
ANALYSIS OF GENERALIZED CONTINUED FRACTION ALGORITHMS

OVER POLYNOMIALS
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Abstract. We study and compare natural generalizations of Euclid’s algorithm for polynomials

with coefficients in a finite field. This leads to gcd algorithms together with their associated

continued fraction maps. The gcd algorithms act on triples of polynomials and rely on two-
dimensional versions of the Brun, Jacobi–Perron and fully subtractive continued fraction maps,

respectively. We first provide a unified framework for these algorithms and their associated

continued fraction maps. We then analyse various costs for the gcd algorithms, including the
number of iterations and two versions of the bit-complexity, corresponding to two representations

of polynomials (the usual and the sparse one). We also study the associated two-dimensional
continued fraction maps and prove the invariance and the ergodicity of the Haar measure.

We deduce corresponding estimates for the costs of truncated trajectories under the action of

these continued fraction maps, obtained thanks to their transfer operators, and we compare the
two models (gcd algorithms and their associated continued fraction maps). Proving that the

generating functions appear as dominant eigenvalues of the transfer operator allows indeed a

fine comparison between the models.
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1. Introduction

Gcd computation for (univariate) polynomials (with coefficients in a finite field) is a basic
operation in computer algebra. This is the main tool for keeping a polynomial fraction under its
irreducible form, but it also plays a central role in polynomial factorization for instance (see [14]).
Euclid’s algorithm completely solves the problem of gcd computation for two entries. However,
there does not exist a canonical generalization of Euclid’s algorithm when working with at least
three entries. For the general case of d entries, one of the most natural and basic algorithms
consists in performing a succession of d− 1 phases, with each of them being the Euclid algorithm
on two entries. It is described in Knuth’s book [19] and its probabilistic study has been performed
in [5].

1.1. A unified framework for the three algorithms of interest. Among all possible gen-
eralizations, we choose and compare three generalized Euclidean algorithms, inspired by classical
multidimensional continued fraction maps, namely the Jacobi–Perron (JP), the Brun and the fully
subtractive (FS) maps. These algorithms and their associated continued fraction maps are well
studied in the number case; see for instance [30] and also [6] for the probabilistic analysis of the
Brun map. They also have been studied in the present framework of formal power series in the
case of the Jacobi–Perron algorithm [26, 27, 10, 16] and of the Brun algorithm [3, 17, 6], mostly
for proving their convergence and for establishing the invariance of the Haar measure.

We introduce a unified framework for these three algorithms, first when they deal with triples of
polynomials. There exist several possible realizations for these algorithms that work, for instance,
with ordered or non-ordered inputs, and there is no real canonical way to define them. Here we
have chosen a common model for the three algorithms, that may slightly differ from the previously
studied forms, defined by working with a common set of inputs for the three algorithms. This
common set is the set of triples R := (R1, R2, R3) of polynomials with coefficients in a finite field
for which the two following conditions hold: R3 is monic and degR3 > max(degR1, degR2).
The algorithms moreover share the same type of strategy, based on the role that is given to
a specific component of R, which depends on the algorithm. This is the first component for
the Jacobi–Perron algorithm, the second largest component for the Brun algorithm, and the
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smallest component for the fully subtractive algorithm. The algorithm then divides the two other
components by this specific component, and replaces these components by their remainders in the
division by the specific component. After these two divisions, this specific component becomes
the largest one, and it is thus placed at the third position.

This general description can then be extended as continued fractions when the algorithms deal
with the set L2, where L denotes the set of Laurent formal power series with negative degree.

1.2. The two models. There are thus two models of interest, namely a discrete model (polyno-
mials) and a continuous model (Laurent formal power series). The discrete model is defined by
sets of triples of polynomials with fixed maximal degree, endowed with the uniform probability;
we then study the probabilistic behaviour of costs of interest defined on this finite set, when the
maximal degree of the triple of polynomials tends to infinity. The continuous model deals with the
set L2 endowed with its Haar measure. We study costs that are defined on truncated continued
fraction expansions of a series in L2 at depth n. We also consider in this case almost everywhere
behaviour when the truncation degree n tends to infinity.

