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Abstract

Naive discrete planes are well known to be functional on a coordinate plane. The aim
of our paper is to extend the functionality concept to a larger family of arithmetic
discrete planes, by introducing suitable projection directions (α1, α2, α3) satisfying
α1v1 + α2v2 + α3v3 = w. Several applications are considered. We first study certain
local configurations, that is, the (m,n)-cubes introduced in [VC99]. We compute
their number for a given (m,n) and study their statistical behaviour. We then
apply functionality to formulate an algorithm for generating arithmetic discrete
planes, inspired by [Deb95]. We also prove that an arithmetic discrete plane may
be endowed with a combinatorial surface structure, in the spirit of [KI03].

Key words: digital planes; arithmetic planes; local configurations; functionality of
discrete planes.

1 Introduction

Let v=(v1, v2, v3) ∈ Z3 and µ, w ∈ Z2. The arithmetic discrete plane P (v, µ, w)
is the set of all points x = (x1, x2, x3) ∈ Z3 satisfying

0 ≤ v1x1 + v2x2 + v3x3 + µ < w.

Arithmetic discrete planes with a common normal vector v are mainly char-
acterized by their thickness w. For example, in such a class the naive planes
(w = max(|v1|, |v2|, |v3|)) are the thinest 2-separating ones, while the standard
planes (w = |v1|+ |v2|+ |v3|) are the thinest 0-separating ones (see [AAS97]).
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Arithmetic discrete planes play a key role in polyedrisation of discrete objects
[Deb95,BAB02,BK04]. Indeed tridimensional discretized objects are usually
described as pieces, generally triangular, of arithmetic discrete planes. A rea-
sonable polyedrisation mainly requires that the involved objects have good
topological properties, such as connectedness and/or absence of κ-tunnels, for
κ ∈ {0, 1, 2} [AAS97] (intuitively, a κ-tunnel occurs if two voxels, one above
the plane and the other below, have a k-dimensional intersection). If naive
arithmetic planes are rather good candidates for this approach as being the
thinnest ones without 2-tunnels, one major withdraw is that the intersection
of two naive arithmetic discrete planes is usually not an arithmetic discrete
line. Similar problems occur when considering standard arithmetic discrete
planes. V. Brimkov and R. Barneva introduced a new class of arithmetic dis-
crete planes [BB99,BB02], the so-called graceful planes, defined as P (v, µ, w)
with 0 ≤ v1 ≤ v2 ≤ v3 and w = max{v3, v1 + v2}, which allow for constructing
thin discrete triangular tunnel-free meshes admitting analytical description. In
order to take into account noise during digitization, I. Debled-Rennesson, J.-L.
Rémy, and J. Rouyer-Degli initiated a new approach of segmentation of dis-
crete curves with arithmetic discrete lines of various thicknesses [DRR03]. The
latter works indicate that a better understanding of the topological, arithmetic
and geometric structure of arithmetic discrete linear objects of any thickness
would be very useful.

Naive planes have been widely studied (see for instance [Rev91,DR94,Deb95],
[AAS97], [VC97], [BBN00a,BBN00b,BB02], and [Col02]) and are well known
to be functional, that is, in a one-to-one correspondence with the integer points
of one of the coordinate planes by an orthogonal projection map. In other
words, given a naive arithmetic discrete plane P and the suitable coordinate
plane, for any integer point P of this coordinate plane there exists a unique
point of P obtained by adding a third coordinate to P .
The aim of the present paper is to extend the notion of functionality for naive
arithmetic discrete planes to a larger family of arithmetic discrete planes. For
that purpose, instead of projecting on a coordinate plane, we introduce a suit-
able orthogonal projection map on a plane along a direction α = (α1, α2, α3) ∈
Z3, in some sense dual to the normal vector of the discrete plane P (v, µ, w),
that is, α1v1 + α2v2 + α3v3 = w, so that the projection of Z3 and the points
of the discrete plane P (v, µ, w) are in one-to-one correspondence. Functio-
nality allows us to reduce a three-dimensional problem to a two-dimensional
one, thus leads to a better understanding of the combinatorial and geometric
properties of arithmetic discrete planes.

The present paper is organized as follows. We first recall some basic notions
on arithmetic discrete planes, while extending their definition to the case of
real (v, µ, w)-parameters (we call rational the classic case).
Generalized functionality is introduced in Section 3, with the main result:
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Theorem 1 Let P(v, µ, w) be an arithmetic discrete plane, and let α ∈ Z3

be such that gcd{α1, α2, α3} = 1. Let π⊥
α

: R3 −→ {x ∈ R3, 〈α,x〉 = 0} be the
affine orthogonal projection map onto the plane {x ∈ R3, 〈α,x〉 = 0} along
the vector α. Then the map π⊥

α
: P(v, µ, w) −→ π⊥

α
(Z3) is a bijection if, and

only if, |〈α,v〉| = w.

Up to the sign, such α-vectors are called functional for the plane. We show
that any rational arithmetic discrete plane admits functional vectors.

In Section 4, we study the functional lattice Γα obtained by projecting an
arithmetic discrete plane on one of the coordinate planes along a functional
vector α, and we compute Z-basis of such lattices. We exhibit the converse
function π−1

α
: Γα −→ P(v, µ, w) of the projection map πα. This function

admits a very simple expression when α3 = 1.
Several applications of generalized functionality are given in the rest of the
paper, under the assumption that a functional vector exists with a coordinate
equal to 1. We first apply in Section 5 the generalized functionality property
to the enumeration of some local configurations, in particular we generalize
results on (m, n)-cubes.
Section 6 provides one with two further applications of the generalized functio-
nality property. We first extend Isabelle Debled-Rennesson’s algorithm for
computing the geometric representation of naive arithmetic discrete planes
[Deb95] to any rational arithmetic discrete plane P(v, µ, w) with w − v3 ∈
gcd(v1, v2)Z. We then show that one can provide any arithmetic discrete plane
P(v, µ, w) with a structure of two-dimensional combinatorial manifold, under
the assumption w ∈ v1Z + v2Z + v3 and w ≥ max{|v1|, |v2|}.
Section 7 concludes the paper.

For clarity issues, we have chosen to work here in a three-dimensional space
but all the results and methods presented extend in a natural way to Rn, with
n ≥ 2, as well as to arithmetic discrete lines. Let us note that we have tried to
make this paper essentially self-contained. This paper is an extended version
of [BFJ05], but also contains some new applications of functionality.

2 Arithmetic discrete planes

In the present paper, the R-vector space R3 is endowed with its canonical basis
{e1, e2, e3}. Let v and v′ be two vectors of R3, their usual scalar product in
R3 is denoted by 〈v,v′〉. The subsets of all nonzero elements in R and N are
denoted by R⋆ and N⋆ respectively.
Let v ∈ R3, µ ∈ R, w ∈ R⋆

+, and define:

P(v, µ, w) = {x ∈ Z3, 0 ≤ 〈v,x〉 + µ < w}. (1)
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An arithmetic discrete plane is a subset P of Z3 such that:

∃(v, µ, w) ∈ R3 × R × R⋆
+, P = P(v, µ, w). (2)

The following lemma provides us with basic properties of arithmetic discrete
planes. In particular, the vector v in (2) is shown to be unique up to scale.
For v = (v1, v2, v3) ∈ Z3, let gcd{v1, v2, v3} be denoted by gcd(v), and for
v ∈ R3, let the dimension of the Q-vector space spanned by {v1, v2, v3} be de-
noted by dimQ v (for instance, the following v-values: (1,2,3), (

√
2,2

√
2,3

√
2),

(1,
√

2,2
√

2), and (1,
√

2,
√

3) yield dimQ v=1, 1, 2, and 3 respectively).

Lemma 2 Let P = P(v, µ, w) be an arithmetic discrete plane with (v, µ, w) ∈
R3 × R × R⋆

+.
(i) If P = P(v′, µ′, w′) then there exists t ∈ R such that v′ = tv.
(ii) The set {〈v,x〉+ µ, x ∈ P} is dense in [0, w[ if, and only if, dimQ v > 1.
(iii) There exist v′ ∈ Z3 with gcd(v′) = 1, µ′ ∈ Z, and w′ ∈ N⋆ such that
P = P(v′, µ′, w′) if, and only if, dimQ v = 1. If so, then Card{〈v,x〉+ µ, x ∈
P} = w′.

