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Abstract: The aim of this survey is to discuss multidimensional continued frac-
tion and Euclidean algorithms from the viewpoint of numeration systems, substitutions,
and the symbolic dynamical systems they generate. We will mainly focus on two types
of multidimensional algorithms, namely, unimodular Markovian ones which include the
most classical ones like e.g. Jacobi-Perron algorithm, and algorithms issued from lattice
reduction. We will discuss these algorithms motivated by the study of substitutive dy-
namical systems, symbolic dynamical systems with low complexity function, and discrete
geometry.
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1 Introduction

The aim of this survey is to discuss multidimensional continued fraction and Euclidean
algorithms from the viewpoint of numeration systems, substitutions, and the symbolic
dynamical systems they generate. Let us note first that continued fraction algorithms
enter in a natural way in the framework of numeration, when considering numeration in
a wide sense as the art of representation of numbers (integers, rational, real, complex
numbers, vectors, etc.). This is also closely related to the viewpoint of numeration
dynamics, developed by M. Keane, and of arithmetic dynamics, such as described in
the survey [129]: arithmetic dynamics deals with arithmetic expansions and codings of
dynamical systems that preserve their arithmetic structure.
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Let us give now a flavor of what is meant here by substitutive viewpoint on continued
fractions. A substitution is a simple and basic object in word combinatorics and in sym-
bolic dynamics (i.e., the study of discrete dynamical systems obtained by working with
infinite sequences of symbols endowed with the shift). A substitution is a non-erasing
morphism of the free monoid: it replaces letters by words. For more on substitutions
and the symbolic dynamical systems they generate, see [112, 111]. As an example of the
interactions between Euclid’s algorithm and substitutions, let us focus on the family of
Sturmian sequences (see also Section 3.1). Sturmian sequences are infinite words with
values in a two-letter alphabet that are obtained as codings of irrational rotations acting
on T = R/Z with respect to a particular two-set partition of the one-dimensional torus T.
For a thorough description of Sturmian sequences, see [25] and Chap. 6 in [111]. Sturmian
sequences can be perfectly understood thanks to some representation involving substitu-
tions and Euclid’s algorithm: by expanding α as a continued fraction, we represent it as
an infinite product of square matrices of size two with nonnegative integer entries; each
of these matrices can be seen as the abelianized matrix of a substitution, with the action
of a substitution being considered as a combinatorial interpretation of a step (additive
or multiplicative) of Euclid’s algorithm. A Sturmian sequence is then proved to be gen-
erated as an infinite composition of these substitutions. This composition is governed by
the Ostrowski numeration which uses as a numeration scale the convergents of a given
real number α ∈ (0, 1), such as described e.g. in [30]. The Sturmian framework is a
salient example of the relations between numeration, continued fractions and dynamics.
We will use it as a guideline and as a motivation for a possible generalization throughout
this survey.

More generally, the connection between word combinatorics and multidimensional
continued fractions is particularly striking within the so-called S-adic framework. A se-
quence is said to be S-adic if it is generated by an infinite composition of a finite number
of substitutions. This covers various families of infinite words with a rich dynamical be-
havior such as Sturmian sequences. In order to understand the geometric and symbolic
nature of the dynamical systems they generate, we are mainly interested in the two fol-
lowing problems: first, finding geometric interpretations of these systems, and secondly,
developing multidimensional continued fraction algorithms that rule their S-adic expan-
sion. This belongs to the so-called Rauzy program, such as detailed in the survey [28].
This program can be sketched as follows: find generalizations of the interaction between
Sturmian sequences and rotations which would naturally generate (simultaneous) ap-
proximation algorithms. As an example, see [113] where a continued fraction expansion
associated with interval exchanges is discussed. Our approach is complementary to that
of [28]. Instead of discussing continued fraction algorithms that are issued from the study
of some classic families of infinite words allowing to perform Rauzy’s program, we try to
bring some elements of answer to the following question: which types of generalizations
of continued fraction algorithms can be of some use in symbolic dynamics and in discrete
geometry?

We have no claim to being exhaustive in our exposition of generalizations of Euclidean
and continued fraction algorithms. We have chosen to spotlight here representative as-

2



pects of the theory in connection with substitutions and numeration systems. For his-
torical aspects, the reader is referred to the classic references [24, 137, 34]. For ergodic
aspects, see [125, 127].

Let us sketch the contents of this survey paper. Section 2 includes basic introductory
material on substitutions, symbolic dynamical systems, and the question of their geomet-
ric representation. Section 3 aims at introducing first motivations for the introduction
of suitable generalized Euclidean’s algorithms, namely the study of discrete lines and
the S-adic approach. Multidimensional continued fractions are discussed in Section 4 in
full generality. We detail the case of unimodular Markovian algorithms in Section 5 and
the case of algorithms based on lattice reduction in Section 6. This paper ends with a
discussion on possible applications of these algorithms to symbolic dynamics and discrete
geometry.

2 Substitutive dynamical systems

2.1 Substitutions on words and symbolic dynamical systems

We consider a finite set of letters A, called alphabet. A (finite) word is an element of the
free monoid A∗ generated by A. A substitution σ over the alphabet A is a non-erasing
endomorphism of the free monoid A∗ (non-erasing means that the image of any letter is
not equal to the empty word but contains at least one letter). For i ∈ A and for w ∈ A∗,
let |w|i stand for the number of occurrences of the letter i in the word w. Let d stand
for the cardinality of A. The map

l : A∗ → Nd, w 7→ (|w|1, |w|2, · · · , |w|d)

is called the abelianization map. This map is also referred to as the Parikh mapping. Let σ
be a substitution. Its incidence matrix (also called abelianized matrix) Mσ = (mi,j)1≤i,j≤d

is defined as the square matrix with entries mi,j = |σ(j)|i for all i, j. We say that σ is
unimodular if det(Mσ) = ±1. A substitution is said primitive if there exists a power of
its incidence matrix whose entries are all positive.

Let S denote the following map defined on AN, called the (one-sided) shift:

S((un)n∈N) = (un+1)n∈N. (1)

We endow the set AN with the the following metrics: for x, y ∈ AN

d(x, y) = (1 + inf{k ≥ 0; xk 6= yk})
−1.

It is a compact space. Two sequences are close to each other if their first terms coincide.

Let us see now how to associate with a substitution a symbolic dynamical system,
defined as a closed shift invariant subset of AN. Let σ be a primitive substitution over
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A. Let u ∈ AN be such that σk(u) = u for some k ≥ 1. Such an infinite word exists by
primitivity of σ. Indeed, there exist a letter a and a positive integer k such that σk(a)
begins with a; consider as first letter of u this letter a; take for u limn→∞ σkn(a). Let O(u)
be the positive orbit closure of the sequence u under the action of the shift S, i.e., the
closure of the set O(u) = {Sn(u) | n ≥ 0}. The substitutive symbolic dynamical system
(Xσ, S) generated by σ is defined as Xσ := O(u). One easily checks by primitivity that
(Xσ, S) does not depend on the choice of the infinite sequence u fixed by some power of
σ. For more details, see [112].

For analogue notions of substitutions and associated dynamical systems defined on
tilings and point sets, acting as inflation/subdivision rules, see the surveys [134, 118, 110].

2.2 Geometric representations

One fundamental question concerning substitutive dynamical systems (Xσ, S) deals with
the possibility of giving to them a geometric representation. By geometric representation,
one considers here dynamical systems of a geometric nature that are either topologically
or measure-theoretically isomorphic to (Xσ, S). In particular, one looks for conditions
under which it is possible to give a geometric representation of a substitutive dynamical
system as a translation on the torus, or on a locally compact abelian group. This latter
question can be reformulated in spectral terms: which are the substitutions whose associ-
ated dynamical system has discrete spectrum? For more details, see e.g. [143, 111, 112].
Note that measure-theoretic discrete spectrum and topological discrete spectrum are
proved to be equivalent for primitive substitutive dynamical systems [66].

A substitution is said Pisot irreducible if the characteristic polynomial of its incidence
matrix is the minimal polynomial of a Pisot number, that is, an algebraic integer β whose
conjugates (distinct from β) have modulus smaller than 1. It is widely believed that
Pisot irreducible substitutions have purely discrete spectrum. For more details, see e.g.
[111], Chap. 7 and [22]. See also in the same vein [119] whose main concern is Pisot
automorphisms of the torus (instead of substitutions). Consider as a first example the
Fibonacci substitution σ : a 7→ ab, b 7→ a; (Xσ, S) is measure-theoretically isomorphic to
(R/Z, R 1+

√

5

2

). For more details see e.g. Chap. 5 in [111]. Furthermore, two-letter Pisot

substitutions are known to have discrete spectrum [21, 65, 67]. See also [22, 32, 75] for
recent results on Pisot substitutive dynamical systems.

