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Abstract

In the present paper we develop a formalism to generate multi-dimensional words
using lattices which generalizes the construction of real numbers (one-dimensional
words) from a sequence of partial quotients using continued fractions. The construc-
tion was introduced in a special case by Simpson and Tijdeman in order to derive a
multi-dimensional generalisation of the theorem of Fine and Wilf. We show that the
produced multi-dimensional words are intrinsically connected with k-dimensional
Sturmian words.
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1 Introduction

Let k+1 vectors @y, ¥, - - -, U in Z* be given such that all the subsets of & vec-
tors are linearly independent. Consider the sublattice A := Z(¥ — ty) +-- - +
Z(0), — Uy) of the lattice L := Zy+ Z0, +- - -+ Zy. For convenience we assume
L = ZF. Let D denote the cardinality of ZF/A. We show that the multiples
of Uy represent the D cosets of A. This induces a numbering 0,1,---, D — 1
of the cosets such that Y% 2,5 belongs to coset Y°F  2; (mod D) which
we shall indicate by g(XF_, 2;7;). The colouring map x : Z* — {0,1,---, k}
is a projection of g, thus constant on cosets of A. By considering a funda-
mental domain A of Z*/A the function ¢ induces a roundwalk w given by
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Wy, Wy, -+, Wp_1,Wp = Wy through A. In our construction w has the special
property that ;. —w; € {¥y, ¥y, --, 0} fori =0,1,---, D— 1. The function
X induces a colouring of A. This is worked out in Section 2 and illustrated by
an example.

In Section 3 we introduce extension rules which extend the roundwalk w
through a lattice domain A of Z¥/A to a roundwalk w* through a larger
lattice domain A* of Z¥/A* where A* is a lattice generated from A by a
substitution rule o : {0,1,---,k} — {0,1,---,k}* applied to @y, ¥y, -, Ug.
Here {0,1,- -, k}* denotes the set of nonempty finite words with letters from
{0,1,---,k}. The word W* defines a function ¢* numbering the cosets of A*.
The induced colouring map x* : Z*¥ — {0,1,---,k} will have the property
that it is constant on cosets of A* and coincides with xy on A. We prove, under
suitable conditions, that the functions ¢* and x* can be described in terms
of g, x and a matrix M, the so-called substitution matrix, which represents
the numbers of each letter in the words o(0),0(1),---,0(k). So the precise
order of letters in these words is irrelevant for the definition of ¢g* and y*. In
Sec. 3.1 we consider basic extension rules and in Sec. 3.3 rules generated by
substitutions of Arnoux-Rauzy type.

Section 4 studies the iteration of extension rules producing a tower of lattices
with corresponding matrices M. By extending the colouring of the domains
of the roundwalk we thus generate a sequence of finite k-dimensional words
(W),>; through larger and larger domains A™ (n =1,2,---) with letters
from {0,1,---,k}. By induction we get infinite sequences of functions g :
7F — {0,1,---,D™ — 1} and x™ : Z¥ — {0,1,---,k}. We give explicit
formulas for (x™),>1 in terms of g™ and M™. Furthermore we show that in
case of Rauzy extension steps a recurrence relation for the frequencies of the
letters can be obtained in a simple way.

In Section 5 we consider the infinite limit words. Obviously the sequence
(W®),>, has a limit word, since the words become larger and larger and
as soon as a place has got a y-value, it remains constant. However, the word
need not be defined on Z*. Therefore we investigate whether x := lim,_,oox™ :
7F — {0,1,-- -, k} exists in which case every word W™ is the restriction of
to A™ . In Theorem 5.3 we show that under mild conditions y exists indeed
and that it represents a multi-dimensional Sturmian word. Furthermore we
discuss which multi-dimensional Sturmian words can be limit words of towers
of Rauzy extensions and which of basic extensions. In Part II of the paper we
shall turn to more general questions and investigate when the roundwalks are
space filling.



2 Roundwalks and lattices

The aim of this section is to introduce the algebraic framework we will use
throughout the paper. This formalism was introduced in a special case in [13].

2.1 Lattices

Let k+1 vectors iy, 71, - - -, U in Z* be given such that fy := det (%, - -, ) #
0, ft = det(ﬁl, ’172, ey, 61'—17 —170, 172'_1_1, te, ﬁk) 7£ 0 for ¢z = ]_, tery, k and fg,fl,

-+, fr all have the same sign. This implies that oy, U1, ..., are not on the
same side of some hyperplane. Note that one deduces from Cramer’s rule that

folo + frth + -+ + fxt = 0.

Let L be the lattice Zy+ Zv, +- - -+ Zy. Then on the one hand, det(L) | f; for
i=0,1,---,k, whence det(L) | d := ged(fo, f1,--, fx). On the other hand,

if @y, ---, Wy is some basis of L, then @; = po Uy + p1,;Uh + - - + pi ;U With
00> Prjs s Py € Lfor j=1,--- k. Hence det(L) = | det(wy,---, @) |is a
linear combination of fy, fi,- -, fr and therefore divisible by d. We conclude

that det(L) = d and that L has exactly d cosets in Z*. If d = 1, then L = Z*.
Let A be the lattice Z(# — v) + -+ + Z(0) — Up). Then
det(A) = | det(t) — Tp, -+, 0 — o) | =| fo+ fi+--+ fc |
Note that A is a sublattice of L of index
D :=det(A)/det(L) = do+ dy + - -+ + di,
where d; := |f;|/d for i = 0,1,-- -, k. Hence ged(dy, dy,- -+, dg) =1 and
doTy + di ¥y + - - + dy, = 0.

—

Moreover, if aqty + a10; + -+ - + axvp = 0 for some ag, a1, --,a; € 7Z, then
a; = td; for some integer t and ¢ = 0,1,---, k.

2.2 Roundwalks and their codings
Let us now introduce the notion of a roundwalk.

We claim that @y generates L/A. Suppose, on the contrary, that for some i, j
with 0 S 1< ] < D, iUg = jUO (mod A) Then (] — Z)??O = )\1(?71 - ?70) + -t



A (T — ©p) for some integers Ay, - - -, \r. Hence
(G—i4 A4+ M)To — MT) - — MGy = 0,

Therefore j — i+ Ay + -+ + N\, = tdy, =\ = tdy,---, =\ = tdj for some
t € Z. 1t follows that j —i = t(dy + dy + - - - + di) = tD for some t € Z which
yields a contradiction. Thus the multiples ity (0 < i < D) are elements in L
which are distinct modulo A. Hence {0, @, - - -, (D — 1)@} is a complete set
of representatives of L/A. Observe that D7 = 0 (mod A).

