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Abstract. The aim of this paper is to discuss from an arithmetic and
combinatorial viewpoint a simple algorithmic method of generation of
discrete segments in the three-dimensional space. We consider discrete
segments that connect the origin to a given point (u1, u2, u3) with co-
prime nonnegative integer coordinates. This generation method is based
on generalized three-dimensional Euclid’s algorithms acting on the triple
(u1, u2, u3). We associate with the steps of the algorithm substitutions,
that is, rules that replace letters by words, which allow us to generate the
Freeman coding of a discrete segment. We introduce a dual viewpoint on
these objects in order to measure the quality of approximation of these
discrete segments with respect to the corresponding Euclidean segment.
This viewpoint allows us to relate our discrete segments to finite patches
that generate arithmetic discrete planes in a periodic way.

Keywords: Discrete Segments, Discrete Lines, Christoffel words, multi-
dimensional Euclid’s algorithms, multi-dimensional continued fractions,
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1 Introduction

Discrete lines and segments in the plane are quite well understood and their
study has already arised a vast literature on the subject (see e.g. the references
in [14]). The Freeman codings of arithmetic standard discrete lines correspond
to the also well-studied family of Sturmian words. For more details, see e.g. [15].
Among the factors of Sturmian words, Christoffel words play a particular role and
correspond to Freeman codings of segments. The deep and fruitful connections
between Sturmian words and continued fractions, on the one hand, and between
Christoffel words and Euclid’s algorithm, on the other hand, allows a thorough
description of most of their properties (see Figure 1 for an illustration).
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Fig. 1. It is well known that the reduction of a two-dimensional integer vector by using
Euclid’s algorithm allows one to construct the discrete segment (also called Christoffel
word) which is such that no integer point is in the interior of the gray region. Its
Freeman coding w = aaabaaabaaabaab can be obtained by applying on the letter b the
substitutions associated with the steps of Euclid’s algorithm performed on (11, 4).

There exist various strategies for defining and generating discrete lines in the
three-dimensional space. With no claim for being exhaustive, let us quote e.g. [1,
12, 18, 8, 9]. The approach we follow here is motivated by the study of Sturmian
words. Several generalizations of Sturmian words over a three-letter alphabet
have been considered. For instance, infinite words coding trajectories in a cubic
billiard have been investigated in [3]. One of their drawbacks is that they produce
infinite words having a quadratic number of factors of a given length, which seems
to indicate that there is no suitable continued fraction algorithm allowing one to
describe them. This prevents in particular multiscale analysis. Another direction
of generalization of Sturmian words consists in working with balanced words over
a three-letter alphabet. However balanced words over a higher-alphabet do not
seem to be good candidates for describing discrete segments in the space, as
shown in [13]. The family of Arnoux-Rauzy words [4] provides a third fruitful
way of generalizing Sturmian words. They have a linear number of factors of a
given length (2n + 1 factors of length n), and can be described in terms of a
multi-dimensional continued fraction algorithm. Nevertheless this algorithm is
not defined everywhere, and thus, they cannot be used to approximate all the
slopes in the space. For more details, see the discussion and the references in [5].

Our strategy here works in the reverse direction: we start from Euclid’s al-
gorithms that are defined everywhere and we associate with them families of
words. More precisely, we want to construct discrete segments that connect the
origin to a given point (u1, u2, u3) with coprime nonnegative integer coordinates.
We apply a three-dimensional Euclid’s algorithm to the triple (u1, u2, u3) (see
Section 2.1). In Section 2.2 we associate with the steps of the algorithm substi-
tutions, that is, rules that replace letters by words, which allow us to generate
the Freeman coding of the discrete segment.



We thus obtain in Section 3 a simple algorithmic way for producing discrete
segments and lines by means of substitutions and generalized Euclid’s algorithms
which can allow a multiscale approach for their study. Our description is both
analytic and arithmetic. Note that by discrete segment, we mean here broken
lines constructed by concatenating unit steps oriented along the three coordinate
axes. Based on the quality of approximation of the underlying multi-dimensional
continued fraction algorithms that are used (see Remark 2 below), we expect
these segments to be good candidates for discretizations of Euclidean segments
and lines, which is supported by the experimental studies we conducted.

Section 4 aims at getting a theoretical and dynamical understanding of the
way these segments approximate Euclidean segments by introducing a discrete
plane that is transverse to the original direction (u1, u2, u3). The present paper
relies on a formalism that has been previously introduced in a different context in
[2]. The new notions that are introduced here correspond mainly to Definition 3
and to the choice of the normal vector v of the transverse plane in Equation (1).