One strategy for providing geometric representations has been developed by Rauzy
and can be considered as a part of Rauzy’s program mentioned in the introduction. This
approach has been developed in the case of the Tribonacci substitution σ : 1 7→ 12, 2 7→
13, 3 7→ 1 in [114]. It is a primitive, unimodular and Pisot irreducible substitution. Its
characteristic polynomial is X3 −X2 −X − 1 and its dominant eigenvalue β > 1 is a
Pisot number.

Theorem 1 ([114]) Let σ be the Tribonacci substitution σ : 1 7→ 12, 2 7→ 13, 3 7→ 1.
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Let Rβ : T
2 → T2, x 7→ x + (1/β, 1/β2). The symbolic dynamical system (Xσ, S) is

measure-theoretically isomorphic to the toral translation (T2, Rβ).

The proof makes use of the fact that the Tribonacci sequence σ∞(1) = limn→∞ σn(1)
codes the orbit of the point 0 under the action of the translation Rβ with respect to a
particular partition of T2. In order to get this partition, one constructs a so-called Rauzy
fractal as follows, according to [114]. One first represents (un)n∈N = σ∞(1) as a broken
line via the abelianization map l. The vertices of this broken line belong to Z3 and are of
the form l(u0 · · · un) for n ∈ N. We then project the vertices of this broken line according
to the eigenspaces of the incidence matrix Mσ, that is, along its expanding line onto its
contracting plane. The corresponding projection is denoted by πc. The Rauzy fractal
associated with σ is then obtained by taking the closure of this set of points, i.e., as

Rσ := {πc ◦ l(u0 · · · un) | n ∈ N}.

We then divide Rσ into the three pieces defined for i = 1, 2, 3 as

Rσ(i) := {πc ◦ l(u0 · · · un) | un = i, n ∈ N}.

Theorem 1 can be reformulated as follows: the Rauzy fractal Rσ is a fundamental domain
of T2 and σ∞(1) codes the orbit of the point 0 under the action of the translation Rβ

with respect to the particular partition (Rσ(i))i=1,2,3 of the fundamental domain Rσ of
T2.

Rauzy fractals were first introduced in [114] in the case of the Tribonacci substitution,
and then in [138], in the case of the β-numeration associated with the Tribonacci number.
Rauzy fractals can more generally be associated with Pisot substitutions (see [101, 102,
133, 15, 37, 38, 22, 75, 130, 131] and the surveys [32, 111]), as well as with Pisot β-shifts
under the name of central tiles (see [6, 7, 8]).

Let us make several comments concerning Theorem 1. First, a statement generalizing
Theorem 1 is conjectured to hold for any Pisot irreducible substitution; note that the
corresponding parameters would be algebraic, since they are given by eigenvalues and
eigenvectors of the incidence matrix of the substitution. Secondly, the broken line ob-
tained by applying the abelianization map l to the prefixes of an infinite word u fixed
by σ can be considered as a discrete line; hence, having a generalization of Theorem
1 can be of some interest from a discrete geometry viewpoint. Thirdly, the symbolic
coding provided by u and σ allows one to recover arithmetic information concerning
the toral translation Rβ associated with σ, as illustrated in [116, 1]. In particular, the
subtiles Rσ(i) of the Rauzy fractal are bounded remainder sets for Rβ. We recall that
a subset A of Td with (Lebesgue) measure µ(A) is said to be a bounded remainder
set for the translation Rα : x 7→ x + α (α ∈ Td) if there exists C > 0 such that
∀N, |Card{0 ≤ n < N | nα ∈ A} − Nµ(A)| ≤ C. For a detailed discussion on the
possible choice of atoms in the partition in Theorem 1, see [28].
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2.3 Numeration and substitutions: The Dumont-Thomas nu-
meration system

In order to get suitable geometric representations of dynamical systems, there exists a
natural numeration system that plays a nontrivial role, namely, the Dumont-Thomas
numeration system introduced in [46, 47]. For more details on the relations with Rauzy
fractals, see [37, 38, 32, 19]. Given a primitive substitution σ and an infinite word u that
satisfies σ(u) = u, this numeration provides a representation of prefixes of u, based on
the greedy algorithm.

Let us try to get a flavor of the way this numeration system works. Let u = (un)n∈N be
such that σ(u) = u. The idea is to decompose prefixes u0 · · · uN−1 of u into concatenations
of images by powers of σ of a finite number of words belonging to some set Dσ. The
powers of σ will play the role of a basis in a classical number system, and the set Dσ can
be seen as a set of digits. Since σ(u) = u, there exists L such that

σ(u0 · · · uL−1) ≤ u0 · · · uN−1 < σ(u0 · · · uL),

that is, σ(u0 · · · uL−1) is a prefix of u0 · · · uN−1 (with maybe equality), and u0 · · · uN−1

is a proper prefix of σ(u0 · · · uL). There thus exists a proper prefix p of σ(uL) such that
u0 · · · uN−1 = σ(u0 · · · uL−1) p with σ(uL) = p uN s. By iterating this decomposition, one
obtains for every N

u0 · · · uN−1 = σK(pK)σ
K−1(pK−1) · · · σ(p1)p0,

where the pi belong to the finite set of words Dσ made of the proper prefixes of the images
of the letters by σ.

To obtain a numeration system on natural integers one takes the lengths of these
words, i.e., N = |u0 · · · uN−1| = |σK(pK)| + |σK−1(pK−1)| + · · · + |σ(p1)| + |p0|. This
numeration also extends to real numbers by providing generalized radix expansions of
positive real numbers, with digits belonging to a finite subset of the number field Q(β),
where β is the Perron–Frobenius eigenvalue of σ, i.e., the dominant eigenvalue of the
incidence of the primitive substitution σ.

As an example, one checks that every prefix w of the Tribonacci word u can be
uniquely expanded as w = σn(pn)σ

n−1(pn−1) · · · p0, where the words pi are equal to the
empty word or to the letter 1. It is easily seen that one never gets three digits equal
to 1 in a row. If σ is a constant length substitution of length q, then one recovers the
q-adic numeration. If σ is a β-substitution for a Parry number β, then one recovers the
β-numeration. For more details, see [46, 47].

3 How to reach nonalgebraic parameters?

We now have set up all the elements required for the study of substitutive dynamical
systems: in order to get geometric representations, one introduces arithmetic tools such
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as Dumont-Thomas numeration that allows a thorough description of their associated
Rauzy fractal. Nevertheless, so far we have only considered iterations of a single substi-
tution. We have seen in Section 2.2 that this yields arithmetic results concerning algebraic
parameters: these parameters are expressed in terms of eigenvectors and eigenvalues of
the incidence matrix of the substitution. We now want to be able to reach nonalgebraic
parameters. In particular, we would like to be able to define Rauzy fractals for any toral
translation on the torus Td, for d ≥ 1, in order to get a statement generalizing Theorem 1.
Our motivations run from dynamical systems, through arithmetics, to discrete geometry,
this would allow us to associate with any direction a broken line. Indeed, Rauzy fractals
do not only produce geometric representations of substitutive dynamical systems, but
have also very interesting Diophantine applications. We refer to [71, 3] for representative
examples.

3.1 Numbers, sequences and lattices: dynamical representation
of discrete lines

There is a situation where we can reach nonalgebraic parameters, namely, for translations
on the one-dimensional torus. Instead of working with infinite words generated by the
iteration of a substitution, we consider Sturmian sequences. From a discrete geometry
viewpoint, Sturmian sequences are codings of standard arithmetic discrete lines via the
Freeman code according to the terminology of [117]. More precisely, a Sturmian sequence
sα,ρ is a coding over a two-letter alphabet of the orbit of the point ρ of the one-dimensional
torus T1 under the action of the irrational rotation Rα : x 7→ x + α (compare with
Theorem 1). Let α be an irrational number in (0, 1). Let 0 < α < 1 and 0 ≤ ρ ≤ 1. Let
Rα : T1 → T1 be the rotation of angle α. We first introduce two partitions of T1 as
follows:

I1 = [0, 1− α), I2 = [1− α, 1), I1 = (0, 1− α], I2 = (1− α, 1];

we then define respectively the two following infinite words by

sα,ρ =

{

1 if Rn
α(ρ) ∈ I1,

2 if Rn
α(ρ) ∈ I2,

sα,ρ =

{

1 if Rn
α(ρ) ∈ I1,

2 if Rn
α(ρ) ∈ I2.

