balance properties

Let n be a positive integer. Let a; b∈Zn; a=(a1; : : : ; an); b=(b1; : : : ; bn). We write
a¡b if ai¡bi for i=1; : : : ; n: By the block [a; b), we mean the set of the vectors
(x1; : : : ; xn)∈Zn satisfying ai6xi¡bi for i=1; : : : ; n. We also denote the block [a; b)
by [a; b − 1] or ∏n

j=1 [ai; bj) and denote its volume
∏n

i=1 (bi − ai) by |a; b|. Further
|a; b|i denotes the number of letters (i.e., function values) i in the block [a; b). In the
two-dimensional case an m by n block means a block [a; b), where b1 − a1 = m and
b2 − a2 = n. We also denote this block by [a1; b1 − 1]× [a2; b2 − 1].
We call I an (n-dimensional) interval if I is the Carthesian product I1× I2×· · ·× In

where Ii is Z or N or some 0nite interval of integers for i=1; 2; : : : ; n. In the sequel
I is such an interval. If I is not a block, it is called an in=nite interval.
We call f : I →{0; 1} a 1-balanced word if the numbers of vectors x with f(x)= 1

in any two subblocks (i.e., factors) [a; a + c); [b; b+ c) of I diFer by at most 1.
Let A be a 0nite alphabet. Let C¿0. We call f : I →A C-balanced on the letter

i∈A if the numbers of vectors x with f(x)= i in any two subblocks [a; a+c); [b; b+
c) of I diFer by at most C.
A function f is balanced if there exists a constant C such that f is C-balanced for

every letter from the alphabet A.

2.2. Density

We say that f : I →{0; 1} has density 
 if the quotient of the number of vectors x
with f(x)= 1 in [a; b) and the volume |a; b| tends to 
 when [a; b) runs in any way
through a non-decreasing sequence of blocks with union I . We similarly de0ne the
density of the letter i∈A in the word f : I →A to be 
 if the limit of the quotient of
the number of vectors x with f(x)= i in [a; b) and the volume |a; b| tends to 
 when
[a; b) runs in any way through a non-decreasing sequence of blocks with union I .
If f is C-balanced, then the number of letters 1 in some block [a; a+ c) is in some

interval [N; N + C], where N is an integer independent of a. We denote the largest
integer N with this property by Nc.
Let I be an in0nite interval and f : I →{0; 1} 1-balanced. Without loss of generality

we may assume that N⊆ I1. We shall do so tacitly in the sequel. We 0rst show that
Nc depends only on the volume |0; c| of the block, subsequently that every 1-balanced
function has some density 
 and 0nally that Nc = �
× |0; c|� or Nc = �
× |0; c|� − 1.

Lemma 1. Let c¿0; d¿0 such that for some a blocks [a; a + c) and [a; a + d) =t
in I . If f is 1-balanced and |0; c|= |0; d |; then Nc =Nd .
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Proof. Suppose |0; c|= |0; d |. It suIces to prove the theorem with d =(|0; c|; 1; : : : ; 1).
Let c=(c1; : : : ; cn); d =(d1; 1; : : : ; 1). Let k ∈N. Put e=(kc1d1; c2; : : : ; cn). Then the
block [b; b+ e) can be partitioned into blocks of the form [a; a+ c) and into blocks of
the form [a; a+ d), where a varies. Put m= |b; b+ e|=|0; c|. As |0; c|= |0; d |, we have
m= |b; b+ e|=|0; d | and mNc6Ne6m(Nc +1) and mNd6Ne6m(Nd +1). If |a; a+ c|1
is independent of a, then |a; a+d |1 is independent of a by 1-balancedness on [b; b+e),
whence Nc =Nd by the maximality condition in the de0nition of Nc. If |a; a + c|1 is
non-constant as a function of a, then its values can be Nc and Nc + 1. In this case
|a; a + d |1 assumes both the value Nd and Nd + 1 and we conclude Nc =Nd too.

In the sequel, we write Nk for Nc with k := |0; c|. The following lemma shows that
Nk=k has some limit 
.

Lemma 2. If f is 1-balanced on I; then f has some density 
.

Proof. By Lemma 1 we may restrict our attention to blocks of the form (∗; 1; : : : ; 1).
Let c1; d1 ∈Z¿0 and c=(c1; 1; : : : ; 1); d =(d1; 1; : : : ; 1)∈Zn

¿0. Put e=(c1d1; 1; : : : ; 1).
Then any subblock [b; b+ e) of I can be partitioned into blocks of the form [a; a+ c)
and into blocks of the form [a; a+ d). Put m1 = |0; e|=|0; c| and m2 = |0; e|=|0; d |: Then

m1Nc6Ne6m1(Nc + 1)

and

m2Nd6Ne6m2(Nd + 1):

Hence −m16m1Nc − m2Nd6m2. This implies

− 1
|0; c|6

1
|0; c|Nc −

1
|0; d |Nd6

1
|0; d | :

We infer that (Nk=k)k∈N is a Cauchy sequence and is therefore convergent to some
limit, 
 say. Thus f has density 
.

Lemma 3. If f is 1-balanced and has density 
; then Nk = �k
� or �k
� − 1.

Proof. Since a block of size k contains Nk or Nk + 1 ones, and on average k
, we
have Nk6k
 and Nk + 1¿k
.

We obtain similarly if f is C-balanced on the letter i.

Lemma 4. Let A be a =nite alphabet. Let f : I →A be C-balanced on the letter i.
Let c; d ∈Zn

¿0 such that for some a blocks [a; a+ c) and [a; a+ d) =t in I and that
|0; c|= |0; d |. Then

|Ni
c − Ni

d |6C − 1
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and the letter i has a density; 
i say; satisfying

∀N ∈ Nn; ‖0;N |i − 
i|N‖6C:

2.3. Bounded remainder sets

Let f be a word on Z2 with values in a 0nite alphabet A. In analogy to what
Kesten [16], Rauzy [25] and Ferenczi [10], de0ne for dynamical systems we call a set
A⊆A a bounded remainder set if there exist two real numbers 
 and C such that

∀N ∈ Z¿0 |Card{n ¡ N ; un ∈ A} − 
N |6C:

See also [9] for a connected generalisation of the balance property in the case of a
Sturmian dynamical system.
We recall the following classical discrepancy result, which will be of some use in

the sequel. The “if” part is due to Ostrowski [23], the “only if” part to Kesten [16].

Theorem 1 (Ostrowski [23], Kesten [16]). Consider a rotation R
 of irrational angle

 on R=Z. Let I be an interval in R=Z. There exists a real number C such that

∀N ∈ Z¿0 |Card{n ¡ N ; n
 ∈ I} − 
N |6C

if and only if its length |I | equals the fractional part of k
 for some nonzero
integer k.

We extend the de0nition to multi-dimensional words. Let f :Zn →A be a word
with values in A. A set A⊆A is called a bounded remainder set for f if there exist
two real numbers 
 and C such that

∀N ∈ Zn
¿0 |Card{x ∈ [0;N); f(x) ∈ A} − 
|N‖6C:

Note that a set {i} with i∈A is a bounded remainder set if and only if there is
some C such that f is C-balanced on the letter i. Indeed the “if” part is a direct
consequence of Lemma 4. The “only if” part is a direct consequence of the triangle
inequality.