By a roundwalk w through L/A we mean a sequence wy, Wy, -, Wp_1,

Wp = Wy of D41 elements from Z* such that ,, —mi, € Aform =0,1,---,D
and W;, — W; € {¥,, v, -+, 0} for i = 0,1,---, D — 1. Since modulo A it
does not make any difference whether one adds vy, 07, - - -, or ¥, the vectors
Wo, Wy, -+ -, Wp_y are in D different cosets of L/A and therefore distinct. Since
Wp = W, there are exactly d; numbers ¢ € {0,1,---, D — 1} such that @, —
w; = v; for 5 = 0,1,---, k. Conversely, suppose we are given D vectors wy =
Wp, W, ..., Wp_1 such that there are exactly d; numbers i € {0,1,---,D —1}
with U_;i+1 —U_;i = 17]' fOI‘j = 0, 1, T, k. Then 1170, 1171, Tt U_))D,I, wD(: 1170) form
a roundwalk through L/A.

We introduce some further notation. We define the domain A = A(w) of

the roundwalk w as the subset {1, ..., wWp_1} of Z¥. So A(w) represents a
complete set of representatives of L/A. We define the coding w of a roundwalk
1170,1171, R ,U_))D,I,U_}’D = 1170, with u7i+1—u72~ € {?70, s ,17]9} fori = 0,1,---, D-1

as the finite word w = wy ... wp_; over the alphabet {0,1,...,k} defined by
w; = j if Wi —w; = v; for 0 <7 < D — 1. Observe that given the vectors
Ug, V1, . . . , Uk, and the vector wy, the roundwalk w is perfectly determined by
its coding w.

2.3 An example

We illustrate the definitions by an example.

Example 1 We take k£ = 2,7, = (1,4),7) = (3,1),7» = (—2,—3). Hence
fo = —7,f1 = —5,f2 = —]_]_,d = ]_,L = ZQ,dO = 7,d1 = 5,d2 = ]_]_,D =
23,A = Z(2,-3) + Z(—3,—T7). We make a roundwalk wp, Wy, --,wWas = W
through L/A where

7 for i = 0,2,6,9,12,15,19,
Wi — Wy = § @, for i =4,8,13,17, 21,

i for i = 1,3,5,7,10,11, 14, 16, 18, 20, 22.



We indicate the vectors in Figure 1 with h; where h indicates the index of i,
and j the index of @; when 0; = w41 — w),. The coding w of the roundwalk
w is the sequence of the subscripts

0202120210220120212021 2,

where j means that the next jump is @;. Note that there are dy = 7 numbers
0,d; = 5 numbers 1,d; = 11 numbers 2 in the coding word indeed.

169 104
32 209 145
131 75 1y 189
17, 115 59 22,
4, 21, 150 99
81 29 19
129 69 0Op

Figure 1. Roundwalk with jumps from {v,, U1, U }

In fact, the points of the roundwalk through L/A generate a periodic tiling of
L = 7Z*, since they are a complete set of representatives of L/A, as illustrated
in Figure 2, where one finds a finite part of the periodic tiling of Z? by the
pattern in Figure 1, the period vectors being @} — 9y = (2, —3) and v, — ¥ =
(=3, —=T7). We can consider the (upper) numbers in Figures 1 and 2 as a function
g from the cosets L/A to {0,1,---,22}, numbering the cosets.

199 | 137 7o 1o 18 | 129 6 0 | 174
Op |17 11y 5o 229 | 160 109 | 44 214
49 21y 159 99 | 32 20 149 | 8 2
8 2 199|137 79 1y 18| 12y 6

129 69 0 |17y 11y B9 229 | 169 109
169 102 | 41 21y 150 90 | 32 205 14,
20 149 | 8 29 199|131 7o 1o 18,
1o 18 | 12 69 09 | 177 11y 5y 229

Figure 2. The periodic tiling generated by the roundwalk



2.4 Colouring of the roundwalks

We return to the general case. For the sake of simplicity we assume in the
sequel that L = Z*. Hence d = 1. We define the function ¢ from Z* to
{0,1,---,D — 1} by ¢g(&) = m whenever & — mtj, € A. It follows firstly that
g is constant on cosets of L/A, and secondly that g is a linear function. Thus
g(0) =0 and if Z = (zy,---,x;) € ZF, then

k
9(%) = Y_xig(&;) (mod D) (1)
i—1
where €; = (0,---,0,1,0,---,0) is the unit vector with 1 at place i for i =

1,2,---,k, and where a (mod b) is defined as the number ¢ with ¢ = a (mod b)
and 0 < ¢ < b. Since @; — iy € A we have ¢g(7;) = 1 for 0 < i < k, hence

k

9(; z;U;) = sz (mod D).

1=0

For instance in Example 1, when considering the point 0y as the origin in Z2,
one has (Figure 2) g(é;) = 17 = —6 (mod 23), ¢g(é) = 19 = —4 (mod 23),
and thus the function ¢ : Z? — {0,...,22} is given by

g(m,n) = —6m — 4n (mod 23).

Note that the restriction of g to A(w) in Figure 1 precisely indicates the route
of the walk.

To the roundwalk w given by ,---,Wp(= W) we have associated a one-
dimensional word w = wy---wp_; over the alphabet {0,1,...,k} which we
called the coding of w. Now we shall associate to w a k-dimensional word W
which we call the colouring of w. To that purpose, we introduce a colouring
function y : Z¥ — {0,1,...,k} which will “colour” the roundwalk. More
precisely, {0,1,..., D —1} is split into k + 1 sets Iy, ..., I} (in practice always
consecutive blocks of integers modulo D) and

X(@) =l g(@ el forle{0,1,---k}, 7 e Aw). (2)

Observe that one could colour the roundwalk w with any number of colours.
Our motivation to consider exactly k& + 1 colours is to make the connection
with k-dimensional Sturmian words.

Example 1 (continued). We split the roundwalk w in Figure 1 into three
nonempty parts, e.g. we replace numbers i for 5 < ¢ < 14 with 0, ¢ for



14 <3 < 22 with 1 and numbers ¢ for i = 22 or 0 < 7 < 5 with 2. We omit the
subscripts and indicate the place of 0y by underlining. This yields Figure 3.

10
2 11
0021
1002
2110
021
002

Figure 3. The colouring W of w

Thus x is given by

0 if 5 < —6m — 4n (mod 23) < 14
x(m,n) =< 1if 14 < —6m — 4n (mod 23) < 22

2 otherwise,

and W = x|a(w) is presented in Figure 3.

3 Extension rules

We construct an extended k-dimensional word by extending the coding of a
roundwalk.

3.1 The basic extension step

Starting from the situation described in the previous section we introduce the
extension step S;; for i,j € {0,1,---,k} with ¢ # j. Put ¢ = 0, — 0,0} =
vy for h = 0,1,---,k;h # i. Note that the lattice L* := Zu§ + - - + Z7;
equals L := Zvy + --- + Zv, which we have assumed to be Z*. Put dy =



|det(6>1k7"'v7?kk)|vdz = |det(17>1kv"'ﬂj*h—lv_ﬁf)kaﬁ?;-i-la“'vﬁkk)| for h = 17"'7k'
Then

=dpfor h#jand d; = d; +d; (h,i,j €{0,1,---,k},i#j).