There are two types of costs under study. The first ones are “additive”: these are the number of
steps, the total number of divisions, the total possible number of monomials and the total number
of non-zero monomials in the sequence of quotients. The other ones are related to two versions of
the bit-complexity. We study these costs both in the discrete case (gcd algorithms on polynomials)
and continuous case (continued fraction maps on Laurent formal power series) and compare their
behaviours.

1.3. Results. In the one-dimensional case, the mean and the variance of many natural costs (for
instance the number of steps) for the Euclidean algorithm acting on polynomials are known to
be linear with respect to the maximal degree (see [11, 20]), and their distribution to be binomial
[13, 18]. Furthermore, the usual bit-complexities have a mean and a variance that are quadratic
with respect to the maximal degree and obey an asymptotic Gaussian law [20, 7]. These results,
on polynomials, are obtained with tools of analytic combinatorics, mainly generating functions
(see [11]). Furthermore, there is a close connection between the probabilistic behaviour for costs
in the discrete model (polynomials) and in the continuous model (truncated trajectories under the
action of the Gauss Artin map): Executions of the Euclidean algorithm on polynomials behave on
average similarly to the way truncated trajectories behave almost everywhere. All these results
parallel the results obtained for integers (see [2]), as highlighted in [32].

In the two-dimensional case, there are already results that have been obtained only in the contin-
uous model, and in the case of two algorithms: the Jacobi–Perron algorithm [26, 27, 10, 16] and
the Brun algorithm [3, 17, 6]. These articles study their convergence and their invariant measure.

The present paper provides a complete extension of the previous results to the two-dimensional
case (except for bit-complexities where only average estimates are obtained), with methods that
extend the previous approaches into the unified framework developed here. In particular, we
make extensive use of the transfer operator underlying the system, allowing a fine comparison
between the two models and a more transparent proof of the invariance of the Haar measure
in the continuous model. However, technical difficulties arise: Firstly, even though there is a
common framework for the three extended algorithms, their specificities must be highlighted and
handled. Secondly, higher dimensions lead to a more complex analysis, where the singularities of
the generating functions are more delicate to deal with. Asymptotic Gaussian laws for additive
costs are proven in Theorems 1 and 3, whereas specific values of expectations and variances are
exhibited in Tables 6 and 8. The bit-complexities are studied (only on average) in Propositions 7
and 10.

1.4. Plan of the paper. Section 2 introduces a general framework which is common for the
three algorithms of interest and their associated continued fraction maps. It then discusses the
convergence of the continued fraction maps. Section 3 provides a general introduction to the paper
with a focus on analytic combinatorics. It describes the costs, the two models, the methodology
that is used in each model, and finally the main results in an informal way. Section 4 is devoted
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to the analysis of the three gcd algorithms in the discrete model. The main tool is here analytic
combinatorics, and more precisely, bivariate generating functions, that enable in particular to
exhibit asymptotic Gaussian laws. Section 5 considers costs for truncated trajectories (in the
continuous model): it first describes the main properties of the associated continued fraction maps,
introduces the transfer operator, and relates the (bi-variate) transfer operator to the bi-variate
generating functions of Section 4.

1.5. Notation. Let q be a fixed power of a prime number p; we respectively let denote by

Fq, Fq[X], Fq(X), Fq((X−1)), L
the finite field of cardinality q, the ring of polynomials with coefficients in Fq, its fraction field, the
field of Laurent series in X−1 with coefficients in Fq, and the subset of Laurent series of negative
degree, respectively. As usual, for f ∈ Fq((X−1)) with f 6= 0 of the form

f =
∑
p≤n

apX
p = anX

n + an−1X
n−1 + · · · , with an 6= 0,

the degree deg f of f , the absolute value ||f || of f , and the polynomial part [f ] of f are defined as

(1) deg f = n, ||f || = qdeg f , [f ] =
∑

0≤p≤n

apX
p .

For f = 0, we define (as usual) deg 0 = −∞, ||0|| = 0, and [0] = 0. We also denote by µ the Haar
probability measure on L.