3. A complete description of 1-balanced functions

In this section, we classify all 1-balanced words f : I →{0; 1} on in0nite intervals
I . We deal in subsequent subsections with dimension 1; 2; 3 or greater than 3. Without
further reference we shall use the following observations which classify all 1-balanced
functions of densities 0 and 1 and show that we can restrict our attention to density at
most 1

2 .
Suppose f is 1-balanced and has density 
. Then 06
61. By interchanging all

letters 0 and 1 if 
¿1=2, we may restrict our attention to the case 06
61=2. If

=0, then there exist arbitrarily large blocks without 1’s so that every arbitrarily large
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block has at most one 1. Therefore, the letter 1 occurs at most once. Thus, only the
following 1-balanced functions are possible for density 0:
• f=0;
• f(x0)= 1 for some x0 ∈Zn and f(x)= 0 for x �= x0:

3.1. The one-dimensional case

Let I =N or Z. Let f : I →{0; 1} be 1-balanced of density 
. If 
=0 we consider
the complementary word with 
=1. Let S =(si)i∈ I be the sequence of increasing
integers for which f(si)= 1. Below, we shall classify all 1-balanced words in terms
of the sequence (si). The classi0cation is due to Morse and Hedlund [22], but we give
a new concise self-contained proof.

Lemma 5. For i; j∈ I with i¡j we have

(j − i)
−1 − 16sj − si6(j − i)
−1 + 1

where at most one of the equality signs can occur.

Proof. On average, we have j − i=(sj − si)
. So there are pairs i; j with sj − si¿
(j− i)
−1 and pairs with sj − si6(j− i)
−1. Since [si+1; sj) contains exactly j− i−2
ones and [si; sj + 1) contains j − i ones, the 1-balancedness of f implies that the
diFerence sj − si with j − i 0xed can attain at most two (consecutive) values. This
proves the lemma.

Lemma 6. For every �∈R we have

si¿�i
−1 + �� for all i ∈ I

or

si6�i
−1 + �� for all i ∈ I:

Proof. Suppose the assertion is false. Then there exist a real number � and two integers
i; j∈ I such that

si6�i
−1 + �� − 1 and sj¿� j
−1 + ��+ 1:
Suppose i¡j. Note that

� j
−1 + �� − �i
−1 + �� ¿ (j − i)
−1 − 1:

Hence sj − si¿(j− i)
−1 + 1: This contradicts Lemma 5. The case i¿j is similar.

Theorem 2 (Morse and Hedlund [21]). Let I=N or Z. Let f : I→{0; 1} be 1-bala-
nced with density 
¿0: Let S =(si)i∈I be the sequence of increasing integers for which
f(si)= 1: Then; one of the following three cases occur; where � is some suitable real
number.
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(i) (periodic case) 
 is rational and si= �i
−1 + �� for i∈ I .
(ii) (irrational case) 
 is irrational and si= �i
−1 + �� for i∈ I or si= �i
−1 + ��

for i∈ I:
(iii) (skew case) 
 is rational and there are �∈{−1; 1} and i0 ∈ I such that

si = �i
−1 + �� for i ∈ I; i ¡ i0;

si = �i
−1 + � + � � for i ∈ I; i¿i0;

where  −1 is the numerator of the rational number 
.

Proof. Put �0 = inf{�|�i
−1 +��¿si for i∈ I}. Then �i
−1 +�0�¿si for all i∈ I and
�i
−1 + ��6si for all i∈ I when �¡�0 by Lemma 6. It follows that si= �i
−1 + �0�
if i
−1 + �0 =∈Z and si= �i
−1 + �0� or si= �i
−1 + �0� − 1 otherwise.
If 
 =∈Q, then i
−1 + �0 ∈Z can happen for only one value of i. Thus, if it is not

true that si= �i
−1 + �0� for all i, then there is an i0 such that si= �i
−1 + �0� for
i �= i0 and si0 = i
−1 + �0 − 1∈Z: Then si= �i
−1 + �0 − 1� for i∈ I: This proves the
claim for the irrational case, with �= �0 in the former case and �= �0 − 1 in the
latter.
If 
∈Q and it is not true that si= �i
−1 + �0� for i∈ I; then i
−1 + �∈Z for an

arithmetic progression of values i∈ I . If si always attains the higher value, we have
si= �i
−1 +�0� for all i∈ I . If si always attains the lower value, we have si= �i
−1 +
�0−  � for all i∈ I . This yields periodic cases with �= �0 and �= �0−  , respectively.
The remaining case is the skew case where si assumes sometimes the high integer

value and sometimes the low integer value. If a high integer value is followed by a
low integer value, then we have the equality sign in the left inequality of Lemma 5. If
it jumps from a low integer value to a high integer value, then we have the equality
sign in the right inequality of Lemma 5. Since not both equality signs can occur, there
can be only one such a jump. If the jump is from high to low, then we have the
former skew case with �=−1 and �= �0. If the jump is from low to high at the same
transition, then we have the latter skew case with �=1 and �= �0 −  .

We call a word Sturmian if it corresponds with case (ii).

3.2. The two-dimensional case

The 1-balanced words on two-dimensional in0nite intervals split into two classes with
totally diFerent behaviour. The 0rst class of intervals has width 2 and is described in
Theorem 3 and is closely related to the one-dimensional case. The class of intervals
with width ¿2 is given in Theorem 4 and contains only fully periodic words with an
exception when 
=0; 1:
We recall that all 1-balanced functions with density 
=0; 1 have been classi0ed

before and that by interchanging 0’s and 1’s if necessary we can secure that the
density 
 is at most 12 . In particular, in the following theorem, we may assume without
loss of generality, that there are no columns with two 1’s.
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Theorem 3. Let I be I1× [0; 1] with I1 ∈{N;Z}: Let f : I →{0; 1} be 1-balanced of
positive density and such that f(x; 0) + f(x; 1)61 for x∈ I1. Then (F(x))x∈ I1 with
F(x) :=f(x; 0) + f(x; 1) is a 1-balanced word on I1 (as described in Theorem 2).
Moreover; if F(x)=F(y)= 1; F(z)= 0 for x¡z¡y then either f(x; 0)=f(y; 1)=1
or f(x; 1)=f(y; 0)=1.

On the other hand; any function f belonging to the set {f(x; y)|x∈ I1; y∈{0; 1}}
which corresponds with some 1-balanced function F : I →{0; 1} in the above indicated
way is 1-balanced.

Proof. By the condition imposed on f, we have F : I1→{0; 1}: Since f is 1-balanced
on m by 2 blocks, F has to be 1-balanced on blocks of length m for every m. Thus,
F is a 1-balanced word as described in Theorem 3.
On the other hand, suppose F : I1→{0; 1} is a 1-balanced word as described in

Theorem 2. Split (si)i∈I in two subsequences s2i and s2i+1 and de0ne f : I →{0; 1}
by f(x; 0)=1 if and only if x∈ s2i, f(x; 1)=1 if and only if x∈ s2i+1. Then f is
1-balanced on all m by 2 blocks and f(x; 0) +f(x; 1)61 for x∈ I1. Suppose f is not
1-balanced on some m by 1 block. Then, there exist a; b∈ I1 such that the number of i’s
with s2i ∈ [a; a+m) diFers more than one from the number of i’s with s2i+1 ∈ [b; b+m).
This implies that the number of i’s with si ∈ [a; a+m) diFers more than one from the
number of i’s with si ∈ [b; b + m). The latter statement contradicts the 1-balancedness
of F .

In the remaining case of in0nite two-dimensional intervals I we may assume without
loss of generality, that I contains [0;∞)× [−1; 1].

Theorem 4. Let I be a two-dimensional interval which contains
[0;∞)× [−1; 1]. Let f : I →{0; 1} be 1-balanced of density 
.