Moreover, Sturmian sequences have a very simple combinatorial description. Stur-
mian sequences are exactly those one-sided infinite sequences with complexity p(n) =
n + 1, i.e., having n + 1 factors of length n for every n (see [103, 43]). A very detailed
description of these results can be found in [25], see also [111].

As a consequence, Sturmian sequences admit one isolated letter, i.e., 00 and 11 cannot
be both factors of a given Sturmian sequence: they have 3 factors of length 2. More
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precisely, let u ∈ {0, 1}N be a Sturmian sequence of slope α. Exactly one of the words ii
(i ∈ {0, 1}) is a factor of u. Hence, there is a unique sequence u′ such that u = Sb(σi(u

′)),
where b = 0 if u does not begin in i and b = 1 otherwise (recall that S stands for the
shift, see (1)), and

σ0 : 0 7→ 0, σ0 : 1 7→ 10, σ1 : 0 7→ 01, σ1 : 1 7→ 1.

Another way of recovering this “desubstitution” process is to perform an induction, that
is, to work with the first return map of the rotation Rα on a suitable subinterval of the
unit interval. For more details, see [30, 28]. What is particularly interesting here is that
one checks that the sequence u′ is again a Sturmian sequence, but with a different angle
α′. Indeed, the substitutions σi can be seen as transformations acting on bases of the
lattice Z2 via their incidence matrix. Since a Sturmian sequence is a coding of a discrete
line in the lattice Z2, u′ is again a coding of a discrete line but in a different lattice. By
reiterating this process, one thus deduces that a Sturmian sequence u can be written as
an infinite composition of a finite number of substitutions. If one is only interested in a
description of the symbolic dynamical system that u generates, (that is, to the set of its
factors), then one checks that it coincides with the symbolic dynamical system generated
by the infinite sequence

lim
n→+∞

σa1
0 σa2

1 · · · σa2n
2n σ

a2n+1

2n+1 (0).

Such a representation is called an S-adic expansion.

The incidence matrices of the substitutions σi, for i = 0 and 1, are equal to [ 1 1
0 1 ] and

[ 1 0
1 1 ], respectively. They correspond to the matrices that perform the additive steps of
Euclid’s algorithm (a, b) 7→ (a1, b1) = (a−b, b), i.e., [ ab ] = [ 1 1

0 1 ] [
a1
b1 ] . The action of Euclid’s

algorithm is translated here in symbolic terms as the action of substitutions, with the
digits an being the partial quotients in the continued fraction expansion of the angle α.
We thus have realized the action of the set of square invertible matrices with nonnegative
entries on the bases of the lattice Z2 as a noncommutative action by substitutions: we
associate with a square invertible integer matrix M in a noncanonical way a substitution
whose incidence matrix is M .

If one wants a description of the sequence u itself, the expansion involves not only
regular continued fractions but also Ostrowski numeration system (see Section 3.2 below),
as well as the set of substitutions

σ0 : 0 7→ 0, σ0 : 1 7→ 10, σ1 : 0 7→ 01, σ1 : 1 7→ 1

σ′
0 : 0 7→ 0, σ′

0 : 1 7→ 01, σ′
1 : 0 7→ 10, σ′

1 : 1 7→ 1.

We thus get

u = lim
n→+∞

(σ′)a1−c1
0 ◦ σc1

0 ◦ (σ′)a2−c2
1 ◦ σc2

1 ◦ · · · ◦ (σ′)an−cn
k−1 ◦ σcn

n−1(0),

where the coefficients cn are produced by Ostrowski numeration system, introduced in
the next section. For more details, see [30] and Chap. 6 in [111].
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More generally, for results on the connections between continued fractions and Stur-
mian sequences, and in particular, applications of the mirror formula (i.e., qn

qn−1
=

[an; an−1, · · · , a1]) in word combinatorics, see the survey [2].

3.2 Ostrowski’s numeration system

Ostrowski numeration system is based on the numeration scale given by the sequence
of denominators in the continued fraction expansion of a given real number (see [106]).
It is a generalization of the Zeckendorf representation [144] (which involves Fibonacci
numbers and the golden ratio). Let α ∈ (0, 1) be an irrational number. Let α =
[0; a1, a2, . . . , an, . . .] be its continued fraction expansion with convergents pn/qn. Every
integer N can be expanded uniquely in the form N =

∑m
k=1 bkqk−1, where the bk’s are

nonnegative integers, 0 ≤ b1 ≤ a1 − 1, 0 ≤ bk ≤ ak for k ≥ 2, and bk = 0 if bk+1 = ak+1.

Ostrowski’s representation of integers can be extended to real numbers. The base is
given by the sequence (θn)n≥0, where θn = qnα− pn. Every real number −α ≤ β < 1−α
can be expanded uniquely in the form β =

∑+∞

k=1 ckθk−1, where the ck’s are nonnegative
integers, 0 ≤ c1 ≤ a1 − 1, 0 ≤ ck ≤ ak for k ≥ 2, ck = 0 if ck+1 = ak+1, and ck 6= ak for
infinitely many odd integers.

For more on the connections between Sturmian sequences and Ostrowski numeration,
see [26], Chap. 6 in [111], and also [14] which is devoted to the so-called scenery flow.
According to [136, 72, 70, 73, 142], the digits in Ostrowski’s numeration are produced by
introducing a skew product of the continued fraction transformation, which allows their
metrical study, performed in [70, 73]. We will come back to this in Section 5.2. Note that
the odometer associated with Ostrowski’s numeration (in the sense of [60]) is metrically
isomorphic to a rotation on T1 (see for instance [48, 142] and more recently [20] and the
references therein). This result can be considered as a generalization of Theorem 1.

3.3 S-adic expansions and multidimensional continued fraction
expansions

We have seen that a Sturmian sequence can be written as an infinite composition of a
finite number of substitutions (called S-adic expansion) and that its S-adic expansion can
be described thanks to the continued fraction expansion of its slope. S-adic sequences
generalize in a natural way substitutive sequences. The aim of this section is to sustain
the idea that they are the right framework for trying to get suitable codings of toral
translations in the flavor of Theorem 1, with the sequence of coefficients in the S-adic
expansion being produced by a multidimensional continued fraction algorithm.

We expect furthermore such infinite sequences coding toral translations to have an
at most linear number of factors of a given length (they are said to be of linear com-
plexity). Indeed, each substitution in the S-adic expansion is considered as a step in a
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multidimensional continued fraction algorithm. Usually, the corresponding substitutions
have integer transvection or permutation matrices as incidence matrix. We recall that a
transvection matrix is a matrix M of the form M = Id + λEij, where Id stands for the
identity matrix, 1 ≤ i, j ≤ d, i 6= j, λ ∈ R, and Eij is the square matrix having all entries
equal to 0 and the entry of index (i, j) equal to 1. It is said positive if λ > 0 and it is
said to be an integer transvection if λ ∈ Z. Such matrices often preserve a linear growth
for the complexity function. Furthermore, we would like to recover from the dynami-
cal and combinatorial properties of these infinite sequences, arithmetical information on
the parameters underlying translation on the torus. This will be easier if these coding
sequences have low complexity, in terms of numbers of factors.

There exist several well-studied families of words that could produce codings of trans-
lations of the torus, but they all have quadratic complexity. For instance, billiard words
are defined as codings of trajectories of billiards in a cube; they are shown to have
quadratic complexity (see [16, 23]). Let us quote also [42] where a construction method
is considered which produces step by step a broken line whose vertices belong to Z3 that
approximates a given direction by choosing at each step the closest point. It is proved
in [42] that such a broken line can be obtained by selecting integer points by shifting a
polygonal window along the line. The complexity is here again quadratic. In both cases
one is unable to associate with these infinite sequences a suitable continued fraction
algorithm or an S-adic representation.