Proof. Let us assume dimQ v > 1. There exist i, j ∈ {1, 2, 3} such that vi 6= 0
and

vj

vi
6∈ Q. By Kronecker’s Approximation Theorem, the set {at+ b, (a, b) ∈

Z2} is dense in R if t ∈ R \ Q, that is, for every interval I ⊂ R, there exists
(a, b) ∈ Z2 such that at + b ∈ I. Let I be an sub-interval of [0, ω[; one has
vj

vi
6∈ Q; hence there exists (xi, xj) ∈ Z2 such that xi + xj

vj

vi
+ µ

vi
∈ I

vi
, that is,

xivi + xjvj + µ ∈ I. Hence the set {〈v,x〉 + µ, x ∈ P} is dense in [0, w[.
If dimQ v = 1, then there exists t ∈ R+ such that tv ∈ Z3 and gcd(tv) = 1. A
straightforward calculation shows that in (iii), one can take v′ = tv, µ′ = ⌊tµ⌋,
and w′ = ⌈tw−tµ⌉+⌊tµ⌋. Furthermore note that the set {x ∈ Z3, 〈v′,x〉+µ′ =
k} is not empty if, and only if, k ∈ Z. Thus Card{〈v′,x〉 + µ′, x ∈ P} = w′,
which completes the proof of (ii) and (iii) since the sets {〈v′,x〉+ µ′, x ∈ P}
and {〈v,x〉 + µ, x ∈ P} are homothetical.
Let us next prove (i). First assume that P = P(v, µ, w) = P(v′, µ′, w′) with
the further condition 0 ≤ µ < w, so that P contains (0,0,0). Let V be the
R-vector space spanned by {v,v′}, and define:

B = {x ∈ R3, 0 ≤ 〈v,x〉+µ < w}, B′ = {x ∈ R3, 0 ≤ 〈v′,x〉+µ′ < w′}.

Suppose dimR V = 2. Then B∩B′∩V is bounded (a parallelogram), so that its
discrete subset P∩V is finite. Let x = av+bv′ with (a, b) ∈ Z2; then x ∈ P if,
and only if, 0 ≤ 〈v,v〉a+ 〈v,v′〉b+µ < w′. Therefore, P ∩V is the arithmetic
discrete line with normal vector (〈v,v〉, 〈v,v′〉), translation parameter µ and
thickness w′. Since it is not empty, it is not finite, a contradiction.
Finally, let us show that the conclusion still holds for arbitrary µ. If dimQ v =
1, we may assume that v ∈ Z3 with gcd(v) = 1 and µ ∈ Z. By using Bezout’s
Lemma let us choose u in Z3 such that 〈u,v〉 = 1 and let u′ = µu. If dimQ v >
1, choose u′ ∈ Z3 such that 〈u′,v〉 ∈ [µ, µ+w′[. Let τ : R3 → R3 be the trans-
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lation by −u′, we have τ(P) = P(v, µ − 〈u′,v〉, w) = P(v′, µ − 〈u′,v〉, w′).
Since 0 ≤ µ − 〈u′,v〉 < w′, we still conclude that v and v′ are colinear.

An arithmetic discrete plane that may be represented by P = P(v, µ, w) with
dimQ v = 1 is called rational, otherwise it is called irrational. According to
Lemma 2, the distinction is exclusive. From now on, we shall agree that any
representation P(v, µ, w) of a rational arithmetic discrete plane satisfies:

v ∈ Z3 and gcd(v) = 1, µ ∈ Z, w ∈ N⋆. (3)

Exactly two such representations exist for a rational arithmetic discrete plane:

P(v, µ, w) = P(−v, w − 1 − µ, w). (4)

Indeed, only two choices are allowed for v by Lemma 2 (i), and w is unique
by Lemma 2 (iii). Then other µ-values are easily ruled out. For an irrational
arithmetic discrete plane, constraint 〈v,v〉 = 1 and Lemma 2 (ii) result in
similar conclusions: There are at most two representations of an irrational
arithmetic discrete plane P(v, µ, w), the second one being P(−v, w − µ, w)
and happening if, and only if, neither µ nor w − µ belong to the Q-vector
space spanned by {v1, v2, v3}.

Some among rational arithmetic discrete planes are usually given particu-
lar names [Rev91,DR94,Deb95,Fra96]. Let v = (v1, v2, v3) ∈ Z3; if w =
max{|v1|, |v2|, |v3|} (resp. w = |v1|+ |v2|+ |v3|), then P = P(v, µ, w) is called
naive (resp. standard). It is important to remark that, according to the above
discussion, these definitions do not depend on any specific representation of
P.
Let us next recall a classical property of naive discrete planes with normal
vector v. For a given α ∈ Z3, let π⊥

α
: R3 → {x ∈ R3 : 〈α,x〉 = 0} stand for

the orthogonal projection map onto the plane 〈α,x〉 = 0. We still denote by
π⊥

α
its restriction to any subset of R3 or its corestriction to any subset of the

plane 〈α,x〉 = 0, as for instance π⊥
α

: P(v, µ, w) → π⊥
α
(Z3).

Theorem 3 ([Rev91]) Let P = P(v, µ, w) be a naive arithmetic discrete
plane, with v = (v1, v2, v3) ∈ R3. If |vi| = w, for i = 1, 2 or 3, then P is in
bijection with the integer points of the plane 〈ei,x〉 = 0 by the projection map
π⊥

ei
.

The plane 〈ei,x〉 = 0 in Theorem 3 is called a functional plane of P. An
analogous result holds for standard discrete planes:

Theorem 4 ([Fra96,BV00]) Let P be a standard discrete plane and let α =
e1 + e2 + e3. Then the map π⊥

α
: P → π⊥

α
(Z3) is a bijection.

Both results are extended in several directions in the following section.
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3 Generalized functionality

In both cases investigated in Theorems 3 and 4 the following property holds:
there exists a vector α ∈ Z3 such that the projection map π⊥

α
: P(v, µ, w) →

π⊥
α
(Z3) is a bijection, and 〈α,v〉 = w. In this section, it is extended to a large

class of arithmetic discrete planes by means of functional directions:

Definition 5 A vector α ∈ Z3 is called functional for an arithmetic discrete
plane P(v, µ, w) if it satisfies conditions gcd(α) = 1 and 〈α,v〉 = w.

According to Lemma 2, functionality of a vector α ∈ Z3 for an arithmetic
discrete plane P(v, µ, w) does not depend on the representation of the latter.

Furthermore, we improve Theorems 3 and 4 by showing that the vectors α ∈
Z3 providing us with bijective projections π⊥

α
are exactly the functional ones

(to be precise, this statement also holds for −α if α is functional since gcd(α) =
gcd(−α) and π⊥

α
= π⊥

−α
).

Theorem 6 Let P = P(v, µ, w) be an arithmetic discrete plane, and let α ∈
Z3 be such that gcd(α) = 1. Then the map π⊥

α
: P → π⊥

α
(Z3) is a bijection if,

and only if, |〈α,v〉| = w.

Proof. Throughout the proof, we assume w.l.o.g. that 〈α,v〉 ≥ 0. Let x,x′ ∈
Z3, then π⊥

α
(x) = π⊥

α
(x′) if, and only if, there exists (k, k′) ∈ Z2 such that

k′(x′ − x) = kα. Since gcd(α) = 1, k′ divides k. In other words, π⊥
α
(x) =

π⊥
α
(x′) if, and only if, there exists c ∈ Z such that x′ = x+ cα. Moreover, x+

cα ∈ P if, and only if, −(〈x,v〉+µ)
〈α,v〉

≤ c < w−(〈x,v〉+µ)
〈α,v〉

. Accordingly, if |〈α,v〉| = w

then c is allowed to take exactly one value, so that π⊥
α

: P → π⊥
α
(Z3) is a

bijection.
Conversely assume that π⊥

α
: P → π⊥

α
(Z3) is a bijection. If P is rational, take

x ∈ Z3 such that 〈x,v〉 + µ = 0 by using Bezout’s Lemma. On the one hand,
x ∈ P and 〈x + α,v〉+ µ = 〈α,v〉 ≥ 0. Moreover, π⊥

α
(x + α) = π⊥

α
(x). Since

π⊥
α

is one-to-one, x + α /∈ P, thus 〈α,v〉 ≥ w. On the other hand, suppose
that 〈α,v〉 > w and choose y ∈ Z3 such that 〈y,v〉 + µ = −1. Then, for
c ∈ Z, 〈y + cα,v〉 + µ = c〈α,v〉 − 1, which is negative if c ≤ 0, and larger
than or equal to w − 1 if c > 0. Since π⊥

α
is onto, this cannot happen. Thus

〈α,v〉 = w.
If P is irrational, we parallel the previous proof by using a density argument
instead of Bezout’s Lemma. Consider any ε ∈ R and choose x ∈ Z3 such
that 〈x,v〉 + µ ∈ [0, ε[. We obtain as above 〈α,v〉 > w − ε, thus 〈α,v〉 ≥
w. Suppose 〈α,v〉 > w, let ν = 〈α,v〉 − w, and choose y ∈ Z3 such that
〈y,v〉+µ ∈]− ν/2, 0[. Then, for c ∈ Z, 〈y + cα,v〉+µ = c〈α,v〉+ 〈y,v〉+µ.
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This quantity is negative if c ≤ 0, and is larger w, if c > 0.