Then 
∈{0; 15 ; 13 ; 25 ; 12 ; 35 ; 23 ; 45 ; 1}:
Moreover; by complementation; reAection and translation f can be transformed

into g with
if 
=0 or 1; then g(i; j)= 0 for all i and j
or g(0; 0)=1 and g(i; j)= 0 otherwise;
if 
= 1

5 or 4
5 ; then g(0; 0)=1; g(1; 0)= g(2; 0)= g(3; 0)= g(4; 0)=0 and g has

period lattice with basis (5; 0); (2; 1);
if 
= 1

3 or 2
3 ; then g(0; 0)=1; g(1; 0)= g(2; 0)=0 and g has period lattice with

basis (3; 0); (1; 1);
if 
= 2

5 or 3
5 then g(0; 0)= g(2; 0)=1; g(1; 0)= g(3; 0)= g(4; 0)=0 and g has pe-

riod lattice with basis (5; 0); (1; 1);
if 
= 1

2 ; then g(0; 0)=1; g(1; 0)=0 and g has period lattice with basis (2; 0); (1; 1).
On the other hand, all the above functions are 1-balanced on every interval I .

Note that it is not stated that the domain of g is I . By reMection and translation it
may well be [−3;∞)× [−1; 1] or (−∞; 8]× [−7;∞).
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We give some lemmas about 1-balancedness on 0nite blocks which will be used in
the proof of Theorem 4. They may also be used to derive a complete characterization
of all 1-balanced words on all two-dimensional 0nite intervals (i.e., blocks). Lemma 7
is a variant of Lemma 1.

Lemma 7. Let l; m∈N with l|m. Let f be 1-balanced on some m by l block. If
every m by 1 block contains at least (at most) k letters 1; then every m=l by l block
contains at least (at most) k letters 1.

Proof. Obviously, an m by l block contains at least (at most) kl letters 1. Let B denote
any m=l by l block. Then the m by l block can be split into l blocks B. If one of the
B’s contains less (more) than k letters 1, then another B has to contain more (less)
than k letters 1. This causes a contradiction with the 1-balancedness of f.

Lemma 8. Let m∈N¿3. Let f be 1-balanced on an interval containing the block
[0; m]× [−1; 1]. Suppose f(0; 0)=f(m; 0)=1 and f(i; 0)=0 for 0¡i¡m. Then
m=5.

Proof. Since there is an m− 1 by 1 block with only 0’s, every m− 1 by 1 block has
at most one 1. By Lemma 7 every 1 by 3 block has at most one 1. Since there is an
m+1 block with two 1’s, every m+1 by 1 block has at least one 1. By Lemma 7 every
�(m − 1)=2� by 2 block contains at most one 1. Hence f(0;±1)=f(1;±1)= · · ·=
f(�(m− 3)=2�;±1)=0. By the same lemma every �(m+1)=3� by 3 block contains at
least one 1. Hence, there exists an i with 0¡i6�(m+1)=3� and a j with −16j61 and
f(i; j)= 1. Thus, �(m+1)=3�¿�(m−3)=2� which implies that m∈{4; 5; 6; 7; 8; 9; 10; 12}.
If m∈{7; 9}, then we obtain by considering (m− 1)=2 by 2 blocks that f(m;±1)=

f(m− 1;±1)= · · ·=f((m+3)=2;±1)=0: By considering m+1 by 1 blocks we dis-
cover that f((m− 1)=2; 1)=1 or f((m+1)=2; 1)=1 and also f((m− 1)=2;−1)=1 or
f((m + 1)=2;−1)=1. By symmetry it is no loss of generality to assume
f((m − 1)=2; 1)=1 whence f((m + 1)=2; 1)=0, f((m − 1)=2;−1)=0,
f((m + 1)=2;−1)=1. We 0nd a contradiction by comparing the number of 1’s in
2 by 3 blocks.
If m∈{8; 10; 12}, then we obtain by considering (m−2)=2 by 2 blocks that f(m;±1)

=f(m − 1;±1)= · · ·=f(m=2 + 2;±1)=0. By considering m + 1 by 1 blocks we
0nd that f(m=2 − 1; 1)=1 or f(m=2; 1)=1 or f(m=2 + 1; 1)=1 and similarly that
f(m=2 − 1;−1)=1 or f(m=2;−1)=1 or f(m=2 + 1;−1)=1. Since a 3 by 3 block
can contain at most one 1, this excludes that m=10 or 12. If m=8 we have the
pattern

0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0
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and every 2 by 3 block can have at most one 1. (Here and below the underlined 1
indicates the value at the origin.) By symmetry it is no loss of generality to assume
f(3; 1)=f(5;−1)=1: Then f(4; 1)=f(5; 1)=f(3;−1)=f(4;−1)=0. By compar-
ing 4 by 2 blocks we reach a contradiction.
If m=6, then we have by the same arguments used before

0 0 0 0
1 0 0 0 0 0 1
0 0 0 0

Since either f(2; 1)=1 or f(3; 1)=1 or f(4; 1)=1 and similarly either f(2;−1)=1
or f(3;−1)=1 or f(4;−1)=1, we may assume without loss of generality, that
f(2; 1)=1; f(4;−1)=1 in view of 1-balancedness of 2 by 3 blocks. It follows that
f(3; 1)=f(4; 1)=f(2;−1)=f(3;−1)=0:

0 0 1 0 0 0 0
1 0 0 0 0 0 1
0 0 0 0 1 0 0

We now obtain a contradiction by considering 3 by 2 blocks.
If m=4, then we have

0 0
1 0 0 0 1
0 0

There should be at least one 1 in the upper row and at least one 1 in the lower row.
Since they cannot be in the same column, we may assume without loss of generality,
that f(1; 1)=1: Then every 2 by 2 block contains at least one 1, but every block of
size 3 has at most one 1. This yields a contradiction at place (3; 1).

0 1 0 ∗ 0
1 0 0 0 1
0 0

We conclude that m=5.

Lemma 9. Let f be 1-balanced on an interval containing [0; 10]× [−1; 1] as a
subblock. Let f(0; 0)=f(5; 0)=1 and f(i; 0)=0 for 0¡i¡5. Then f is periodic
with period vectors (5; 0) and either (2; 1) or (2;−1):

Proof. By Lemma 7 every block of size 64 contains at most one 1 and every block of
size ¿6 at least one 1. Therefore, f(0;±1)=f(1;±1)=f(4;±1)=f(5;±1)=f(6;±
1)=0. By considering 6 by 1 blocks we see that either f(2; 1)=1 or f(3; 1)=1 and
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similarly f(2;−1)=1 or f(3;−1)=1. We may assume without loss of generality, that
f(2; 1)=f(3;−1)=1; f(2;−1)=f(3; 1)=0.

0 0 1 0 0 0
1 0 0 0 0 1
0 0 0 1 0 0

Since in between two 1’s there have to be at least three 0’s, we have f(10; 0)=1
by Lemma 8. By considering 2 by 2 blocks we obtain f(9;±1)=f(10;±1)=0:
This yields f(7; 1)=f(8;−1)=1 or f(7;−1)=f(8; 1)=1, but the latter possibil-
ity is excluded by considering 5 by 1 blocks. In this way we 0nd f(a + 2; b + 1)=
f(a+ 5; b)=f(a; b) for every (a; b)∈ I with b62a. Since we can also extend in the
opposite directions, we obtain a period lattice with basis vectors (5; 0) and (2; 1).