Expecting codings with linear complexity implies that the atoms of the partition
that we are looking for when trying to generalize Theorem 1 are not just boxes of Td.
Let us sustain this assertion with the Sturmian case. Another way of describing the
desubstitution process allowing to recover the S-adic expansion of a Sturmian sequence
is based on the notion of induction. According to [51, 115] if the induced map (i.e., the
first return map) of a translation on a set A is still a translation, then this set A is a
bounded remainder set. Intervals that are bounded remainder sets for the translation
Rα : x 7→ x + α with α ∈ R of T1 are known to be of length in αZ + Z [82]. Intervals
I i and I i, i = 1, 2, according to which Sturmian sequences of angle α code Rα are thus
bounded remainder sets. This seems to indicate that, in the more elementary generaliza-
tions of the Sturmian/rotation interaction, the atoms of a coding of a translation should
be preferably chosen as bounded remainder sets; this would allow one to reiterate the
desubstitution/induction process. Hence they cannot be boxes in Td: indeed, there are
no nontrivial rectangles which are bounded remainder sets for ergodic translations on
the torus [98]. Furthermore, codings of translations with respect to boxes do not have
linear complexity [135]. In order to get suitable atoms for the partition, we thus need
to get specific constructions in the flavor of the one obtained for the Rauzy fractal in
the Tribonacci case: we are looking for infinite words whose abelianized prefixes provide
good integer approximations of a line in Rd+1 which will give us a translation in Td after
some projectivization process. This will be the object of the next sections to discuss
existing algorithms for simultaneous approximation.

Several combinatorial questions can be formulated in an efficient way in this S-
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adic/continued fraction framework. Given an S-adic sequence, one can ask whether
this sequence is substitutive, that is, whether it is a letter-to-letter projection of a fixed
point of a substitution. Substitutive Sturmian sequences correspond to quadratic angles
(for more details, see e.g. [30]). This result can be considered as a version of Galois’
theorem for continued fraction expansions.

Convergence issues (and Diophantine approximation properties) for a multidimen-
sional continued fractions algorithm underlying a family of infinite words correspond to
the question of convergence toward frequencies of factors, which can also be expressed
in measure-theoretic terms (in particular if one has unique ergodicity). The study of
S-adic words thus leads to numerous questions that are of a combinatorial, arithmetic
or else dynamical nature. Among them, the so-called S-adic conjecture aims at finding
a characterization of infinite words having linear complexity in S-adic terms. For more
details, see Chap. 11 in [111]. Note that infinite words having an at most linear number
of factors of a given length are known to be S-adic, if they are furthermore assumed to
be minimal [52]. For more on S-adic sequences, see e.g. [49, 50] and Chap. 11 in [111].

We have seen that S-adic expansions and multidimensional continued fraction algo-
rithms are strongly related. More generally, generalizations of Euclid’s algorithm in-
tervene in a natural way in several problems issued from word combinatorics. As an
example, let us quote Fine and Wilf’s theorem. This theorem gives a condition on the
length of the periods a finite word can have. More precisely, if w is a word having pe-
riods p and q with length greater than or equal to p + q − gcd(p, q), then w has period
gcd(p, q). Assume now p and q coprime. The family of words with length p + q − 2
that are p and q periodic is particularly interesting. Such extremal words (with respect
to Fine and Wilf’s theorem) are known to be particular factors of Sturmian sequences,
and their study involves Euclid’s algorithm. For more details, see [25] and the references
therein. There exist two natural types of generalizations of Fine and Wilf’s theorem,
either by extending the size of the alphabet [40], or by considering multidimensional
words [132]. Extremal words for these generalizations can also be described in terms
of multidimensional continued fraction algorithms. In particular, in the former case, an
algorithm in the flavor of the fully subtractive algorithm (see [127] and Section 5) allows
the construction of extremal words [139, 140].

4 Multidimensional continued fractions

4.1 Simultaneous approximations

Continued fractions are known to provide best approximations of a given real number in
(0, 1) (see e.g. [83]). The question is now to find similar algorithms yielding simultane-
ous rational approximations with same denominator, and of good quality, of d-uples of
positive real numbers . Consider in particular the dimension d = 2 case. Given a pair
of real numbers (α1, α2) ∈ (0, 1)2, one looks for three sequences of nonnegative integers
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(pn, qn, rn)n∈N such that
lim pn/qn = α1, lim rn/qn = α2,

with a good quality of rational approximation of (α1, α2). Dual problems consist in
looking for small values of linear forms and small linear relations, and in detecting rational
dependencies. Usual norms that are considered are the sup and the Euclidean norm.

Geometrically, this corresponds to look for approximations of a line in Rd+1 by points
in Zd+1, or in a dual way of a hyperplane in Rd+1 by points in Zd+1. In arithmetic and
dynamical terms, the underlying dynamical systems will be in the first case a translation
on the torus

Rα : T
d+1 → Td+1, x = (x1, . . . , xd+1) 7→ x+ (α1, . . . , αd+1),

or a Zd+1-action of T1

(m1, · · · ,md+1).(x, y) = m1α1 + · · ·+md+1αd+1.

It remains to make more precise what is meant here by “good” quality of rational
approximation. This notion first depends on a choice of a norm. Given a norm || || on
R2, the quality of the approximation is measured by

1
qn
|||qnα||| = 1

qn
|||qn(α1, . . . , αd)|||

= 1
qn

min
{

||(qnα1 − p1, . . . , qnαd − pd)|| | (p1, . . . , pd) ∈ Zd
}

.

Secondly, the quality of approximation can be measured with respect to Dirichlet’s
theorem, i.e., |||qα||| has to be compared with q−1/d. Let us recall Dirichlet’s theorem,
which corresponds to the choice of the sup norm, and which is obtained as a direct
application of the pigeonhole principle (see e.g. [63]).

Theorem 2 (Dirichlet’s theorem) For any (α1, · · · , αd) ∈ Rd and any Q, there exists
a positive integer q with q ≤ Qd and integers pi such that

max
1≤i≤d

|qαi − pi| <
1

Q
.

One thus deduces immediately that the system of inequalities

|
pi
q
− αi| <

1

q1+
1

d

, for i = 1, 2, . . . , d

admits infinitely many integer solutions.

This exponent is optimal as shown in [108], see also [39, 120]. In particular, we cannot

hope to get a quality better than 0(q
− 3

2
n ) when α1, α2 belong to a real cubic number field

with 1, α1, α2 linearly independent over Q.
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The proof of Dirichlet’s theorem provides the existence of “good” approximations.
We thus can make an exhaustive search but this is not an efficient algorithmic method.
We do not know one algorithm giving the best quality in general. Algorithms based
on lattice reduction theory will be discussed in Section 6: they combine efficiency and
quality.

We focus in the present paper on simultaneous approximations but similar results can
be discussed by involving in a dual way minimization of linear forms, and more generally
of several linear forms (in particular for the algorithms of Section 6).

4.2 Noncanonicity of higherdimensional continued fractions al-
gorithms

The aim of this section is to present several facts sustaining the claim that there is no
canonical multidimensional continued fraction algorithm.

Regular continued fractions rely on Euclid’s algorithm: starting with two numbers,
one subtracts the smallest from the largest. If we start with at least three numbers, it
is not clear to decide which operation has to be performed on these numbers in order to
get something analogous to Euclid’s algorithm, hence the diversity and multiplicity of
existing generalizations. See Section 5 for an illustration.

Moreover, most of the one-dimensional continued fraction algorithms are closely re-
lated to the regular one. See for instance [85] which relies on the method of singu-
larization; this method can be used to understand the relations between several one-
dimensional continued fractions algorithms. This is mainly due to the algebraic structure
of SL(2,N). For d ≥ 2, let SL(d,N) denote the set of matrices of determinant 1 with
nonnegative integer coefficients. This set endowed with the multiplication is a monoid,
whose identity element is the identity matrix Id. Recall that if pn/qn stands for the
nth convergent of a given real number α in its regular continued fraction expansion, the
so-called unimodularity property holds, namely

det

[

pn+1 qn+1

pn qn

]

= (−1)n (2)

and the beginning of the continued fraction expansion of α can be recovered from the
unique decomposition of (−1)n [ pn+1 qn+1

pn qn ] in the free monoid SL(2,N). Indeed, the alge-
braic structure of SL(2,N) is particularly simple: SL(2,N) is a free and finitely generated
monoid; it admits as generators [ 1 0

1 1 ], [
1 1
0 1 ] ; any matrix in SL(2,N) admits a unique de-

composition in terms of these two matrices. This decomposition is a matricial translation
of Euclid’s algorithm and it corresponds to the continued fraction expansion.

For d = 3, the situation is completely different. First, SL(3,N) is not free anymore,
as shown by the following even permutation matrices whose third power is equal to the

identity:
[

0 1 0
0 0 1
1 0 0

]

,
[

0 0 1
1 0 0
0 1 0

]

. But the main difference comes from the fact that SL(3,N) is
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not finitely generated. Consider indeed the family of matrices

Mn :=





1 0 n
1 n− 1 0
1 1 n− 1



 .