If α is a functional vector for an arithmetic discrete plane P, then Theorem
6 states that, looking at P along this direction, one can see all its points as
if they were on the plane {x ∈ R3, 〈α,x〉 = 0}. We show later that a natural
regular lattice structure emerges from this point of view. Let us first complete
Theorem 6 by relaxing condition gcd(α) = 1 for rational planes.

Corollary 7 Let P = P(v, µ, w) be a rational arithmetic discrete plane and
〈α,v〉 = w. If gcd(α) = d, where d ∈ N divides w, then π⊥

α
: P → π⊥

α
(Z3)

satisfies, for each p ∈ π⊥
α
(Z3),

(π⊥
α )−1({p}) =

{

xp + k
α

d
, 0 ≤ k ≤ d − 1

}

, (5)

where xp is the unique solution in P(v, µ, w/d) of π⊥
α
(x) = p.

Proof. Let Pk = P(v, µ−kw/d, w/d) and let us write P as the disjoint union
P =

⋃d−1
k=0 Pk. One has π⊥

α/d = π⊥
α
. By Theorem 6, the projection π⊥

α
: Pk →

π⊥
α
(Z3) is one-to-one for each k between 0 and d − 1, so that the cardinality

of (π⊥
α
)−1({p}) does not exceed d. Moreover, given p ∈ π⊥

α
(Z3), xp is well-

defined. Since 〈α/d,v〉 = w/d, for 0 ≤ k ≤ d − 1, each point xp + k
α

d
is in

Pk. Whence the result.

In particular, taking d = w in Corollary 7 one obtains:

Corollary 8 Let P = P(v, µ, w) be a rational arithmetic discrete plane and

〈α,v〉 = w. If gcd(α) = w, then P is the disjoint union P =
w−1
⋃

k=0

(

P0 + k
α

w

)

,

where P0 is the discrete plane {x ∈ Z3, 〈v, x〉 + µ = 0}.

In case of an irrational discrete plane P(v, µ, w), there is no reason for a vector
α ∈ Z3 to exist satisfying 〈α,v〉 = w — consider {v1, v2, v3, w} spanning a
4-dimensional subspace of the Q-vector space R. Nevertheless, if P(v, µ, w) is
rational then we deduce from Bezout’s Lemma that such an α exists. We next
prove that it can be chosen such that gcd(α) = 1.

Proposition 9 Any rational arithmetic discrete plane P(v, µ, w) has a func-
tional vector.

Proof. Let β,u ∈ Z3 such that 〈β,v〉 = 1 and 〈u,v〉 = 0. Let d = gcd(u) and
let α = wβ + u/d. An easy computation gives 〈α,v〉 = w and gcd(α) = 1.

Proposition 9 is illustrated in Figure 1, in the case of a discrete line for a better
visualisation. Moreover, rather than projecting on the line {x ∈ R2, 〈α,x〉 =
0} we prefer projecting on the line {x ∈ R2, 〈e2,x〉 = 0}, which amounts to
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the same as far as bijectivity is concerned.

6

e2

- e1

•

• • •

• • •

• • •

• • •

• • •

•

Fig. 1. Generalized functionality: the discrete line 0 ≤ x1 + 2x2 − 7 < 3 is projected
on {x ∈ R2, 〈e2,x〉=0} along α = e1+e2 and α = −e1+2e2.

With Figure 1 again, note that the projection is not one-to-one for α = e2

since 〈e2,v〉 = 2 < w, and it is not onto for α = 2e1+e1 since 〈α,v〉 = 4 > w
(see the proof of Th. 6).

4 Functional lattices

Let us next study how arithmetic discrete planes can be recoded in a functional
way by a regular two-dimensional lattice, despite their three-dimensional struc-
ture. Let P = P(v, µ, w) be an arithmetic discrete plane and let α ∈ Z3 be
functional for P, that is, gcd{α} = 1 and 〈α,v〉 = w (in case P is rational,
the existence of such a vector α is ensured by Proposition 9). Since one of the
coordinates αi, for i ∈ {1, 2, 3}, is non-zero, then we assume α3 6= 0 without
loss of generality.

Accordingly, we shall from now on prefer to π⊥
α

the projection πα along α onto
the plane {x ∈ R3, 〈e3,x〉 = 0}, as it was done in Figure 1. Indeed Theorem 6
also holds for πα since πα is a bijection if, and only if, π⊥

α
is also a bijection.

First note that, since πα(α) = 0 and πα(ei) = ei for i ∈ {1, 2}, one has
α3πα(e3) = −α1e1 − α2e2. Then, for all x = (x1, x2, x3) ∈ Z3, a straightfor-
ward calculation gives:

πα(x) =
α3x1−α1x3

gcd{α1, α3}
f1 +

α3x2−α2x3

gcd{α2, α3}
f2, where fi =

gcd{αi, α3}
α3

ei. (6)

We deduce from (6) that Γα = πα(Z3) = πα(P) is a subset of Zf1 + Zf2.
The description of Γα is made more precise below. In particular, it is shown
to be a lattice, which shall be called a functional lattice of P. This definition
generalizes the concept of functionality defined for naive arithmetic discrete
planes as a projection onto the integer points of one of the coordinate planes.

Let us first give a characterization of the points in Γα.
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Theorem 10 Assume that gcd{α} = 1, α3 6= 0, and, for i ∈ {1, 2, 3}, let

δi =
αi

∏

j 6=i

gcd{αi, αj}
∈ Z.

A point with coordinates (y1, y2) ∈ Z2 in the basis {f1, f2} belongs to Γα if,
and only if, δ3 divides δ2y1 − δ1y2.

Proof. According to (6), we have to show that the Diophantine system











gcd{α1, α3} y1 = α3x1 − α1x3

gcd{α2, α3} y2 = α3x2 − α2x3

(7)

has a solution (x1, x2, x3) ∈ Z3 if, and only if, δ2y1 ≡ δ1y2 mod δ3. The
condition is clearly necessary: just rewrite (7) as











y1 = δ3 gcd{α2, α3} x1 − δ1 gcd{α1, α2} x3

y2 = δ3 gcd{α1, α3} x2 − δ2 gcd{α1, α2} x3.

Conversely, let us first note that each of the conditions α1 = 0, α2 = 0, or
α3 = 1 easily yields solutions to (7). Assume none of them holds and denote, for
i = 1, 2, by γi the inverse of δi gcd{α1, α2} modulo α3/ gcd{αi, α3}. Note that
γiδi gcd{α1, α2} is also 1 modulo δ3. Therefore, δ2y1 ≡ δ1y2 mod δ3 implies
that γ1y1 ≡ γ2y2 mod δ3. Now let ℓ ∈ Z such that γ1y1 − γ2y2 = ℓδ3, choose
p, q ∈ Z such that gcd{α2, α3}p − gcd{α1, α3}q = ℓ, and set:

x3 = −γ1y1 + pδ3 gcd{α2, α3} = −γ2y2 + qδ3 gcd{α1, α3}. (8)

For i = 1, 2, we have δi gcd{α1, α2}x3 + yi ≡ 0 mod α3/ gcd{αi, α3}. Setting

x1 =
δ1 gcd{α1, α2} x3 + y1

δ3 gcd{α2, α3}
, x2 =

δ2 gcd{α1, α2} x3 + y2

δ3 gcd{α1, α3}
, (9)

we thus get a solution (x1, x2, x3) ∈ Z3 of (7).

Corollary 11 We have Γα = Zg1 + Zg2, with

g1 = δ1f1 + δ2f2, g2 = uf1 + vf2, (10)

where (u, v) ∈ Z2 satisfies δ1v − δ2u = δ3.

Proof. Theorem 10 states that Γα is the union, for ℓ running through Z, of
the subsets Λℓ = {y1f1 + y2f2, (y1, y2) ∈ Z2, δ1y2 − δ2y1 = ℓδ3} of the plane
{x ∈ R3, 〈e3,x〉 = 0}. Since gcd{δ1, δ2} = 1 by definition, no set Λℓ is empty.
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It follows that Γα is a sublattice of Z2, a basis of which may consist in a basis
of Λ0 together with any vector shifting Λ0 to Λ1.