Acknowledgements. We are very grateful to the referee for his constructive comments and his
stimulating questions that helped us to improve this paper.

2. The three algorithms and their associated continued fraction maps

We wish to describe natural generalizations of the classical Euclid algorithm acting on triples of
polynomials, together with their associated continued fraction maps that act on pairs of elements
of L. We consider here three algorithms, namely the Jacobi–Perron (JP), the Brun, and the
fully subtractive (FS) algorithms. Two remarks should be made here: since there is no canonical
standardized version for these algorithms, we choose versions that may enter in a precise and unified
framework by being defined on a common set of inputs R described in (6). In particular, they do
not exactly coincide with the versions of the Brun algorithm from [3, 17]. Furthermore, as it is not
immediate to properly define additive versions (that use only additions and not multiplications or
divisions) in the present context of formal power series with coefficients in a finite field, we only
consider multiplicative versions1.

We first recall the classical case (the usual Euclid algorithm) in Section 2.1. Then, in Sections
2.2 and 2.3, we announce a common framework for the three algorithms of interest, and their
associated continued fraction maps. We describe in Section 2.4 the specific parameters with which
each algorithm enters the general framework. The proof of this result is obtained via a precise
description of each algorithm and their associated continued fraction map, done in the following
three sections (Sections 2.5, 2.6, 2.7). We prove in Section 2.8 the convergence of the convergents
for the three algorithms.

2.1. The classical Euclid algorithm and continued fractions. We first recall the classical
Euclid algorithm on two polynomials, and its associated continued fraction map.

Gcd on polynomials. We consider the two sets P and P defined as2

(2)

{
P = {R = (R1, R2) ∈ F2

q[X] | degR1 < degR2}
P = {R = (R1, R2) ∈ F2

q[X] | degR1 < degR2, R2 monic}.
The second one can be viewed as the projective space of the first one, namely P = Π(P).

1This question is discussed in more details in [7].
2With the previous convention deg 0 = −∞, these sets contain pairs (0, R2) associated with any non-zero

polynomial (possibly monic) R2.
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The Euclidean division defines a map UG : P → P. On an input R ∈ P, the Euclidean division of
R2 by R1 defines the quotient A and the remainder R3 such that

R2 = AR1 +R3, A =

[
R2

R1

]
, R3 = 0 or degR3 < degR1 ,

and leads to a new pair R̂ = (R̂1, R̂2) ∈ P defined as R̂1 = R3, R̂2 = R1 that satisfies, in matricial
notation3

R = M(A) R̂ with M(A) :=

(
0 1
1 A

)
.

The map R 7→ R̂ thus defines a map UG : P → P. Any element R′ ∈ P with R′ = λR and λ ∈ F?q
gives rise to the same matrix M(A) as R; this matrix thus only depends on the class of R in the
projective space Π(P) = P. Then the map previously defined on P may also be defined in P.

The Euclid algorithm on P builds a finite sequence of quotients (Ak)k, and a finite sequence (R̂k)k.
It ends as soon as Rk ∈ P has its first component equal to zero. The second one provides the
monic gcd of (R1, R2).

Then, the set G of possible quotients and the set U of possible gcd’s are

(3) G = {A ∈ Fq[X] | degA ≥ 1}, U = {R ∈ Fq[X] | R is monic} ,
and the Euclid algorithm thus yields the following decomposition for the set P
(4) P ∼ Seq(G)× U ,
where Seq(G) stands for the set of finite sequences of elements of G. This is the starting point for
the probabilistic study of the Euclid algorithm on polynomials, based on analytic combinatorics,
see e.g. [11, 20, 32, 7] and Section 3.

Continued fraction map on L. The Gauss Artin continued fraction map TG : L→ L provides
an extension to L of the projective version of the Euclid Algorithm. It is defined via the polynomial
part function [·] defined in (1) as

(5) TG(f) =
1

f
−
[

1

f

]
, for f 6= 0, TG(0) = 0 .