According to Chap. 12 in [111] these matrices are undecomposable for n ≥ 3, i.e.,
they are not equal to an even permutation matrix, and, for any pair of matrices A,B in
SL(3,N) such that Mn = AB, A or B is an even permutation matrix. Note that even
permutation matrices are exactly the matrices that admit an inverse in SL(3,N).

Lastly, a rational number p/q is said to be a best approximation of the real number α
if every p′/q′ with 1 ≤ q′ ≤ q, p/q 6= p′/q′ satisfies

|qα− p| < |q′α− p′|.

Convergents in the continued fraction expansion of α and best approximations are known
to coincide [39, 83]. Nevertheless, this notion is not so satisfying in higher dimension for
defining continued fractions since first it depends on the norm [91], and second, we lose
the unimodularity property (2). For more details, see [91, 92]. More precisely, let α be
an irrational number, || || be a given norm in Rd and ||| ||| stand for the distance to the
nearest integer. The sequence of best approximations of α with respect to the norm || ||
is defined as the increasing sequence of nonnegative integers (qn)n∈N that satisfies

|||qn(α1, · · · , αd)||| < |||q(α1, · · · , αd)|||

for any q with 1 ≤ q < qn. The existence of an infinite sequence of best approximations
can be derived in a classic way from Dirichlet’s theorem or from Minkowski’s first theo-
rem (see e.g. [34]). Best approximations are shown to fail to be unimodular in [92] from
which the following is quoted: “The absence of an exact higher-dimensional analogue for
the continued fraction algorithm is reflected in the failure of property (i) in all higher
dimensions. [...] higher-dimensional analogues of the continued fraction algorithm must
include other approximations than just the best simultaneous approximations with re-
spect to a fixed norm || ||.” Property (i) refers to the unimodularity property (2). More
precisely, consider the square matrix Mn of size d+1 whose rows are given by successive
best approximations vectors, i.e.,

Mn =











vn

vn+1
...

vn+d











where vn = (p
(n)
1 , · · · , p

(n)
d , qn) is the best approximation integer vector with last entry

qn that provides |||qn(α1, · · · , αd)|||. Let Dn stand for the determinant of this matrix.
It is proved in [92] that for any norm in dimension d ≥ 2, there exists α ∈ Rd, with
dimQ[1, α1, · · · , αd] = d + 1, such that for any positive integer N , there exists n for
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which Dn = Dn+1 = · · · = Dn+N = 0. Arbitrarily large determinants can even occur in
dimension d = 2 with the sup norm.

All these reasons indicate that there is no canonical generalization of continued frac-
tions to higher dimensions. Several approaches are possible that we describe below, by
focusing on unimodular algorithms, that is, on algorithms satisfying the unimodularity
property (2). We will not consider here multidimensional continued fractions based on
Klein polyhedra and sails such as developed in [9, 88, 84, 10]. For more on the subject
and its history, see e.g. [89, 90] and the references in [81].

4.3 Unimodular algorithms

We follow here the formalism introduced in [96] which allows enough generality to cover
most classical unimodular types of algorithms, such as discussed in [137, 34, 127]. These
algorithms belong mainly to two classes of algorithms, the Markovian ones (“without
memory”), discussed in Section 5, and the algorithms based on reduction algorithms,
that will be reviewed in Section 6.

According to [96], a d-dimensional unimodular continued fraction algorithm associ-
ated with α = (α1, · · · , αd) ∈ Rd produces a sequence of matrices (A(n))n∈N with values
in GL(d+ 1,Z) as well as an initial matrix P (0) in GL(d+ 1,Z). Matrices A(n) play the
role of partial quotients. We then consider the matrices of GL(d+ 1,Z) defined for all n
as

P (n) := A(n) · · ·A(1)P (0) =







p
(n)
1,1 · · · p

(n)
1,d q

(n)
1

· · ·

p
(n)
d+1,1 · · · p

(n)
d+1,d q

(n)
d+1






.

Matrices P (n) play the role of convergent matrices.

Usually an algorithm producing the sequence of matrices (A(n))n∈N can be defined
in dynamical terms. Let X ⊂ Rd and Xt ⊂ X. Elements of Xt are called terminal. A
d-dimensional continued fraction map over X is a map T : X → X such that T (Xt) ⊂ Xt

and, for any α ∈ X, there is A(α) ∈ GL(d,Z) satisfying:

α = A(α)T (α).

The associated continued fraction algorithm consists in iteratively applying the map T
on a vector α ∈ X. This yields the following sequence of matrices, called the continued
fraction expansion of α: (A(T n(α)))n≥1. This expansion is said to be finite if there is n
such that T n(α) ∈ Xt, infinite otherwise.

An algorithm is said to be additive if all the matrices belong to a finite set. An
algorithm is said to be positive if all the matrices are nonnegative. An algorithm is
said to be Markovian if the map T is piecewise continuous; usually it is piecewisely an
homography. Algorithms described in Section 5 are examples of Markovian algorithms,
contrarily to the algorithms of Section 6. Markovian algorithms are also said to be
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“without memory”. Indeed, the (n+1)th step of the algorithm only depends on the map
T and on the value T n(α).

The rows of the convergent matrices are meant to provide simultaneous approxima-
tions, i.e., one considers

(
p
(n)
j,1

q
(n)
j

, · · · ,
p
(n)
j,d

q
(n)
j

).

The integers q
(n)
j play the role of nth convergents, and the vector (p

(n)
j,1 , · · · , p

(n)
j,d , q

(n)
j ) is

called an nth convergent vector.

In more geometric terms, this can be expressed as follows. One wants to approximate
a given vectorial line directed by the nonzero vector ℓ = (ℓ1, · · · , ℓd+1) in Rd+1 by a
sequence (b(n))n∈N of integer lattice bases of Zd+1. The lattice bases generate cones (that
are usually nested) that “tend” toward the line directed by ℓ. One recovers simultaneous
rational approximations by setting αi = ℓi/ℓd+1 for i = 1, · · · , d. Usually, one way to go
from α ∈ Rd to ℓ ∈ Rd+1 consists in setting ℓd+1 = 1, and working with entries ℓi ∈ [0, 1]d

for 1 ≤ i ≤ d, or in working with the simplex
∑d+1

i=1 ℓi = 1, with ℓi ≥ 0 for all i. In [34]
the algorithms are designed in such a way that for every n, ℓ belongs to the positive cone
generated by the vectors b

(n)
i , i = 1, . . . , d+ 1, i.e., in

{
∑

1≤i≤d+1

λib
(n)
i | λi ≥ 0, ∀i = 1, · · · , d+ 1}.

We then expect that this sequence of bases of lattices that is produced converges toward
the line generated by ℓ. Not all the existing algorithms enter this framework. See the
discussion in [58] for instance. Furthermore, [34] adds extra assumptions on the allowed
operations on the bases at each step n; they are of elementary types (they correspond
to integer transvections): for every n there exist i 6= j (with i, j depending on n) and
cn ∈ N such that

b
(n+1)
i = b

(n)
i + cnb

(n)
j , b

(n+1)
k = b

(n)
k for k 6= i. (3)

This restriction is not a severe one and most of the algorithms discussed in the present
survey enter this framework, by allowing also permutation rules between the vectors.
Algorithms for which the choice of the coefficients i, j and ci only depend on the cofactors
of ℓ with respect to b(n), i.e., the integers a

(n)
i such that

ℓ = a
(n)
1 b

(n)
1 + · · ·+ a

(n)
d+1b

(n)
d+1,

are called vectorial in [34]. They are Markovian algorithms.

As underlined in [34], “All continued fraction algorithms which have been proposed
since the beginning (Jacobi, 1868), and up to about 1970 belong to this class. [...].
A great disadvantage is that the expansions of vectorial algorithms often converge too
slowly or not at all.” Nevertheless they are easier to study from an ergodic viewpoint
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for instance. In particular, the existence of an ergodic absolutely continuous invariant
measure allows to understand the way the digits are distributed. They enter the category
of fibred systems developed in [125].