Another basis for Γα is of interest because direction e2 is conserved, namely:

h1 = f1 + sδ2 gcd{α1, α2}f2, h2 = δ3f2, (11)

where s is any integer satisfying sα1 + tα3 = gcd{α1, α3}, together with a
fitting integer t. We leave it to the reader to check that:







g1

g2





=A







h1

h2





 , A=







δ1 tδ2 gcd{α2, α3}
u s gcd{α1, α2}+vt gcd{α2, α3}





 , det A = 1. (12)

Considering an arithmetic discrete plane P with functional lattice Γα, a natu-
ral question arises: Given an element y ∈ Γα, how to recover the unique vector
x ∈ P such that πα(x) = y?
The height of P at y ∈ Γα is defined as the third coordinate x3 of x = π−1

α
(y)

and it is denoted by HP,α(y). Thus HP,α maps Γα to Z. According to (9), the
height of P at y entirely determines π−1

α
(y). It can be computed as follows.

Theorem 12 Let Γα be a functional lattice of P = P(v, µ, w) and let y ∈ Γα

with y = y1f1 + y2f2. Then

HP,α(y) = −⌊m/w⌋ + r (13)

where

m = v1y1 gcd{α1, α3} + v2y2 gcd{α2, α3} + µα3, (14)

and r ∈ {0, . . . , α3 − 1} is given by any of the following expressions:
(i) r ≡ ⌊−m/w⌋ − ay1 gcd{α1, α3} − by2 gcd{α2, α3} mod α3, where a, b are
any integers such that aα1 + bα2 ≡ 1 mod α3.
(ii) If gcd{w, α3} = 1 then r ≡ ⌊m/w⌋ − m/w mod α3.
(iii) If α3 = 1 then r = 0.

Proof. Let x = (x1, x2, x3) ∈ P and let y = πα(x). According to (7) and
〈α,v〉 = w, we have

α3〈v,x〉 = m + x3w, (15)

where m is given by (14). Substituting in (1) and dividing each member by w
result in

0 ≤ m

w
+ x3 < α3. (16)

Therefore, there exists a unique integer r such that 0 ≤ r ≤ α3 − 1 and
x3 = −⌊m/w⌋ + r. In particular, (iii) holds. Since gcd(α) = 1, integers a and
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b can be found such that aα1 + bα2 ≡ 1 mod α3. A linear combination of
equations (7) gives

ay1 gcd{α1, α3} + by2 gcd{α2, α3} ≡ −x3 mod α3,

so that (i) is proved. Finally, (ii) follows from (15).

In the following, we make use of (iii) in Theorem 12 in order to investigate the
case of the best known classes of arithmetic discrete planes, namely the naive,
the standard, and the graceful ones. Let P = P(v, µ, w) be an arithmetic
discrete plane and let α ∈ Z3 such that 〈α,v〉 = w. We assume here that
there exists i ∈ {1, 2, 3} such that αi = 1, say α3 = 1. Let us emphasize that,
according to (11), Γα = Ze1 + Ze2 in that latter case. Moreover, Theorem 12
yields a simple formula for the height of P, that is,

HP,α(y) = −
⌊

v1y1 + v2y2 + µ

w

⌋

. (17)

One thus obtains:

Corollary 13 If α3 = 1, then the function π−1
α

: Γα → P is defined, for all
y ∈ Γα with y = y1e1 + y2e2, by:

π−1
α

(y) = y −
⌊

v1y1 + v2y2 + µ

w

⌋

α. (18)

Let us assume that v ∈ R3
+ with v1 ≤ v2 ≤ v3, which may be achieved by

mild modifications of the coordinates axes. If P is either a naive or a standard
discrete plane we can thus assume α3 = 1. If P = P(v, µ, w) is a graceful
plane, that is, w = max(v1 + v2, v3), then it is naive if v1 + v2 ≤ v3, otherwise
we may assume α1 = 1. Therefore, we recover the following from Corollary
13, the formula being already known in the naive case:

Corollary 14 Let P = P(v, µ, w) with 0 ≤ v1 ≤ v2 ≤ v3.
If P is naive, then α = e3 is functional for P. For all x ∈ P, πα(x) =
x1e1 + x2e2 and for all y = y1e1 + y2e2 ∈ Γα,

π−1
α (y) = y1e1 + y2e2 −

⌊

v1y1 + v2y2 + µ

v3

⌋

e3.

If P is standard, then α = e1 + e2 + e3 is functional for P. For all x ∈ P,
πα(x) = (x1 − x3)e1 + (x2 − x3)e2, and for all y = y1e1 + y2e2 ∈ Γα,

π−1
α

(y) = y1e1 + y2e2 −
⌊

v1y1 + v2y2 + µ

v1 + v2 + v3

⌋

(e1 + e2 + e3).

If P is graceful with w = v1 + v2, then α = e1 + e2 is functional for P. For
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all x ∈ P, πα(x) = (x2 − x1)e2 + x3e3, and for all y = y2e2 + y3e3 ∈ Γα,

π−1
α

(y) =y2e2 + y3e3 −
⌊

v2y2 + v3y3 + µ

v1 + v2

⌋

(e1 + e2).

5 Local configurations and m-cubes

5.1 First definitions

The aim of this section is to apply the previous results to the study of (m, n)-
cubes and local configurations, generalizing the study performed for rational
naive planes in [VC97,Sch97,Gér99,VC99,Col02]. For the sake of consistency
in the notation, we call them here m-cubes with m = (m1, m2) rather than
(m, n)-cubes.

Let P = P(v, µ, w) be an arithmetic discrete plane and let α ∈ Z3 such that
gcd(α) = 1 and 〈α,v〉 = w (recall that if v ∈ Z3 and gcd(v) = 1, then the
existence of α is ensured by Proposition 9). The results in both the present
and the following sections rely on Corollary 13. We shall assume that α3 = 1
in all that follows. Indeed, we heavily use the explicit and simple expression
of the preimage of a point in Γα given by (18) obtained under the assumption
α3 = 1. Note that, since w = α1v1 + α2v2 + α3α3, α3 = 1 is equivalent to
w ∈ v1Z + v2Z + v3, i.e., w − v3 ∈ gcd(v1, v2)Z in the rational case.
Also note that there does not always exist a functional vector α with α3 = 1.
Consider for instance the case v = (6, 10, 15) with w = 20: it is impossible to
express w as α1v1 + α2v2 + α3v3 with one of the αi’s equal to 1.

Let m ∈ (N⋆)2 be given. By m-cube we mean a local configuration in the
discrete plane that can be observed thanks to πα through an m-window in
the functional lattice Γα = Ze1 + Ze2 (see Figure 2). More precisely,

Definition 15 Let m ∈ (N⋆)2 and y ∈ Γα. The m-cube C(y,m) of P is
defined as the following subset of P:

C(y,m) =
{

π−1
α

(y + z), z ∈ [[0, m1 − 1]]e1 + [[0, m2 − 1]]e2

}

.

Two m-cubes C and C′ are called translation equivalent if there exists a vector
z ∈ Z3 such that C′ = C + z.

In order to enumerate the different types of m-cubes that occur in P, that is,
the different equivalence classes for the translation equivalence, we represent
them as local configurations as follows. Recall that HP,α is defined in (17).
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Fig. 2. From left to right: the (3, 3)-cube of P(v, 0, 9) (resp. P(v, 0, 11), P(v, 0, 21),
P(v, 0, 37)) centered on (0, 0, 0), where v = 6e1+10e2+15e3, and projected along
the vector −e1+e3 (resp. e1−e2+e3, e1+e3, 2e1+e2+e3).

Definition 16 Let m = (m1, m2) ∈ (N⋆)2. A m1 × m2-rectangular word L =
[Li1,i2 ](i1,i2)∈[[0,m1−1]]×[[0,m2−1]] over the infinite alphabet Z is called an m-local
configuration of P if there exists y ∈ Z2 such that:

L = [HP,α(z) − HP,α(y)]
z∈[[0,m1−1]]e1+[[0,m2−1]]e2

. (19)

Such a local configuration (19) is denoted by LC(y,m).

Let us note that a local configuration is a plane partition. Indeed a plane
partition of N ∈ N is a rectangular word w = [wi1,i2](i1,i2)∈[[0,m1−1]]×[[0,m2−1]] over
the infinite alphabet N satisfying N =

∑

i,j wi,j and, for all i1 ∈ [[0, m1 − 1]]
and i2 ∈ [[0, m2 − 1]], max{wi1+1,i2 , wi1,i2+1} ≤ wi1,i2.