2 Preliminaries

Let u = (u1, u2, u3) be a vector with coprime entries in N3. We want to introduce
a discrete line approximating the vectorial line directed by the vector u in R3.

2.1 Generalized Euclid’s algorithm

In the one-dimensional case, most of the existing continued fraction algorithms
strongly rely on Euclid’s algorithm: starting from two nonnegative numbers a
and b, one subtracts the smallest one to the largest one. If one performs only one
subtraction at each step, one obtains the so-called additive version of Euclid’s
algorithm. If one performs in one step as much subtractions as possible (i.e.,
if 0 ≤ b ≤ a, a is replaced by a − [a/b]b), one gets a multiplicative algorithm.
In the multi-dimensional case, there is no such canonical algorithm, and several
different definitions have been proposed (see [17] for a summary). Indeed starting
from more than two numbers, it is not clear to decide which operation is to be
performed on these numbers, hence the diversity of existing generalizations of
Euclid’s algorithm (see Section 2.3).

We will thus use the following framework for defining versions of three-
dimensional generalizations of Euclid’s algorithms. Let ME be the set of 3 × 3
matrices M = [mij ]1≤i,j≤3 with entries in {0, 1} having only 1’s on the diagonal
and exactly one nonzero entry mij with i 6= j. Let MP be the set of 3 × 3
matrices that are permutation matrices, that is, they have entries in {0, 1}, and
only one nonzero coefficient on each line and on each column. Matrices of ME

and of MP are called elementary matrices. We set M to be the set of finite
products of matrices of ME ∪MP .

Definition 1 (Three-dimensional Euclid’s algorithm). Let

X ⊂ {(u1, u2, u3) | ∀i, ui ∈ N, and gcd(u1, u2, u3) = 1}



and let Xf ⊂ X. Elements of Xf are called terminal.
A three-dimensional Euclid’s algorithm is a map T : X → X such that

T (x) = x for all x ∈ Xf , for any u ∈ X there is M ∈M satisfying u = M T (u),
and for every u ∈ X there exists N such that TN (u) ∈ Xf .

2.2 Euclid’s substitutions

Let us consider a finite set of letters A called alphabet. A (finite) word is an
element of the free monoid A∗ generated by A. A substitution σ over the alpha-
bet A is an endomorphism of the free monoid A∗. It is completely defined by its
image on the letters of the alphabet. For i ∈ {1, 2, 3} and for w ∈ {1, 2, 3}∗, let
|w|i stand for the number of occurrences of the letter i in the word w. The map

l : {1, 2, 3}∗ → Nn, w 7→ t(|w|1, |w|2, |w|3)

is called the abelianization map. Notice that in the literature, this map is also
referred to as the Parikh mapping. Let σ be a substitution on {1, 2, 3}∗. Its
incidence matrix or abelianized matrix Mσ = (mi,j)1≤i,j≤3 is defined as the

square matrix with entries mi,j = |σ(j)|i for all i, j. We say that σ is unimodular
if det(Mσ) = ±1.

Definition 2 (Three-dimensional Euclid’s substitutions). Let T be a three-
dimensional Euclid’s algorithm. With each matrix M ∈ M produced by the al-
gorithm, we associate a substitution whose incidence matrix is given by M .

Remark 1. Given a matrix produced by a Euclid’s algorithm, there exist several
substitutions having this matrix as incidence matrix. The substitutions gener-
ating words that are Freeman codings of discrete segments are known to be

Sturmian. Given an incidence matrix

[
a b
c d

]
of a Sturmian substitution, only

a+b+c+d−1 substitutions having this matrix as incidence matrix are Sturmian
(i.e., preserve discrete segments). For more details, see [15] and the references
therein. Hence, the choice of a substitution associated with an incidence matrix
can play an important role. This is why we try to privilege as much as possi-
ble here additive steps. We thus usually recover elementary matrices or simple
products of them, which reduces the choices for the associated substitution.

Example 1. With the elementary matrix M =

1 0 0
1 1 0
0 0 1

 are associated

σ : 1 7→ 12, 2 7→ 2, 3 7→ 3 and σ̃ : 1 7→ 21, 2 7→ 2, 3 7→ 3.

