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Abstra
t

In the present paper we develop a formalism to generate multi-dimensional words

using latti
es whi
h generalizes the 
onstru
tion of real numbers (one-dimensional

words) from a sequen
e of partial quotients using 
ontinued fra
tions. The 
onstru
-

tion was introdu
ed in a spe
ial 
ase by Simpson and Tijdeman in order to derive a

multi-dimensional generalisation of the theorem of Fine and Wilf. We show that the

produ
ed multi-dimensional words are intrinsi
ally 
onne
ted with k-dimensional

Sturmian words.
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1 Introdu
tion

Let k+1 ve
tors ~v

0

; ~v

1

; � � � ; ~v

k

in Z

k

be given su
h that all the subsets of k ve
-

tors are linearly independent. Consider the sublatti
e � := Z(~v

1

� ~v

0

) + � � �+

Z(~v

k

�~v

0

) of the latti
e L := Z~v

0

+Z~v

1

+ � � �+Z~v

k

. For 
onvenien
e we assume

L = Z

k

. Let D denote the 
ardinality of Z

k

=�. We show that the multiples

of ~v

0

represent the D 
osets of �: This indu
es a numbering 0; 1; � � � ; D � 1

of the 
osets su
h that

P

k

i=0

x

i

~v

i

belongs to 
oset

P

k

i=0

x

i

(mod D) whi
h

we shall indi
ate by g(

P

k

i=0

x

i

~v

i

): The 
olouring map � : Z

k

! f0; 1; � � � ; kg

is a proje
tion of g, thus 
onstant on 
osets of �. By 
onsidering a funda-

mental domain A of Z

k

=� the fun
tion g indu
es a roundwalk w given by
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~w

0

; ~w

1

; � � � ; ~w

D�1

; ~w

D

= ~w

0

through A. In our 
onstru
tion w has the spe
ial

property that ~w

i+1

� ~w

i

2 f~v

0

; ~v

1

; � � � ; ~v

k

g for i = 0; 1; � � � ; D� 1. The fun
tion

� indu
es a 
olouring of A. This is worked out in Se
tion 2 and illustrated by

an example.

In Se
tion 3 we introdu
e extension rules whi
h extend the roundwalk w

through a latti
e domain A of Z

k

=� to a roundwalk w

�

through a larger

latti
e domain A

�

of Z

k

=�

�

where �

�

is a latti
e generated from � by a

substitution rule � : f0; 1; � � � ; kg ! f0; 1; � � � ; kg

?

applied to ~v

0

; ~v

1

; � � � ; ~v

k

.

Here f0; 1; � � � ; kg

?

denotes the set of nonempty �nite words with letters from

f0; 1; � � � ; kg. The word W

�

de�nes a fun
tion g

�

numbering the 
osets of �

�

.

The indu
ed 
olouring map �

�

: Z

k

! f0; 1; � � � ; kg will have the property

that it is 
onstant on 
osets of �

�

and 
oin
ides with � on A. We prove, under

suitable 
onditions, that the fun
tions g

�

and �

�


an be des
ribed in terms

of g; � and a matrix M , the so-
alled substitution matrix, whi
h represents

the numbers of ea
h letter in the words �(0); �(1); � � � ; �(k): So the pre
ise

order of letters in these words is irrelevant for the de�nition of g

�

and �

�

. In

Se
. 3.1 we 
onsider basi
 extension rules and in Se
. 3.3 rules generated by

substitutions of Arnoux-Rauzy type.

Se
tion 4 studies the iteration of extension rules produ
ing a tower of latti
es

with 
orresponding matri
esM

(n)

. By extending the 
olouring of the domains

of the roundwalk we thus generate a sequen
e of �nite k-dimensional words

(W

(n)

)

n�1

through larger and larger domains A

(n)

(n = 1; 2; � � �) with letters

from f0; 1; � � � ; kg. By indu
tion we get in�nite sequen
es of fun
tions g

(n)

:

Z

k

! f0; 1; � � � ; D

(n)

� 1g and �

(n)

: Z

k

! f0; 1; � � � ; kg. We give expli
it

formulas for (�

(n)

)

n�1

in terms of g

(n)

and M

(n)

. Furthermore we show that in


ase of Rauzy extension steps a re
urren
e relation for the frequen
ies of the

letters 
an be obtained in a simple way.

In Se
tion 5 we 
onsider the in�nite limit words. Obviously the sequen
e

(W

(n)

)

n�1

has a limit word, sin
e the words be
ome larger and larger and

as soon as a pla
e has got a �-value, it remains 
onstant. However, the word

need not be de�ned on Z

k

: Therefore we investigate whether � := lim

n!1

�

(n)

:

Z

k

! f0; 1; � � � ; kg exists in whi
h 
ase every word W

(n)

is the restri
tion of �

to A

(n)

. In Theorem 5.3 we show that under mild 
onditions � exists indeed

and that it represents a multi-dimensional Sturmian word. Furthermore we

dis
uss whi
h multi-dimensional Sturmian words 
an be limit words of towers

of Rauzy extensions and whi
h of basi
 extensions. In Part II of the paper we

shall turn to more general questions and investigate when the roundwalks are

spa
e �lling.
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2 Roundwalks and latti
es

The aim of this se
tion is to introdu
e the algebrai
 framework we will use

throughout the paper. This formalism was introdu
ed in a spe
ial 
ase in [13℄.

2.1 Latti
es

Let k+1 ve
tors ~v

0

; ~v

1

; � � � ; ~v

k

in Z

k

be given su
h that f

0

:= det(~v

1

; � � � ; ~v

k

) 6=

0; f

i

:= det(~v

1

; ~v

2

; � � � ; ~v

i�1

;�~v

0

; ~v

i+1

; � � � ; ~v

k

) 6= 0 for i = 1; � � � ; k and f

0

;f

1

;

� � � ; f

k

all have the same sign. This implies that ~v

0

; ~v

1

; : : : ; ~v

k

are not on the

same side of some hyperplane. Note that one dedu
es from Cramer's rule that

f

0

~v

0

+ f

1

~v

1

+ � � �+ f

k

~v

k

=

~

0:

Let L be the latti
e Z~v

0

+Z~v

1

+� � �+Z~v

k

. Then on the one hand, det(L) j f

i

for

i = 0; 1; � � � ; k, when
e det(L) j d := g
d(f

0

; f

1

; � � � ; f

k

): On the other hand,

if ~w

1

; � � � ; ~w

k

is some basis of L, then ~w

j

= �

0;j

~v

0

+ �

1;j

~v

1

+ � � �+ �

k;j

~v

k

with

�

0;j

; �

1;j

; � � � ; �

k;j

2 Z for j = 1; � � � ; k: Hen
e det(L) = j det(~w

1

; � � � ; ~w

k

) j is a

linear 
ombination of f

0

; f

1

; � � � ; f

k

and therefore divisible by d. We 
on
lude

that det(L) = d and that L has exa
tly d 
osets in Z

k

: If d = 1, then L = Z

k

.

Let � be the latti
e Z(~v

1

� ~v

0

) + � � �+ Z(~v

k

� ~v

0

). Then

det(�) = j det(~v

1

� ~v

0

; � � � ; ~v

k

� ~v

0

) j = j f

0

+ f

1

+ � � �+ f

k

j:

Note that � is a sublatti
e of L of index

D := det(�)=det(L) = d

0

+ d

1

+ � � �+ d

k

;

where d

i

:= jf

i

j=d for i = 0; 1; � � � ; k. Hen
e g
d(d

0

; d

1

; � � � ; d

k

) = 1 and

d

0

~v

0

+ d

1

~v

1

+ � � �+ d

k

~v

k

=

~

0:

Moreover, if a

0

~v

0

+ a

1

~v

1

+ � � � + a

k

~v

k

=

~

0 for some a

0

; a

1

; � � � ; a

k

2 Z, then

a

i

= td

i

for some integer t and i = 0; 1; � � � ; k:

2.2 Roundwalks and their 
odings

Let us now introdu
e the notion of a roundwalk.

We 
laim that ~v

0

generates L=�. Suppose, on the 
ontrary, that for some i; j

with 0 � i < j < D; iv

0

� jv

0

(mod �). Then (j � i)~v

0

= �

1

(~v

1

� ~v

0

) + � � �+
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�

k

(~v

k

� ~v

0

) for some integers �

1

; � � � ; �

k

: Hen
e

(j � i+ �

1

+ � � �+ �

k

)~v

0

� �

1

~v

1

� � � � �

k

~v

k

=

~

0:

Therefore j � i + �

1

+ � � � + �

k

= td

0

;��

1

= td

1

; � � � ;��

k

= td

k

for some

t 2 Z. It follows that j � i = t(d

0

+ d

1

+ � � �+ d

k

) = tD for some t 2 Z whi
h

yields a 
ontradi
tion. Thus the multiples i~v

0

(0 � i < D) are elements in L

whi
h are distin
t modulo �. Hen
e f

~

0; ~v

0

; � � � ; (D � 1)~v

0

g is a 
omplete set

of representatives of L=�. Observe that D~v

0

�

~

0 (mod �).