This is the polynomial counterpart of the classical Gauss map. The trajectory of f under the action
of TG is defined as (f,TG(f),T2

G(f), · · · , TnG(f), . . . ). It builds a sequence (Ak)k of quotients and
a sequence (M(Ak))k of matrices with

Ak :=

[
1

Tk−1
G (f)

]
, M(Ak) =

(
0 1
1 Ak

)
,

and produces the continued fraction expansion

f =
1

A1

+
1

A2

+ · · · .

This also defines the truncated trajectory at depth n, namely (f,TG(f),T2
G(f), · · · ,TnG(f)), and

the sequence(
Pn
Qn

)
:= M(A1)M(A2) · · ·M(An)

(
0
1

)
, with M(A) =

(
0 1
1 A

)
.

The quotient Pn/Qn ∈ Fq(X) is the n-th convergent of f ∈ L.

Gcd and continued fraction map. The Gauss Artin continued fraction map provides an
extension of the gcd algorithm on two polynomials. Indeed, when TG is applied to an ele-
ment f = P/Q ∈ Fq(X) with degQ > degP , the trajectory of f under the map TG, namely
(f,TG(f), · · · ,TnG(f), · · · ), thus reaches 0 after a finite number of steps. It produces the same
sequence of quotients as the gcd algorithm on the pair (P,Q).

3Pairs (or triples) of polynomials are considered here as column vectors.

5



In the next two sections, we first draw a common framework, firstly for polynomials in Section
2.2, and secondly for continued fraction maps in Section 2.3. Then, Section 2.4 describes how
the three algorithms of interest and their associated continued fraction maps actually enter this
common framework. The convergence of these algorithms is discussed in Section 2.8.

2.2. A common framework for generalized Euclid’s algorithms. We describe a common
framework for polynomials.

Set of inputs. We consider the following two sets as possible sets of inputs for these algorithms:

(6)

{
R = {R := (R1, R2, R3) | degR3 > max(degR1, degR2)},
R = {R := (R1, R2, R3) | degR3 > max(degR1, degR2), R3 monic }.

Here again, the second one can be viewed as the projective space of the first one, namelyR = Π(R).

Let us stress the fact that the sets R or R are not completely ordered. The algorithms that are
of interest here deal with not completely ordered sets of inputs. Only the last component is the
largest one, and the other components R1 and R2 are not a priori ordered. It is then useful to
consider their possible order and to define the following two subsets of R (and their analogs in
R), namely

(7) R+ := {R ∈ R | degR1 ≥ degR2}, R− := {R ∈ R | degR1 < degR2} ,
together with the function η, called the order sign, that indicates the position of the element with
largest degree, defined as

(8) η : R → {−1,+1}, η(R) = +1⇐⇒ R ∈ R+ .

If we were dealing with completely ordered sets, the function η would be constant, and thus useless.

Strategy. Each algorithm deals with a specific component of R. As the main operation will
always be a division of the non-specific components by the specific one, the specific component
will never be chosen as the component R3 of largest degree. Then, the specific component will be
always chosen amongst R1 or R2 and the strategy of the algorithm is described via a sign ε, that
is called the strategic sign, and is defined by

ε ∈ {−1,+1}, ε(R) = +1⇐⇒
(
R1 is the specific component

)
.

This gives the following natural strategies:

(a) For positional algorithms, the strategic sign ε depends only on the position, and not on
the order sign η: the algorithm chooses, as its specific component, either always R1 (with
ε = +1 = η2), or always R2 (with ε = −1 = −η2). The choice ε = +1 = η2 is indeed
done by the Jacobi-Perron algorithm. It is natural to introduce another algorithm, called
the opposite Jacobi–Perron algorithm, which always chooses R2 as the specific component
(ε = −1 = −η2). It plays a crucial role in the proof of Proposition 2.

(b) For the other algorithms, the strategic sign ε depends on the order sign η which describes
the ordering between R1 and R2. The natural choices are then

– ε = +η, performed by the Brun algorithm4. The Brun algorithm chooses, as the
specific component, the second largest component. As the largest component is al-
ways R3, the second largest component5 is the component Ri for which degRi =
max(degR1,degR2). Then, with the definition of η, ε = η for the Brun algorithm.