Let A* be the lattice Z(0} — o) + - -+ + Z(v;, — ©§). Then D* := det(A*) =
ds+di+ - +di =D+ d;.

Suppose we have a roundwalk @y, w1, - - -, Wp 1, Wp(= W) € Z* through Z*/A
with @y — W, € {0, ¥y, --, U} forh=0,1,---, D—1. Then there are exactly
d; numbers h € {0,1,---, D — 1} such that @ — @) = v, for j =0,1,-- -, k.
We may construct a roundwalk @ = Wy, W}, -, Why_,, Wh. = Wy € ZF
with o, — @y € {&, o}, -+, 05} for h = 0,1,---,D* — 1 through ZF/A*
by inserting for every h with w1 — W) = v; either W), + ¥ or W), + 173*

in between ), and w,,;. Then the new jumps in the roundwalk are of the

form o}, 0}, 0; — vf = ¥ or ¥; — v; = o7, and therefore all jumps in the
new roundwalk belong to {#§, 05, - - -, i }. By arguments given in the previous
section, the vectors g, wt, - -+ ., represent D* different cosets of ZF/A*
and are therefore distinct, whereas the new roundwalk contains exactly dj
jumps ¥ for h =0,1,---, k. The cycle is not uniquely determined as we have
d; times a choice out of two for the vector to be inserted. We say that the
insertion is done in the canonical way if each time ) + ¥ is inserted and in

the anti-canonical way if each time 1, + ¥} is inserted.

The extension step S;; has the following effect on the coding sequence: every
i is replaced by ij in the canonical case, by j¢ in the anti-canonical case,
whereas we have free choice between 75 and ji for every 7 in the general case.
This action can be described by means of the formalism of substitutions. Let
us recall that a substitution o is an application from an alphabet A into the
set A*—{e} of nonempty finite words on A; it extends to a morphism of A* by
concatenation, that is, c(WW') = o(W)o(W') and o(g) = e. It also extends
in a natural way to a map defined over A" or A%

Let w and w* denote respectiveley the roundwalks Wy, @, - -, Wp 1, Wp(=
Wo) and W, Wy, - - -, Whe 1, Wy (= W). Let w and w* denote the codings of
the roundwalks w and w*, respectively. The action of the basic extension step
S;,; on the coding of the roundwalk w is described in the canonical case by
the substitution o;; : ¢ — ¢j, and h — h for h # 4, and in the anti-canonical
case by 0;; : i — ji, and h — h for h # 1.

The lattice A* induces a linear function ¢* : Z*¥ — {0,1,---,D* — 1} by
g*(¥) = m whenever ¥ — mu{; € A*. This function is constant on cosets of
ZF/A* and satisfies g*(0) = 0. We define the projection x* : ZF — {0,1,-- -, k}
of g* by x*(%) = x(7) where 7 is the lastly visited place of A(w) when reaching
Z along w*. In particular x*(Z) = x (&) if ¥ € A.



Example 2 Let us apply the basic extension step Siy to the roundwalk of
Example 1. Recall that & = 2,0, = (1,4),0; = (3,1),9, = (—2,—3), hence
dy = 7,dy = 5,dy = 11, D = 23, A = Z(2, —3) + Z(—3, —7). The coding w of
the roundwalk w is the word

0202120210220120212021 2.

We now apply step Sy . Hence o = (1,4), 7 = (2, —-3),75 = (—2,-3), d =
12,d; = 5,d5 = 11,D* = 28 A* = Z(1,-7) + Z(—3,—T). Five vectors are
inserted, since d; = 5. If we apply the canonical insertion, see Figure 4, then
there are five new vectors Wi, wj,, Wy, W, Ws; which are the translates of
’LUZ = ’1174, 117; = ’1178, U-J)TE) = ’11713, ’LU;O = 1617,117;5 = ’LUQl by 1?1’( = (2,—3) The
translated vectors are just the ones in Figure 1 with index 1. The old vectors
keep their subscripts, whereas the five newly introduced vectors get subscript
0. The new coding w* = oy p(w) of the roundwalk w* is

020210202100220102021020 210 2.

If we make the anti-canonical insertions w, + o7 instead, there are again five

% — — —x . =% = =% =
new vectors w;,wy,,wWys,Ws,,Wse Which are the translates of W} = w4, Wy = ws,
Wiy = Wz, Wy = Wy, Wy = Way, but now by 7 = (1,4). The new vectors get
index 1 and the original five vectors get index 0 instead of 1 (see Figure 5).
The coding w* of the roundwalk w* is in this case

w* =00, (w)=020201202010220012020120201 2.

Observe that the patterns are connected. Actually the (upper) numbers form
the restriction W* to some set A(w*) of the function ¢g* : Z> — {0,1,---, D* —
1} (as defined in (1)). Since ¢g* is linear and ¢*(0) = 0, it is determined by
¢*(1,0) and ¢*(0,1). We obtain

g*(m,n) = —7m — 5n (mod 28).

Hence the numbers coincide in Figures 4 and 5 at corresponding places. The
subscripts read in the order 0,1, ---,27 indicate the jumps of the roundwalk
and therefore reflect the coding words. The colouring induced by y (as pre-
sented in Figure 3) is given by

0 if 6 < —7m — 5n (mod 28) < 17
x(m,n) =1 1if 17 < —7m — 5n (mod 28) < 27

2 otherwise,



16,

214
19, 129 51 267 195 12,
3o 245 17, 10, 35 245 17,
151 8y 1y 22, 159 8 1y 22,
201 139 69 27, 200 132 69 27,
4, 251 18 11, 4y 259 18y 11
9 29 23, 16 9 20 23
149 79 09 219 149 79 0Oy
Dy 26
10q
Figure 4. Figure 5.

Insertion in the canonical way  Insertion in the anti-canonical way

0
10 2110
211 0211
0021 0021
1 00 2 100 2
2110 2110
0210 021
0021 00 2
21
0
Figure 6. Figure 7.
W* in the canonical case W* in the anti-canonical case

Note that 6, 17,27 in Figures 4 and 5 correspond with the numbers 5,14, 22 in
Figure 1. The words W* = x*| 4+ corresponding to Figures 4 and 5 are given

10



in Figures 6 and 7, respectively. We omit the subscripts, but underline the
entry at the origin, as we did in Figure 3.

3.2  Substitution matrices

We introduce vectors and matrices to create a general framework to describe
substitutions and their effects on roundwalks. Let o be a substitution defined
over the alphabet A = {0,..., k} of cardinality £ + 1. The substitution matriz
of the substitution o is, by definition, the (k + 1) x (k + 1) matrix M, the
entry of index (7, j) of which is |o(a;)|s,, that is, the number of occurrences of
a; in o(a;).