Additive vs. multiplicative steps There are two types of steps that can be per-
formed, small ones or maximal ones. Let us take as an illustration Euclid’s algorithm:
starting from two nonnegative numbers a and b, one subtracts the smallest one from the
largest one. If one performs only one subtraction at each step, one obtains the so-called
additive version of Euclid’s algorithm. If one performs in one step as much subtractions
as possible (i.e., if 0 ≤ b ≤ a, a is replaced by a − [a/b]b), one gets a multiplicative
algorithm. In dynamical terms, one considers either the Gauss map (x 7→ {1/x}) or the
Farey map (x 7→ x

1−x
for 0 ≤ x ≤ 1/2, and x 7→ 1−x

x
for 1/2 ≤ x ≤ 1). Note that the

Gauss map is known to have a finite ergodic invariant measure, which is not the case of
the Farey map. The terminology division vs. subtractive algorithm is also used: see e.g.
[34] where an algorithm is said to be subtractive if cn = 1 in (3), and additive if cn is
chosen as the maximal possible number allowing the line to stay within the positive cone
generated by the convergent vectors b

(n)
i , for i = 1, · · · , d. Additive and multiplicative

versions for a same type of rule can lead to very distinct behaviors. See for instance the
example of Selmer’s algorithm quoted in [34] which is shown not to be able to be acceler-
ated in a multiplicative form: the rule is to subtract the smallest nonzero entry from the
largest one; in case of equality, we take the entry with smallest index; one checks that
any triple of coprime positive integers leads to (1, 1, 1); start from (5, 4, 2); one checks
that no multiplicative rule allows one to reach (1, 1, 1) from (5, 4, 2). This comes from
the fact that the group of matrices generated by positive transvections and permutations
is not commutative.

Convergence There are mainly two types of convergence. The convergence is said
to be weak if the convergent vectors tend in angle toward the approximated line directed
by ℓ, and strong if they tend in distance toward this line. One can also consider uniform
convergence if one works with all the convergent vectors; otherwise, one only considers
the convergent vector realizing the smallest distance. For more details, see [34, 127, 87].
In particular, as soon as one has weak convergence, a continued fraction algorithm allows
one to approximate real vectors by sequences of rational vectors. Topological convergence
corresponds to the fact that the natural partition of the underlying dynamical system
is a generator. For a comparison of these notions of convergence for multidimensional
continued fraction algorithms, see [87] with special focus on the notion of topological
convergence. Note that for a unimodular multidimensional continued fraction algorithm,
if the coordinates of ℓ are rationally independent, then the convergence cannot be uni-
formly strong. See for instance [127], Lemma 30 in Chap. 14. This allows to disprove
for instance the strong convergence of Jacobi-Perron algorithm.

What is expected? We are given (α1, · · · , αd) ∈ Rd
+ which produces a sequence of

bases (b(n))n∈N of Zd+1and thus sequences of convergent vectors that yield simultaneous
rational approximations. From an arithmetic viewpoint, a multidimensional continued
fraction algorithm is expected to detect linear relations between 1, α1, · · · , αd, to give
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algebraic characterizations of periodic expansions, to have “good” properties of conver-
gence, and to provide “good” rational approximations. Furthermore, one could hope to
determine thanks to such an algorithm fundamental units (e.g., of a cubic number field),
and to solve Diophantine equations. From a dynamical viewpoint, we also would like to
have reasonable ergodic properties (concerning ergodic invariant measures, realizations
of the natural extension, entropy, Lyapounov exponents, etc.), to be able to control the
almost everywhere behavior like the a.e. speed of convergence, the distribution of the
digits, to understand the “depth” and the number of executions of the algorithm if the
parameters are rational, and to be able to perform a dynamical analysis according to the
scheme discussed in [141].

Computational complexity In [94] various computational complexity results con-
cerning simultaneous Diophantine approximation problems are considered. When the
dimension d is fixed, algorithms are given which find a good approximation q with
1 ≤ q ≤ N for a given N with respect to a specified accuracy, or which find all best
approximations in [1, · · · , N ] in polynomial-time. Note that the following problem of
decision is proved to be NP-hard: we are given a vector α ∈ Qd, a positive integer N
and an accuracy s1/s2; is there an integer Q with 1 ≤ Q ≤ N such that |||Qα||| ≤ s1/s2?
(the distance to the nearest integer is expressed here with respect to the sup norm).
Furthermore, Lagarias suggests in [94] that “the problem of locating best (sup norm)
simultaneous approximations is harder than that of locating good simultaneous approx-
imations”. See also in the same flavor [64] concerning the problem of finding integer
relations, and [18].

5 Markovian continued fraction algorithms: a zoo of

algorithms

5.1 General description

We focus here on unimodular Markovian multidimensional continued fraction algorithms,
according to the terminology introduced in Section 4.3. We recall the most classical ones
which have lead to well-studied multi-dimensional continued fraction algorithms such as
discussed in [34, 127]. In order to stress the simple rules that govern them, we express
them in dimension d+ 1 = 3. We thus start with parameters (u1, u2, u3) ∈ R3

+. We have
to decide which number has to be subtracted, and with respect to which number it has
to be done. Usually numbers u1, u2, u3 are sorted in increasing (or decreasing) order. We
stress the subtraction rule but it is usually preceded and followed by a sorting operation.

• Jacobi-Perron: let 0 < u1, u2 ≤ u3; one subtracts the first entry as often as we can
from the other two ones

(u1, u2, u3) 7→ (u2 − [
u2

u1

]u1, u3 − [
u3

u1

]u1, u1);
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• Brun: we subtract the second largest entry from the largest one; for instance, if
0 ≤ u1 < u2 < u3,

(u1, u2, u3) 7→ (u1, u2, u3 − u2);

• Poincaré: we subtract the second largest entry from the largest one, and the small-
est entry from the second largest one; for instance, if 0 ≤ u1 < u2 < u3

(u1, u2, u3) 7→ (u1, u2 − u1, u3 − u2);

• Selmer: we subtract the smallest positive entry from the largest one; for instance,
if 0 < u1 < u2 < u2

(u1, u2, u3) 7→ (u1, u2, u3 − u1);

• Fully subtractive: we subtract the smallest positive entry from all the largest ones;
for instance, if 0 < u1 ≤ u2 ≤ u3

(u1, u2, u3) 7→ (u1, u2 − u1, u3 − u1).

5.2 Some comparison elements

The convergence and the ergodic properties of these algorithms can vary even within
these simple rules which a priori look similar. Apply for instance Poincaré algorithm TP

to (1/ϕ2, 1/ϕ, 100) where 1/ϕ2 + 1/ϕ = 1 and 1/ϕ > 0. The kth iteration of Poincaré
algorithm produces

T k
P (1/ϕ

2, 1/ϕ, 100) = (1/ϕk+2, 1/ϕk+1, 100−
k

∑

i=0

1/ϕi+1).

The value of 100 −
∑

i≥1 1/ϕ
i is always larger than the values taken by the first two

ccordinates of T k
P (1/ϕ

2, 1/ϕ, 100) for any k. Hence, there is no “mixing” between the
three coordinates when applying Poincaré on these initial values, and

lim
k→∞

T k
P (1/ϕ

2, 1/ϕ, 100) 6= (0, 0, 0).

For more details, see [105] for Poincaré algorithm. Similar intriguing issues occur in the
study of the fully subtractive algorithm; they have been considered in [100, 86].

For a description of the ergodic properties of these algorithms, see [127]. See [17]
which shows in a very efficient way how to determine the invariant measure thanks to the
natural extension. For a thorough study of the Lyapounov exponents of the Jacobi-Perron
algorithm (which also applies to Brun algorithm), see [35, 36]. In particular, the a.e.
exponential (strong) convergence of Brun [57, 99, 122] and Jacobi-Perron algorithm [36]
(see also [95, 126]) holds: there exists δ > 0 s.t. for a.e. (α, β), there exists n0 = n0(α, β)
s.t. for all n ≥ n0

|α− pn/qn| <
1

q1+δ
n

, |β − rn/qn| <
1

q1+δ
n

,
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where pn, qn, rn are given by Brun (resp. Jacobi-Perron) algorithm.

Jacobi-Perron algorithm vs. Ostrowski algorithm The linear form of Jacobi-
Perron algorithm is defined on X = {(u1, u2, u3) ∈ R3|0 < u1, u2 ≤ u3} by

(u1, u2, u3) 7→ (u2 − ⌊u2/u1⌋u1, u3 − ⌊u3/u1⌋u1, u1).

If we set
α1 := u1/u3, α2 := u2/u3,

we recover its projective version defined on (0, 1)× (0, 1) as

(α1, α2) 7→

(

α2

α1

−

⌊

α2

α1

⌋

,
1

α1

−

⌊

1

α1

⌋)

= ({α2/α1}, {1/α1}) .