By a roundwalk w through L=� we mean a sequen
e ~w

0

; ~w

1

; � � � ; ~w

D�1

;

~w

D

= ~w

0

ofD+1 elements from Z

k

su
h that ~w

m

�m~v

0

2 � form = 0; 1; � � � ; D

and ~w

i+1

� ~w

i

2 f~v

0

; ~v

1

; � � � ; ~v

k

g for i = 0; 1; � � � ; D � 1. Sin
e modulo � it

does not make any di�eren
e whether one adds ~v

0

; ~v

1

; � � �, or ~v

k

, the ve
tors

~w

0

; ~w

1

; � � � ; ~w

D�1

are in D di�erent 
osets of L=� and therefore distin
t. Sin
e

~w

D

= ~w

0

, there are exa
tly d

j

numbers i 2 f0; 1; � � � ; D� 1g su
h that ~w

i+1

�

~w

i

= ~v

j

for j = 0; 1; � � � ; k: Conversely, suppose we are given D ve
tors ~w

0

=

~w

D

; ~w

1

; : : : ; ~w

D�1

su
h that there are exa
tly d

j

numbers i 2 f0; 1; � � � ; D� 1g

with ~w

i+1

� ~w

i

= ~v

j

for j = 0; 1; � � � ; k: Then ~w

0

; ~w

1

; � � � ; ~w

D�1

; ~w

D

(= ~w

0

) form

a roundwalk through L=�.

We introdu
e some further notation. We de�ne the domain A = A(w) of

the roundwalk w as the subset f ~w

0

; : : : ; ~w

D�1

g of Z

k

. So A(w) represents a


omplete set of representatives of L=�. We de�ne the 
oding w of a roundwalk

~w

0

; ~w

1

; : : : ; ~w

D�1

; ~w

D

= ~w

0

, with ~w

i+1

� ~w

i

2 f~v

0

; � � � ; ~v

k

g for i = 0; 1; � � � ; D�1

as the �nite word w = w

0

: : : w

D�1

over the alphabet f0; 1; : : : ; kg de�ned by

w

i

= j if ~w

i+1

� ~w

i

= ~v

j

for 0 � i � D � 1. Observe that given the ve
tors

~v

0

; ~v

1

; : : : ; ~v

k

, and the ve
tor ~w

0

, the roundwalk w is perfe
tly determined by

its 
oding w.

2.3 An example

We illustrate the de�nitions by an example.

Example 1 We take k = 2; ~v

0

= (1; 4); ~v

1

= (3; 1); ~v

2

= (�2;�3): Hen
e

f

0

= �7; f

1

= �5; f

2

= �11; d = 1; L = Z

2

; d

0

= 7; d

1

= 5; d

2

= 11; D =

23;� = Z(2;�3) + Z(�3;�7). We make a roundwalk ~w

0

; ~w

1

; � � � ; ~w

23

= ~w

0

through L=� where

~w

i+1

� ~w

i

=

8

>

>

>

>

>

<

>

>

>

>

>

:

~v

0

for i = 0; 2; 6; 9; 12; 15; 19;

~v

1

for i = 4; 8; 13; 17; 21;

~v

2

for i = 1; 3; 5; 7; 10; 11; 14; 16; 18; 20; 22:
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We indi
ate the ve
tors in Figure 1 with h

j

where h indi
ates the index of ~w

h

and j the index of ~v

j

when ~v

j

= ~w

h+1

� ~w

h

: The 
oding w of the roundwalk

w is the sequen
e of the subs
ripts

0 2 0 2 1 2 0 2 1 0 2 2 0 1 2 0 2 1 2 0 2 1 2;

where j means that the next jump is ~v

j

. Note that there are d

0

= 7 numbers

0; d

1

= 5 numbers 1; d

2

= 11 numbers 2 in the 
oding word indeed.

16

2

10

2

3

2

20

2

14

2

13

1

7

2

1

2

18

2

17

1

11

2

5

2

22

2

4

1

21

1

15

0

9

0

8

1

2

0

19

0

12

0

6

0

0

0

Figure 1. Roundwalk with jumps from f~v

0

; ~v

1

; ~v

2

g

In fa
t, the points of the roundwalk through L=� generate a periodi
 tiling of

L = Z

k

, sin
e they are a 
omplete set of representatives of L=�, as illustrated

in Figure 2, where one �nds a �nite part of the periodi
 tiling of Z

2

by the

pattern in Figure 1, the period ve
tors being ~v

1

� ~v

0

= (2;�3) and ~v

2

� ~v

0

=

(�3;�7):We 
an 
onsider the (upper) numbers in Figures 1 and 2 as a fun
tion

g from the 
osets L=� to f0; 1; � � � ; 22g, numbering the 
osets.

� � � 19

0

13

1

7

2

1

2

18

2

12

0

6

0

0

0

17

1

� � �

� � � 0

0

17

1

11

2

5

2

22

2

16

2

10

2

4

1

21

1

� � �

� � � 4

1

21

1

15

0

9

0

3

2

20

2

14

2

8

1

2

0

� � �

� � � 8

1

2

0

19

0

13

1

7

2

1

2

18

2

12

0

6

0

� � �

� � � 12

0

6

0

0

0

17

1

11

2

5

2

22

2

16

2

10

2

� � �

� � � 16

2

10

2

4

1

21

1

15

0

9

0

3

2

20

2

14

2

� � �

� � � 20

2

14

2

8

1

2

0

19

0

13

1

7

2

1

2

18

2

� � �

� � � 1

2

18

2

12

0

6

0

0

0

17

1

11

2

5

2

22

2

� � �

Figure 2. The periodi
 tiling generated by the roundwalk
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2.4 Colouring of the roundwalks

We return to the general 
ase. For the sake of simpli
ity we assume in the

sequel that L = Z

k

. Hen
e d = 1: We de�ne the fun
tion g from Z

k

to

f0; 1; � � � ; D � 1g by g(~x) = m whenever ~x �m~v

0

2 �: It follows �rstly that

g is 
onstant on 
osets of L=�, and se
ondly that g is a linear fun
tion. Thus

g(

~

0) = 0 and if ~x = (x

1

; � � � ; x

k

) 2 Z

k

, then

g(~x) =

k

X

i=1

x

i

g(~e

i

) (mod D) (1)

where ~e

i

= (0; � � � ; 0; 1; 0; � � � ; 0) is the unit ve
tor with 1 at pla
e i for i =

1; 2; � � � ; k, and where a (mod b) is de�ned as the number 
 with 
 � a (mod b)

and 0 � 
 < b. Sin
e ~v

i

� ~v

0

2 � we have g(~v

i

) = 1 for 0 � i � k, hen
e

g(

k

X

i=0

x

i

~v

i

) =

k

X

i=0

x

i

(mod D):

For instan
e in Example 1, when 
onsidering the point 0

0

as the origin in Z

2

,

one has (Figure 2) g(~e

1

) = 17 = �6 (mod 23), g(~e

2

) = 19 = �4 (mod 23),

and thus the fun
tion g : Z

2

! f0; : : : ; 22g is given by

g(m;n) = �6m� 4n (mod 23):

Note that the restri
tion of g to A(w) in Figure 1 pre
isely indi
ates the route

of the walk.

To the roundwalk w given by ~w

0

; � � � ; ~w

D

(= ~w

0

) we have asso
iated a one-

dimensional word w = w

0

� � �w

D�1

over the alphabet f0; 1; : : : ; kg whi
h we


alled the 
oding of w. Now we shall asso
iate to w a k-dimensional word W

whi
h we 
all the 
olouring of w. To that purpose, we introdu
e a 
olouring

fun
tion � : Z

k

! f0; 1; : : : ; kg whi
h will \
olour" the roundwalk. More

pre
isely, f0; 1; : : : ; D� 1g is split into k+1 sets I

0

; : : : ; I

k

(in pra
ti
e always


onse
utive blo
ks of integers modulo D) and

�(~x) = l () g(~x) 2 I

l

for l 2 f0; 1; � � �kg; ~x 2 A(w): (2)

Observe that one 
ould 
olour the roundwalk w with any number of 
olours.

Our motivation to 
onsider exa
tly k + 1 
olours is to make the 
onne
tion

with k-dimensional Sturmian words.

Example 1 (
ontinued). We split the roundwalk w in Figure 1 into three

nonempty parts, e.g. we repla
e numbers i for 5 � i < 14 with 0, i for

6



14 � i < 22 with 1 and numbers i for i = 22 or 0 � i < 5 with 2. We omit the

subs
ripts and indi
ate the pla
e of 0

0

by underlining. This yields Figure 3.

1 0

2 1 1

0 0 2 1

1 0 0 2

2 1 1 0

0 2 1

0 0 2

Figure 3. The 
olouring W of w

Thus � is given by

�(m;n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 5 � �6m� 4n (mod 23) < 14

1 if 14 � �6m� 4n (mod 23) < 22

2 otherwise;

and W = �j

A(w)

is presented in Figure 3.

3 Extension rules

We 
onstru
t an extended k-dimensional word by extending the 
oding of a

roundwalk.

3.1 The basi
 extension step

Starting from the situation des
ribed in the previous se
tion we introdu
e the

extension step S

i;j

for i; j 2 f0; 1; � � � ; kg with i 6= j. Put ~v

�

i

= ~v

i

� ~v

j

; ~v

�

h

=

~v

h

for h = 0; 1; � � � ; k; h 6= i. Note that the latti
e L

�

:= Z~v

�

0

+ � � � + Z~v

�

k

equals L := Z~v

0

+ � � � + Z~v

k

whi
h we have assumed to be Z

k

: Put d

�

0

:=

7



jdet(~v

�

1

; � � � ; ~v

�

k

)j; d

�

h

:= jdet(~v

�

1

; � � � ; ~v

�

h�1

;�~v

�

0

; ~v

�

h+1

; � � � ; ~v

�

k

)j for h = 1; � � � ; k:

Then

d

�

h

= d

h

for h 6= j and d

�

j

= d

i

+ d

j

(h; i; j 2 f0; 1; � � � ; kg; i 6= j):

Let �

�

be the latti
e Z(~v

�

1

� ~v

�

0

) + � � � + Z(~v

�

k

� ~v

�

0

). Then D

�

:= det(�

�

) =

d

�

0

+ d

�

1

+ � � �+ d

�

k

= D + d

i

.