Notation 17 Let L = [Li1,i2 ](i1,i2)∈[[0,m1−1]]×[[0,m2−1]] be a local configuration of
size m1×m2. In all that follows, the notation L mod 2 stands for the m1×m2

rectangular word [Li1,i2 mod 2](i1,i2)∈[[0,m1−1]]×[[0,m2−1]].

Example 18 Let us consider the arithmetic discrete plane P = P(v, µ, w)
with v = 6e1 + 10e2 + 15e3, µ = 0, and w = 21. Then α = e1 + e3 is a
functional vector of P. The local configuration LC(e1 + e2, 3e1 + 3e2) of P
and its preimage by π−1

α
are illustrated in Fig. 3.

��HH��HH
��HH��HH��

HH

��HH������HH
HH

HHHH��
HH

���HH
HH��HH��
��
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HH
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6

����
HHHj

e1

e2

e3

e1 e2

0 -1

-1-1

-1 -2 -2

-1

-1

Fig. 3. From left to right: a local configuration of the discrete plane
P((6, 10, 15), 0, 21) and its corresponding preimage by π

−1
e1+e3

.

Remark 19 A local configuration is not necessarily (simply-)connected. For
instance, let us consider P = P(v, µ, w) with v = e1 + 2e2 + 7e3 and w = 4.
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Then α = e1−2e2 +e3 is a functional vector of P, and LC(−e1−e2, e1 +e2)
is not connected (see Fig. 4).

Fig. 4. The (3, 3)-cube of P(v, 0, 4) centered on (0, 0, 0) with v = e1 + 2e2 + 7e3.

5.2 A coding as a two-dimensional word

According to [Vui99], we introduce a two-dimensional word coding in a natural
way the parity of the heights HP,α(y), for y in the lattice Γα = Ze1 + Ze2.
Indeed, for a naive discrete plane P, it is well known that, given two points x
and x′ of P such that their projections by πα are 4-connected in the functional
plane, then |x3−x′

3| ≤ 1. In other words, the difference between the heights
of x and x′ is at most 1. A quite unexpected fact is that this property holds
for any arithmetic discrete plane with α3 = 1. More precisely, it is easy to
see that, for all y ∈ Γα and i = 1, 2, HP,α (y + ei) − HP,α (y) takes only two
values, namely −⌊vi/w⌋ and −⌊vi/w⌋−1. In each case, one of these values is
odd, whereas the other one is even; we define E1 and O1 to be respectively
the even and the odd value taken by −⌊v1/w⌋ and −⌊v1/w⌋−1; we similarly
define E2 and O2. It is now natural to introduce the following two-dimensional
word of parity of heights by identifying Γα to Z2:

U = (Ui1,i2)(i1,i2)∈Z2 = (HP,α(y) mod 2)y∈Z2 ∈ {0, 1}Z2

. (20)

Lemma 20 The two-dimensional word U satisfies, for each (i1, i2) ∈ Z2

Ui1,i2 = 0 if, and only if, v1i1 + v2i2 + µ mod 2w ∈ [0, w[.

Proof. According to (17), Ui1,i2 = 0 if, and only if,
⌊

v1i1+v2i2+µ
w

⌋

is even, that

is, v1i1 + v2i2 + µ mod 2w ∈ [0, w[.

The word U is a two-dimensional Rote word; one-dimensional Rote words
have been introduced in [Rot94]; they are defined as the infinite words over
the alphabet {0, 1} that have exactly 2n factors of length n for every positive
integer n, and whose set of factors is closed under complementation, i.e., every
word obtained by interchanging zeros and ones in a factor of the infinite word
u is still a factor of u; two-dimensional Rote words have been studied for
instance in [Vui99,BV01].
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Definition 21 Let W = [wi1,i2](i1,i2)∈[[0,m1−1]]×[[0,m2−1]] be a rectangular word of
size m1 × m2 over {0, 1}. We define the complement W of W as follows:

W = [wi1,i2](i1,i2)∈[[0,m1−1]]×[[0,m2−1]], where 1 = 0 and 0 = 1.

We introduce the following equivalence relation defined on the set of rectan-
gular factors of U of a given size:

V ∼ W if, and only if, V ∈ {W, W}.

We have the following theorem, inspired by [Vui99] where it is stated under
the assumption dimQ v = 3:

Theorem 22 Let P = P(v, µ, w) be a discrete plane that admits a functional
vector α satisfying α3 = 1. There is a natural bijection between the equivalence
classes of the relation ∼ on the rectangular factors of the two-dimensional word
U of size m = (m1, m2) and the m-local configurations of P. Furthermore,
the m-local configurations of P are in one-to-one correspondence with the
translation equivalence classes of m-cubes of P.

Proof. Let m = (m1, m2) ∈ (N⋆)2. Consider the local configuration L =
LC(y,m) with the notation of Definition 16; one has either L mod 2 or
L mod 2 factor of the two-dimensional word U . Indeed if HP,α(y) is even,
then L mod 2 is a factor of the two-dimensional word U ; otherwise, HP,α(y)
is odd and L mod 2 is a factor of U .
Conversely, let us show how to reconstruct an m-local configuration L from a
given m1 × m2-factor W of U such that L mod 2 is either W or W .
Let us first assume that w0,0 = 0. We define a plane partition H by induction:
we set H(0) = 0; let (i1, i2) ∈ [[0, m1 − 1]] × [[0, m2 − 1]]. If wi1+1,i2 = wi1,i2 ,
then we set Hi1+1,i2 = Hi1,i2 + E1. Otherwise, we set Hi1+1,i2 = Hi1,i2 + O1.
Similarly, if wi1,i2+1 = wi1,i2, we set Hi1,i2+1 = Hi1,i2 + E2. Otherwise, we set
Hi1,i2+1 = Hi1,i2 + O2.
The plane partition H is a local configuration of P; indeed, if W occurs
at index (k1, k2) in U , then H = LC(y,m) with y = k1e1 + k2e2, and
W = (H mod 2) since H(y) is even (we have w0,0 = 0).
Now, if w0,0 = 1 we apply the same reconstruction process to W . We re-
cover again a local configuration LC(y,m) such that W = (LC(y,m) mod 2),
which ends the proof of the existence of a one-to-one correspondence between
equivalence classes of ∼ and m-local configurations.
It is immediate to associate an m-local configuration to an m-cube by consid-
ering the third coordinate of the points of the m-cube. Conversely, given a local
configuration L = [Li1,i2] of P of size m1 × m2, we can associate to it the fol-
lowing subset of Z3: {i1e1 + i2e2 +Li1,i2e3, (i1, i2) ∈ [[0, m1−1]]× [[0, m2 −1]]}.
It remains to note that there exists z ∈ Z3 such that z + {i1e1 + i2e2 +
Li1,i2e3, (i1, i2) ∈ [[0, m1 − 1]] × [[0, m2 − 1]]} ⊂ P, to conclude the proof.
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5.3 Basic properties of the two-dimensional word U

This section is devoted to the study of combinatorial properties of the two-
dimensional word U from which we will deduce geometric properties of the
local configurations and m-cubes.
The two-dimensional word U is called periodic if there exists a non-zero vector
z ∈ Z2, called period, such that Uy+z = Uy for every y ∈ Γα. The set of its
periods is a lattice whose rank is determined by the dimension over Q of the
vector space generated by the coordinates of the vector v:

Proposition 23 The rank of the lattice of periods of the two-dimensional
word U is 3 − dimQ v.

Proof. The proposition can easily be deduced from the following observation:
for a non-zero element (ℓ1, ℓ2) ∈ Z2, v1ℓ1+v2ℓ2

w
∈ Q if, and only if, there exists a

non-zero integer k such that (kv1, kv2) is a period of U . Let us prove this latter
statement. If v1ℓ1+v2ℓ2

w
∈ Q, then there exists a non-zero integer k such that

v1(kℓ1) + v2(kℓ2) ∈ 2wZ, hence (kℓ1, kℓ2) is a period. Otherwise, if v1ℓ1+v2ℓ2
w

6∈
Q, then the density of (v1(kℓ1)+ v2(kℓ2) mod 2w)k∈Z yields the desired result.

A key ingredient in the combinatorial study of the two-dimensional word U
is the following lemma. This is a standard approach in symbolic dynamics
for the study of sturmian words [PF02], and more generally, of infinite words
coding rotations as well as double rotations [BV00,BV01] in the torus R/Z.
This lemma will allow us in Sections 5.4 and 5.5 to derive enumeration as well
as statistical properties for the factors of U , and thus for m-cubes of P.