Let k+1 vectors (¥, 7y, . .., Uk) in Z* be given such that Ziy+Z) +- - -+ Ziy, =
ZF and that

dg = det(ﬁl,"';ﬁk)a
dp, := det(vy, -, Uh_1, =V, Uhy1, "+, Ug), for h#0

are coprime positive integers. Then, by Cramer’s rule, dotiy+d 01+ - -+ dp U =
0. Let o be a substitution with substitution matrix M having determinant 1.

We define the column vectors @, @}, . .., U € Z* by
) N _ 1
(Tg, Uyy - U) = (Uo, Vry o, U) M

dy = det (T}, - -+, U),

d;kz = det(ﬁika Ty Vh—10 _?787 77)];4—17 T 77)];) for h 7£ 0.
It follows that d§,d;,---,d; are coprime positive integers such that djug +

divy + --- + d;vy = 0. Denote by V and V* the k by k£ + 1 matrices with

column vectors ¥y, Uy, ...,V and 3, U7, .. ., U, respectively, and by d and d*
the row vectors (dy, dy,---,dg) and (d§, d},---,d;). Then

Vid=0,v =vM VvV id =0, (3)
where a left superscript ¢ indicates transposition of vectors or matrices. By

the uniqueness of the vector d with coprime positive coefficients such that
V td = 0, we deduce from VM ! td* = 0 that

d=M""d". (4)

11



Put D =dy+dy + -+ dy and D* = d + df + - + dj.

Let & = (zg, 21, -, 7)) € Z¥*" and '#* = M '#. Then

k k
EP N P e —1t t
invi—v r=VM Vx—gx

2=0 =0

Let g : Z¥ — {0,1,---,D — 1} and ¢* : ZF — {0,1,---, D* — 1} be linear
functions such that g(0) = ¢*(0) = 0 and g(v;) = ¢*(v) = 1fori=0,1,--- k.
Then

k k k
g*(z T;U;) = Z xivl) = Z x} (mod D). (5)
i=0 1=0

=0

Observe that V*, J;‘, D*, and ¢* depend only on V and M and are independent
of the way of insertion prescribed by o.

In Section 3.1 the substitution matrix M;; of the substitution o;; (which is
also that of &; ;), satisfies M; ; = Id+ Ej;, where Id is the identity matrix and
E;; the matrix of which all entries are 0 except for the entry of index (7, 1)
which equals 1. Note that the matrix A ; has determinant 1.

Given a roundwalk any substitution rule o with substitution matrix M having
determinant 1 or —1 induces an extended roundwalk: the roundwalk w is
determined by the starting place, the vectors oy, U1, - - -, U and the coding w.
By keeping the starting place fixed, by computing the vectors @, o7, - -, ¥}
according to the above formula, and by applying the substitution ¢ to w to
obtain w* we get the roundwalk w*. There is a simple way to describe w*
and to find A(w*). Let 0 < i < k. Consider the places of the roundwalk with
subscripts 7. The jump %; in the old roundwalk will be replaced by successive
jumps o7, U7, -+, U7 where a( ) = j1jo -+ - Jn. The new places will be adjoined
to A(w). Con81der a place @ which belongs to the part A;(w) with subscript
i in A(w). This point has been reached after reading a certain part of the
coding w. Consider the corresponding part of the coding w*. Suppose the
reached point is @ too. Then this point appears both in A(w) and in A(w*).
Subsequently A(w *) is augmented with the places @ translated by the vectors

Ur, U+ vh, -, U5, + U5, 4 --- ¥ . The next point which is reached is the
point @+ v + U, + -+ U7 = a+ vl Wh1ch is the point following @ in w. Hence,

by 1nduct1on A( ) C A( *) and the set A;(w) is replaced with

Ai(W)UAi(W)_F@?lUAZ'(W)—’_E’;+6§2U“'UAZ'(W)+17;1+6§2+"'+6?n—1'

The situation is illustrated in Section 3.3 below where A;(w) and A,(w) are
each copied once (Figure 10).

12



Assume we are given a colouring map x : ZF — {0,1,---,k} which is a
projection of g. Then y induces a colouring map x* : Z*¥ — {0,1,---,k} as
follows. If for a € A we have x(a@) = 7, then in w* we put

V(@) =X @A T == X @, AT T ) =i (6)

Note that n equals the i-th column sum of the matrix M. Hence the definition
of x* depends only on y and M and is independent of the way of insertion.
Only the number of occurrences of each letter in the substitution rule matters.
Note that x* is constant on cosets of A* and is therefore a projection of g*.

3.8 The Rauzy extension step

We start from the situation as described in the previous sections. For given
j €{0,1,---, k} we introduce the Rauzy extension step R; for j € {0,1,---,k}
which is actually the composition of all S;; with i € {0,1,---,k} \ {j}. Put
ot = 0 — v fori = 0,1, -+, k with i # j and ¢} := @;. Hence the correspond-
ing substitution matrix A; has entries 1 at the diagonal and at the j-th row
and further entries 0. Then df = d; for i # j, and df =dy+---+dy = D.
All the superscripts R will refer to the situation after a Rauzy step. Note that
the lattice L% := Zif + - .. + ZiE equals L = Z* with lattice determinant
df:=d=1. Put D*:=dlt +dit + .-+ dff = 2D — d;. Let A" be the lattice
Z(of — o) + -+ + Z(0F — §F). Then

det(A®) = dff +df + .- +df =2D — d; = D™

Suppose we have a roundwalk @, 1y, - - -, Wp = Wy in Z* through some funda-
mental domain A of A with ;| —w; € {vy, 0y,---, 0} fori =0,1,---, D —1.
We extend it to a roundwalk @, WF, - - W&, = @l in Z* through a funda-

mental domain A% of A® by inserting for every pair h,i with @, — 10, = ¥
and i # j either ), + T or @, 4 ¥ in between @), and Wy Doing so we

obtain a roundwalk where @, wf, -+ wWh, | represent the D® cosets of AF.
The new roundwalk contains d jumps @% for i = 0,1,---, k. This time we

have D —d times a choice out of two to make the insertion. If always @ 40}
is inserted (and never uj, 4+ ¥}°), then we say that the insertion is done in the
canonical way. If always 117;1+17f is inserted, then we do it in the anti-canonical
way.

The action of the Rauzy extension step R; on the coding w of the roundwalk
w is described in the canonical case by the substitution ajR ci> g, fori £ 7
and j — 7, and in the anti-canonical case by 6;3 ci+—> ji, for i # j and j — j.
Note that O'JR equals the composition of the substitutions o, ; for ¢ # j. These

13



substitutions are called generalized Rauzy substitutions following [2]. They are
introduced in [3] where it is proved that each Arnoux-Rauzy sequence is in
the shift orbit closure of a unique sequence of the form

. R R
lim o;7o...00;(0),

where the sequence (i,) takes infinitely many times the value i for every
i = 0,---,k. Note that 65aFslt = o3 where o denotes the usual Rauzy
substitution ¢(0) = 01, (1) = 02, (2) = 0.