Suppose we have a roundwalk ~w

0

; ~w

1

; � � � ; ~w

D�1

; ~w

D

(= ~w

0

) 2 Z

k

through Z

k

=�

with ~w

h+1

� ~w

h

2 f~v

0

; ~v

1

; � � � ; ~v

k

g for h = 0; 1; � � � ; D�1. Then there are exa
tly

d

j

numbers h 2 f0; 1; � � � ; D� 1g su
h that ~w

h+1

� ~w

h

= ~v

j

for j = 0; 1; � � � ; k:

We may 
onstru
t a roundwalk ~w

�

0

= ~w

0

; ~w

�

1

; � � � ; ~w

�

D

�

�1

; ~w

�

D

�

= ~w

�

0

2 Z

k

with ~w

�

h+1

� ~w

�

h

2 f~v

�

0

; ~v

�

1

; � � � ; ~v

�

k

g for h = 0; 1; � � � ; D

�

� 1 through Z

k

=�

�

by inserting for every h with ~w

h+1

� ~w

h

= ~v

i

either ~w

h

+ ~v

�

h

or ~w

h

+ ~v

�

j

in between ~w

h

and ~w

h+1

. Then the new jumps in the roundwalk are of the

form ~v

�

i

; ~v

�

j

; ~v

i

� ~v

�

i

= ~v

�

j

or ~v

i

� ~v

�

j

= ~v

�

i

, and therefore all jumps in the

new roundwalk belong to f~v

�

0

; ~v

�

1

; � � � ; ~v

�

k

g. By arguments given in the previous

se
tion, the ve
tors ~w

�

0

; ~w

�

1

; � � � ; ~w

�

D

�

�1

represent D

�

di�erent 
osets of Z

k

=�

�

and are therefore distin
t, whereas the new roundwalk 
ontains exa
tly d

�

h

jumps ~v

�

h

for h = 0; 1; � � � ; k: The 
y
le is not uniquely determined as we have

d

i

times a 
hoi
e out of two for the ve
tor to be inserted. We say that the

insertion is done in the 
anoni
al way if ea
h time ~w

h

+ ~v

�

i

is inserted and in

the anti-
anoni
al way if ea
h time ~w

h

+ ~v

�

j

is inserted.

The extension step S

i;j

has the following e�e
t on the 
oding sequen
e: every

i is repla
ed by ij in the 
anoni
al 
ase, by ji in the anti-
anoni
al 
ase,

whereas we have free 
hoi
e between ij and ji for every i in the general 
ase.

This a
tion 
an be des
ribed by means of the formalism of substitutions. Let

us re
all that a substitution � is an appli
ation from an alphabet A into the

set A

?

�f"g of nonempty �nite words on A; it extends to a morphism of A

?

by


on
atenation, that is, �(WW

0

) = �(W )�(W

0

) and �(") = ". It also extends

in a natural way to a map de�ned over A

N

or A

Z

.

Let w and w

�

denote respe
tiveley the roundwalks ~w

0

; ~w

1

; � � � ; ~w

D�1

; ~w

D

(=

~w

0

) and ~w

�

0

; ~w

�

1

; � � � ; ~w

�

D

�

�1

; ~w

�

D

�

(= ~w

�

0

). Let w and w

�

denote the 
odings of

the roundwalks w and w

�

, respe
tively. The a
tion of the basi
 extension step

S

i;j

on the 
oding of the roundwalk w is des
ribed in the 
anoni
al 
ase by

the substitution �

i;j

: i 7! ij, and h 7! h for h 6= i, and in the anti-
anoni
al


ase by ~�

i;j

: i 7! ji, and h 7! h for h 6= i.

The latti
e �

�

indu
es a linear fun
tion g

�

: Z

k

! f0; 1; � � � ; D

�

� 1g by

g

�

(~x) = m whenever ~x � m~v

�

0

2 �

�

: This fun
tion is 
onstant on 
osets of

Z

k

=�

�

and satis�es g

�

(0) = 0. We de�ne the proje
tion �

�

: Z

k

! f0; 1; � � � ; kg

of g

�

by �

�

(~x) = �(~y) where ~y is the lastly visited pla
e of A(w) when rea
hing

~x along w

�

. In parti
ular �

�

(~x) = �(~x) if ~x 2 A:

8



Example 2 Let us apply the basi
 extension step S

1;0

to the roundwalk of

Example 1. Re
all that k = 2; ~v

0

= (1; 4); ~v

1

= (3; 1); ~v

2

= (�2;�3); hen
e

d

0

= 7; d

1

= 5; d

2

= 11; D = 23;� = Z(2;�3) + Z(�3;�7). The 
oding w of

the roundwalk w is the word

0 2 0 2 1 2 0 2 1 0 2 2 0 1 2 0 2 1 2 0 2 1 2:

We now apply step S

1;0

: Hen
e ~v

�

0

= (1; 4); ~v

�

1

= (2;�3); ~v

�

2

= (�2;�3); d

�

0

=

12; d

�

1

= 5; d

�

2

= 11; D

�

= 28;�

�

= Z(1;�7) + Z(�3;�7): Five ve
tors are

inserted, sin
e d

1

= 5. If we apply the 
anoni
al insertion, see Figure 4, then

there are �ve new ve
tors ~w

�

5

; ~w

�

10

; ~w

�

16

; ~w

�

21

; ~w

�

26

whi
h are the translates of

~w

�

4

= ~w

4

; ~w

�

9

= ~w

8

; ~w

�

15

= ~w

13

; ~w

�

20

= ~w

17

; ~w

�

25

= ~w

21

by ~v

�

1

= (2;�3). The

translated ve
tors are just the ones in Figure 1 with index 1. The old ve
tors

keep their subs
ripts, whereas the �ve newly introdu
ed ve
tors get subs
ript

0. The new 
oding w

�

= �

1;0

(w) of the roundwalk w

�

is

0 2 0 2 10 2 0 2 10 0 2 2 0 10 2 0 2 10 2 0 2 10 2:

If we make the anti-
anoni
al insertions ~w

h

+ ~v

�

j

instead, there are again �ve

new ve
tors ~w

�

5

; ~w

�

10

; ~w

�

16

; ~w

�

21

; ~w

�

26

whi
h are the translates of ~w

�

4

= ~w

4

; ~w

�

9

= ~w

8

;

~w

�

15

= ~w

13

; ~w

�

20

= ~w

17

; ~w

�

25

= ~w

21

, but now by ~v

�

0

= (1; 4). The new ve
tors get

index 1 and the original �ve ve
tors get index 0 instead of 1 (see Figure 5).

The 
oding w

�

of the roundwalk w

�

is in this 
ase

w

�

= �

0;1

(w) = 0 2 0 2 01 2 0 2 01 0 2 2 0 01 2 0 2 01 2 0 2 01 2:

Observe that the patterns are 
onne
ted. A
tually the (upper) numbers form

the restri
tionW

�

to some set A(w

�

) of the fun
tion g

�

: Z

2

! f0; 1; � � � ; D

�

�

1g (as de�ned in (1)). Sin
e g

�

is linear and g

�

(0) = 0, it is determined by

g

�

(1; 0) and g

�

(0; 1). We obtain

g

�

(m;n) � �7m� 5n (mod 28):

Hen
e the numbers 
oin
ide in Figures 4 and 5 at 
orresponding pla
es. The

subs
ripts read in the order 0; 1; � � � ; 27 indi
ate the jumps of the roundwalk

and therefore re
e
t the 
oding words. The 
olouring indu
ed by � (as pre-

sented in Figure 3) is given by

�(m;n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 6 � �7m� 5n (mod 28) < 17

1 if 17 � �7m� 5n (mod 28) < 27

2 otherwise;
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19

2

12

2

3

2

24

2

17

2

15

1

8

2

1

2

22

2

20

1

13

2

6

2

27

2

4

1

25

1

18

0

11

0

9

1

2

0

23

0

16

0

14

0

7

0

0

0

21

0

5

0

26

0

10

0

Figure 4.

Insertion in the 
anoni
al way

16

1

21

1

5

1

26

1

19

2

12

2

10

1

3

2

24

2

17

2

15

0

8

2

1

2

22

2

20

0

13

2

6

2

27

2

4

0

25

0

18

0

11

0

9

0

2

0

23

0

14

0

7

0

0

0

Figure 5.

Insertion in the anti-
anoni
al way

1 0

2 1 1

0 0 2 1

1 0 0 2

2 1 1 0

0 2 1 0

0 0 2 1

2 1

0

Figure 6.

W

�

in the 
anoni
al 
ase

0

1

2 1 1 0

0 2 1 1

0 0 2 1

1 0 0 2

2 1 1 0

0 2 1

0 0 2

Figure 7.

W

�

in the anti-
anoni
al 
ase

Note that 6; 17; 27 in Figures 4 and 5 
orrespond with the numbers 5; 14; 22 in

Figure 1. The words W

�

= �

�

j

A

�


orresponding to Figures 4 and 5 are given
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in Figures 6 and 7, respe
tively. We omit the subs
ripts, but underline the

entry at the origin, as we did in Figure 3.

3.2 Substitution matri
es

We introdu
e ve
tors and matri
es to 
reate a general framework to des
ribe

substitutions and their e�e
ts on roundwalks. Let � be a substitution de�ned

over the alphabet A = f0; : : : ; kg of 
ardinality k+1. The substitution matrix

of the substitution � is, by de�nition, the (k + 1) � (k + 1) matrix M

�

the

entry of index (i; j) of whi
h is j�(a

j

)j

a

i

, that is, the number of o

urren
es of

a

i

in �(a

j

).