2.3 A zoo of algorithms

We recall here the most classical generalizations of Euclid’s algorithms which
have lead to well-studied multi-dimensional continued fraction algorithms such
as those discussed in [17]:



– Jacobi-Perron: let 0 ≤ u1, u2 ≤ u3

(u1, u2, u3) 7→ (u2 − [
u2
u1

]u1, u3 − [
u3
u1

]u1, u1),

– Brun: we subtract the second largest entry to the largest one; for instance,
if 0 ≤ u1 ≤ u2 ≤ u3,

(u1, u2, u3) 7→ (u1, u2, u3 − u2);

– Poincaré: we subtract the second largest entry to the largest one, and the
smallest entry to the second largest one; for instance, if 0 ≤ u1 ≤ u2 ≤ u3

(u1, u2, u3) 7→ (u1, u2 − u1, u3 − u2),

– Selmer: we subtract the smallest positive entry to the largest one; for in-
stance, if 0 < u1 ≤ u2 ≤ u3

(u1, u2, u3) 7→ (u1, u2, u3 − u1),

– Fully subtractive: we subtract the smallest positive entry to all the largest
ones; for instance, if 0 < u1 ≤ u2 ≤ u3

(u1, u2, u3) 7→ (u1, u2 − u1, u3 − u1).

We have recalled here Jacobi-Perron algorithm in its multiplicative form for the
sake of clarity, but an additive version of this algorithm can be given. Further-
more, one checks that we can chose as terminal set for all these algorithms the
set

Xf = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ X,
by possibly applying the two-dimensional Euclid’s algorithm once the first coor-
dinate has reached the value 0 in the Jacobi-Perron case.

Remark 2. The choice of these algorithms is motivated by the quality of approx-
imation they provide. Indeed, Jacobi-Perron and Brun algorithm are known to
provide almost everywhere exponential convergence (see [10]).

Example 2. Let u = (2, 2, 3). By using Brun algorithm, one has u0 = (2, 2, 3),
u1 = (2, 2, 1), u2 = (0, 2, 1), u3 = (0, 1, 1), u4 = (0, 0, 1). By using Poincaré
algorithm, one obtains u0 = (2, 2, 3), u1 = (2, 0, 1), u2 = (1, 0, 1), u3 = (1, 0, 0).

3 A generation method for discrete segments

Let us apply to u a finite sequence of steps under the action of one of the three-
dimensional Euclid’s algorithm T given in Section 2.3 with Xf defined as above
together with a choice of Euclid’s substitutions associated with the produced
matrices. One has u = M1 · · ·MNuN , where the vector uN ∈ Xf has only two
coordinates equal to 0, and one coordinate equal to 1. Let wN ∈ {1, 2, 3} be
the unique word (of length one) such that l(wN ) = uN . The associated Euclid’s
substitutions are denoted by σn, for 1 ≤ n ≤ N (see the diagram below).



u = u0 u1 u2 · · · uN ∈ Xf

w = w0 w1 w2 · · · wN ∈ {1, 2, 3}

M−1
1 M−1

2 M−1
3 M−1

N

σ1 σ2 σ3 σN

Definition 3 (Discrete segment). The discrete segment associated with the
vector u and with the three-dimensional Euclid’s algorithm T is defined as the
broken line with integer vertices that starts from the origin, whose Freeman cod-
ing is given by the coding word

w := σ1 · · ·σN (wN ).

In other words, the vertices of this broken line are given by the abelianized by l
of the prefixes of the word w.

Example 3. If u = (2, 2, 3) and by using Poincaré’s algorithm, one has wN =
w3 = 1 and w = w0 = 1231233.

(2, 2, 3) (2, 0, 1) (1, 0, 1) (1, 0, 0)

w0 w1 w2 w3

 1 0 0
1 1 0
1 1 1

−1  1 1 1
0 1 0
0 1 1

−1  1 1 0
0 1 0
1 1 1

−1

1 7→ 123
2 7→ 23
3 7→ 3

1 7→ 1
2 7→ 123
3 7→ 13

1 7→ 13
2 7→ 123
3 7→ 3

The discrete segment is depicted below. Its Euclidean distance to the Euclidean
segment is 1.3720.

(0, 0, 0)

(2, 2, 3)

x

y

z

4 A dual viewpoint

In this section, we introduce the following notation: one sets Mi..j := Mi · · ·Mj

and σi..j := σi · · ·σj for 1 ≤ i, j ≤ N . Hence, the incidence matrix of the
substitution σi..j is Mi..j .