We illustrate this by starting from the same situation as in Example 1 and
applying Ry in the canonical way to obtain Figure 8. Therefore in the coding
sequence (cf. subscripts) we replace every i > 0 by 0.

Example 3 We still pursue Example 1. We start from k = 2,5, = (1,4), ¢} =
(3,1), ¥, = (=2, —3) and roundwalk w with coding

w=0202120210220120212021 2.

On applying Ry we find ¢ = (1,4), 9% = (2,-3),58 = (=3,-7),dl =
23,d% = 11,d} = 5,D® = 39. There are d; + dy = 16 new points. If we
replace each 1 by 10 and each 2 by 20 we get the roundwalk w’ with coding

wf=020020102002010 0202001020 02010 20 0 20 10 20
in Figure 8. In Figure 9 we have applied the coding
G (w) =0020021002 00201020020 102002001200 2001 20.

as it is used in Simpson and Tijdeman [13]. Here there are no fixed substitu-
tions for the replacement of the letters 1 and 2 and the result is a convex set,
A* which ressembles a hexagon.

Figure 1 can be divided into three zones which correspond to the points which
have subscript 0,1,2, respectively (see the left Figure 10 below). In the right
Figure 10 the part in Figure 1 with index 1 is translated over vF = (2, —3),
the part with index 2 over #f = (-3, —7), whereas all the parts remain at the
same place too. Because of the choice for canonical insertion, the subscripts
at new places become 0. The right Figure 10 explains Figure 8. In Figure 9

the copied parts A;(w) and As(w) are each split into two parts because of the
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mixed substitutions 10 and 01 for 1, and 20 and 02 for 2.

52
125 2
29, 195 9,
26, 16, 361 262 16,
49 335 239 14y 4y 335 239
21, 115 15 30, 217 115 19 30,
28, 185 8y 375 28y 18y 8y 372
61 351 259 15¢ 61 350 259 159
131 30 329 22 139 30 329 22
209 109 09 299 209 109 Og
279 170 7o 369 279 170 7o
50 34¢ 24y 14y 34y 24,
129 29 31 31p
199 99 389 38
Figure 8. Canonical extension Figure 9. ST-extension
165, 109 26 16,
39 20, 14, 49 339 23
131 | 79 1y 18y 21y | 115 15 30,
17, | 115 5y 229 281 | 185 8 37
4, 21y | 155 9y 61 351 | 250 15
81 20 19 131 | 30 320 | 22
129 69 0Og 200 109 0p | 29
27y 179 | Ty 36y

o 340 24y | 14

129 29  31p
199 99 38

Figure 10. The roundwalk w from Figure 1 and its extension w¥ in Figure 8
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Points in Figure 8 and Figure 9 with the same (upper) number are repre-
sentatives of the same coset of A®. Hence their difference vector is in A =
Z(1,—7)+Z(—4,—11). Figures 8 and 9 are the restrictions of a linear function
g% : 7% — {0,1,2,---,38}. If we consider the point 0, as the origin, then the
function g% is given by g(m,n) = —10m — 7n (mod 39).

Let us write for short A = A(w) and A® = A(w'). We extend the function
x: A — {0,1,2} to a function x® : A® — {0,1,2}. Recall that x| is given
by

0 if 5 < —6m — 4n (mod 23) < 14

x(m,n) =< 1if 14 < —6m — 4n (mod 23) < 22

2 otherwise.

Consider now the extension to Ag given in Figure 11. We write a 0, 1 or 2
according to the value it has in Figure 3 for places in A N Ag and the value
of the preceding place in the roundwalk if the place is in Ag \ A. This yields
Figure 11 where we have underlined the number at the origin. It follows that
the induced word W = fF|,r satisfies (cf. the upper values in the right
Figure 10)

0 if 8 < —10m — 7n (mod 39) < 23

Bim,n) =< 1if 23 < —10m — 7n (mod 39) < 37

X

2 otherwise.

10
2 1 1
0 0 2 1
10 0 2
21 10
0 2 10
0 0 2|1
10 2 1
21 10
0 2 1
0 0 2

Figure 11. W from Figure 3 and its extension W* in the canonical case
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4 Towers of lattices

The aim of this section is to construct towers of lattices generating larger and
larger roundwalks, and thus colourings with larger and larger shapes.

4.1 Basic towers

Let 7", &%, .-, 771(40) denote vectors in Z* with

10 = der(d0 . ) =1
Put 17((]0) = —1750) — = 17,(60). Then, for 1 <1 <k,

dEO) = det(ﬁgo), T, ?71(0) U(() )7 771(2)17 Ty 771(90)) =1

Put
LO =75 + 759 + ... + 75",
AO =2 = 0”) + -+ 20 - 1)),
Then LO® = zk DO = dP +d” 4 ... 4 dY = = o+ 1. We start with the
roundwalk w(® given by 0 17((] ), _'(0)+ , D Z = 0 with coding w©® =
m—1 (0)

012-.-k. For convenience we assume » /" " ¥; = = €, for m = 1,2,--- k in
the sequel. Th1s can be achieved by a transformation of coordinates. Hence
A = A(w®) = {0,&,,---,&]}. One has &, — mé, GA(O),form_l k.
We thus define ¢ = x© : z¥ — {0,1,---,k} by x@(0) = 0, x©(¢ )
m form =1,k and x is constant on cosets of Z¥/A®) . Thus if # =
(x1,+-+, 1) € ZF, then

k
0@ = xO(7) = iz; (mod k +1).

=1

We iteratively apply basic extension steps \5; ; in the canonical way. Let S (n) =
Sin.in denote the n-th extension rule that is applied. We will use the notation

171(”), dz(.”), for 0 <i <k, L, A® g0 m) @) gln) A g0 0 pe)
W™ for the values of the previously defined symbols at level n. Let us recall

that we use the convention expressed by (6) for the definition of x(™
By (3) and (4) we have, in terms of matrices,

Ve — Ol AL and B = M, j, - M;

21 ]1 tn,Jn 21,in

(d®).

Since d® = (1,1,--+,1), the vector dm s given by the row sums of the
product matrix M; ;. ---M; ;.
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Put
M® .— EMy, gyt M

inyjn>

(M© = Id). Define cg-") as the j-th column sum of M™) (the numbering start-
ing with 0), and r](n) as the j-th row sum of M ™. When we apply extension
step S;,,j, tO M®™ | then M ™Y is obtained by addlng the i,-th column vector

of M™ to its j,- th column vector.