In all that follows intervals are considered as intervals of the torus R/2wZ.

Lemma 24 Let W = [wi1,i2](i1,i2)∈[[0,m1−1]]×[[0,m2−1]] be a rectangular word of
size m1 × m2 over {0, 1}. Let I0 = [0, w[ and I1 = [w, 2w[. Let

IW =
m1−1
⋂

i1=0

m2−1
⋂

i2=0

(

Iwi1,i2
− (v1i1 + v2i2) mod 2w

)

.

The set IW is a left-closed right-open interval of [0, 2w[.
Let P = P(v, µ, w) be a discrete plane with w−v3 ∈ v1Z+v2Z. If dimQ v > 1
or P is rational and gcd(v1, v2, 2w) = 1, then a rectangular word W over
{0, 1} is a factor of U if, and only if, IW 6= ∅. Otherwise, if P is rational and
gcd(v1, v2, 2w) = 2, then a rectangular word W over {0, 1} is a factor of U if,
and only if, IW contains an integer with the same parity as µ.

Proof. The proof is inspired by [BV00] where more details are given. It is
easily shown that the sets IW consist of finite unions of left-closed right-open
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intervals. We then show by induction that each set IW is an interval. Indeed
this can be deduced from the following remark: if I and J are two left-closed
right-open intervals of R/Z whose intersection is non-connected, then the sum
of their lengths is strictly larger than 1.
Let W = [wi1,i2 ](i1,i2)∈[[0,m1−1]]×[[0,m2−1]] be a rectangular word of size m1 × m2

over {0, 1}. One first checks that W occurs in the sequence U at index (k1, k2)
if, and only if, v1k1 + v2k2 + µ ∈ IW . Indeed, W occurs in the sequence U
at index (k1, k2) if, and only if, ∀(i1, i2) ∈ [[0, m1 − 1]] × [[0, m2 − 1]], wi1,i2 =
Uk1+i1,k2+i2 , that is, v1(k1 + i1) + v2(k2 + i2) + µ mod 2w ∈ Iwi1,i2

, or else,
v1k1 + v2k2 + µ mod 2w ∈ Iwi1,i2

− (v1i1 + v2i2).
Conversely, let W be a rectangular word over {0, 1} such that IW 6= ∅.
If dimQ v > 1, then the density of (v1k1 + v2k2 + µ mod 2w)(k1,k2)∈Z2 in [0, 2w[
and the fact that IW has non-empty interior imply that there exists (k1, k2)
such that v1k1 + v2k2 + µ ∈ IW , hence W occurs in U at index (k1, k2).
Next assume P is rational, that is, dimQ v = 1. One has gcd{v1, v2, 2w} ∈
{1, 2} since w = α1v1 + α2v2 + v3 and gcd(v) = 1. Let us note that if
gcd{v1, v2, 2w} = 2, then w is odd since gcd(v1, v2, w) = 1.
Since the sets IW are semi-open intervals of integer lengths, then they are non-
empty as soon as they contain an integer point. Let k ∈ IW . If gcd{v1, v2, 2v3} =
1, then there exists (k1, k2) such that v1k1 + v2k2 + µ ≡ k mod 2w. Assume
gcd{v1, v2, 2v3} = 2. Then for every (k1, k2), v1k1 + v2k2 + µ mod 2w has the
same parity as µ. Hence there exists (k1, k2) such that v1k1 + v2k2 + µ ≡ k
mod 2w if k has the same parity as µ.

Let us recall [Vui99] that the set of factors of the two-dimensional word U
is closed under complementation (see Definition 21) under the assumption
dimQ v = 3. This still holds true if dimQ > 1. But in the rational case one has
to be more cautious:

Proposition 25 Let W be a rectangular factor of U . One has IW = IW + w.
Let P = P(v, µ, w) be a discrete plane with w − v3 ∈ v1Z + v2Z.
If either dimQ(v1, v2, w) ≥ 2 or if P is rational and gcd(v1, v2, 2w) = 1, then
the language of U is closed under complementation.
Otherwise, assume that P is rational and gcd(v1, v2, 2w) = 2. Let W be a
rectangular factor of the two-dimensional word U . Then W is a factor of U
if, and only if, IW contains both an even and an odd integer.

Proof. One easily checks from the definition of IW that IW = IW + w. Hence
IW 6= ∅ if, and only if, IW 6= ∅. Furthermore, in the rational case, when both
intervals are non-empty, then IW and IW contain points with different parities,
since w is odd. We thus conclude thanks to Lemma 24.

Corollary 26 A rectangular word L over the infinite alphabet Z occurs as a
local configuration of P if, and only if, I

L mod 2
6= ∅.
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Proof. If the rectangular factor L occurs in P, then I
L mod 2

6= ∅, according
to Lemma 24. Conversely, let L be rectangular factor such that I

L mod 2
6= ∅.

We set W = L mod 2. According to Theorem 22, it is sufficient to prove that
either W or W is a factor of U . In the irrational case or in the rational case
under the assumption gcd(v1, v2, 2w) = 1, then IW 6= ∅ implies W is factor of
U , by Lemma 24. In the rational case with gcd(v1, v2, 2w) = 1, one concludes
by using IW = IW + w and by noticing that w is odd.

5.4 Enumeration of local configurations

Let us now investigate the enumeration of m-cubes (m = (m1, m2)) occuring
in a given arithmetic plane. The number of (3, 3)-cubes included in a given
rational naive arithmetic discrete plane has been proved to be at most 9 in
[VC97]. More generally, in [Rev95,Gér99], the authors proved that, given a
rational naive arithmetic discrete plane P, P contains at most m1m2 m-cubes
(to be more precise, translation equivalence classes of m-cubes). In [Gér99] lo-
cal configurations which are non-necessarily rectangular are also considered. In
the following theorem, we show that this property also holds in our framework.
For the sake of simplicity, we omit to mention that we consider translation
equivalence classes of m-cubes:

Theorem 27 Let P = P(v, µ, w) be a discrete plane with w−v3 ∈ v1Z+v2Z.
Let m = (m1, m2) ∈ (N⋆)2. Then, P contains at most m1m2 m-cubes. More
precisely, one has:

(1) If dimQ v = 1, v ∈ Z3, µ ∈ Z, w ∈ Z and gcd(v) = 1, then P contains
at most w m-cubes for every m = (m1, m2) ∈ (N⋆)2. Moreover, for m1

and m2 large enough, P contains exactly w m-cubes.
(2) Let us assume dimQ v = 2. Let (p1, p2) ∈ Z2 be a generator of the lattice of

periods of the two-dimensional word U . Then P contains at most m1|p2|+
m2|p1| − min{m1, |p1|}min{m2, |p2|} m-cubes for (m1, m2) ∈ N2.

(3) If dimQ v = 3, then P contains exactly m1m2 m-cubes for every m =
(m1, m2) ∈ (N⋆)2.

Let us note that the bounds upon which the previous results hold for m1 and
m2 can be explicitly computed in terms of v and w.

Proof. According to Lemma 24 and Corollary 26, it amounts to count the
number of intervals IW . The extremal points of the intervals IW for W factor
of size m1×m2 of the sequence U belong to −(i1v1+i2v2) and −(i1v1+i2v2)+w,
for 0 ≤ i1 ≤ m1 − 1 and 0 ≤ i2 ≤ m2 − 1. There are at most 2m1m2 such
points. The upper bound m1m2 thus follows from Theorem 22.
(1) Assume dimQ v = 1. Then the extremal points of the intervals IW are
among the integers {0, 1, . . . , 2w − 1} and the bound w follows from Theo-
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rem 22. To state the second assertion, it remains to show that each point
of the set {0, 1, . . . , 2w − 1} can be expressed as −(i1v1 + i2v2) mod 2w
or −(i1v1 + i2v2) + w mod 2w, with (i1, i2) ∈ (N⋆)2. If gcd(v1, v2, 2w) =
1, the statement follows from Bezout’s Lemma. Let us assume now that
gcd(v1, v2, 2w) = 2. Then w is odd and the integers −(i1v1 + i2v2) mod 2w,
for all (i1, i2) ∈ (N⋆)2, are the even elements of {0, 1, . . . , 2w − 1} while the
integers −(i1v1 + i2v2) + w mod 2w, for all (i1, i2) ∈ (N⋆)2, are the odd ones.
We then apply Proposition 25.
(2) Assume that dimQ v = 2. According to Proposition 23, the lattice of peri-
ods of U has dimension 1. Let (p1, p2) be a generator of this lattice. One checks
that there are at most 2m1|p2| + 2m2|p1| − 2 min{m1, |p1|}min{m2, |p2|} fac-
tors of U of size m1 × m2. We then apply Proposition 25.
(3) Assume now dimQ v = 3. Then there are exactly 2m1m2 points of the form
−(i1v1 + i2v2) and −(i1v1 + i2v2) + w, hence 2m1m2 rectangular factors of U
of size m1 × m2. We then apply Proposition 25.