Let k+1 ve
tors (~v

0

; ~v

1

; : : : ; ~v

k

) in Z

k

be given su
h that Z~v

0

+Z~v

1

+� � �+Z~v

k

=

Z

k

and that

8

>

<

>

:

d

0

:= det(~v

1

; � � � ; ~v

k

);

d

h

:= det(~v

1

; � � � ; ~v

h�1

;�~v

0

; ~v

h+1

; � � � ; ~v

k

); for h 6= 0

are 
oprime positive integers. Then, by Cramer's rule, d

0

~v

0

+d

1

~v

1

+� � �+d

k

~v

k

=

~

0: Let � be a substitution with substitution matrix M having determinant 1.

We de�ne the 
olumn ve
tors ~v

�

0

; ~v

�

1

; : : : ; ~v

�

k

2 Z

k

by

(~v

�

0

; ~v

�

1

; : : : ; ~v

�

k

) = (~v

0

; ~v

1

; : : : ; ~v

k

)M

�1

:

Then Z~v

�

0

+ Z~v

�

1

+ � � �+ Z~v

�

k

= Z

k

. Put

8

>

<

>

:

d

�

0

:= det(~v

�

1

; � � � ; ~v

�

k

);

d

�

h

:= det(~v

�

1

; � � � ; ~v

�

h�1

;�~v

�

0

; ~v

�

h+1

; � � � ; ~v

�

k

) for h 6= 0:

It follows that d

�

0

; d

�

1

; � � � ; d

�

k

are 
oprime positive integers su
h that d

�

0

~v

�

0

+

d

�

1

~v

�

1

+ � � � + d

�

k

~v

�

k

=

~

0: Denote by V and V

�

the k by k + 1 matri
es with


olumn ve
tors ~v

0

; ~v

1

; : : : ; ~v

k

and ~v

�

0

; ~v

�

1

; : : : ; ~v

�

k

, respe
tively, and by

~

d and

~

d

�

the row ve
tors (d

0

; d

1

; � � � ; d

k

) and (d

�

0

; d

�

1

; � � � ; d

�

k

). Then

V

t

~

d =

~

0; V

�

= VM

�1

; V

� t

~

d

�

=

~

0; (3)

where a left supers
ript t indi
ates transposition of ve
tors or matri
es. By

the uniqueness of the ve
tor

~

d with 
oprime positive 
oeÆ
ients su
h that

V

t

~

d =

~

0, we dedu
e from VM

�1 t

~

d

�

=

~

0 that

t

~

d = M

�1 t

d

�

: (4)
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Put D = d

0

+ d

1

+ � � �+ d

k

and D

�

= d

�

0

+ d

�

1

+ � � �+ d

�

k

.

Let ~x = (x

0

; x

1

; � � � ; x

k

) 2 Z

k+1

and

t

~x

�

=M

t

~x: Then

k

X

i=0

x

�

i

~v

�

i

= V

� t

~x

�

= VM

�1 t

~x

�

= V

t

~x =

k

X

i=0

x

i

~v

i

:

Let g : Z

k

! f0; 1; � � � ; D � 1g and g

�

: Z

k

! f0; 1; � � � ; D

�

� 1g be linear

fun
tions su
h that g(0) = g

�

(0) = 0 and g(v

i

) = g

�

(v

�

i

) = 1 for i = 0; 1; � � � ; k.

Then

g

�

(

k

X

i=0

x

i

~v

i

) = g

�

(

k

X

i=0

x

�

i

~v

�

i

) =

k

X

i=0

x

�

i

(mod D

�

): (5)

Observe that V

�

;

~

d

�

; D

�

; and g

�

depend only on V andM and are independent

of the way of insertion pres
ribed by �.

In Se
tion 3.1 the substitution matrix M

i;j

of the substitution �

i;j

(whi
h is

also that of ~�

i;j

), satis�es M

i;j

= Id+E

j;i

, where Id is the identity matrix and

E

j;i

the matrix of whi
h all entries are 0 ex
ept for the entry of index (j; i)

whi
h equals 1. Note that the matrix M

i;j

has determinant 1.

Given a roundwalk any substitution rule � with substitution matrixM having

determinant 1 or �1 indu
es an extended roundwalk: the roundwalk w is

determined by the starting pla
e, the ve
tors ~v

0

; ~v

1

; � � � ; ~v

k

and the 
oding w.

By keeping the starting pla
e �xed, by 
omputing the ve
tors ~v

�

0

; ~v

�

1

; � � � ; ~v

�

k

a

ording to the above formula, and by applying the substitution � to w to

obtain w

�

we get the roundwalk w

�

. There is a simple way to des
ribe w

�

and to �nd A(w

�

). Let 0 � i � k: Consider the pla
es of the roundwalk with

subs
ripts i. The jump ~v

i

in the old roundwalk will be repla
ed by su

essive

jumps ~v

�

j

1

; ~v

�

j

2

; � � � ; ~v

�

j

n

where �(i) = j

1

j

2

� � � j

n

. The new pla
es will be adjoined

to A(w): Consider a pla
e ~a whi
h belongs to the part A

i

(w) with subs
ript

i in A(w). This point has been rea
hed after reading a 
ertain part of the


oding w. Consider the 
orresponding part of the 
oding w

�

. Suppose the

rea
hed point is ~a too. Then this point appears both in A(w) and in A(w

�

).

Subsequently A(w

�

) is augmented with the pla
es ~a translated by the ve
tors

~v

�

j

1

; ~v

�

j

1

+ ~v

�

j

2

; � � � ; ~v

�

j

1

+ ~v

�

j

2

+ � � �~v

�

j

n�1

. The next point whi
h is rea
hed is the

point ~a+~v

�

j

1

+~v

�

j

2

+ � � �~v

�

j

n

= ~a+~v

i

whi
h is the point following ~a in w. Hen
e,

by indu
tion, A(w) � A(w

�

) and the set A

i

(w) is repla
ed with

A

i

(w)[A

i

(w) + ~v

�

j

1

[A

i

(w) + ~v

�

j

1

+ ~v

�

j

2

[ � � � [A

i

(w) + ~v

�

j

1

+ ~v

�

j

2

+ � � �+ ~v

�

j

n�1

:

The situation is illustrated in Se
tion 3.3 below where A

1

(w) and A

2

(w) are

ea
h 
opied on
e (Figure 10).
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Assume we are given a 
olouring map � : Z

k

! f0; 1; � � � ; kg whi
h is a

proje
tion of g. Then � indu
es a 
olouring map �

�

: Z

k

! f0; 1; � � � ; kg as

follows. If for a 2 A we have �(~a) = i, then in w

�

we put

�

�

(~a) = �

�

(~a+ ~v

�

j

1

) = � � � = �

�

(~a + ~v

�

j

1

+ ~v

�

j

2

+ � � �+ ~v

�

j

n�1

) = i: (6)

Note that n equals the i-th 
olumn sum of the matrixM . Hen
e the de�nition

of �

�

depends only on � and M and is independent of the way of insertion.

Only the number of o

urren
es of ea
h letter in the substitution rule matters.

Note that �

�

is 
onstant on 
osets of �

�

and is therefore a proje
tion of g

�

.

3.3 The Rauzy extension step

We start from the situation as des
ribed in the previous se
tions. For given

j 2 f0; 1; � � � ; kg we introdu
e the Rauzy extension step R

j

for j 2 f0; 1; � � � ; kg

whi
h is a
tually the 
omposition of all S

i;j

with i 2 f0; 1; � � � ; kg n fjg. Put

~v

R

i

= ~v

i

�~v

j

for i = 0; 1; � � � ; k with i 6= j and ~v

R

j

:= ~v

j

: Hen
e the 
orrespond-

ing substitution matrix M

j

has entries 1 at the diagonal and at the j-th row

and further entries 0. Then d

R

i

= d

i

for i 6= j, and d

R

j

= d

0

+ � � � + d

k

= D:

All the supers
ripts R will refer to the situation after a Rauzy step. Note that

the latti
e L

R

:= Z~v

R

1

+ � � � + Z~v

R

k

equals L = Z

k

with latti
e determinant

d

R

:= d = 1. Put D

R

:= d

R

0

+ d

R

1

+ � � �+ d

R

k

= 2D � d

j

. Let �

R

be the latti
e

Z(~v

R

1

� ~v

R

0

) + � � �+ Z(~v

R

k

� ~v

R

0

): Then

det(�

R

) = d

R

0

+ d

R

1

+ � � �+ d

R

k

= 2D � d

j

= D

R

:

Suppose we have a roundwalk ~w

0

; ~w

1

; � � � ; ~w

D

= ~w

0

in Z

k

through some funda-

mental domain A of � with ~w

i+1

� ~w

i

2 f~v

0

; ~v

1

; � � � ; ~v

k

g for i = 0; 1; � � � ; D�1.

We extend it to a roundwalk ~w

R

0

; ~w

R

1

; � � � ; ~w

R

D

R

= ~w

R

0

in Z

k

through a funda-

mental domain A

R

of �

R

by inserting for every pair h; i with ~w

h+1

� ~w

h

= ~v

i

and i 6= j either ~w

h

+ ~v

R

i

or ~w

h

+ ~v

R

j

in between ~w

h

and ~w

h+1

. Doing so we

obtain a roundwalk where ~w

R

0

; ~w

R

1

; � � � ; ~w

R

D

R

�1

represent the D

R


osets of �

R

:

The new roundwalk 
ontains d

R

i

jumps ~v

R

i

for i = 0; 1; � � � ; k: This time we

have D

R

�d

R

j

times a 
hoi
e out of two to make the insertion. If always ~w

h

+~v

R

i

is inserted (and never ~w

h

+ ~v

R

j

), then we say that the insertion is done in the


anoni
al way. If always ~w

h

+~v

R

j

is inserted, then we do it in the anti-
anoni
al

way.

The a
tion of the Rauzy extension step R

j

on the 
oding w of the roundwalk

w is des
ribed in the 
anoni
al 
ase by the substitution �

R

j

: i 7! ij, for i 6= j

and j 7! j, and in the anti-
anoni
al 
ase by ~�

R

j

: i 7! ji, for i 6= j and j 7! j.