Observe that the 1-th row sum r ) denotes the total nurnber of entries ¢ in
the word W™ for 0 < i < k, whereas the j-th column sum c ) denotes the
number of letters j in the coding word w™, that is, the nurnber of places in
A™ with subscript j, for 0 < j < k. Of course, ¢ l” =yFr, Z” DM
the total number of points in A™ ), that is the cardinality of Z*/A™

We use the linearity of the function ¢ and the results of Sec. 3.2 to give
explicit expressions for ¢ and x™. Let # € Z*. Put # = 3% _, 2,,€,,. Then

meg (€m) (mod D(")).

By our special choice of the #; and x(», the roundwalk w( starts from the
origin and jumps along r(()n) places with subscript 0 until it reaches €7, then
passes r§") places with subscript 1 until it reaches €5, and so on. Hence the

number g™(e ) equals the total number of letters 0,1,---,j —1in W Thus
g™ (&) = Zlor for j=1,---,k and

|
—

J
r™ (mod D™).

i

It follows from the definition of y that

gM

m—1 m
X(E) =m = Y rt(n) < g™(&) < Zrtgn).
i=0 1=0

So we have derived the following proposition.

Proposition 1 Under the assumptions made in this section the function x™ :
ZF — {0,1,---,k} satisfies, form =1,--+,k and T = (1, -+, x3) € ZF,

X(")(f) =m < z:n < {

D) D®)

Zk1%zz 07’n < ?iorz(n)
D(ﬂ)

where D™ = Y8 Z” and {y} denotes the fractional part of y.

Example 4 Let k =2, 7" = (1,0), 5" = (=1,1), 5" = (0, —1). We apply
periodically extension steps Sy 1,512, 52,0. Hence we obtain the sequence of
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matrices M™):

110 111 211 2 31
010 011 111 121
001 001 101 111

n=1 n=2 n=3 n=4

2 3 4 6 3 4 6 9 4 6 9 13
123 4 2 3 46 3 46 9
11 2 31 2 34 2 34 6
n=> n==~6 n==7 n =23,

We compute r(()) = 28,7“{8) = 19,7“&8) = 13,D®) = 60,7 *(8) (2,—5),?758) =
(6,—1),0 5 = = (=5,3). Thus the induced function x® : Z2 — {0, 1,2} is given
by

0if 0 < {2z 45y} < 2

XV (r,y) = 1if 8 < {2 +%y}<@
2if 3L < {2z + Iy} < 1.

This is independent of the made insertions.
4.2 Rauzy towers

We start from the same situation as in the previous section, but now we apply
Rauzy extensions steps R;. Since a Rauzy extension step is a combination of
k basic extension steps, the formulas for g and x in Sec. 4.1 remain valid with
superscripts (n) in place of (kn). However, in the Rauzy case the numbers rl(n)
satisfy a useful recurrence relation which facilitates the computation of the
function ™. Write #® = (r((]”),rgn), . -,r,(c")). Let 0 < j < k. If the Rauzy
step R, is applied at level n, then

7 — prn) H1,1,---,1) = M=) ML, 1),

(Recall that M; is the matrix with entries 1 at the diagonal and at the j-th
column and entries 0 elsewhere).

Since
M, (L, 1) =281, 1, 1) — &,



we have 7" = 27(n—Y — (=g = 27—l E(jn_l), where E(jn_l) is the j-th
column vector of M V. In view of MY = MW" A, when R; is applied
at level [, we obtain E(jn_l) = E(jn_Q) = ... = E(jq) + E(jq_l) if the previous
time that a Rauzy extension step R; was applied was at level ¢. Furthermore,
é(jq) = #9=1 Thus

H) = 9tn 1) _ o) (7)

if at level n a Rauzy step R; is applied and the previous time that R; was
applied was at level ¢. The above argument is of course independent of the
chosen way of insertion. The corresponding function Y™ : Z* — {0,1,2} is
given in Proposition 1.

Example 5 We consider k£ = 2 and apply periodically Rauzy steps Ry, R1, Ry.
This yields a sequence of matrices (M™),~, starting with

100 101 1 21 4 21
010 011 021 3 21
001 001 011 211

n=>0 n=1 n=2 n=3

427 4137 24137
326 3116 2011 6
214 274 137 4

The row sums satisfy a recurrence relation #™® = 27"=D — #7=% for every

n > 4. The characteristic polynomial reads 2t —22%+1 = (z —1) (23 — 22 — 2 —

1) = (z—1)(x—a)(x—pB)(z— ) where « is the Tribonacci number (in reference

to the Fibonacci number 1+T‘/5) ; one has @ ~ 1.84 and |3]| < 1. We find that
there are constant coefficients c;; such that rl(”) = co,ia"+cl,i+02,iﬂ"+cg,ﬁn for
i =0,1,2 and all n. The coefficients can be computed from ), #1 #2) #3),
The corresponding functions x(™ are given by Proposition 1. It will be clear
that the functions x™ converge to a limit word on Z2, but this will be the

subject of the next section.
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5 Multi-dimensional Sturmian words

In this section we study the limit words which can be obtained by using towers
of lattices as described in the previous section.

5.1 Some definitions and non-existence results

It is obvious from the theory of extended roundwalks that W := lim,,_, /W™
exists and is defined on A := U;’f:oA(") = lim,,_,.cA™. However, the word W
depends on the way the insertions are being made at each step. It is easy to
show that it can happen that A # Z*. Take a fixed place ¥ € Z*, |#| > 1.
At every level we have free choice of making insertions. At most one of both
insertions involves 7, since in the notation of Sec. 3.1 at least one among
W, + vF and W, + v?f is different from #. So we can secure by making the
“right” insertions that Z ¢ A™ for every n. Thus & ¢ A.

In view of W™ = x|, for every n, it would be nice if lim,_,,x™ exists,
that is, x™ (%) is constant for every # € Z* and n > ny(Z), since then we
have a limit word x : Z¥ — {0,1, -+, k} which is independent of the chosen
insertions and W = x|4. We shall show that lim,_,oox™ does not exist in
general.

(n)

We use the notation of Sec. 4.1. Put pgfl’) = ?:01 g(n) form=1,---k +
1. Then we deduce from Proposition 1 that, for m = 0,1,---,k and ¥ =

(xla"'axk) € Zka

k
X&) = m = p < {3 20"} < ps. (8)
j=1
Obviously lim,_,.x™ exists if p,, = limn_mopsﬁ) exists for m = 0,1,---,k

and, in case p,, is rational, p™ < p,. for all large n. If so, the limit word x is
given by

k

X(f) =Mm < pp < {zxjpj} < Pm+1 (9)

and the density of the letter m equals p11 — pm for m = 0,1,---, k. Note
that 0 < py < p; <+ < pp < pey1 := 1 and that the sum of the densities of
the letters equals 1. Before going into the study of the structure of the limit
words, we consider a situation where the limit does not exist.
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Let k=4 and 0 < e < % We apply basic extension steps Sp; and S; o until
the sum of the densities of 0 and 1 exceeds 1 — ¢, subsequently we apply
basic extension steps Si3 and Sz until the sum of the densities of 2 and
3 exceeds 1 — ¢, subsequently we apply basic extension steps Sp; and Si
until the sum of the densities of 0 and 1 exceeds 1 — ¢, and so on. Obviously,
lim inf,_ pgn) < e, lim sup,,_, pgn) >1—¢, and lim,_, pgn) does not exist,
so that lim,_,. x(™ does not exist either.