In order to study the quality of approximation of the vector line directed
by u provided by the discrete segment w, we introduce a transverse plane that
does not contain vector u. Such a plane can be described by its normal vector v



that we chose with positive entries and not collinear with u. The vector having
all entries equal to 1 is denoted by 1. We chose for v

v := tM1..N · 1 = tMN · · · tM1 · 1. (1)

We furthermore write w = z1 · · · zk · · · z|w| where zk ∈ {1, 2, 3} are letters.
The vertices of the discrete segment are thus of the form pk = l(z1 · · · zk), for
1 ≤ k ≤ |w|. The choice of vector v is motivated by the following relation that
we will use below

〈pk,1〉 = 〈(M1..N )−1 · pk, tM1..N · 1〉
= 〈(M1..N )−1 · pk,v〉.

(2)

The aim of this section is to relate vertices of the discrete segment to faces
of a finite pattern of the discrete plane with normal vector v via the mapping
(M1..N )−1, and to interpret the coding word w in terms of a coding of the
orbit of a point under a dynamical system acting on this discrete plane with
normal vector v. For that purpose, we introduce in Section 4.2 a dual notion of
substitution acting on faces of discrete planes.

4.1 Discrete planes

Let n be a nonzero vector in N3. According to [16], we recall that the arithmetic
standard plane Pn of normal vector n = (n1, n2, n3) is defined as

Pn = {x ∈ Z3 | 0 < 〈x,n〉 ≤ ||n||1 = n1 + n2 + n3}.

For x ∈ Z3 and i ∈ {1, 2, 3}, let (x, i∗) stand for the pointed face defined as
the translation by x of the surfel generated by {e1, e2, e3} \ {ei} (see Figure 2).
We say that x is the vertex and i is the type of the pointed face (x, i∗).

(x, 1∗) := x + {λe2 + µe3, (λ, µ) ∈ [0, 1]2}
(x, 2∗) := x + {λe1 + µe3, (λ, µ) ∈ [0, 1]2}
(x, 3∗) := x + {λe1 + µe2, (λ, µ) ∈ [0, 1]2}.

x y

z

x y

z

x y

z

x y

z

x y

z

(0, 1∗) (0, 2∗) (0, 3∗)

Fig. 2. Left: Geometric interpretation of faces. Right: Lower unit cube and upper unit
cube. In this figure and the following, the vertex (0, 0, 0) or (1, 1, 1) is identified by a
black dot.



We will use the following notation for translates of faces: if (x, i∗) is a face and
y is a vector, then (x, i∗) + y := (x + y, i∗) which extends in a natural way
to union of faces. The lower unit cube refers to the set {(0, 1∗), (0, 2∗), (0, 3∗)},
whereas the upper unit cube refers to {(e1, 1∗), (e2, 2∗), (e3, 3∗)} (see Figure 2).

Let Pn be the set of pointed faces satisfying

Pn = {(x, i∗) | 0 ≤ 〈x,n〉 < ni}. (3)

One checks that the points of Pn are the vertices (i.e., the corners) of the
faces of Pn. By abuse of terminology, by arithmetic discrete plane with normal
vector n, we mean in all that follows this union of pointed faces Pn. Note that
in particular, if n has positive entries, the lower unit cube is included in Pn.

Furthermore, for any vertex pk = l(z1 · · · zk) of the discrete segment, one has

0 ≤ 〈pk,1〉 ≤ 〈u,1〉 = 〈M1..N · uN ,1〉 = 〈uN , tM1..N · 1〉 = 〈uN ,v〉 = vwN .

Hence by (2) and (3) the vertices pk of the discrete segment are mapped by
(M1..N )−1 onto vertices of faces of type wN of the discrete plane Pv. The aim
of the next section is to investigate this relation.

4.2 Generalized substitutions

When σ is a unimodular substitution, it is possible to associate with it a notion
of substitution acting on faces of cubes, following the formalism of [2]:

E∗1 (σ)(x, i∗) :=
∑

j∈{1,2,3}

∑
p,s such that σ(j)=pis

(
M−1σ (x + l(s)) , j∗

)
. (4)

The action of E∗1 (σ) extends in a natural way to unions of faces. A mapping
of the form E∗1 (σ) is called a generalized substitution. It is obtained as the dual
map of some map E1(σ) that can be seen as a geometric realization of σ. In the
notation E∗1 (σ), the subscript of E∗1 (σ) stands for the codimension of the faces,
while the superscript of E∗1 (σ) refers to duality. Note that the incidence matrix
of E∗1 (σ) is the transpose of the incidence matrix of σ.