Lemma 10. Let f be 1-balanced on an interval containing [0; 8]× [−1; 1] as a sub-
block. Let f(0; 0)=f(3; 0)=1 and f(1; 0)=f(2; 0)=f(4; 0)=f(5; 0)=0. Then f
is periodic with period lattice basis (3; 0) and either (1; 1) or (1;−1):

Proof. We see that every block of size 2 contains at most one 1 and that every block
of size 5 has at most two 1’s. Hence f(0;±1)=f(3;±1)=f(4; 0)=0. Furthermore,
every block of size 4 contains at least one 1. Hence, either f(1; 1)=1 or f(2; 1)=1
and either f(1;−1)=1 or f(2;−1)=1: By symmetry we may assume without loss of
generality, that f(1; 1)=f(2;−1)=1; f(1;−1)=f(2; 1)=0.
Suppose f(4; 1)=0. Then f(4;−1)=0 by comparing 3 by 1 blocks, f(5; 1)=1 by

comparing 4 by 1 blocks and f(5;−1)=0 by comparing 1 by 3 blocks. This yields a
contradiction when comparing 2 by 2 blocks.
Thus f(4; 1)=1; f(5; 1)=0: We see that either f(4;−1) or f(5;−1) equals 1 by

comparing 2 by 2 blocks and that in fact f(4;−1)=0; f(5;−1)=1 by comparing 1 by
3 blocks. Comparisons of 2 by 2 blocks and 3 by 1 blocks give f(6; 0)=1; f(6;±1)=
0; f(7; 0)=0. The supposition f(7; 1)=0 leads to a contradiction as the supposition
f(4; 1)=0 did above.
So f(7; 1)=1; f(8; 1)=0. Suppose f(8; 0)=1. Then f(8;−1)=0 and, by com-

paring 3 by 1 blocks, f(7;−1)=1. This yields a contradiction when comparing 4 by
2 blocks. Thus f(8; 0)=0 and we have shown that (3; 0) and (1; 1) are period vectors.
We can extend in the opposite directions as well and we therefore have a period lattice
with basis (3; 0) and (1; 1).

Lemma 11. Let f be 1-balanced on an interval containing [0; 10]× [−1; 1] as a sub-
block. Let f(0; 0)=f(2; 0)=f(5; 0)=1 and f(1; 0)=f(3; 0)=f(4; 0)=0. Then f
is periodic with period lattice basis (5; 0) and either (1; 1) or (1;−1):

Proof. From the conditions and Lemma 7 we see that every block of size 2 contains
at most one 1 and every block of size 3 has at least one 1. Thus f(0;±1)=f(2;±1)=
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f(5;±1)=f(6; 0)=0. By comparing 3 by 1 blocks we obtain f(1;±1)=1 and
either f(3; 1)=1 or f(4; 1)=1 and either f(3;−1)=1 or f(4;−1)=1. Without
loss of generality we may assume f(3; 1)=f(4;−1)=1; f(3;−1)=f(4; 1)=0. Then
f(6; 1)=1 by comparing 3 by 1 blocks and f(6;−1)=1 by comparing 4 by 2 blocks.
Hence f(7;±1)=0; f(7; 0)=1; f(8; 0)=0: By comparing 1 by 3 blocks and 3 by 3
blocks we see that either f(8; 1) or f(8;−1) equals 1. By comparing 5 by 1 blocks we
conclude that f(8; 1)=1; f(8;−1)=0; f(9; 1)=0; f(9;−1)=1; f(9; 0)=0; f(10; 0)
=1; f(10;±1)=0. Thus f has period vectors (5; 0) and (1; 1). We can extend in the
directions (−5; 0) and (−1;−1) as well.

Lemma 12. Let f be 1-balanced on an interval containing [0; 7]× [−1; 1] as a sub-
block. Let f(0; 0)=f(2; 0)=f(4; 0)=1 and f(1; 0)=f(3; 0)=f(5; 0)=0. Then; f
is periodic with period lattice basis (2; 0) and (1; 1).

Proof. Note that every 5 by 1 block contains at least two 1’s. By comparing 1
by 2 blocks and 3 by 1 blocks we deduce that f(1;±1)=f(3;±1)=1. Since ev-
ery 5 by 1 block contains at least two 0’s, we obtain similarly that f(2;±1)=
f(4;±1)=0.
Suppose f(5; 1)=0. Then f(6; 1)=1 by comparing 3 by 1 blocks, f(5;−1)=1 by

comparing 1 by 3 blocks, f(6; 0)=f(6;−1)=0 by comparing blocks of size 2. This
yields a contradiction when comparing 3 by 3 blocks.
Thus, f(5; 1)=1. By symmetry f(5;−1)=1. Suppose f(6; 0)=0. Then f(6;±1)=0

by considering 2 by 1 blocks and we obtain a contradiction by comparing 3 by 3
blocks. Thus f(6; 0)=1. We can show f(6;±1)=0 in a similar way as we showed
f(5;±1)=1, and f(7; 0)=0 as we derived f(6; 0)=1. We have found that (2; 0) and
(1; 1) are period vectors. We can go into the directions (−2; 0) and (−1;−1) as well.

Proof of Theorem 4. We split the proof into three cases.
(a) The case 0¡
¡ 1

5 .
By Lemma 3 every block of size 4 contains at most one 1. According to

Lemma 8 applied to f(x− a; y− b) we obtain that f(a; b)= 1 implies f(a+5; b)= 1.
Hence, 
¿ 1

5 . Thus, there are no 1-balanced words in case (a).
(b) The case 1

56
¡ 1
3 .

There should exist a and b with f(a; b)= 1; f(a+1; b)=f(a+2; b)=f(a+3; b)= 0,
since otherwise 
¿ 1

3 . By Lemma 8 it follows that f(a+4; b)= 0; f(a+5; b)= 1. By
Lemma 9 applied to f(a + x; b + y) we obtain that f is periodic with period vector
(5; 0) and either (2; 1) or (2;−1). By symmetry this yields that in case (b) there only
can be the word described in the theorem with 
= 1

5 .
(c) The case 1

36
6 1
2 .

Since a; b with f(a; b)= 1; f(a+1; b)=f(a+2; b)=f(a+3; b)= 0; f(a+4; b)= 1
are excluded by Lemma 8, there can be only one or two zeros between two consecutive
1’s in a row.
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We distinguish between three subcases:
(c1) in the row f(x; 0) there are always two 0’s between consecutive 1’s;
(c2) in the row f(x; 0) there is always one 0 between consecutive 1’s;
(c3) in the row f(x; 0) there are sometimes two and sometimes one 0 between con-

secutive 1’s.
In case (c1) we apply Lemma 10 to f(x − a; 0) for some a with f(a; 0)=1. In case
(c2) we apply Lemma 12 to f(x−a; 0) for some a with f(a; 0)=1. In case (c3) there
is a situation with f(a; 0)=1; f(a+1; 0)=f(a+4; 0)=0; f(a+5; 0)=1 and either
f(a+ 2; 0)=1; f(a+ 3; 0)=0 or f(a+ 2; 0)=0; f(a+ 3; 0)=1. In the former case
we apply Lemma 11. A similar argument applies in the latter case.
In each subcase, we 0nd that f is fully periodic and has one of the densities and

corresponding period lattice bases as stated in the theorem.
It remains to prove that the found words f are 1-balanced indeed. We can restrict

ourselves to Z×Z, since every restriction of a 1-balanced word is 1-balanced. We give
the proof for one case. The other cases are similar or simpler. We prove that the
word in case 
= 2

5 is 1-balanced. It suIces to prove that for every block [a; b) the
number of function values 1 is either � 25 |a; b|� or � 25 |a; b|�. On using that every 5 by 1
block contains exactly two 1’s we may assume that b= a+c with c=(c1; c2) satisfying
06c1¡5, 06c2¡5. If c1c2 = 0, we are 0nished. By considering, the complement with
respect to the 5 by 5 block if necessary, we may assume 16c162. By considering the
complement with respect to the c1 by 5 block if necessary, we may further restrict our
attention to 16c262. Check that every block of size 2 contains at most one 1 and
that every 2 by 2 block has one or two letters 1. This implies that f is 1-balanced.

3.3. The three-dimensional case

In Theorem 5, we characterize all 1-balanced words on in0nite intervals I = I1× I2× I3.
Without loss of generality, we may assume that I3⊆ I2⊆ I1. It will turn out that there
are essentially only four such 1-balanced words.