We give the definitions of k-dimensional regular word and k-dimensional Stur-
mian word, respectively.

Definition 1 An infinite k-dimensional reqular word is an infinite word U :
ZF — {0,1,...,k} which satisfies either

V(xy,...,21) € ZF, (U(xy,...,75) = m &

T10q + .o+ TRy 4 p E [, Q| (mod 1)),

or Y(z1,...,7) € ZF, (U(xy,...,75) = m <

Ty + ..+ TR+ p €], Q] (mod 1)),

for some real numbers ay = 0 < a1 < ... < ap < agy = 1 and p. If,
moreover, 1,aq,...,qr are independent over Q we call it a k-dimensional
Sturmian word.

The multidimensional Sturmian words have been studied mainly for k£ = 2
in [5-8,4] and have many interesting combinatorial properties which allow us
to consider them as a higher-dimensional generalisation of Sturmian words.
In particular, they are nonperiodic (i.e., there is no nonzero vector of peri-
odicity with integer coefficients) and uniformly recurrent (i.e., for every posi-
tive integer n, there exists an integer /N such that every square factor of size
(N,...,N) contains every factor of size (n,...,n)). Furthermore they have
my...mp+ Y8, [1;: m; factors of length (my,...,m;). Recall that (classic)
Sturmian words code the approximation of a line by a discrete line made of
horizontal and vertical segments with integer vertices (for more details, see
for instance [12,11]). These multidimensional sequences code discrete hyper-
plane approximations. In the sequel we will use the following observation: the
densities of letters 0,1, ...,k in a k-dimensional Sturmian word exist and are
equal to ayq, g — aq,---, 1 — q, respectively, (in the notation of Def. 1). The
first theorem is an assertion of the type that every finite balanced word is a
factor of a Sturmian word.

Theorem 1 We use the notation of Sec. 2 and Def.1. Let w be a roundwalk
in the domain A(w). Definex : Z¥ — {0,1,... .k} in T = (z1,---,71,) € Z* by
(9). Then the k-dimensional finite word x|aw) is a factor of a k-dimensional
Sturmian word with p = 0.
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Proof We have

k k
X&) =m <= pp < {D_jpj} < pmy1 form e {0,1,---k}, T € A(w).
i=1 j=1
Let (ap,- -+, ) € RE with 1,a4,- -, a; linearly independent over Q be such
that (Day, - -, Day) approximates the vector py, - -, pr with rational entries

so well that

k k
{Z Tipi} € [Pms Pmi1 [ {Z TG} € [0, Qmpt [,
i=1 i=1

form € {0,1,---k}, 7 € A(w). For m € {0,1,---,k} we then have

k
X|aw)(£) = m = apy < {Z iy} < Q-
i=1
It follows from (9) that x|aw) is a factor of the k-dimensional Sturmian word
with parameters oy, - - -, a4 associated to the partition by right-open and left-
closed intervals and p = 0. [ ]

The limit words we study have the additional property that the constant p in
the definition is 0. We call such words homogeneous.

Corollary 1 The words W™ corresponding to x™ |A(n)(w(n)) occurring in Sec.
4.1 are factors of homogeneous multidimensional Sturmian words.

5.2 Some sufficient conditions for convergence

We will apply the following result.

Theorem 2 [9] Let (M;)jen be a sequence of square matrices of size k + 1
with coefficients in N with values from a finite set for which there exists a
positive matriz P such that M; attains this value P for infinitely many values
j. Let Cﬁﬂ denote the nonnegative cone in REt! of vectors with nonnegative
entries. Then there exists a positive vector f:t(lg, li,..., k) with Z?:o l; =1
such that

M My M, (CE) = {N; AeR,}.

neN

In other words, for every nonzero vector Z in RF*! with nonnegative entries,
MM, ... M,7 converges towards the vector I'in R+, Observe that such a
convergence property needs not hold without the assumption of Theorem 2 as
illustrated by Keane’s example of a minimal and nonuniquely ergodic exchange
of 4 intervals [10].
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We apply Theorem 2 to the starting situation described in Sec. 4.1. We assume
that we have an infinite tower (A/;, ;,)n,>1 of basic extension matrices. Since
there are only finitely many choices for M, ;, for every positive integer h there
exist matrices P such that P = M, ; 'M; . ... --- "M; ., ;. for
infinitely many n. Suppose there exists an h for which such a P exists with all
entries positive. Then there exists a constant ¢ for which there exist infinitely
many such n of the form mh + c. We define

nyJn

Py= "M 5, "My, g, - "M,
and
Pm:tMi 1 tMi ; tMl 1. g
(m=1)h+c)J(m—1)h+c (m=1)h4c+15](m—1)h+c+1 mh+c—1Jmh+4c—1
According to Theorem 2 there exist positive numbers [y, [1, - - -, [, € R with

Z?:o l; = 1 such that

N P P(CEY) =R, (loy lay - - - 1)

neN

It follows (with the notation of Section 5.1) that

M ‘Mg, - "My, (CEF) =Ry “lo, by -, i)

neN
In particular,
Tim (- r() = Tim M e M, t(L 1) € Ryl By D)

Since r{"” + (™ + ..+ " = D we obtain

L
W Dn)

=1, form=20,1,---k.
It follows for these values of m that

lim p,(fll):lg+l1+---+lm_1 =: Pm.

n— 00
We define x : Z¥ — {0,1,---,k} by
k

X(Z) =m <= ppm < {D_xipi} < pmt1, (10)
7=1

for # = (x1,+-+,7;) € Z*¥ and m = 0,1,--+, k where py = 0, pp41 = 1. Thus
x represents a multi-dimensional regular word and the density of the letter m
equals ppi1 — pm =l form =0,1,--- k.
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It remains to prove that lim,_,, x(™ = x. We have from (8)

k
X(@) =m = p) < {3 20"} < o,
j=1

Fix ¥ = (2,21, -+,7) € ZF. If p,, < {Z?lejpj} < Pmas1, then p™ <
{xh, xjpg-n)} < pﬁff}rl for n > no(7), so that x™ (&) = m for n > ne(7).
Hence x () = lim,_,» x™ () = m.