5.5 Statistical properties

The frequency of occurrence of a rectangular word W in U is defined as the
limit, if it exists, of the number of occurrences of W in the central square
factor of U :

f(W ) = lim
n→∞

Card{(k1, k2) ∈ [[−n, n]]2, W occurs at index (k1, k2) in U}
(2n + 1)2

.

The frequency of occurrence of a translation equivalence class of an m-cube C
in P is defined as the limit, if it exists, of the number of occurrences of integer
translates of C in the central square pattern of P:

f(C) = lim
n→∞

1

(2n + 1)2
·Card{y ∈ [[−n, n]]e1 + [[−n, n]]e2, π−1

α
(y + z) = C,

for z ∈ [[0, m1−1]]e1 + [[0, m2−1]]e2}. (21)

We prove below that the frequencies of occurrence of rectangular factors in
U do exist, and that they have a simple expression in terms of the lengths of
the intervals IW . We thus recover the corresponding result for m-cubes. This
gives us a simple algorithmic way of computing these frequencies.

Theorem 28 Let P(v, µ, w) be a discrete plane such that w−v3 ∈ gcd(v1, v2)Z.
Let C be an m-cube. Let L be the corresponding local configuration. We set
W = L mod 2. Then the frequency f(C) exists and satisfies:

f(C) =
|IW |
w

.
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Proof. Let C be an m-cube of P. Let L be the corresponding local configu-
ration. We set W = L mod 2. According to Theorem 22 and Lemma 24, the
cardinality in (21) also reads

Card
{

v1k1 + v2k2 + µ ∈ IW ∪ IW , (k1, k2) ∈ [[−n, n]]2
}

.

Indeed IW = IW + w, by Proposition 25, hence IW ∩ IW = ∅.
Let us first assume that dimQ v ≥ 2. The sequence (nα)n∈Z for α irrational is
well-distributed, that is, given an interval I of R/Z,

lim
n→∞

Card{−n ≤ i ≤ n, iα + γ ∈ I}
2n + 1

= |I|

uniformly in γ [KN85]; hence f(W ) = IW

2w
= f(W ). We deduce that f(C) =

f(W ) + f(W ) = 2 |IW |
2w

= |IW |
w

.
Let us next assume that dimQ v = 1.
If gcd{v1, v2, 2w} = 1, then one checks that for every k ∈ [0, 2w[,

lim
n→∞

Card{(k1, k2) ∈ [[−n, n]]2, v1k1 + v2k2 + µ ≡ k mod 2w}
(2n + 1)2

=
1

2w
.

Hence f(W ) = IW

2w
= f(W ), and the result follows.

If gcd{v1, v2, 2w} = 2, let us recall that this implies that w is odd. Then one
checks that for every integer k ∈ [0, 2w[ with the same parity as µ,

lim
n→∞

Card{(k1, k2) ∈ [[−n, n]]2, v1k1 + v2k2 + µ ≡ k mod 2w}
(2n + 1)2

=
1

w
,

otherwise, Card{(k1, k2) ∈ [[−n, n]]2, v1k1 + v2k2 + µ ≡ k mod 2w} = 0
for every n. Hence f(W ) (resp. f(W )) is equal to the number of integers in
IW with the same parity (resp. with a different parity) as µ divided by w.
Furthermore, an integer k ∈ Z with the same parity as µ belongs to IW if,
and only if, the integer k + w (which has a different parity) belongs to IW .
One has f(C) = f(W ) + f(W ). This implies that f(C) is equal to the total
number of integers of IW (or equivalently of IW ) divided by w, which ends the
proof. We thus get f(C) = IW

w
.

Remark 29 The same approach can be used to study stability by centrosym-
metry of local configurations (see Figure 5), in the flavour of [BV01], where the
set of factors of U is proved to be closed under centrosymmetry if dimQ(v) = 3.
We can similarly prove that if P(v, µ, w) is a discrete plane such that w−v3 ∈
gcd(v1, v2), then the set of translation equivalence classes of m-cubes is closed
under centrosymmetry. Furthermore, centrosymmetric m-cubes have the same
frequency.
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Fig. 5. From left to right: A (3, 3)-cube and its centrosymmetric image.

6 From functional arithmetic discrete planes to naive ones

Let P = P(v, µ, w) be a rational arithmetic discrete plane with v ∈ N3,
µ ∈ Z and w ∈ N⋆. Recall that such an assumption is not restrictive since
the isometry group of the unit cube [−0.5, 0.5]3 acts on the set of arithmetic
discrete planes.

We assume furthermore that there exists a functional vector α ∈ Z3 of P
satisfying α3 = 1 and that w ≥ max{v1, v2}. The aim of this section is to
show that, under these hypotheses, P can be considered as a naive plane up
to a change of basis in Z3. We then discuss two applications.

Lemma 30 Let P = P(v, µ, w) be a rational arithmetic discrete plane with
v ∈ N3, µ ∈ Z and w ∈ N⋆ and such that w ≥ max{v1, v2}. Let α ∈ Z3 be
a functional vector of P. If α3 = 1 then P is a naive discrete plane in Z3

endowed with the basis {e1, e2, α}.

Proof. Let x = (x1, x2, x3) ∈ Z3 and let y = πα(x) = y1e1 + y2e2 ∈ Γα.
According to Corollary 13, one has x1 = y1 +HP,α(y)α1, x2 = y2 +HP,α(y)α2

and x3 = HP,α(y) with HP,α(y) = −
⌊

v1y1 + v2y2 + µ

w

⌋

. One then checks that

0 ≤ v1x1 + v2x2 + v3x3 + µ < w if, and only if, 0 ≤ v1y1 + v2y2 +wx3 +µ < w.
Hence,

x ∈ P ⇐⇒ 0 ≤ v1y1 + v2y2 + wx3 + µ < w,

which yields the result since x1e1 + x2e2 + x3e3 = y1e1 + y2e2 + x3α.

6.1 Construction of non-naive arithmetic discrete planes

I. Debled-Rennesson has given several algorithms [Deb95] computing the geo-
metric representation of rational naive discrete planes, which rely on functio-
nality of such planes. Generalized functionality enables us to adapt these al-
gorithms to any rational arithmetic discrete plane having a functional vector
α ∈ Z3 satisfying α3 = 1. For the sake of clarity, we have chosen to work out
in full details only one algorithm. The other ones can be extended similarly.
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Lemma 30 is the key point of the generation algorithm given below (see Al-
gorithm 1). Indeed, instead of constructing the arithmetic discrete plane P
in Z3 endowed with the basis {e1, e2, e3}, we compute the points of P as the
ones of a naive arithmetic discrete plane related to the basis {e1, e2, α} (see
Lemma 30). We finally reconstruct P by to the change of basis {e1, e2, α} to
{e1, e2, e3}.

A first idea for constructing the geometric representation of P consists in com-
puting the value HP,α(y) for each y ∈ Γα. Nevertheless, the integer division
makes this method relatively slow. We thus introduce the map

RP,α : Γα −→ Z, y = y1e1 + y2e2 7−→ v1y1 + v2y2 + wHP,α(y) + µ.

An easy computation gives:

Lemma 31 Let P = P(v, µ, w) be a rational arithmetic discrete plane. Let
α ∈ Z3 be a functional vector of P with α3 = 1 and let HP,α : Z2 −→ Z be
the height function of P related to the functional vector α. Then:

HP,α(y + ei) − HP,α(y) =











−⌊vi/w⌋ if RP,α(y) + vi < w

−⌊vi/w⌋ − 1 otherwise

RP,α(y + ei) − RP,α(y) =











vi if RP,α(y) + vi < w

vi − w otherwise

where vi = vi mod w.

Hence, given the rectangle [[m1, m
′
1]]× [[m2, m

′
2]], one constructs the pre-images

of the points y = y1e1 + y2e2 ∈ Γα, with (y1, y2) ∈ [[m1, m
′
1]] × [[m2, m

′
2]] by

first computing the height H(y0) of the point y0 = m1e1 + m2e2 ∈ Γα, and,
then, step by step, and thanks to Lemma 31, by calculating the height H(y)
of each point y = y1e1 + y2e2 ∈ Γα, where (y1, y2) ∈ [[m1, m

′
1]]× [[m2, m

′
2]] (see

Algorithm 1).