Theorem 5. Let I = I1× I2× I3 where I1 ∈{N;Z}; I3⊆ I2⊆ I1 and I2; I3 ∈{N;Z; B}
where B is the set of one-dimensional blocks containing at least two integers. Let
f : I →{0; 1} be 1-balanced of density 
. Then 
∈{0; 13 ; 12 ; 23 ; 1}.

Moreover; by complementation; reAection and translation f can be transformed
into g with

if 
=0 or 1; then g(x; y; z)= 0 for all i and j
or g(0; 0; 0)=1 and g(x; y; z)= 0 otherwise;
if 
= 1

3 or 2
3 ; then g(x; y; z)= 1 if x + y + z is divisible by 3 and g(x; y; z)= 0

otherwise;
if 
= 1

2 ; then g(x; y; z)= 1 if x + y + z is even and g(x; y; z)= 0 otherwise.
On the other hand, the above functions are 1-balanced on every interval I .
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Proof. If [−1; 1]⊂ I2, then we can apply Theorem 4 to f(x; y; i) for every 0xed i.
We shall show that there are no 1-balanced words with densities 1

5 ,
2
5 ,

3
5 or

4
5 . By

complementation it suIces only to consider 1
5 and

2
5 . Suppose f is 1-balanced with

density 
=1=5. Then we may assume without loss of generality that

f(x; y; 0) =
{
1 if x − 2y is divisible by 5;
0 otherwise:

0 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1

In particular, f(0; 0; 0)=f(2; 1; 0)=f(3;−1; 0)=1. Since every block of size 4
contains at most one 1 by Lemma 1 (cf. Lemma 7), we have f(0; 0; 1)=f(1; 0; 1)
=f(2; 0; 1)=f(3; 0; 1)=f(4; 0; 1)=0. However, we have seen in the previous section
that no 1-balanced word f(x; y; 0) of density 1

5 can contain a 5 by 1 block without
1’s.
Suppose f is 1-balanced with density 2

5 . Then, we may assume without loss of
generality, that

f(x; y; 0) =
{
1 if x − y or x − y − 2 is divisible by 5;
0 otherwise:

0 1 0 1 0 0 1 0 1
1 0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0

In particular, f(0; 0; 0)=f(1; 1; 0)=f(1;−1; 0)=f(2; 0; 0)=f(3; 1; 0)=f(4;−1; 0)
=f(5; 0; 0)=1. We know that every block of size 2 contains at most one 1 and ev-
ery block of size 3 contains at least one 1. Hence f(0; 0; 1)=f(1; 1; 1)=f(2; 0; 1)=
f(3; 1; 1)=f(5; 0; 1)=0 and f(1; 0; 1)=f(2; 1; 1)=1. Thus, we know the following
values for f(x; y; 1):

0 1 0 ∗ ∗ 0 1 0
0 1 0 ∗ ∗ 0 1 0

0 ∗ ∗ 0 1

Furthermore, either f(3; 0; 1)=1, f(3;−1; 1)=f(4; 0; 1)=0 or f(4; 0; 1)=1, f(3; 0; 1)
=f(4; 1; 1)=0. The 2 by 2 by 2 block [(1; 0; 0); (2; 1; 1)] contains four 1’s, but in the
former case the 2 by 2 by 2 block [(3;−1; 0); (4; 0; 1)] has at most two 1’s and in
the latter case the 2 by 2 by 2 block [(3; 0; 0); (4; 1; 1)] has at most two 1’s. These
contradictions prove the claim.
Subsequently we prove that for the other densities in Theorem 4 the two-dimensional

words can only extend to the 1-balanced three-dimensional words given in Theorem 5.
Again we assume 
6 1

2 .
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If 
=0, the statement follows from the considerations at the beginning of
Section 3.
If 
= 1

3 , then according to Theorem 4 every block of size 3 contains exactly one 1.
By symmetry this implies periodicity as given in Theorem 5.
If 
= 1

2 , then according to Theorem 4 every block of size 2 contains exactly one 1.
This implies periodicity as given in Theorem 5.
The only remaining cases are equivalent to the cases with I2 = I3 = [0; 1]. We con-

sider this case more closely. Recall that f(x; y; 0); f(x; y; 1); f(x; 0; z) and f(x; 1; z) are
1-balanced. Let m be such that f(0; 0; 0)=f(m; 0; 0)=1; f(i; 0; 0)=0 for 0¡i¡m.
We may assume m¿1.
If m is even, then we have f(m=2; 1; 0)=f(m=2; 0; 1)=1 by 1-balancedness on

m=2± 1 by 2 by 1 and m=2± 1 by 1 by 2 blocks. If, moreover, m¿2 then we obtain
by considering 3 by 1 by 1 blocks that f(m=2 ± 1; 1; 0)=f(m=2 ± 1; 0; 1)=0 and
f((m=2) − 1; 1; 1)=0 or f((m=2) + 1; 1; 1)=0. This gives a contradiction for 1 by 2
by 2 blocks. Thus, m=2, if m is even.
If m is odd, then we have either f((m − 1)=2; 1; 0)=1 or f((m + 1)=2; 1; 0)=1,

and similarly either f((m − 1)=2; 0; 1)=1 or f((m + 1)=2; 0; 1)=1. By symmetry
we may assume f((m − 1)=2; 1; 0)=1. If, moreover, m¿4, then every 4 by 1 by
1 block has at most one 1. It follows by considering 1 by 2 by 2 blocks that
f((m−1)=2; 0; 1)=f((m+1)=2; 1; 0)=0; f((m+1)=2; 0; 1)=1. By comparing (m−1)=2
by 2 by 1 blocks and (m−1)=2 by 1 by 2 blocks, we see that f(i; 1; 1)=0 for 0¡i¡m.
By comparing m + 1 by 1 by 1 blocks we infer f(0; 1; 1)=1 or f(m; 1; 1)=1. We
obtain a contradiction when considering 1 by 2 by 2 blocks. Thus, m=3 when m is
odd.
If every 2 by 1 by 1 block contains exactly one 1, then we have period vectors

(2; 0; 0); (1;−1; 0); (1; 0;−1) and we obtain the 1-balanced word in Theorem 5 with

= 1

2 .
If every 3 by 1 by 1 block contains exactly one 1, then by reMection we can reduce

to period vectors (3; 0; 0); (1;−1; 0); (1; 0;−1) and we obtain the 1-balanced word in
Theorem 5 with 
= 1

3 .
Otherwise, we may assume that after translation and possibly reMection we

have the situation f(0; 0; 0)=f(2; 0; 0)=1; f(1; 0; 0)=f(3; 0; 0)=f(4; 0; 0)=0.
Then every block of size 2 has at most one 1, whence f(0; 1; 0)=
f(0; 0; 1)=f(2; 1; 0)=f(2; 0; 1)=0: Since every block of size 3 has at least one 1,
we obtain f(1; 0; 1)=f(1; 1; 0)=1; f(1; 1; 1)=0; f(5; 0; 0)=1; f(5; 1; 0)=
f(5; 0; 1)=0.

f(x; 1; 1) 0

f(x; 1; 0) 0 1 0 0

f(x; 0; 1) 0 1 0 0

f(x; 0; 0) 1 0 1 0 0 1
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Suppose 0rst f(3; 1; 0)=1. Then f(3; 1; 1)=f(4; 1; 0)=0; f(2; 1; 1)=1: By compar-
ing 2 by 2 by 2 blocks we see that f(3; 0; 1)=f(4; 1; 1)=1; f(4; 0; 1)=f(5; 1; 1)=0.

f(x; 1; 1) 0 1 0 1 0

f(x; 1; 0) 0 1 0 1 0 0

f(x; 0; 1) 0 1 0 1 0 0

f(x; 0; 0) 1 0 1 0 0 1

By considering 2 by 2 by 2 blocks we derive a contradiction. Thus, f(3; 1; 0)=0;
f(4; 1; 0)=1; f(4; 1; 1)=0.
The assumption f(2; 1; 1)=1 implies f(3; 1; 1)=0 and yields a contradiction by

considering 2 by 2 by 2 blocks.

f(x; 1; 1) 0 1 0 0

f(x; 1; 0) 0 1 0 0 1 0

f(x; 0; 1) 0 1 0 0

f(x; 0; 0) 1 0 1 0 0 1

Thus, f(2; 1; 1)=0; f(0; 1; 1)=f(3; 1; 1)=1; f(3; 0; 1)=0 and we obtain another
contradiction by considering 2 by 2 by 2 blocks.

f(x; 1; 1) 1 0 0 1

f(x; 1; 0) 0 1 0 0 0

f(x; 0; 1) 0 1 0 0 0

f(x; 0; 0) 1 0 1 0 0 1

We conclude that there are no other 1-balanced words than those described in
Theorem 5.
The proof that the words in Theorem 5 are 1-balanced is similar to the corresponding

part of Theorem 4.