We now consider the boundary case. Suppose {Z?Zl z;pi} = pm. Then pp,_y <

{xr, xjpg-n)} < pmy1 for n > ng(%) so that x™ (F) is m—1 or m (with obvious
cyclic adjustments if m =0 or m = k). If

k
P < S aipiy < o0
7=1

for all n > n, (&), then we are certain that lim,_,.,x™ (Z) = m. In case there
are infinitely many n such that the reverse inequality holds, then it is not true
that the limit exists and equals x. Thus we have proved the following result.

Theorem 3 Apply from the starting situation as described in Sec. 4.1 an
infinite sequence (M;, j.) of basic extension matrices. Suppose there exists a
positive integer h and a matriz P with only positive entries such that P =
M;, 5. M 1 o1 - - M, h—1,j,+n—1 for infinitely many values of n. Let pp, =
lim, oo p™) for m = 1,2,---,k and define x by (9). Then lim,_, x™ = x :
ZF — {0,1,---,k} emists if and only if

k
P <X wip} < P
j=1

for n. > ny(Z) for every ¥ € Z* for which {Zle T;pi} = pm for some m €
{0,1,---,k}.

Note that the latter condition is fulfilled if 1, py, - - -, pi are linearly independent
over the rationals, that is, if the limit word is Sturmian, since then there cannot
be a point ¥ # &, with {Z?Zl 2ip;} = pm, whereas (" (€,,) = x(€) = m by
definition.

Corollary Suppose that to the starting situation as described in Sec. 4.1
we apply an infinite periodic sequence (R;,)n>1 of Rauzy steps. If each of
Ry, Ry, -+, Ry occurs in the period and the limit values pg, p1,- -+, pr are lin-
early independent over the rationals, then the limit word lim,_ x™ = y
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exists and it is the Sturmian regular word given for m =0,1,--- k by

k
X(7) =m < pp < {ijpj} < Pm+1-
7j=1
Proof Suppose each of Ry, Ry, -, Rr occurs in the period. Note that

when applying R; we multiply by the substitution matrix M; with nonnega-
tive entries and with entries 1 at the i-th column. Hence the product matrix
corresponding to a period has only positive entries at the i-th column for
1 =20,1,---,k. Thus the product matrix corresponding to one period has only
positive entries. Because of the linear independence condition it follows from
Theorem 3 that lim,_,. ¥ = x. [

Example 5 (continued). We consider & = 2 and apply the Rauzy steps
Ry, Ry, Ry periodically. Then the substitution matrices M, have row sums

7™ satisfying rfn) = coi" 1+, 3"+ s, an for i = 0,1,2 and all n. Recall
(n)
that a > 1, ]3| < 1. Since rl( RN 00, we have hmnﬂooD(n) co,i for i =0,1,2.

A direct calculation gives

a? 1 o
Cop="7—""5, Co1=—"", Coo2=-"—"5-
0,0 (O{ + 1)2) 0,1 a+ 17 0,2 (a+ 1)2

Since « is a root of the irreducible polynomial 2> — 22 — z — 1, the numbers
Po = Cop, P1 = Co,1, P2 = Cpz2 are linearly independent over the rationals. Thus
the limit word x : Z? — {0, 1,2} is given by

01f0<{a+1

X(l‘ay) = 1 lf (a-i—l < { a+1 o _|_ io-;:qlz y} < ao;:_o{;»l

2if ool < {for 4 2y} < 1.

2a+1
2%+ (cﬁi—l Zy} < a—l—l)

Note that in the above corollary the requirement that each among the rules
Ry, Ry,---, Ry occurs in a period is necessary for the conclusion. If R, does
not appear in the period, then (™ = 1 for all n, that is, in every A(™ there is
only one coset with x(™-value m. Hence the density of the letter m becomes
0 and the limit word cannot be regular.

A similar corollary can of course be given for a periodic sequence of basic
extension steps (.S;, j,) where each matrix M; ; appears in a period. However,
here the condition is far too strong. It suffices, but it is not necessary, that the
product matrix taken over a period has positive entries. We shall deal with
such situations in part IT of the paper.
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5.8 Approzimations of given regular words

In this subsection we address the question whether and how some given regular
word can be obtained as the limit by applying a tower of extension steps. Not
every regular word x can be the limit word when applying an infinite sequence
of Rauzy extensions steps. Indeed, for every n the vector ©* = (rq, 71, -, ),
where rg, 7y, -+, 7 are the densities of the letters 0,1,---,k of the word Yy,
should be in the convex hull of the column vectors (D®™)~1(cm, ™ &m)

of M™ . because & + &™ + .- + 5}6”) = ") and limn_mo% = 7. Here
we restrict ourselves to the linear manifold zo + 21 + --- + 2, = 1, since
the sum of the densities equals 1. In particular, in case k& = 2, the vector
7™ should be in the convex hull of &",&™, &Y. When we start with R,
we have &) = 1(1,0,0), &"” = *(1,1,0), & = *(1,0,1) and for R, and
R, symmetric situations occur. Thus no density vector (rg,r1,r2) inside the
triangle with vertices %(1, 1,0),%(1,0, 1),%(0,1, 1) can be obtained as a
limit. In particular, regular words where the letters have about equal densities
cannot be the limit words of Rauzy extensions.

R

A further elaboration of the convexity argument would lead to the conclusion
that the limit values 7 of towers of Rauzy extensions have the shape of a
Sierpinski triangle fractal.

If we consider basic extension steps, then the situation is entirely different.
Suppose that we apply an infinite sequence of basic extension steps {S;, ;. }n>1
to the usual starting position. It is clear that any possible limit density vector
7= (ro,71, -, %) of a regular word satisfies rq + r; +---+ r, = 1 and has
nonnegative coefficients. It is therefore in the convex hull of €5 = Ef)o), =
Efco). Suppose that after n extension steps (D(n))~' the vector #™ is in the
convex hull of the column vectors (D™)~1& (D=1 ... (Dm))-15"
Then applying M, (= M;, ;.), the column vector EE”) is replaced with the
#n) —gn)

vector ¢; ¢, and the other column vectors are unchanged. If 7 is not in

the convex hull of the vectors
& anoam+adr @ &
D®) DM py  pm) Do)’

then it is in the convex hull of the vectors

D®’ > pm’  pm) > pm)’ Do)’
Thus by replacing S;, ., .., with S; . ; . if necessary, we keep 7 in the convex

hull of the column vectors. Doing so inductively we can guarantee that start-
ing with any sequence of extensions steps (S;, j,.)n>1 and making appropriate
interchanges of i’s and j’s, the vector 7 is in the intersection of the convex
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hulls of (D®)=1&™ (DM)=1&™ ... (DM)=1&" taken over all n. In partic-
ular, if the intersection consists of one point (rg,ry, -+, 7¢) and ro, 7, -+, 7y
are linearly independent over the rationals, then the limit word exists and is
a homogeneous Sturmian word.
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