– The second choice is ε = −η, performed by the fully subtractive algorithm. The fully
subtractive algorithm chooses, as the specific component, the smallest component
and performs the division of the other two components by the specific component.
As the largest component is always R3, the smallest component is the component6 Ri

4In the literature, the Brun algorithm does not perform the division of all the components by the specific

component (the second largest one). We consider here a variant of the Brun algorithm which performs all the
divisions. However, this is a mild modification. Indeed, one does not create new partial quotients when performing

the division of the smallest entry by the second largest one: only the case of equality of the degrees creates a
constant term.

5There is a convention to be taken in case of equality of the degrees.
6There is again a convention to be taken in case of equality of the degrees.
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for which degRi = min(degR1,degR2). Then, with the definition of η, the equality
ε = −η holds for the fully subtractive algorithm.

If we had considered completely ordered sets of inputs, there would have been only two possible
strategies, defined by the two possible choices: ε = ±1. However, the description of each algorithm
would be different and would not fall within the framework described in the present paper (see
also the discussion in Section 6).

Two phases. There are two phases in the algorithm: the non-degenerate phase, followed by the
degenerate phase (that may be empty). One enters the degenerate phase as soon as the specific
component becomes zero.

Non-degenerate phase. It performs a sequence of steps, each of them being defined by a linear
mapping acting on R (see (6)) as

(9) U : R → R .

On the input R ∈ R, the map U outputs R̂ ∈ R after the following operations:

– The map U divides each non-specific component of a triple by the specific component, and
gives rise to a pair (A,B) of quotients that satisfies either degB > degA ≥ 0 or A = 0.
The quotient pair (A,B) involves integer parts of quotients of components.

– The two cases (according to ε = ±1) yield pairs (A,B) = (Aε(R), Bε(R)) satisfying

(10) A+(R) =

[
R2

R1

]
, B+(R) =

[
R3

R1

]
, A−(R) =

[
R1

R2

]
, B−(R) =

[
R3

R2

]
.

The algorithm then replaces each non-specific component by its remainder in the associated
division.

– After these divisions, the specific component, when it is non-zero, becomes the largest
one (in terms of degrees). By applying possibly a permutation, it is placed at the third
position. The result of the divisions by a quotient pair (A,B), followed by this possible
permutation, defines a matrix Mε(A,B), together with its inverse Nε(A,B), with

(11) M+(A,B) :=

0 0 1
1 0 A
0 1 B

 N+(A,B) :=

−A 1 0
−B 0 1
1 0 0

 (A,B) = (A+, B+) ,

(12) M−(A,B) :=

0 1 A
0 0 1
1 0 B

 N−(A,B) :=

0 −B 1
1 −A 0
0 1 0

 (A,B) = (A−, B−) .

There is again an important remark. The matrices partially re-order the triple R, but
they do not aim to completely re-order it. We indeed wish to stay inside R, which is not
completely ordered. We return to this question in the conclusion of the paper.

– In summary, for any R ∈ R, there exists a triple (ε, Aε, Bε) for which the (old) R is written

in terms of the (new) R̂ as R = Mε(A,B) R̂, and the (new) R̂ = U(R) is written in terms

of the (old) R as R̂ = Nε(A,B)R.

Set of quotients in the non-degenerate phase. Each step of the non-degenerate phase uses
the map U and builds a triple pair (ε, A,B) formed with a sign ε and a pair (A,B) of quotients.
This set of possible quotients, denoted as H, decomposes into two subsets, depending on whether
the component A is zero or not. When A = 0, there is only one division, whereas there are two
divisions for A 6= 0. This is why the two subsets are denoted as H〈i〉, where the index i refers to
the number of divisions that are actually performed. The sets H〈i〉 depend on the algorithm, but
the following always holds

(13) H = H〈1〉 ∪H〈2〉, H〈1〉 ⊂ {0} × G, H〈2〉 ⊂ L ,

(14) with G = {B ∈ Fq[X] | degB ≥ 1}, L := {(A,B) ∈ Fq[X]2 | degB > degA ≥ 0} .
7



Role of R versus R. As in the classical Euclid algorithm, the triple (ε, Aε, Bε) is the same for
any input R′ = λR with λ ∈ F?q . It only depends on the equivalence class of R in the projective
space Π(R) = R. Thus, the mapping U : R → R defines a mapping, also called U, which now
acts on Π(R) = R. This mapping U : R → R admits as inverse branches the linear mappings
Mε(A,B), for (ε, A,B) ∈ H.