Let us compare it with the Ostrowski’s mapping

(α1, α2) 7→ ({1/α1}, {α2/α1}).

Ostrowski’s mapping can not be considered as a multidimensional continued fraction
algorithm, as e.g. illustrated by its ergodic study (see [72, 70, 73]). This algorithm is
indeed a skew product of the Gauss map: the first coordinate is exactly the Gauss map
and expands α1 in continued fraction, whereas its second coordinate produces the digits
of the Ostrowski expansion of α2 with respect to the continued fraction expansion of α1.

Jacobi-Perron algorithm vs. Brun algorithm Note that Brun algorithm is also
called modified Jacobi-Perron algorithm: the modified Jacobi-Perron algorithm intro-
duced by E. V. Podsypanin in [109] is a two-point extension of Brun algorithm. Both
algorithms (Brun and Jacobi-Perron) are known to have an invariant ergodic probability
measure equivalent to the Lebesgue measure (see for instance [124] and [127]). However,
this measure is not known explicitly for Jacobi-Perron (the density of the measure is
shown to be a piecewise analytical function in [35]), whereas it is known explicitly for
Brun [17, 57]. Let us stress the difference between Brun and Jacobi-Perron’s rule such
as defined in Section 5.1. Brun algorithm is a space-ordering algorithm according to the
terminology introduced in [62]. (Note that it is called ordered Jacobi-Perron in [61].)
Furthermore, each step of Brun algorithm produces only one partial quotient. This helps
in computing the natural extension and the invariant measure of Brun algorithm (see e.g.
[17]). Contrary to Brun algorithm, the role played by u1 and u2 is not determined by a
comparison between both parameters in Jacobi-Perron case; this might explain the fact
that an explicit expression of the natural extension of this algorithm is still not known.
Nevertheless, the framework of S-expansions and the so-called techniques of Insertion
and Singularization (see [69]) allow one to relate both algorithms as shown in [121]; see
also [123].
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6 Lattice reduction algorithms and effective simul-

taneous rational approximations

Lattice reduction methods induce a second particularly fruitful way of exhibiting good
simultaneous approximations or small values for linear forms. Algorithms based on lattice
reduction theory are based on the following idea: lattice reduction algorithms do not
produce a priori the smallest vector of a lattice but a reasonably small vector, that is, a
vector that is small enough for guarantying Diophantine approximation properties that
can be compared with Dirichlet’s quality up to an approximation factor exponential in
the dimension. We thus can consider these algorithms as providing effective versions of
Dirichlet’s theorem, yielding a satisfying compromise between efficient computation and
sharpness of the obtained bounds, that is, between algorithmic issues and Diophantine
quality.

Lattice reduction is based on the following elementary basis transformations: they
can be described in terms of size reduction (the vector bi of the basis (b1, . . . ,bd+1)
is replaced by bi − λbj with 1 ≤ j < i), and of exchange steps, also called swaps
(one exchanges bi and bi+1). These operations are decided with respect to the Gram-
Schmitdt orthogonalization of the basis b. See [64] for an interesting discussion on the
connections between the approximation algorithms given in [53] (see also [54]) and [97].
See also [54]. For more on the way lattice reduction provides best approximations of a
real number, see p. 226 and p. 267 of [104], and for a survey on the overall strategy
for getting constructive type results in Diophantine approximation based on LLL, see p.
222 of [104]. Nevertheless, note that even in dimension 2, when using Gauss algorithm
whose efficiency has been largely proved, one has “little control on the convergent which
is returned; in particular, this is not the largest convergent with denominator less than
2
√

C/3”, how quoted in [104] (p.226 Example 1); the bound 2
√

C/3 comes from Theorem
7, Chap. 6 of [104].

Let us sketch the basic strategy underlying the use of lattice reduction in this frame-
work. We follow here the seminal paper [97]. This yields a very fruitful compromise
between the quality of approximation (a good approximation is deduced from a small
vector) and the efficiency (this small vector is obtained in polynomial time). We are
given (α1, · · · , αd) ∈ Rd that one wants to approximate. One works here again in a
d+1-dimensional space, but we will introduce a one-parameter family of lattices (Λt)t>0

with parameter t tending to 0. Let t be a positive real number, and let Λt be the lattice
generated by the columns of the matrix

Mt :=













1 0 · · · 0 −α1

0 1 · · · 0 −α2

· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd

0 · · · · · · 0 t













.

Note that det(Mt) = t, hence, the lattice Λt changes at each step of the algorithm. Let
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us stress the fact that this strategy differs from the one discussed in Section 5 where one
worked with bases of the fixed lattice Zd+1.

We will take t small, the parameter Q of Dirichlet’s theorem being connected to t as

follows: Q = t−
1

d+1 .

One of the main features of the LLL algorithm is that it produces in polynomial time
a nonzero vector b = (b1, . . . bd+1) of the lattice Λt such that

||b||2 ≤ 2d/4 det(Mt)
1/(d+1) = 2d/4t1/(d+1). (4)

Note that the geometry of numbers, and more precisely Minkowski’s first theorem, guar-
anties the existence of a “small” nonzero vector x ∈ Λt, i.e., such that

||x|| ≤
√

(d+ 1)(d+ 5)/4 (vol(Λt))
1/(d+1) =

√

(d+ 1)(d+ 5)/4 t1/(d+1). (5)

Let (ei)i=1,...,d+1 stand for the canonical basis of Zd+1. There exist integers p1, . . . , pd, q
such that

b = p1e1 + p2e2 + · · ·+ pded + q(−α1e1 − · · · − αded + ted+1)
= (p1 − qα1)e1 + · · ·+ (pd − qαd)ed + qted+1.

One deduces from (4) that

∀i = 1, . . . , d, |pi − αiq| ≤ 2d/4t1/(d+1)

and

qt ≤ 2d/4t1/(d+1), i.e., t
1

d+1 ≤
21/4

q1/d
.

We deduce that for all i

|pi − αiq| ≤
2(d+1)/4

q1/d
,

with
|q| ≤ 2d/4t−d/(d+1) = 2d/4Qd.

The quality of approximation is the quality that is expected (with respect to Dirich-
let’s theorem) up to a multiplicative factor 2(d+1)/4 which depends exponentially of the
dimension. We could have used (5) which would have given a different multiplicative fac-
tor but the same quality (q1/d). Nevertheless, the interest of a lattice reduction algorithm
such as LLL is that the small vector that is used is found in polynomial time.

The question now is to be able to devise a continued fraction algorithm from this.
One has a priori to recompute everything from the beginning when one changes t. For
a dynamical version, see [54, 53, 93, 94, 78, 79, 80, 33]. Let us quote in particular
[96] based on the Minkowski lattice reduction and on the notion of lexicographically
Minkowski reduced basis. This is not effective and produces best approximations (which
are known to be NP-hard to locate in an interval [94]). This study is extended in [59].
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7 Back to substitutions

Let us come back to the connections between the multidimensional continued fraction
algorithms discussed in the previous sections and substitutions.

7.1 Cubic number fields

The case of cubic numbers is a natural situation for this interaction to play a significant
role. Let us first start with results involving cubic numbers. It is shown in [4] that the
set of limit values for

{q
1

2 |||qα1|||, q
1

2 |||qα2||| | q > 0}

is a discrete set of curves (hyperbolic curves or ellipses), and in particular a union of
homothetic ellipses centered at the origin, whenever (α1, α2) form with 1 the basis of a
real cubic number field with Q(α2) having a complex embedding.

The particular case of (α1, α2) having a purely periodic expansion of length 1 with
respect to Brun algorithm, i.e., (α1, α2) = (α, α2) where α is the real root of X3+kX−1
for k > 0, is investigated in [71]. The nearest ellipse is shown to be given by the conver-
gents produced by Brun algorithm. This does not hold anymore for periodic points with
a longer period such as shown in [76]. These results are obtained by introducing substi-
tutions associated with Brun algorithm, according to [74]. This result is connected with
the following one quoted in [91] and obtained as a direct consequence of [4, 5]: if 1, α1, α2

is a Q-basis of a non-totally real cubic field, the best simultaneous approximations of
(α1, α2) with respect to a given norm are a subset of a finite number of third-order linear
recurrences with constant coefficients whose polynomial is given by the fundamental unit
of Q(α1, α2). This result is made more precise by exhibiting a suitable Euclidean norm
in [41]. See also in the same flavor [68] which uses fractal geometry, numeration systems
and Rauzy fractals. Lastly, note that, when d = 2, the characteristic polynomial of the
matrix associated with a periodic expansion under Jacobi-Perron algorithm is irreducible
and its dominant eigenvalue is a Pisot number [45], see also [107]. Concerning Brun
algorithm, see [128].