Note that �

R

j

equals the 
omposition of the substitutions �

i;j

for i 6= j. These

13



substitutions are 
alled generalized Rauzy substitutions following [2℄. They are

introdu
ed in [3℄ where it is proved that ea
h Arnoux-Rauzy sequen
e is in

the shift orbit 
losure of a unique sequen
e of the form

lim

n!1

�

R

i

1

Æ : : : Æ �

R

i

n

(0);

where the sequen
e (i

n

) takes in�nitely many times the value i for every

i = 0; � � � ; k. Note that ~�

R

0

~�

R

1

~�

R

2

= �

3

, where � denotes the usual Rauzy

substitution �(0) = 01, �(1) = 02, �(2) = 0.

We illustrate this by starting from the same situation as in Example 1 and

applying R

0

in the 
anoni
al way to obtain Figure 8. Therefore in the 
oding

sequen
e (
f. subs
ripts) we repla
e every i > 0 by i0.

Example 3 We still pursue Example 1. We start from k = 2; ~v

0

= (1; 4); ~v

1

=

(3; 1); ~v

2

= (�2;�3) and roundwalk w with 
oding

w = 0 2 0 2 1 2 0 2 1 0 2 2 0 1 2 0 2 1 2 0 2 1 2:

On applying R

0

we �nd ~v

R

0

= (1; 4); ~v

R

1

= (2;�3); ~v

R

2

= (�3;�7); d

R

0

=

23; d

R

1

= 11; d

R

2

= 5; D

R

= 39: There are d

1

+ d

2

= 16 new points. If we

repla
e ea
h 1 by 10 and ea
h 2 by 20 we get the roundwalk w

R

with 
oding

w

R

= 0 20 0 20 10 20 0 20 10 0 20 20 0 10 20 0 20 10 20 0 20 10 20

in Figure 8. In Figure 9 we have applied the 
oding

~�

R

0

(w) = 0 02 0 02 10 02 0 02 01 0 20 02 0 10 20 0 20 01 20 0 20 01 20:

as it is used in Simpson and Tijdeman [13℄. Here there are no �xed substitu-

tions for the repla
ement of the letters 1 and 2 and the result is a 
onvex set

A

�

whi
h ressembles a hexagon.

Figure 1 
an be divided into three zones whi
h 
orrespond to the points whi
h

have subs
ript 0,1,2, respe
tively (see the left Figure 10 below). In the right

Figure 10 the part in Figure 1 with index 1 is translated over ~v

R

1

= (2;�3),

the part with index 2 over ~v

R

2

= (�3;�7), whereas all the parts remain at the

same pla
e too. Be
ause of the 
hoi
e for 
anoni
al insertion, the subs
ripts

at new pla
es be
ome 0. The right Figure 10 explains Figure 8. In Figure 9

the 
opied parts A

1

(w) and A

2

(w) are ea
h split into two parts be
ause of the

14



mixed substitutions 10 and 01 for 1, and 20 and 02 for 2.
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0
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0
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0

Figure 8. Canoni
al extension
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Figure 9. ST-extension
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Figure 10. The roundwalk w from Figure 1 and its extension w

R

in Figure 8

15



Points in Figure 8 and Figure 9 with the same (upper) number are repre-

sentatives of the same 
oset of �

R

. Hen
e their di�eren
e ve
tor is in �

R

=

Z(1;�7)+Z(�4;�11): Figures 8 and 9 are the restri
tions of a linear fun
tion

g

R

: Z

2

! f0; 1; 2; � � � ; 38g. If we 
onsider the point 0

0

as the origin, then the

fun
tion g

R

is given by g(m;n) = �10m� 7n (mod 39):

Let us write for short A = A(w) and A

R

= A(w

R

). We extend the fun
tion

� : A ! f0; 1; 2g to a fun
tion �

R

: A

R

! f0; 1; 2g. Re
all that �j

A

is given

by

�(m;n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 5 � �6m� 4n (mod 23) < 14

1 if 14 � �6m� 4n (mod 23) < 22

2 otherwise:

Consider now the extension to A

R

given in Figure 11. We write a 0, 1 or 2

a

ording to the value it has in Figure 3 for pla
es in A \ A

R

and the value

of the pre
eding pla
e in the roundwalk if the pla
e is in A

R

n A. This yields

Figure 11 where we have underlined the number at the origin. It follows that

the indu
ed word W

R

= f

R

j

A

R satis�es (
f. the upper values in the right

Figure 10)

�

R

(m;n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 8 � �10m� 7n (mod 39) < 23

1 if 23 � �10m� 7n (mod 39) < 37

2 otherwise:

1 0

2 1 1

0 0 2 1

1 0 0 2

2 1 1 0

0 2 1 0

0 0 2 1

1 0 2 1

2 1 1 0

0 2 1

0 0 2

Figure 11. W from Figure 3 and its extension W

�

in the 
anoni
al 
ase
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4 Towers of latti
es

The aim of this se
tion is to 
onstru
t towers of latti
es generating larger and

larger roundwalks, and thus 
olourings with larger and larger shapes.

4.1 Basi
 towers

Let ~v

(0)

1

, ~v

(0)

2

; � � � ; ~v

(0)

k

denote ve
tors in Z

k

with

d

(0)

0

:= det(~v

(0)

1

; � � � ; ~v

(0)

k

) = 1:

Put ~v

(0)

0

= �~v

(0)

1

� : : :� ~v

(0)

k

. Then, for 1 � i � k,

d

(0)

i

:= det(~v

(0)

1

; � � � ; ~v

(0)

i�1

;�~v

(0)

0

; ~v

(0)

i+1

; � � � ; ~v

(0)

k

) = 1:

Put

8

>

<

>

:

L

(0)

= Z~v

(0)

0

+ Z~v

(0)

1

+ � � �+ Z~v

(0)

k

;

�

(0)

= Z(~v

(0)

1

� ~v

(0)

0

) + � � �+ Z(~v

(0)

k

� ~v

(0)

0

):

Then L

(0)

= Z

k

; D

(0)

:= d

(0)

0

+ d

(0)

1

+ � � � + d

(0)

k

= k + 1: We start with the

roundwalk w

(0)

given by

~

0; ~v

(0)

0

; ~v

(0)

0

+~v

(0)

1

; � � � ;

P

k

i=0

~v

(0)

i

=

~

0 with 
oding w

(0)

=

012 � � �k. For 
onvenien
e we assume

P

m�1

i=0

~v

(0)

i

= ~e

m

for m = 1; 2; � � � ; k in

the sequel. This 
an be a
hieved by a transformation of 
oordinates. Hen
e

A

(0)

:= A(w

(0)

) = f

~

0; ~e

1

; � � � ; ~e

k

g: One has ~e

m

�m~e

1

2 �

(0)

, for m = 1; � � � ; k.

We thus de�ne g

(0)

= �

(0)

: Z

k

! f0; 1; � � � ; kg by �

(0)

(

~

0) = 0; �

(0)

(~e

m

) =

m for m = 1; � � � ; k and �

(0)

is 
onstant on 
osets of Z

k

=�

(0)

: Thus if ~x =

(x

1

; � � � ; x

k

) 2 Z

k

, then

g

(0)

(~x) = �

(0)

(~x) =

k

X

i=1

ix

i

(mod k + 1):

We iteratively apply basi
 extension steps S

i;j

in the 
anoni
al way. Let S

(n)

=

S

i

n

;j

n

denote the n-th extension rule that is applied. We will use the notation

~v

(n)

i

, d

(n)

i

, for 0 � i � k, L

(n)

;�

(n)

; g

(n)

, �

(n)

, V

(n)

,

~

d

(n)

, A

(n)

, w

(n)

, w

(n)

, D

(n)

,

W

(n)

for the values of the previously de�ned symbols at level n. Let us re
all

that we use the 
onvention expressed by (6) for the de�nition of �

(n)

.

By (3) and (4) we have, in terms of matri
es,

V

(n)

= V

(0)

M

�1

i

1

;j

1

� � �M

�1

i

n

;j

n

and

t

~

d

(n)

= M

i

n

;j

n

� � �M

i

1

;i

n

(

t

~

d

(0)

):

Sin
e

~

d

(0)

= (1; 1; � � � ; 1), the ve
tor

~

d

(n)

is given by the row sums of the

produ
t matrix M

i

n

;j

n

� � �M

i

1

;j

1

.
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Put

M

(n)

:=

t

M

i

1

;j

1

� � �

t

M

i

n

;j

n

;

(M

(0)

= Id). De�ne 


(n)

j

as the j-th 
olumn sum ofM

(n)

(the numbering start-

ing with 0), and r

(n)

j

as the j-th row sum of M

(n)

. When we apply extension

step S

i

n

;j

n

toM

(n)

, then M

(n+1)

is obtained by adding the i

n

-th 
olumn ve
tor

of M

(n)

to its j

n

-th 
olumn ve
tor.