3.4. The case of dimension greater than three

Let n be a positive integer with n¿3. Suppose f : Zn →{0; 1} is 1-balanced. Then
f(x; y; z; c4; : : : ; cn) is 1-balanced for every (c4; : : : ; cn)∈Zn−3: It follows that essentially
only the natural extensions of the four words from the previous section are 1-balanced.

Theorem 6. Let I = I1× · · ·× In where I1 ∈{N;Z}; In ⊆ In−1⊆ · · · ⊆ I1 and I2; : : : ; In
∈{N;Z; B} where B is the set of one-dimensional blocks containing at least two
integers. Put x= {x1; : : : ; xn}. Let f : I →{0; 1} be 1-balanced of density 
. Then

∈{0; 13 ; 12 ; 23 ; 1}.
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Moreover; by complementation; reAection and translation f can be transformed
into g with

if 
=0 or 1; then g(x)= 0 for all x
or g(0)= 1 and g(x)= 0 otherwise;
if 
= 1

3 or 2
3 ; then g(x)= 1 if x1 + · · ·+ xn is divisible by 3 and g(x)= 0 otherwise;

if 
= 1
2 ; then g(x)= 1 if x1 + · · ·+ xn is even and g(x)= 0 otherwise.

On the other hand; the above functions are 1-balanced on every interval I .

Proof. Again, we may assume without loss of generality, that 
61=2.
If 
=0, the statement follows from the considerations at the beginning of

Section 3.
If 
= 1

3 , then according to Theorem 5 every block of size 3 contains exactly one 1.
By symmetry this implies periodicity as given in Theorem 6.
If 
= 1

2 , then according to Theorem 5 every block of size 2 contains exactly one 1.
This implies periodicity as given in Theorem 6.

Remark. It follows from the above results that in Zn(n¿1) there is essentially only
one 1-balanced word with density 1

2 . The situation changes drastically for 4-balanced
words. Partition Z2 in 2 by 2 blocks and 0ll every block with one of these patterns:

1 0 0 1

0 1 1 0

Obviously, the resulting function f : Z2→{0; 1} is 4-balanced. Hence, there are
uncountably many 4-balanced words with density 1

2 . Similarly for every rational number
p=q with p; q positive integers, 0¡p¡q, there exist uncountably many q2-balanced
Z2-words with density p=q and uncountably many qn-balanced Zn-words with density
p=q for any n¿1. The situation is unclear to us for irrational density. We present some
results on such words in the next section.

4. Imbalances and irrational density

The purpose of this section is to consider the unbalancedness properties of some
particular words on Z2 of irrational density. We have seen that 1-balancedness implies
that the density is rational. It is then natural to ask whether a word on Z2 of irrational
density can be balanced. A good candidate for a word to be simultaneously balanced
and of irrational density, could be a word on Z2 built as “regularly” as possible via a
Sturmian word on Z. More precisely, consider the following example. Let 
 =∈Q. Let
f : Z2→{0; 1} de0ned by

∀(m; n) ∈ Z2 (f(m; n) = 0⇔ (m+ n)
 ∈ [0; 1− 
) modulo 1):

This word is periodic and corresponds to a Sturmian word shifted from row to row.
We 0rst prove in Section 4.1 that this word cannot be balanced. We then consider in
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Section 4.2 the case of two-dimensional Sturmian words. Both types of two-dimensional
words have the same quantitative behaviour with respect to imbalances. Hence, it still
remains an open problem whether balance implies rational density.

4.1. An application of Ostrowski’s numeration system

Theorem 7. Let 
 �∈Q. Let f :Z2→{0; 1} de=ned by

∀(m; n) ∈ Z2; (f(m; n) = 0⇔ (m+ n)
 ∈ [0; 1− 
) modulo 1):

Then f is not balanced.

Proof. Suppose f is balanced over 0 and 1. Hence from Lemma 5, there exists C′

such that

∀N = (N1; N2) ∈ Z2¿0; ||0;N |1 − N1N2
|6C′: (1)

Let us evaluate |0;N |1, for N =(N1; N2)∈Z2¿0. Note that

f(m; n) = 1 if and only if �(m+ n+ 1)
� = �(m+ n)
�+ 1:

Hence, we have

|0;N |1 =
N2−1∑
n=0

(�(N1 + n)
� − �n
�)

=
N1+N2−1∑

j=N1
� j
� −

N2−1∑
j=0

� j
�

and thus

|0;N |1 − N1N2
 =
N2−1∑
j=0

{j
} −
N1+N2−1∑

j=N1
{j
}:

Let

c
(N ) :=
N∑

j=1
({j
} − 1=2):

We have

|0;N |1 − N1N2
 = c
(N1 − 1) + c
(N2 − 1)− c
(N1 + N2 − 1)− 1=2: (2)

There is an abundant literature devoted to the study of c
(N ) and connected discrepancy
results, involving Ostrowski’s numeration system [23]. Let us follow the notation and
use the estimates in [5].
Let 
= [0; a1; a2; : : :] be the continued fraction expansion of 
 with partial quotients

an and convergents pn=qn. For n¿1, let �n := |qn
−pn|. Let us expand N (¿1) in the
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numeration scale (qn)n∈N. Hence, there is a unique expansion of N of the form

(1) N=
∑t

i=1 ziqi−1;
(2) zt¿0 and 06zi6ai; for 26i6t; furthermore, 06z16a1 − 1;
(3) if 26i6t and zi= ai, then zi−1 = 0.

For 16j6t, let

mj =
j∑

i=1
ziqi−1; m0 = 0:

We have [5]

c
(N ) =
∑

16j6t
(−1) jzj

(
1
2
− �j−1

(
mj−1 +

zjqj−1
2

+
1
2

))
: (3)

Let us distinguish two cases according to the partial quotients in the continued
fraction expansion of 
. Suppose that there are in0nitely many partial quotients greater
than or equal to 2. We can suppose without restriction that in0nitely many of the
indices of coeIcients greater than or equal to 2 are even. De0ne (jk) as an in0nite
strictly increasing sequence satisfying

∀k ∈ N¿0; a2jk¿2 and jk+1 − jk¿2:

Let L∈N¿0. Let

N1 =
∑

16k6L

⌈a2jk
2

⌉
q2jk−1;

N2 =
∑

16k6L

⌊a2jk
2

⌋
q2jk−1 + q2jk−2;

N3 = N1 + N2:

We have

N3 =
∑

16k6L
q2jk :

The three expressions are the Ostrowski’s expressions for N1; N2; N3, respectively.
For i∈{1; 2; 3}, put Ni=

∑
z(i)k qk−1 and m(i)

j =
∑

16k6j z
(i)
k qk−1:

• Consider c
(N3). We have z(3)j �=0 if and only if there exists 16k6L such that

j=2jk + 1, and then z(3)2jk+1 =1. We have from Eq. (3)

c
(N3) = − ∑
16k6L

(
1
2
− �2jk

(
m(3)
2jk +

z(3)2jk+1q2jk
2

+
1
2

))
:

Let 16k6L. We have

m(3)
2jk6

∑
16i6k−1

q2ji6
q2jk−1+1 − 1

2
;

since a2ji¿2, for every i.
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Hence

m(3)
2jk +

z(3)2jk+1q2jk
2

+
1
2
6

q2jk−1+1 − 1 + q2jk + 1
2

6
1
4
q2jk+1;

since jk − jk−1¿2. Consequently,

1
2
− �2jk

(
m(3)
2jk +

z(3)2jk+1q2jk
2

+
1
2

)
¿
1
4
;

since 0¡�i−1qi¡1, for every i. We thus get

−c
(N3)¿L=4:

• Consider c
(N1). We have z(1)j �=0 if and only if there exists 16k6L such that
j=2jk , and if so z2jk = �a2jk =2�.
Let 16k6L. We have

m(1)
2jk−16

∑
i6k−1

⌈a2ji
2

⌉
q2ji−16q2jk−1 :

Hence,

m(1)
2jk−1 +

z(1)2jk q2jk−1
2

+
1
2
6
2q2jk−1 + q2jk−1�a2jk =2�

2
:

Let us prove that

m(1)
2jk−1 +

z(1)2jk q2jk−1
2

+
1
2
6
3
8
q2jk :

Indeed, suppose a2jk odd. Write a2jk =2p + 1, with p¿1. Since p¿1 and
jk − jk−1¿2, we have

(6p+ 3)q2jk−1 + 3q2jk−2¿ (4p+ 4)q2jk−1 + q2jk−1 + 3q2jk−2

¿ (4p+ 4)q2jk−1 + q2jk−2 + q2jk−3 + 3q2jk−3 + 3q2jk−4

¿ (4p+ 4)q2jk−1 + 8q2jk−4:

Consequently,

2q2jk−1 + q2jk−1(p+ 1)6
3
4 [(2p+ 1)q2jk−1 + q2jk−2] =

3
4q2jk :

Suppose a2jk even. Write a2jk =2p, with p¿1. We similarly have

2q2jk−1 + pq2jk−16
3
4 [2pq2jk−1 + q2jk−2] =

3
4q2jk :

We thus get from (3)

c
(N1)¿
1
8
∑

16k6L

⌈a2jk
2

⌉
:
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• Consider now c
(N2). We have z(2)j �=0 if and only if there exists 16k6L such
that j=2jk − 1 or j=2jk , and then z2jk = �a2jk =2�; z2jk−1 = 1.
Let 16k6L. We have

m(2)
2jk−16

∑
i6k−1

(⌊a2ji
2

⌋
q2ji−1 + q2ji−2

)
+ q2jk−26

q2jk−1 − 1
2

+ q2jk−2:

Hence,

m(2)
2jk−1 +

z(2)2jk q2jk−1
2

+
1
2
6

q2jk−1 + q2jk−1�a2jk =2�
2

+ q2jk−2

6
1
4
q2jk + q2jk−2:

We thus get

1
2
− �2jk−1

(
m(2)
2jk−1 +

z(2)2jk q2jk−1
2

+
1
2

)
¿− �2jk−1q2jk−2 +

1
4
:

We have furthermore for the coeIcients of z(2)2jk−1:

−
(
1
2
− �2jk−2

(
m(2)
2jk−2 +

z(2)2jk−1q2jk−2
2

+
1
2

))
¿− 1

2
+
1
2
�2jk−2q2jk−2:

From 1
2�2jk−2 − �2jk−1¿0, we get

c
(N2)¿− L=4:

Hence,

c
(N1) + c
(N2)− c
(N3)¿
∑

16k6L

1
8

⌈a2jk
2

⌉
:

Hence, c
(N1)+c
(N2)−c
(N3) can be made arbitrarily large by taking L large enough.
It remains to consider the case where the partial quotients in the continued fraction

expansion of 
 are eventually equal to 1. Let n0 be such that an=1, for n¿n0. The
denominators and numerators of the convergents satisfy the following linear recurrence
relations:

∀n¿n0; pn+2 = pn+1 + pn;

∀n¿n0; qn+2 = qn+1 + qn:

Let *=(
√
5 + 1)=2. Hence, there exist A; B; A′; B′ such that for n¿n0

qn = A*n + B(−*)−n; pn = A′*n + B′(−*)−n: (4)

Similarly,

∀n¿n0; �n+2 = −�n+1 + �n:
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Furthermore, as �n tends to 0 and *¿1, then there exists C such that

�n = C*−n:

Note that AC¡1=*, since �nqn+1¡1 for every n.
Let k0 be such that 4k0 − 2¿n0 and let L¿k0. Let

N1 =
∑

k06k6L
q4k−1;

N2 =
∑

k06k6L
q4k−2;

N3 = N1 + N2 =
∑

k06k6L
q4k :

The three quantities are again Ostrowski’s expansions.
• Consider c
(N3). By using the expression (4) of qn, it is easily seen that there exists
a constant D (which does not depend on L) such that for every k06k6L, one has

m(3)
4k =

∑
k06i6k−1

q4i6
q4k

*4 − 1
+ D:

Hence,

m(3)
4k +

z(3)4k+1q4k
2

+
1
2
6q4k

(
1

*4 − 1
+
1
2

)
+
(
D +

1
2

)
:

Consequently,

�4k

(
m(3)
4k +

z(3)4k+1q4k
2

+
1
2

)
6AC

(
1

*4 − 1
+
1
2

)
+ C

(
D +

1
2

)
*−4k :

Let E= 1
2 − AC(1=(*4 − 1) + 1

2). As AC¡1=*, then E¿0. Let F =C(D + 1
2). We

have

−c
(N3)¿
∑

k06k6L
(E + F*−4k):

• A similar computation for N1 and N2 leads to c
(N1)+ c
(N2) is bounded below (in
L). Indeed there exist similarly D′; D′′; F ′; F ′′ (which do not depend on L) such
that for every k06k6L, one has

m(1)
4k−1 =

∑
k06i6k−1

q4i−16
q4k−1
*4 − 1

+ D′;

c
(N1)¿
∑

k06k6L
(E + F ′*−4k+1);

m(2)
4k−2 =

∑
k06i6k−1

q4i−2¿
q4k−2
*4 − 1

+ D′′;

c
(N2)¿
∑

k06k6L
(−E + F ′′*−4k+2);

hence c
(N1) + c
(N2) is bounded from below.
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In both cases (partial quotients eventually equal to 1 or not), we obtain that |c
(N1)+
c
(N2) − c
(N3)| can be made arbitrarily large for a suitable choice of (N1; N2); and
for L large enough. From (2), the same applies to ||0;N |1 − N1N2
|, which ends the
proof by contradicting (1).

Indeed, we can deduce from the estimates in [5] an upper-bound for the growth order
of ||P;N + P|1−N1N2
|, with N =(N1; N2) ∈ Z2¿0 and P=(P1; P2)∈Z2. Let us de0ne
a balance function B(N) associated to a word f on Z2, for N =(N1; N2) ∈ Z2¿0, as
follows:

B(N) := max
P;P′∈Z2

||P;N + P|1 − |P′;N + P′|1|:

For a word taking its values in an alphabet A of size at least two, one de0nes similarly

B(N) := max
a∈A

max
P;P′∈Z2

||P;N + P|a − |P′;N + P′|a|:

This function provides a quantitative measure of how far a word is from being balanced.