7.2 Discrete geometry and generalized substitutions

We have discussed in Section 3.1 the connections between Sturmian sequences, discrete
lines, substitutions and Euclid’s algorithm. Let us extend this discussion to a higher-
dimensional framework. Recall that our motivation is to get suitable multidimensional
continued fraction algorithms in discrete geometry for the study of discrete planes and
lines, as well as algorithms producing Rauzy fractals associated with nonalgebraic pa-
rameters.

Consider a unimodular multidimensional continued fraction algorithm. The strategy
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we propose consists in giving a combinatorial interpretation of the matrices produced by
such an algorithm by associating with them substitutions via their incidence matrix. Our
main tool is a formalism which associates a generalized substitution of a geometric nature
with a unimodular matrix, and which produces approximations of the Rauzy fractal.

We have seen in Section 2.2 that given a Pisot substitution σ, its Rauzy fractal is
defined as the closure of the image by the projection πc (on the contracting plane of
the incidence matrix Mσ along its expanding direction) of the abelianized images of
the prefixes of an infinite word u that satisfies σ(u) = u. Rauzy fractals have also
been proved to be attractors of some graph-directed iterated function system (see e.g.
[15, 133, 75]). There exists a very useful formalism introduced in [15] that provides
an algebraic way to describe this equation with respect to the substitution σ, namely
the notion of generalized substitution. Generalized substitutions can be considered as
multidimensional substitutions of non-constant length acting on multidimensional words
(see e.g. [15]). This formalism due to Arnoux and Ito [15] was inspired by the geometrical
formalism of [74], whose aim was to provide explicit Markov partitions for hyperbolic
automorphisms of the torus associated with particular morphisms of the free group. They
have already proved their efficiency in the spectral study of Pisot substitutive dynamical
systems [111] or else in discrete geometry (see [12, 13, 11, 27, 55, 56, 29]). With any usual
unimodular substitution σ can be associated a generalized substitution E∗

1(σ) (recall that
a substitution is said to be unimodular if the determinant of its incidence matrix equals
±1). The generalized substitution E∗

1(σ) is defined as the dual map of a natural geometric
realization of σ. It maps facets of unit cubes onto unions of facets of unit cubes.

One of the key properties of generalized substitutions is that they map standard
arithmetic discrete planes onto standard arithmetic discrete planes according to [15, 55].
Arithmetic discrete planes are basic objects in discrete geometry. According to the
formalism derived from [117], they are defined as follows: let v ∈ Rd, µ, ω ∈ R;

P(v, µ, ω) = {x ∈ Zd | 0 ≤ 〈x, v〉+ µ < ω}.

The parameter µ is called the translation parameter, and ω is called the thickness. If
ω = maxi{|vi|} = ||v||∞, then P(v, µ, ω) is said naive. If ω =

∑

i |vi| = ||v||1, then
P(v, µ, ω) is said standard.

Let U be the union of the upper facets of the unit cube. It is proved in [15] that,
by renormalizing by Mn

σ the projection πc of the sets E∗
1(σ)

n(U) and by taking the limit
with respect to the Hausdorff metric, one recovers the Rauzy fractal associated with σ,
i.e.,

lim
n→+∞

Mn
σ πc(E

∗
1(σ))

n(U) = Rσ.

See Figure 1 for an illustration.

Furthermore, one checks that the vertices of U , as well as the vertices of its images
by a generalized substitution E∗

1(σ) belong to any standard arithmetic discrete plane
with parameter µ = 0. Generalized substitutions thus provide a generation method for
arithmetic discrete planes with parameter µ = 0 for some algebraic parameters v, as well
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Figure 1: Iterations of a generalized substitution on the upper facets of the unit cube.

as a way to define Rauzy fractals with irrational parameters. Indeed, to generate non-
algebraic discrete planes, one expands a given v with respect to a unimodular continued
fraction algorithm such as Jacobi-Perron or Brun algorithm. We then can translate the
expansion produced by Brun algorithm as a product of matrices in the formalism of gen-
eralized substitutions. A geometric version of Brun multidimensional continued fraction
algorithm acting on discrete planes is given in [56, 29] in terms of generalized substitu-
tions. If one wants to describe an arithmetic discrete plane with nonzero parameter µ,
one then needs to involve a skew product of Brun algorithm in order to also expand µ:
such a skew product will play the role of Ostrowski’s skew product in the Sturmian case.

By using generalized substitutions associated with a given multidimensional continued
fraction expansion, one thus can give an S-adic type of representation for discrete planes.
For more details, see e.g. [12, 55, 56, 29]. This has applications to the study of local
configurations, for the generation of discrete planes [31], and for the recognition of discrete
planes: given a set of points in Z3, is it contained in an arithmetic discrete plane [56]?
Lastly, let us quote the following problem concerning the connectedness of discrete planes
when the thickness decreases. The question is to find the smallest thickness ω for which
the plane P(v, µ, ω) is connected (either edge connected or vertex connected). The case
of rational parameters has been solved in [77]. For the case of irrational parameters, see
[44]. The method used in both papers relies on the use of the fully subtractive algorithm.

Let us conclude with the following open question: how to associate a Rauzy fractal
with a nonperiodic Brun or a Jacobi-Perron expansion? If we know that the a.e. expo-
nential convergence of Brun algorithm gives us convergence toward a Rauzy fractal, can
we use a generalized Perron-Frobenius theorem to prove that its subtiles will be disjoint
in measure? What about the tiling properties?
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Steklov. (LOMI), 67 (1977), pp. 184–194, 227. Studies in number theory (LOMI),
4.

[110] N. Priebe-Franck, A primer on substitution tilings of euclidean space, Exposi-
tiones Mathematicae, 26 (2008), pp. 295–326.

[111] N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics,
vol. 1794 of Lecture Notes in Mathematics, Springer Verlag, 2002. Ed. by V. Berthé
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Thèse de Doctorat, Université Louis Pasteur, Strasbourg, 1991.

[118] E. A. Robinson, Jr., Symbolic dynamics and tilings of Rd, in Symbolic dynamics
and its applications, vol. 60 of Proc. Sympos. Appl. Math., Amer. Math. Soc.
Providence, RI, 2004, pp. 81–119.

[119] K. Schmidt, Algebraic coding of expansive group automorphisms and two-sided
beta-shifts, Monatsh. Math., 129 (2000), pp. 37–61.

[120] W. S. Schmidt, Diophantine Approximation, vol. 785 of Lecture Notes in Math-
ematics, Springer Verlag, 1996.

[121] B. Schratzberger, On the singularization of the two-dimensional Jacobi-Perron
algorithm., Exp. Math., 16 (2007), pp. 441–454.

33



[122] B. R. Schratzberger, The quality of approximation of brun?s algorithm in three
dimensions, Monatshefte fr Mathematik, 134 (2001), pp. 143–157.

[123] , A conversion algorithm based on the technique of singularization., Theor.
Comput. Sci., 391 (2008), pp. 138–149.

[124] F. Schweiger, On the invariant measure for Jacobi-Perron algorithm, Math.
Pannon., 1 (1990), pp. 91–106.

[125] , Ergodic theory of fibred systems and metric number theory, Oxford Science
Publications, The Clarendon Press Oxford University Press, New York, 1995.

[126] , The exponent of convergence for the 2-dimensional Jacobi-Perron algorithm,
in Proceedings of the Conference on Analytic and Elementary Number Theory
(Vienna), W. G. Nowak and J. Schoissengeier, eds., 1996, pp. 207–213.

[127] , Multidimensional continued fractions, Oxford Science Publications, Oxford
University Press, Oxford, 2000.

[128] F. Schweiger, A note on Lyapunov theory for Brun algorithm, in Diophantine
Approximation, H. P. Schlickewei, K. Schmidt, and R. F. Tichy, eds., vol. 16 of
Developments in Mathematics, Springer Vienna, 2008, pp. 371–379.

[129] N. Sidorov, Arithmetic dynamics, in Topics in dynamics and ergodic theory, S. B.
et al., ed., vol. 310 of Lond. Math. Soc. Lect. Note Ser., Cambridge University Press,
2003, pp. 145–189.

[130] A. Siegel, Représentation des systèmes dynamiques substitutifs non unimodu-
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