As soon as the specific component becomes zero, one enters the degenerate phase, with a subset
D ⊂ R. The subset D is formed with pairs of polynomials (instead of triples), and the algorithm
acts on D as the usual Euclid algorithm. It stops when there remains only one non-zero component
that is monic and that is the gcd of the triple R.

The non-degenerate phase of the algorithm finally entails the decomposition

(15) R = Seq(H)×D .

2.3. A common framework for generalized continued fraction maps. We observe that the
triple (ε, A,B) only depends on the pair (R1/R3, R2/R3) that belongs to (L∩ Fq(X))2. It is then
natural to:

– first, consider the projective version of the map U,
– second, extend this projective version to L2.

The “extending projective” process gives rise to the continued fraction map T, which admits as
branches the homographies that are the projective counterparts of matrices Nε(A,B). As the two
components of f = (f1, f2) ∈ L2 are not a priori ordered, it will be useful to consider the following
two subsets of L2, namely

(16) L2
+ := {(f1, f2) ∈ L2 | deg f1 ≥ deg f2}, L2

− := {(f1, f2) ∈ L2 | deg f1 < deg f2},
and to use the function

(17) η : L2 → {−1,+1} such that η(f1, f2) = +1 if and only (f1, f2) ∈ L2
+ .

Each continued fraction map deals with a function ε which is defined in terms of η via the strategy
of the algorithm (as previously for the case of polynomials). The value T(f) then depends on ε(f)
and is defined via quotients (A,B) which depend on the sign ε and f = (f1, f2), i.e.,

(18) A+(f) =

[
f2

f1

]
, B+(f) =

[
1

f1

]
, A−(f) =

[
f1

f2

]
, B−(f) =

[
1

f2

]
,

and the continued fraction map T associates with the pair f = (f1, f2)

T(f) =


(
f2

f1
−A+(f),

1

f1
−B+(f)

)
if ε(f) = +1(

1

f2
−B−(f),

f1

f2
−A−(f)

)
if ε(f) = −1.

With any quotient (ε, A,B) ∈ H, we associate the homography h(ε,A,B) related to the matrix
Mε(A,B). The fundamental set relative to this quotient is defined as

L2
(ε,A,B) := {f = (f1, f2) | (ε, A,B)(f) = (ε, A,B)} = h(ε,A,B)(L2) ,

and the restriction of T to each L2
ε,A,B is a surjective homography L2

ε,A,B → L2 associated with

the matrix Nε(A,B). Moreover, the following equality holds:⋃
(ε,A,B)∈H

L2
ε,A,B = L2 .

This continued fraction map T provides (by construction) an extension of the projective version
of the linear map U used in non-degenerate phase of the gcd algorithm. When T is applied to a
pair

(f1, f2) ∈ Fq(X)2, with f1 = R1/R3, f2 = R2/R3 and R := (R1, R2, R3) ∈ R,

the trajectory of (f1, f2) under the map T reaches, after a finite number of steps, a point (g1, g2)
where at least one component g1 or g2 is zero. It produces the same sequence of quotients as the
non-degenerate phase of the gcd algorithm on the triple R = (R1, R2, R3).
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Degenerate phase. The gcd algorithm enters the degenerate phase (at a step of index n0) as
soon as there exists a zero component in R = (R1, R2, R3). Then, from index n0 the gcd algorithm
is now the usual gcd algorithm (on two entries). Equivalently, for the continued fraction map T
on the input f , this means that Tn0(f) is either of the form (g1, 0) (case (a)) or (0, g2) (case
(b)). Then, from the index n0, the continued fraction map coincides with the classical continued
fraction map, and the sequence of quotients (Bn)n>0 is the sequence of partial quotients in the
continued fraction expansion of g2 (case (a)) or g1 (case (b)). The matrices used by the (degenerate)
continued fraction map are

Mb(B) =

1 0 0
0 0 1
0 1 B

 [case (b)]; Ma(B) =

0 0 1
0 1 0
1 0 B

 [case (a)] .