Observe that the i-th row sum r

(n)

i

denotes the total number of entries i in

the word W

(n)

for 0 � i � k, whereas the j-th 
olumn sum 


(n)

j

denotes the

number of letters j in the 
oding word w

(n)

, that is, the number of pla
es in

A

(n)

with subs
ript j, for 0 � j � k. Of 
ourse,

P

k

i=0




(n)

i

=

P

k

i=0

r

(n)

i

= D

(n)

,

the total number of points in A

(n)

, that is the 
ardinality of Z

k

=�

(n)

:

We use the linearity of the fun
tion g

(n)

and the results of Se
. 3.2 to give

expli
it expressions for g

(n)

and �

(n)

. Let ~x 2 Z

k

. Put ~x =

P

k

m=1

x

m

~e

m

: Then

g

(n)

(~x) =

k

X

m=1

x

m

g

(n)

(~e

m

) (mod D

(n)

):

By our spe
ial 
hoi
e of the ~v

i

and �

(0)

, the roundwalk w

(n)

starts from the

origin and jumps along r

(n)

0

pla
es with subs
ript 0 until it rea
hes ~e

1

, then

passes r

(n)

1

pla
es with subs
ript 1 until it rea
hes ~e

2

, and so on. Hen
e the

number g

(n)

(~e

j

) equals the total number of letters 0; 1; � � � ; j�1 inW

(n)

. Thus

g

(n)

(~e

j

) =

P

j�1

i=0

r

(n)

i

for j = 1; � � � ; k and

g

(n)

(~x) =

k

X

j=1

x

j

j�1

X

i=0

r

(n)

i

(mod D

(n)

):

It follows from the de�nition of � that

�

(n)

(~x) = m()

m�1

X

i=0

r

(n)

i

� g

(n)

(~x) <

m

X

i=0

r

(n)

i

:

So we have derived the following proposition.

Proposition 1 Under the assumptions made in this se
tion the fun
tion �

(n)

:

Z

k

! f0; 1; � � � ; kg satis�es, for m = 1; � � � ; k and ~x = (x

1

; � � � ; x

k

) 2 Z

k

,

�

(n)

(~x) = m()

P

m�1

i=0

r

(n)

i

D

(n)

�

8

<

:

P

k

j=1

x

j

P

j�1

i=0

r

(n)

i

D

(n)

9

=

;

<

P

m

i=0

r

(n)

i

D

(n)

;

where D

(n)

=

P

k

i=0

r

(n)

i

and fyg denotes the fra
tional part of y.

Example 4 Let k = 2; ~v

(0)

0

= (1; 0); ~v

(0)

1

= (�1; 1); ~v

(0)

2

= (0;�1): We apply

periodi
ally extension steps S

0;1

; S

1;2

; S

2;0

. Hen
e we obtain the sequen
e of
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matri
es M

(n)

:

0

B

B

B

B

B

�

1 1 0

0 1 0

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

1 1 1

0 1 1

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

2 1 1

1 1 1

1 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

2 3 1

1 2 1

1 1 1

1

C

C

C

C

C

A

n = 1 n = 2 n = 3 n = 4

0

B

B

B

B

B

�

2 3 4

1 2 3

1 1 2

1

C

C

C

C

C

A

0

B

B

B

B

B

�

6 3 4

4 2 3

3 1 2

1

C

C

C

C

C

A

0

B

B

B

B

B

�

6 9 4

4 6 3

3 4 2

1

C

C

C

C

C

A

0

B

B

B

B

B

�

6 9 13

4 6 9

3 4 6

1

C

C

C

C

C

A

n = 5 n = 6 n = 7 n = 8

We 
ompute r

(8)

0

= 28; r

(8)

1

= 19; r

(8)

2

= 13; D

(8)

= 60; ~v

(8)

0

= (2;�5); ~v

(8)

1

=

(6;�1); ~v

(8)

2

= (�5; 3). Thus the indu
ed fun
tion �

(8)

: Z

2

! f0; 1; 2g is given

by

�

(8)

(x; y) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 0 � f

28

60

x +

47

60

yg <

28

60

1 if

28

60

� f

28

60

x +

47

60

yg <

47

60

2 if

47

60

� f

28

60

x +

47

60

yg < 1:

This is independent of the made insertions.

4.2 Rauzy towers

We start from the same situation as in the previous se
tion, but now we apply

Rauzy extensions steps R

j

. Sin
e a Rauzy extension step is a 
ombination of

k basi
 extension steps, the formulas for g and � in Se
. 4.1 remain valid with

supers
ripts (n) in pla
e of (kn). However, in the Rauzy 
ase the numbers r

(n)

i

satisfy a useful re
urren
e relation whi
h fa
ilitates the 
omputation of the

fun
tion �

(n)

. Write ~r

(n)

= (r

(n)

0

; r

(n)

1

; � � � ; r

(n)

k

). Let 0 � j � k: If the Rauzy

step R

j

is applied at level n, then

~r

(n)

=M

(n) t

(1; 1; � � � ; 1) =M

(n�1) t

M

j

t

(1; 1; � � � ; 1):

(Re
all that

t

M

j

is the matrix with entries 1 at the diagonal and at the j-th


olumn and entries 0 elsewhere).

Sin
e

t

M

j

t

(1; 1; � � � ; 1) = 2

t

(1; 1; � � � ; 1)� ~e

j

;
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we have ~r

(n)

= 2~r

(n�1)

�M

(n�1)

~e

j

= 2~r

(n�1)

� ~


(n�1)

j

, where ~


(n�1)

j

is the j-th


olumn ve
tor of M

(n�1)

. In view of M

(l+1)

= M

(l) t

M

i

when R

i

is applied

at level l, we obtain ~


(n�1)

j

= ~


(n�2)

j

= � � � = ~


(q)

j

6= ~


(q�1)

j

if the previous

time that a Rauzy extension step R

j

was applied was at level q. Furthermore,

~


(q)

j

= ~r

(q�1)

. Thus

~r

(n)

= 2~r

(n�1)

� ~r

(q�1)

(7)

if at level n a Rauzy step R

j

is applied and the previous time that R

j

was

applied was at level q. The above argument is of 
ourse independent of the


hosen way of insertion. The 
orresponding fun
tion �

(n)

: Z

k

! f0; 1; 2g is

given in Proposition 1.

Example 5We 
onsider k = 2 and apply periodi
ally Rauzy steps R

2

; R

1

; R

0

.

This yields a sequen
e of matri
es (M

(n)

)

n�0

starting with

0

B

B

B

B

B

�

1 0 0

0 1 0

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

1 0 1

0 1 1

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

1 2 1

0 2 1

0 1 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

4 2 1

3 2 1

2 1 1

1

C

C

C

C

C

A

n = 0 n = 1 n = 2 n = 3

0

B

B

B

B

B

�

4 2 7

3 2 6

2 1 4

1

C

C

C

C

C

A

0

B

B

B

B

B

�

4 13 7

3 11 6

2 7 4

1

C

C

C

C

C

A

0

B

B

B

B

B

�

24 13 7

20 11 6

13 7 4

1

C

C

C

C

C

A

n = 4 n = 5 n = 6

The row sums satisfy a re
urren
e relation ~r

(n)

= 2~r

(n�1)

� ~r

(n�4)

for every

n � 4. The 
hara
teristi
 polynomial reads x

4

�2x

3

+1 = (x�1)(x

3

�x

2

�x�

1) = (x�1)(x��)(x��)(x��) where � is the Tribona

i number (in referen
e

to the Fibona

i number

1+

p

5

2

) ; one has � � 1:84 and j�j < 1. We �nd that

there are 
onstant 
oeÆ
ients 


j;i

su
h that r

(n)

i

= 


0;i

�

n

+


1;i

+


2;i

�

n

+


3;i

�

n

for

i = 0; 1; 2 and all n. The 
oeÆ
ients 
an be 
omputed from ~r

(0)

; ~r

(1)

; ~r

(2)

; ~r

(3)

.

The 
orresponding fun
tions �

(n)

are given by Proposition 1. It will be 
lear

that the fun
tions �

(n)


onverge to a limit word on Z

2

, but this will be the

subje
t of the next se
tion.
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5 Multi-dimensional Sturmian words

In this se
tion we study the limit words whi
h 
an be obtained by using towers

of latti
es as des
ribed in the previous se
tion.

5.1 Some de�nitions and non-existen
e results

It is obvious from the theory of extended roundwalks that W := lim

n!1

W

(n)

exists and is de�ned on A := [

1

n=0

A

(n)

= lim

n!1

A

(n)

: However, the word W

depends on the way the insertions are being made at ea
h step. It is easy to

show that it 
an happen that A 6= Z

k

. Take a �xed pla
e ~x 2 Z

k

; j~xj > 1:

At every level we have free 
hoi
e of making insertions. At most one of both

insertions involves ~x, sin
e in the notation of Se
. 3.1 at least one among

~w

h

+

~

v

�

i

and ~w

h

+

~

v

�

j

is di�erent from ~x. So we 
an se
ure by making the

\right" insertions that ~x =2 A

(n)

for every n. Thus ~x =2 A:

In view of W

(n)

= �

(n)

j

A

(n)

for every n, it would be ni
e if lim

n!1

�

(n)

exists,

that is, �

(n)

(~x) is 
onstant for every ~x 2 Z

k

and n � n

0

(~x), sin
e then we

have a limit word � : Z

k

! f0; 1; � � � ; kg whi
h is independent of the 
hosen

insertions and W = �j

A

. We shall show that lim

n!1

�

(n)

does not exist in

general.

We use the notation of Se
. 4.1. Put �

(n)

m

=

P

m�1

i=0

r

(n)

i

D

(n)

for m = 1; � � � ; k +

1. Then we dedu
e from Proposition 1 that, for m = 0; 1; � � � ; k and ~x =

(x

1

; � � � ; x

k

) 2 Z

k

,

�

(n)

(~x) = m() �

(n)

m

� f

k

X

j=1

x

j

�

(n)

j

g < �

(n)

m+1

: (8)

Obviously lim

n!1

�

(n)

exists if �

m

:= lim

n!1

�

(n)

m

exists for m = 0; 1; � � � ; k

and, in 
ase �

m

is rational, �

(n)

m

� �

m

for all large n. If so, the limit word � is

given by

�(~x) = m() �

m

� f

k

X

j=1

x

j

�

j

g < �

m+1

(9)

and the density of the letter m equals �

m+1

� �

m

for m = 0; 1; � � � ; k. Note

that 0 � �

0

� �

1

� � � � � �

k

� �

k+1

:= 1 and that the sum of the densities of

the letters equals 1. Before going into the study of the stru
ture of the limit

words, we 
onsider a situation where the limit does not exist.
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Let k = 4 and 0 < " <

1

2

. We apply basi
 extension steps S

0;1

and S

1;0

until

the sum of the densities of 0 and 1 ex
eeds 1 � ", subsequently we apply

basi
 extension steps S

2;3

and S

3;2

until the sum of the densities of 2 and

3 ex
eeds 1 � ", subsequently we apply basi
 extension steps S

0;1

and S

1;0

until the sum of the densities of 0 and 1 ex
eeds 1� ", and so on. Obviously,

lim inf

n!1

�

(n)

2

< ", lim sup

n!1

�

(n)

2

> 1� ", and lim

n!1

�

(n)

2

does not exist,

so that lim

n!1

�

(n)

does not exist either.