6.2 Arithmetic discrete planes as combinatorial manifolds

Due to the surface nature of Euclidean planes, it becomes natural to try to
endow rational arithmetic discrete planes with a relevant notion of discrete
surface. The notion of discrete surface has been widely studied during the
last 25 years and several apporaches have been chosen for the definition of
such objects. For instance, in [MR81], D. G. Morgenthaler and A. Rosenfeld
define a discrete surface as a 0-connected subset of Z3 satisfying some local
conditions of 0-adjacency and 2-separatingness. Nevertheless, this definition
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Algorithm 1: An algorithm constructing the arithmetic plane P(v, µ, w)
satisfying v ∈ N3, µ ∈ Z and w = α1v1 + α2v2 + v3 with (α1, α2) ∈ Z2.

Input: a rational arithmetic discrete plane P = P(v, µ, w) with w ≥ {v1, v2};
a functional vector α ∈ Z3 P with α3 = 1;

the ranges [m0, m1] × [n0, n1];

Output: the points of P = P(v, µ, w) with x-coordinates in [m0, m1]

and y-coordinnates in [n0, n1] in the basis {e1, e2, α} of Z3.

zini = −
⌊

v1m0 + v2n0 + µ

w

⌋

; z = zini;

xini = m0 + α1z; x = xini;

yini = n0 + α2z; y = yini;

rini = v1m0 + v2n0 + wzini + µ; r = rini;

begin
for n ∈ {n0, . . . , n1} do

for m ∈ {m0, . . . , m1} do
Build the voxel (x, y, z);
r = r + v1; x = x + 1;

if r < w then

z = z−
⌊

v1

w

⌋

; x = x− α1

⌊

v1

w

⌋

; y = y− α2

⌊

v1

w

⌋

;

else

z = z−
(⌊

v1

w

⌋

+ 1
)

; x = x− α1

(⌊

v1

w

⌋

+ 1
)

;

y = y− α2

(⌊

v1

w

⌋

+ 1
)

;

end

end
rini = rini + v2; yini = yini + 1;
if rini < w then

zini = zini −
⌊

v2

w

⌋

; xini = xini − α1

⌊

v2

w

⌋

; yini = yini − α2

⌊

v2

w

⌋

;

else

zini = zini −
(⌊

v2

w

⌋

+ 1
)

;

xini = xini − α1

(⌊

v2

w

⌋

+ 1
)

;

yini = yini − α2

(⌊

v2

w

⌋

+ 1
)

;

end
x = xini; y = yini; z = zini; r = rini;

end

end
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is not relevant for rational arithmetic discrete planes. For instance, among
the 40 tricubes occurring in the naive arithmetic discrete planes with positive
normal vector v ∈ Z3, such that 0 ≤ v1 ≤ v2 ≤ v3, only 7 of them occur in a
discrete surface in the sense of D. G. Morgenthaler and A. Rosenfeld [MB99].

In [Fra96,KI00,KI03], the authors have shown that an appropriate way to pro-
vide rational arithmetic discrete planes with a discrete surface structure is to
consider two-dimensional combinatorial manifolds. For instance, J. Françon
showed in [Fra96] that the 2-adjacency graph of a rational standard arith-
metic discrete plane has a natural underlying structure of two-dimensional
combinatorial manifold. In [KI00], Y. Kenmochi and A. Imiya, thanks to a
similar approach, proved that one can provide any rational naive arithmetic
discrete plane P with two different structures of two-dimensional combinato-
rial manifolds, depending on the 0-adjacency and the 1-adjacency graph of P
respectively (see Figure 6).

In the present section, we show that these latter approaches can be extended
in a quite natural way to any rational arithmetic discrete plane P with nor-
mal vector v ∈ Z3 under the assumption w − v3 ∈ gcd(v1, v2)Z and w ≥
max{v1, v2}. We have chosen to consider 1-adjacency only, 0-adjacency being
handled in a similar way.
Let us first recall basic notions concerning combinatorial manifolds. Let G be
a graph and let F be a set of elementary cycles of G, that is, circular permu-
tations (V1, V2, . . . , Vk), with k > 2, of vertices of G such that Vi 6= Vj if i 6= j
and, for i ∈ N, any pair {Vi, Vi+1} is an edge of G (the indices are consid-
ered modulo k). Such a cycle is called a face. Two faces are called adjacent if
they share an edge. An umbrella at a vertex V of G is a circular permutation
(F1, F2, . . . , Fk) of faces of F , with k > 1, all sharing a vertex V , and such
that Fi and Fi+1 are adjacent for i ∈ N (indices are considered modulo k).

Definition 32 Let G be a graph and let F be a set of faces of G. The pair
(G, F ) is called a two-dimensional combinatorial manifold (without boundary)
if the following holds:
(i) any edge of G belongs to exactly two faces of G;
(ii) any vertex of G belongs to exactly one umbrella of G.

Since rational naive arithmetic discrete planes can be provided with a two-
dimensional combinatorial manifold structure [KI00], then, thanks to Lemma
30, there is a quite natural way to provide any rational arithmetic discrete
plane P(v, µ, w) having a functional vector α ∈ Z3 satisfying α3 = 1. Accord-
ing to Lemma 30, the arithmetic discrete plane P(v, µ, w) is naive relatively
to the basis {vecte1, e2, α} and can be provided with a two-dimensional com-
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(a) The arithmetic discrete plane 0 ≤
6x1 + 11x2 + 31x3 < 42 represented by
voxels.

(b) The arithmetic discrete plane 0 ≤
6x1 + 11x2 + 42x3 < 42 represented by
voxels.

(c) The two-dimensional combinatorial
manifold M((6, 11, 31), 0, 42).

(d) The two-dimensional combinatorial
manifold M((6, 11, 42), 0, 42).

Fig. 6. From a thick arithmetic discrete plane to a two-dimensional combinatorial
manifold .

binatorial manifold structure. Let us introduce the bijection map

φ : P(v, µ, w) −→ P((v1, v2, w), 0, w)

(x1, x2, x3) 7−→ (x1 − α1x3, x2 − α2x3, x3).

By φ, the arithmetic discrete planes P(v, µ, w) and P((v1, v2, w), 0, w) are
identified. We thus define a two-dimensional combinatorial manifold M(v, µ, w)
over P(v, µ, w) as follows: the vertices of M(v, µ, w) are the points of P(v, µ, w)
and for all (x,x′) ∈ P(v, µ, w)2, {x,y} is an edge if, and only if, φ(x) and φ(y)
are 1-adjacent in P((v1, v2, w), µ, w). Finally, the faces of M(v, µ, w) are the
image by φ of the faces of the naive arithmetic discrete plane P((v1, v2, w), µ, w)
(see Figure 6).
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7 Conclusion

The aim of the present work was to introduce suitable tools in order to gener-
alize well-known properties of naive arithmetic discrete planes. We have exhib-
ited a generalized functionality for arithmetic discrete planes P = P(v, µ, ω)
by introducing a suitable projection direction α. We have proved that, as
soon as |〈α,v)〉| = w and gcd(α1, α2, α3) = 1, there is a one-to-one correspon-
dence between P and a two-dimensional lattice Γα; we also have described
the latter lattice. We then have focused on the class of arithmetic discrete
planes for which there exists α with α3 = 1: we first have investigated plane
partitions and local configurations; indeed we have extended the well-known
result on the number of (m, n)-configurations in a naive plane (there are at
most mn such configurations), and we have considered their statistical be-
haviour; we finally have proved that arithmetic discrete planes with α3 = 1
and w ≥ max{v1, v2} can be considered as naive in a suitable basis of R3; we
have deduced a generation algorithm and shown how to endow them with a
structure of two-dimensional manifold.

The approach developed in Section 5 is classical in symbolic dynamics and,
in particular, in the study of sturmian and multidimensional sturmian words
[PF02]. As an analogous example of application of symbolic dynamics in dis-
crete geometry see also [BN05].

The results of the present paper offer new perspectives for further investigation
of general properties of arithmetic discrete planes of any thickness. In partic-
ular, we plan to use them to generate arbitrarily large parts of discrete planes
via symbolic substitutions following [ABS04], to recover the corresponding
Farey tesselation as well as the symmetry properties of (m, n)-cubes of a dis-
crete plane [VC99], and finally as a new approach to the recognition problem
of discrete planes [FST96,FP99,VC00].
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