Theorem 8. Let 
 �∈Q. Let f :Z2→{0; 1} de=ned by

∀(m; n) ∈ Z2; (f(m; n) = 0⇔ (m+ n)
 ∈ [0; 1− 
) modulo 1):

Let N =(N1; N2)∈Z2¿0 and P=(P1; P2)∈Z2. We have

||P;N + P|1 − N1N2
| = o(sup{N1; N2});
B(N) = o(sup{N1; N2}):

Furthermore; if 
 has bounded partial quotients

||P;N + P|1 − N1N2
| = O(log(sup{N1; N2}));
B(N) = O(log(sup{N1; N2})):

Proof. Let us evaluate |P;P+N |1, for N =(N1; N2)∈Z2¿0 and P=(P1; P2)∈Z2. We
have

|P;P +N |1 =
P2+N2−1∑

n=P2
�(N1 + n+ P1)
� −

P2+N2−1∑
n=P2

�(n+ P1)
�

=
N1+N2+P1+P2−1∑

j=N1+P1+P2
� j
� −

P1+P2+N2−1∑
j=P1+P2

� j
�:

Hence,

|P;N + P|1 − N1N2
=
P1+P2+N2−1∑

j=P1+P2
{j
} −

P1+P2+N1+N2−1∑
j=N1+P1+P2

{j
}

= c
(P1 + P2 + N2 − 1)− c
(P1 + P2 − 1)

+ c
(P1 + P2 + N1 − 1)− c
(P1 + P2 + N1 + N2 − 1)
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with the previous notation: c
(N )=
∑N

j=1 ({j
}− 1
2 ): It remains to apply the estimates

of [5] (where more re0ned estimates can be found too), by noticing that it is suIcient
to consider a 0nite number of values for P:
1. For every 
, c
(N )= o(N ) (this result was originally due to Sierpinski [26]).
2. If there exists A such that: for all i, (1=t)

∑
16j6t aj6A, then c
(N )=O(logN ),

and more precisely |c
(N )|¡ 3
2A logN (cf. [17, 12, 23]).

4.2. Imbalances in two-dimensional Sturmian words

A higher-dimensional generalisation of Sturmian words can be de0ned either on a
two-letter alphabet or on a three-letter alphabet [30, 3].

De�nition 1. Let 
; �; . be real numbers, with 1; 
; � rationally independent, and 0¡

+ �¡1. We de0ne the two-dimensional Sturmian word over the three-letter alphabet
{1; 2; 3} (with parameters 
; �; .) as the function f :Z2 → {1; 2; 3}, with

∀(m; n) ∈ Z2; (f(m; n) = i ⇐⇒ m
+ n� + . ∈ Ii modulo 1);

where

I3 = [0; 
); I2 = [
; 
+ �); I1 = [
+ �; 1):

We similarly de0ne the two-dimensional Sturmian word over the two-letter alphabet
{0; 1} (with parameters 
; �; .) as the function f :Z2 → {0; 1}, with

∀(m; n) ∈ Z2; (f(m; n) = i ⇐⇒ m
+ n� + . ∈ Ii modulo 1);

where

I0 = [0; 1− 
); I1 = [1− 
; 1):

Note that these words are non-periodic (i.e., there is no non-zero vector of periodicity
with integer coeIcients) and uniformly recurrent. For further properties, see [30, 3, 4].
Recall that (classic) Sturmian words code the approximation of a line by a discrete

line made of horizontal and vertical segments with integer vertices. Two-dimensional
Sturmian words over a three-letter alphabet code discrete planes as follows. Consider
the set of all unit cubes, with vertices at integer lattice points, which intersect a given
plane. The discrete plane approximating this plane is the (upper or lower) surface
of the union of these unit cubes. The discrete plane thus consists of three kinds of
square faces, orientated according to the three coordinate planes. After projection, we
obtain a tiling of the plane by three kinds of diamonds, being the projections of the
square faces. This tiling is associated in a natural way with a Z2-lattice. We thus can
code this tiling over a two dimensional sequence de0ned on a three-letter alphabet.
Now one de0nes two-dimensional Sturmian sequences over a two-letter alphabet via
a letter-to-letter projection p. With the notation in De0nition 1, the projection p sat-
is0es: p(3)= 1, p(2)=p(1)= 0, with the addition of 1− 
 to the parameter /. Such
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sequences have many interesting combinatorial properties which allow us to consider
them as a two-dimensional generalisation of Sturmian words. In particular, they are
characterized among uniformly recurrent sequences by their rectangle complexity func-
tion P(m; n)=mn + n [4]. Here the rectangle complexity function P(m; n) counts the
number of m by n rectangular factors.
Note that the words studied in the previous section correspond to the case 
= �.

Theorem 9. Two-dimensional Sturmian words are not balanced. Let B(N); for N
=(N1; N2)∈Z2¿0; be the balance function of a two-dimensional Sturmian sequence of
parameters 
; �; . (de=ned either on a three-letter or on a two-letter alphabet). We
have

B(N) = o(sup{N1; N2}):
Furthermore; if 
 or � has bounded partial quotients; then

B(N) = O(log(sup{N1; N2})):

Proof. Let f be a two-dimensional Sturmian word on the three-letter alphabet {1; 2; 3},
with parameters 
; �; .. Suppose that f is C-balanced on each letter. Fix an index j∈Z.
This implies in particular that the one-dimensional word (in row) fj :Z → {1; 2; 3}
de0ned by: ∀m∈Z, fj(m)=f(m; j), is also C-balanced on the letter 2. We have

∀m ∈ Z; (fj(m) = 2⇐⇒ m
+ (j� + .) ∈ [
; 
+ �) modulo 1):

However, as 1; 
; � are rationally independent, we get that {2} is not a bounded re-
mainder set for fj, from Theorem 1, hence the contradiction. Note that we similarly
prove that the word f is not balanced neither on the letter 1 nor on the letter 3
(by considering words in columns). The same reasoning applies to two-letter Sturmian
words.
Consider now a two-dimensional Sturmian word f on the two-letter alphabet {0; 1}:

∀(m; n); f(m; n) = 1⇐⇒ m
+ n� + / ∈ [1− 
; 1):

Let us evaluate |P;P +N |1, for N =(N1; N2)∈Z2¿0 and P=(P1; P2)∈Z2. We have

|P;P +N |1 =
P2+N2−1∑

j=P2
�(N1 + P1)
+ j� + /� −

P2+N2−1∑
j=P2

�P1
+ j� + /�:

Hence,

|P;N +P|1−N1N2
=
P2+N2−1∑

j=P2
{j�+P1
+/}−

P2+N2−1∑
j=P2

{j�+(N1 +P1)
+/}:

Let us introduce now, following the notation of [24], the non-homogeneous extension
of c
(N ):

CN (
; /) =
N∑

j=1
({j
+ /} − 1

2 ):
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We thus have

|P;N + P|1 − N1N2
=CP2+N2−1(�; P1
+ /)− CP2−1(�; P1
+ /)

−CP2+N2−1(�; (N1 + P1)
+ /)

+CP2−1(�; (N1 + P1)
+ /):

We can get a similar expression involving quantities of the kind CN (
; /′) by adding
in columns instead of rows.
It then remains to apply the results of [24]: let N =

∑t
i=1 ziqi−1 be the Ostrowski

expansion of N ; we have

|CN (
; /)|63
2

t∑
i=1

zi;

which implies (see for instance [5, Fact 1])

CN (
; /) = o(N ):

Let (ai) be the partial quotients in the continued fraction expansion of 
. If (1=t)∑
16j6t aj6A for all t, then CN (
; /)¡ 1

3 (A+ 24) log 3N .
The case of a two-dimensional word on a three-letter alphabet can be handled exactly

in the same way. One gets similar expressions for each of |P;N + P|a, with a=2; 3,
which is enough to conclude to the required estimates.
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