Example 4. Let σ1 :
1 7→ 123
2 7→ 23
3 7→ 3

, σ2 :
1 7→ 1
2 7→ 123
3 7→ 13

, σ3 :
1 7→ 13
2 7→ 123
3 7→ 3

be the substitutions

obtained from the reduction of the vector (2, 2, 3) by using Poincaré algorithm.

If C = is the lower unit cube, then one gets

C E∗1 (σ1)(C) E∗1 (σ1 ◦ σ2)(C) E∗1 (σ1 ◦ σ2 ◦ σ3)(C)



One key property of generalized substitutions is that they preserve discrete
planes, as proved in [2]. Indeed, one has the following result for any unimodular
substitution σ and any vector n with nonnegative entries:

E∗1 (σ)(Pn) = PtMσn. (5)

4.3 Dual pattern

We can now apply the notions previously introduced in order to define a pattern
of the discrete plane Pv (see (1)) that can be associated with the coding word w.

Definition 4 (Dual pattern). For i = {1, 2, 3}, let

Wi := E∗1 (σN ) ◦ · · · ◦ E∗1 (σ1)(0, i∗)
and

W ′i := E∗1 (σN ) ◦ · · · ◦ E∗1 (σ1)(ei, i
∗).

One sets furthermore W =W1 ∪W2 ∪W3 and W ′ =W ′1 ∪W ′2 ∪W ′3.

According to [2], the three patterns Wi (resp. W ′i) for i ∈ {1, 2, 3} have
disjoint interiors. Furthermore W and W ′ coincide except on faces of the lower
and upper unit cubes, W contains the lower unit cube, and W ′ the upper one.

Remark 3. The pattern W is obtained by taking the image of the lower unit
cube under the action of E∗1 (σ). Note that w and W do not have the same
number of elements. Indeed the number of elements of the coding word w is
equal to the sum of entries of the column with index wN of M1..N , whereas the
number of elements of the pattern Wi is equal to the sum of entries of the line
with index i of M1..N , by (4). Nevertheless, the number of faces in W is equal

to
∑3
i=1 |σ1..N (i)|.

Example 5. Let u = (2, 2, 3). By using Poincaré algorithm, bothW andW ′ have
24 faces:

W1

W2

W3
W ′2

W ′3

W ′1

W = E∗1 (σ1..3)( ) W ′ = E∗1 (σ1..3)( )

The following theorem summarizes the main properties of the dual pattern.
This theorem is an adaptation to the present context of results of [2].

Theorem 1. The following properties hold:

1. W ⊂ Pv;
2. the pattern W is a periodic pattern for Pv with period vectors being

(M1..N )−1(e1 − e2), (M1..N )−1(e1 − e3);



3. for all i ∈ {1, 2, 3}, one has

W + (M1..N )−1ei ⊂ W ′.

Proof. 1. We first note that the faces (0, i∗) ⊂ P1 by (3) for i = 1, 2, 3. We
deduce the first assertion from v = tM1..N1 and from (5).

2. One has for i 6= j 〈(M1..N )−1)(ei−ej),v〉 = 〈ei−ej ,1〉 = 0. Hence for every
m,n ∈ Z, W +m(M1..N )−1(e1 − e2) + n(M1..N )−1)(e1 − e3) ⊂ Pv.

3. Let (x, k∗) ⊂ Wi. By definition, the face (x, k∗) occurs in the image by
E∗1 (σ1..N ) of the face (0, i∗). Hence, there exists s such that σ1..N (k) = pis.
One has x = (M1..N )−1l(s).
We assume that p is not equal to the empty word. Let j stand for its last
letter. The face (x+ (M1..N )−1ei, k

∗) occurs in the image of the face (0, j∗)
by E∗1 (σ1..N ), by considering as suffix is. Hence it occurs inW and thus also
in W ′ since both sets coincide except on the lower and upper unit cubes.
Assume now that p is equal to the empty word. One has

x = (M1..N )−1(l(σ(k))− ei) = (M1..N )−1(M1..Nek − ei)
= ek − (M1..N )−1ei.

Hence the face (x + (M1..N )−1ei, k
∗) = (ek, k

∗) occurs in W ′.

4.4 Exchange of pieces

According to [2], Theorem 1 allows one to define a mapping from W onto W ′
defined as an exchange of pieces between both sets.