We give the de�nitions of k-dimensional regular word and k-dimensional Stur-

mian word, respe
tively.

De�nition 1 An in�nite k-dimensional regular word is an in�nite word U :

Z

k

! f0; 1; : : : ; kg whi
h satis�es either

8(x

1

; : : : ; x

k

) 2 Z

k

; (U(x

1

; : : : ; x

k

) = m()

x

1

�

1

+ : : :+ x

k

�

k

+ � 2 [�

m

; �

m+1

[ (mod 1));

or 8(x

1

; : : : ; x

k

) 2 Z

k

; (U(x

1

; : : : ; x

k

) = m()

x

1

�

1

+ : : :+ x

k

�

k

+ � 2℄�

m

; �

m+1

℄ (mod 1));

for some real numbers �

0

= 0 < �

1

< : : : < �

k

< �

k+1

= 1 and �. If,

moreover, 1; �

1

; : : : ; �

k

are independent over Q we 
all it a k-dimensional

Sturmian word.

The multidimensional Sturmian words have been studied mainly for k = 2

in [5{8,4℄ and have many interesting 
ombinatorial properties whi
h allow us

to 
onsider them as a higher-dimensional generalisation of Sturmian words.

In parti
ular, they are nonperiodi
 (i.e., there is no nonzero ve
tor of peri-

odi
ity with integer 
oeÆ
ients) and uniformly re
urrent (i.e., for every posi-

tive integer n, there exists an integer N su
h that every square fa
tor of size

(N; : : : ; N) 
ontains every fa
tor of size (n; : : : ; n)). Furthermore they have

m

1

: : : m

k

+

P

k

i=1

Q

j 6=i

m

j

fa
tors of length (m

1

; : : : ; m

k

). Re
all that (
lassi
)

Sturmian words 
ode the approximation of a line by a dis
rete line made of

horizontal and verti
al segments with integer verti
es (for more details, see

for instan
e [12,11℄). These multidimensional sequen
es 
ode dis
rete hyper-

plane approximations. In the sequel we will use the following observation: the

densities of letters 0; 1; : : : ; k in a k-dimensional Sturmian word exist and are

equal to �

1

; �

2

� �

1

; � � � ; 1� �

k

, respe
tively, (in the notation of Def. 1). The

�rst theorem is an assertion of the type that every �nite balan
ed word is a

fa
tor of a Sturmian word.

Theorem 1 We use the notation of Se
. 2 and Def.1. Let w be a roundwalk

in the domain A(w). De�ne � : Z

k

! f0; 1; : : : ; kg in ~x = (x

1

; � � � ; x

k

) 2 Z

k

by

(9). Then the k-dimensional �nite word �j

A(w)

is a fa
tor of a k-dimensional

Sturmian word with � = 0:
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Proof We have

�(

k

X

i=1

x

i

~e

i

) = m() �

m

� f

k

X

j=1

x

j

�

j

g < �

m+1

for m 2 f0; 1; � � �kg; ~x 2 A(w):

Let (�

1

; � � � ; �

k

) 2 R

k

with 1; �

1

; � � � ; �

k

linearly independent over Q be su
h

that (D�

1

; � � � ; D�

k

) approximates the ve
tor �

1

; � � � ; �

k

with rational entries

so well that

f

k

X

i=1

x

i

�

i

g 2 [�

m

; �

m+1

[() f

k

X

i=1

x

i

�

i

g 2 [�

m

; �

m+1

[;

for m 2 f0; 1; � � �kg; ~x 2 A(w). For m 2 f0; 1; � � � ; kg we then have

�j

A(w)

(~x) = m() �

m

� f

k

X

i=1

x

i

�

i

g < �

m+1

:

It follows from (9) that �j

A(w)

is a fa
tor of the k-dimensional Sturmian word

with parameters �

1

; � � � ; �

k

asso
iated to the partition by right-open and left-


losed intervals and � = 0.

The limit words we study have the additional property that the 
onstant � in

the de�nition is 0. We 
all su
h words homogeneous.

Corollary 1 The wordsW

(n)


orresponding to �

(n)

j

A

(n)

(w

(n)

)

o

urring in Se
.

4.1 are fa
tors of homogeneous multidimensional Sturmian words.

5.2 Some suÆ
ient 
onditions for 
onvergen
e

We will apply the following result.

Theorem 2 [9℄ Let (M

j

)

j2N

be a sequen
e of square matri
es of size k + 1

with 
oeÆ
ients in N with values from a �nite set for whi
h there exists a

positive matrix P su
h that M

j

attains this value P for in�nitely many values

j. Let C

k+1

+

denote the nonnegative 
one in R

k+1

of ve
tors with nonnegative

entries. Then there exists a positive ve
tor

~

l =

t

(l

0

; l

1

; : : : ; l

k

) with

P

k

j=0

l

j

= 1

su
h that

\

n2N

M

1

� � �M

n

(C

k+1

+

) = f�

~

l ; � 2 R

+

g:

In other words, for every nonzero ve
tor ~x in R

k+1

with nonnegative entries,

M

1

M

2

: : :M

n

~x 
onverges towards the ve
tor

~

l in R

k+1

. Observe that su
h a


onvergen
e property needs not hold without the assumption of Theorem 2 as

illustrated by Keane's example of a minimal and nonuniquely ergodi
 ex
hange

of 4 intervals [10℄.
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We apply Theorem 2 to the starting situation des
ribed in Se
. 4.1. We assume

that we have an in�nite tower (M

i

n

;j

n

)

n�1

of basi
 extension matri
es. Sin
e

there are only �nitely many 
hoi
es for M

i;j

, for every positive integer h there

exist matri
es P su
h that P =

t

M

i

n

;j

n

t

M

i

n+1

;j

n+1

� � �

t

M

i

n+h�1

;j

n+h�1

for

in�nitely many n. Suppose there exists an h for whi
h su
h a P exists with all

entries positive. Then there exists a 
onstant 
 for whi
h there exist in�nitely

many su
h n of the form mh+ 
: We de�ne

P

1

=

t

M

i

1

;j

1

t

M

i

2

;j

2

� � �

t

M

i


�1

;j


�1

and

P

m

=

t

M

i

(m�1)h+


;j

(m�1)h+


t

M

i

(m�1)h+
+1

;j

(m�1)h+
+1

� � �

t

M

i

mh+
�1

;j

mh+
�1

:

A

ording to Theorem 2 there exist positive numbers l

0

; l

1

; � � � ; l

k

2 R

k+1

with

P

k

j=0

l

j

= 1 su
h that

\

n2N

P

1

� � �P

n

(C

k+1

+

) = R

+

t

(l

0

; l

1

; : : : ; l

k

):

It follows (with the notation of Se
tion 5.1) that

\

n2N

t

M

i

1

;j

1

� � �

t

M

i

n

;j

n

(C

k+1

+

) = R

+

t

(l

0

; l

1

; : : : ; l

k

):

In parti
ular,

lim

n!1

(r

(n)

0

; � � � ; r

(n)

k

) = lim

n!1

t

M

i

1

;j

1

� � �

t

M

i

n

;j

n

t

(1; � � � ; 1) 2 R

+

t

(l

0

; l

1

; : : : ; l

k

):

Sin
e r

(n)

0

+ r

(n)

1

+ � � �+ r

(n)

k

= D

(n)

, we obtain

lim

n!1

r

(n)

m

D

(n)

= l

m

for m = 0; 1; � � �k:

It follows for these values of m that

lim

n!1

�

(n)

m

= l

0

+ l

1

+ � � �+ l

m�1

=: �

m

:

We de�ne � : Z

k

! f0; 1; � � � ; kg by

�(~x) = m() �

m

� f

k

X

j=1

x

j

�

j

g < �

m+1

; (10)

for ~x = (x

1

; � � � ; x

k

) 2 Z

k

and m = 0; 1; � � � ; k where �

0

= 0; �

k+1

= 1: Thus

� represents a multi-dimensional regular word and the density of the letter m

equals �

m+1

� �

m

= l

m

for m = 0; 1; � � � ; k:
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It remains to prove that lim

n!1

�

(n)

= �. We have from (8)

�

(n)

(~x) = m() �

(n)

m

� f

k

X

j=1

x

j

�

(n)

j

g < �

(n)

m+1

:

Fix ~x = (x

0

; x

1

; � � � ; x

k

) 2 Z

k

: If �

m

< f

P

k

j=1

x

j

�

j

g < �

m+1

, then �

(n)

m

<

f

P

k

j=1

x

j

�

(n)

j

g < �

(n)

m+1

for n � n

0

(~x), so that �

(n)

(~x) = m for n � n

0

(~x).