Definition 5. We define the mapping

E : W →W ′, (x, k∗) 7→
(
x + (M1..N )−1 ei, k

∗) if (x, k∗) ∈ Wi.

This definition is illustrated in Example 5. We have seen in the proof of the
third assertion of Theorem 1 that Ek(0, i∗) ∈ W for 0 ≤ k < |σ1..N (i)| and that
Ek(0, i∗) = (ei, i

∗) for k = |σ1..N (i)|. We define the coding of the orbit of (0, i∗)
under the action of E as the word of length |σ1..N (i)| defined over the alphabet
{1, 2, 3}∗ as follows: for 1 ≤ k ≤ |σ1..N (i)|, its kth letter is equal to the index
j of the subpattern Wj to which Ek−1(0, i∗) belongs. This word is well defined
according to Assertion 3 of Theorem 1.

Theorem 2. The coding word w = σ1..N (wN ) is the reversal of the coding of
the orbit of the face (0,w∗N ) under the action of E. The vertices of the discrete
segment with coding word w are in a one-to-one correspondence with the faces
of type wN of W.

Proof. We write w = z1 · · · zk · · · z|w|.We consider the orbit of (0,w∗N ) under
the action of the exchange of pieces E . The proof is done by induction on k.
The property holds for k = 1: (0,w∗N ) belongs to E∗1 (σ1..N )(0, z∗|w|). We as-

sume that the induction hypothesis holds for all ` ≤ k with 1 ≤ k < |w|.



Hence Ek−1(0, i∗) =
(
(M1..N )−1l(z|w|−k+1 · · · z|w|),w∗N

)
and Ek−1(0,w∗N ) is

contained in Wz|w|−k . Consequently, Ek(0,w∗N ) = Ek−1(0,w∗N ) + M−11..N ez|w|−k
and Ek−1(0, i∗) =

(
M−11..N l(z1 · · · z|w|−k),w∗N

)
. The one-to-one mapping comes

from 〈−M−11..N l(z1 · · · zk) + uN ,v〉 = 〈−l(z1 · · · zk) + l(w),1〉.

Example 6. Let u = (2, 2, 3) on which Poincaré algorithm is applied, and let

C = be the lower unit cube. One has v = (7, 13, 4).

(−1, 1, 0)

(−2, 1, 1)

(−1, 0, 3)

(−2, 0, 4)

(0, 0, 1)

(−1, 0, 2)

(0, 0, 0) 6

3

5

2

4

1

0

W = E∗1 (σ1..3)(C) Vertices of the faces of type 1 Scalar product with v

The letters of w = 1231233 correspond to the color of the faces of type 1 of W
ordered decreasingly by their scalar product with v. The vertices of the discrete
segment depicted in Example 3:

(0, 0, 0) , (1, 0, 0) , (1, 1, 0) , (1, 1, 1) , (2, 1, 1) , (2, 2, 1) , (2, 2, 2) , (2, 2, 3)

are in one-to-one correspondence with the vertices of the faces of type 1 by the
map

x 7→ −(M1..3)−1 · x + uN =

−2 0 1
1 −1 0
0 3 −2

 · x +

1
0
0

 .

Remark 4. Theorem 2 does not only apply for wN but also for the other letters.
Note that it allows a labelling of faces of a given type by increasing distance
to the Euclidean plane with normal vector v. Theorem 2 can be considered as
an analogue of the description of Sturmian and Christoffel words in terms of
codings of rotations acting on the unit circle. It also provides a second simple
generation method for discrete segments.

5 Conclusion

We have described here a generation method for discrete segments connecting
the origin to a given point (u1, u2, u3) ∈ N3. We obtain two generation methods:
the first one is stated in terms of an iteration of a finite number of substitutions
governed by the choice of the underlying three-dimensional Euclid’s algorithm
(see Section 3); the second one is of a more geometric flavor and involves a dual
discrete plane (see Section 4.4). We recover here duality ideas that can be found
in [7] in the framework of Christoffel words. Our contribution mostly relies in the



application and development of the formalism of [2] in the context of the study
of discrete lines. Note that the use of generalized substitutions (see Section 2.2)
associated with multi-dimensional continued fraction algorithms has also already
proved its efficiency in discrete geometry for the generation of discrete planes, see
[11, 6]. We now aim at starting a thorough investigation and comparison of the
generation properties of the most classical three-dimensional Euclid’s algorithm.
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