Hen
e �(~x) = lim

n!1

�

(n)

(~x) = m:

We now 
onsider the boundary 
ase. Suppose f

P

k

j=1

x

j

�

j

g = �

m

. Then �

m�1

<

f

P

k

j=1

x

j

�

(n)

j

g < �

m+1

for n � n

0

(~x) so that �

(n)

(~x) ism�1 orm (with obvious


y
li
 adjustments if m = 0 or m = k). If

�

(n)

m

� f

k

X

j=1

x

j

�

j

g < �

(n)

m+1

for all n � n

1

(~x), then we are 
ertain that lim

n!1

�

(n)

(~x) = m. In 
ase there

are in�nitely many n su
h that the reverse inequality holds, then it is not true

that the limit exists and equals �. Thus we have proved the following result.

Theorem 3 Apply from the starting situation as des
ribed in Se
. 4.1 an

in�nite sequen
e (M

i

n

;j

n

) of basi
 extension matri
es. Suppose there exists a

positive integer h and a matrix P with only positive entries su
h that P =

M

i

n

;j

n

M

i

n

+1;j

n

+1

� � �M

i

n

+h�1;j

n

+h�1

for in�nitely many values of n. Let �

m

=

lim

n!1

�

(n)

m

for m = 1; 2; � � � ; k and de�ne � by (9). Then lim

n!1

�

(n)

= � :

Z

k

! f0; 1; � � � ; kg exists if and only if

�

(n)

m

� f

k

X

j=1

x

j

�

(n)

j

g < �

(n)

m+1

for n � n

1

(~x) for every ~x 2 Z

k

for whi
h f

P

k

j=1

x

j

�

j

g = �

m

for some m 2

f0; 1; � � � ; kg:

Note that the latter 
ondition is ful�lled if 1; �

1

; � � � ; �

k

are linearly independent

over the rationals, that is, if the limit word is Sturmian, sin
e then there 
annot

be a point ~x 6= ~e

m

with f

P

k

j=1

x

j

�

j

g = �

m

, whereas �

(n)

(~e

m

) = �(~e

m

) = m by

de�nition.

Corollary Suppose that to the starting situation as des
ribed in Se
. 4.1

we apply an in�nite periodi
 sequen
e (R

j

n

)

n�1

of Rauzy steps. If ea
h of

R

0

; R

1

; � � � ; R

k

o

urs in the period and the limit values �

0

; �

1

; � � � ; �

k

are lin-

early independent over the rationals, then the limit word lim

n!1

�

(n)

= �
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exists and it is the Sturmian regular word given for m = 0; 1; � � � ; k by

�(~x) = m() �

m

� f

k

X

j=1

x

j

�

j

g < �

m+1

:

Proof Suppose ea
h of R

0

; R

1

; � � � ; R

k

o

urs in the period. Note that

when applying R

i

we multiply by the substitution matrix M

i

with nonnega-

tive entries and with entries 1 at the i-th 
olumn. Hen
e the produ
t matrix


orresponding to a period has only positive entries at the i-th 
olumn for

i = 0; 1; � � � ; k: Thus the produ
t matrix 
orresponding to one period has only

positive entries. Be
ause of the linear independen
e 
ondition it follows from

Theorem 3 that lim

n!1

�

(n)

= �:

Example 5 (
ontinued). We 
onsider k = 2 and apply the Rauzy steps

R

2

; R

1

; R

0

periodi
ally. Then the substitution matri
es M

n

have row sums

~r

(n)

satisfying r

(n)

i

= 


0;i

�

n

+


1;i

+


2;i

�

n

+


3;i

�

n

for i = 0; 1; 2 and all n. Re
all

that � > 1; j�j < 1. Sin
e r

(n)

i

!1, we have lim

n!1

r

(n)

i

D

(n)

= 


0;i

for i = 0; 1; 2:

A dire
t 
al
ulation gives




0;0

=

�

2

(� + 1)

2

; 


0;1

=

1

� + 1

; 


0;2

=

�

(� + 1)

2

:

Sin
e � is a root of the irredu
ible polynomial x

3

� x

2

� x � 1, the numbers

�

0

= 


0;0

; �

1

= 


0;1

; �

2

= 


0;2

are linearly independent over the rationals. Thus

the limit word � : Z

2

! f0; 1; 2g is given by

�(x; y) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 0 � f

�

(�+1)

2

x +

2�+1

(�+1)

2

yg <

�

2

(�+1)

2

1 if

�

2

(�+1)

2

� f

�

(�+1)

2

x+

2�+1

(�+1)

2

yg <

�

2

+�+1

(�+1)

2

2 if

�

2

+�+1

(�+1)

2

� f

�

(�+1)

2

x+

2�+1

(�+1)

2

yg < 1:

Note that in the above 
orollary the requirement that ea
h among the rules

R

0

, R

1

; � � � ; R

k

o

urs in a period is ne
essary for the 
on
lusion. If R

m

does

not appear in the period, then r

(n)

m

= 1 for all n, that is, in every �

(n)

there is

only one 
oset with �

(n)

-value m. Hen
e the density of the letter m be
omes

0 and the limit word 
annot be regular.

A similar 
orollary 
an of 
ourse be given for a periodi
 sequen
e of basi


extension steps (S

i

n

;j

n

) where ea
h matrix M

i;j

appears in a period. However,

here the 
ondition is far too strong. It suÆ
es, but it is not ne
essary, that the

produ
t matrix taken over a period has positive entries. We shall deal with

su
h situations in part II of the paper.
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5.3 Approximations of given regular words

In this subse
tion we address the question whether and how some given regular

word 
an be obtained as the limit by applying a tower of extension steps. Not

every regular word � 
an be the limit word when applying an in�nite sequen
e

of Rauzy extensions steps. Indeed, for every n the ve
tor ~r = (r

0

; r

1

; � � � ; r

k

),

where r

0

; r

1

; � � � ; r

k

are the densities of the letters 0; 1; � � � ; k of the word �,

should be in the 
onvex hull of the 
olumn ve
tors (D

(n)

)

�1

(~


(n)

0

;~


(n)

1

; � � � ;~


(n)

k

)

of M

(n)

, be
ause ~


(n)

0

+ ~


(n)

1

+ � � � + ~


(n)

k

= ~r

(n)

and lim

n!1

~r

(n)

D

(n)

= ~r. Here

we restri
t ourselves to the linear manifold x

0

+ x

1

+ � � � + x

k

= 1, sin
e

the sum of the densities equals 1. In parti
ular, in 
ase k = 2, the ve
tor

~r

(n)

should be in the 
onvex hull of ~


(n)

0

;~


(n)

1

;~


(n)

2

. When we start with R

0

we have ~


(1)

0

=

t

(1; 0; 0); ~


(1)

1

=

t

(1; 1; 0); ~


(1)

2

=

t

(1; 0; 1) and for R

1

and

R

2

symmetri
 situations o

ur. Thus no density ve
tor (r

0

; r

1

; r

2

) inside the

triangle with verti
es

1

p

2

(1; 1; 0);

1

p

2

(1; 0; 1);

1

p

2

(0; 1; 1) 
an be obtained as a

limit. In parti
ular, regular words where the letters have about equal densities


annot be the limit words of Rauzy extensions.

A further elaboration of the 
onvexity argument would lead to the 
on
lusion

that the limit values ~r of towers of Rauzy extensions have the shape of a

Sierpinski triangle fra
tal.

If we 
onsider basi
 extension steps, then the situation is entirely di�erent.

Suppose that we apply an in�nite sequen
e of basi
 extension steps fS

i

n

;j

n

g

n�1

to the usual starting position. It is 
lear that any possible limit density ve
tor

~r = (r

0

; r

1

; � � � ; r

k

) of a regular word satis�es r

0

+ r

1

+ � � � + r

k

= 1 and has

nonnegative 
oeÆ
ients. It is therefore in the 
onvex hull of ~e

0

= ~


(0)

0

; � � � ; ~e

k

=

~


(0)

k

. Suppose that after n extension steps (D(n))

�1

the ve
tor ~r

(n)

is in the


onvex hull of the 
olumn ve
tors (D

(n)

)

�1

~


(n)

0

; (D

(n)

)

�1

~


(n)

1

; � � � ; (D

(n)

)

�1

~


(n)

k

.

Then applying M

i;j

(= M

i

n

;j

n

), the 
olumn ve
tor ~


(n)

i

is repla
ed with the

ve
tor ~


(n)

i

+ ~


(n)

j

and the other 
olumn ve
tors are un
hanged. If ~r is not in

the 
onvex hull of the ve
tors

~


(n)

0

D

(n)

; � � � ;

~


(n)

i�1

D

(n)

;

~


(n)

i

+ ~


(n)

j

D

(n)

;

~


(n)

i+1

D

(n)

; � � � ;

~


(n)

k

D

(n)

;

then it is in the 
onvex hull of the ve
tors

~


(n)

0

D

(n)

; � � � ;

~


(n)

j�1

D

(n)

;

~


(n)

i

+ ~


(n)

j

D

(n)

;

~


(n)

j+1

D

(n)

; � � � ;

~


(n)

k

D

(n)

:

Thus by repla
ing S

i

n+1

;j

n+1

with S

j

n+1

;i

n+1

if ne
essary, we keep ~r in the 
onvex

hull of the 
olumn ve
tors. Doing so indu
tively we 
an guarantee that start-

ing with any sequen
e of extensions steps (S

i

n

;j

n

)

n�1

and making appropriate

inter
hanges of i's and j's, the ve
tor ~r is in the interse
tion of the 
onvex
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hulls of (D

(n)

)

�1

~


(n)

0

; (D

(n)

)

�1

~


(n)

1

; � � � ; (D

(n)

)

�1

~


(n)

k

taken over all n. In parti
-

ular, if the interse
tion 
onsists of one point (r

0

; r

1

; � � � ; r

k

) and r

0

; r

1

; � � � ; r

k

are linearly independent over the rationals, then the limit word exists and is

a homogeneous Sturmian word.
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