Convergents. Consider an element f = (f1, f2) ∈ L2. There are two different cases, depending
on whether the orbit Tn(f) enters the degenerate phase or not.

(i) The orbit Tn(f) stays in the non-degenerate phase. Let Mεk(Ak, Bk) be the matrix that
is used in the k-th iteration of the non-degenerate continued fraction map T on the input
f , for k ≥ 1. The product M[1..n] of all the matrices used in the first n steps is thus

(19) M[1..n] = Mε1(A1, B1)Mε2(A2, B2) · · ·Mεn(An, Bn) .

(ii) The orbit Tn(f) enters the degenerate phase at a step of index n0. This means that Tn0(f)
equals either (0, g2) (case (a)) or (g1, 0) (case (b)). Then, the algorithm continues with the
classical Euclidean algorithm and the sequence (Bn0+k)k≥1 of quotients is the sequence of
partial quotients in the continued fraction expansion of g2 or g1. The matrix produced by
each step of the (degenerate) continued fraction map is thus

Ma(B) =

1 0 0
0 0 1
0 1 B

 , or Mb(B) =

0 0 1
0 1 0
1 0 B

 .

The product M[1..n] of all the matrices used in the first n steps, is thus

(20)
[case (a)] M[1..n] = Mε1(A1, B1) · · ·Mεn0

(An0
, Bn0

)Ma(Bn0+1) · · ·Ma(Bn) ;
[case (b)] M[1..n] = Mε1(A1, B1) · · ·Mεn0

(An0 , Bn0)Mb(Bn0+1) · · ·Mb(Bn) .

In both cases, the triple

(21)

P1,n

P2,n

Qn

 := M[1..n]

0
0
1


gives rise to a pair (P1,n/Qn, P2,n/Qn) that is called the n-th convergent of f . The convergents
(P1,n/Qn, P2,n/Qn) provide rational approximations of f , that converge toward f , as will be seen
in Section 2.8.

Applying the non-degenerate phase of each of the three algorithms to the triple (P1,n, P2,n, Qn) ∈ R
produces the finite sequence Mεk(Ak, Bk)1≤k≤n. Moreover, the intermediate triples, defined asP1,n,k

P2,n,k

Qn,k

 = Mεk+1
(Ak+1, Bk+1) · · ·Mεn(An, Bn)

0
0
1

 , (1 ≤ k ≤ n) ,

lead to the intermediate convergents

(P1,n,k/Qn,k, P2,n,k/Qn,k) of the rational pair (P1,n/Qn, P2,n/Qn).
9



2.4. Each algorithm enters the common framework. Next proposition shows how the com-
mon framework is adapted to each of the three algorithms of interest, namely Jacobi–Perron (in
its two forms), Brun and fully subtractive.

Proposition 1. Each algorithm of interest (gcd algorithm or continued fraction map) enters the
common framework. Each algorithm is defined via a strategic sign ε that is expressed as a function
of the order sign η, defined in (8) or (17). The first line of Table 1 recalls the choice of the strategic
function. Each algorithm uses at each iteration the set H of quotients that decomposes into two
subsets H〈1〉,H〈2〉. Moreover, for the gcd algorithms, the set of inputs is R, defined in (6), the set
of inputs of the degenerate phase is D, and the following bijection holds:

(22) R = Seq(H)×D

involving the set Seq(H) of finite sequences of H.

Table 1 provides the combinatorial description of the four triples T = (H〈2〉,H〈1〉,D), in terms of
the set P defined in (2) together with the sets

(23) L = {(A,B) | degB > degA ≥ 0}, G = {B | degB ≥ 1}, U = {R | R monic}.

Jacobi–Perron Opposite Brun Fully subtractive

Jacobi–Perron

ε +1 −1 η −η
H〈2〉 L L F?q × G L+

(
L \

(
F?q × G

))
H〈1〉 {0} × G {0} × G {0} × G + {0} × G ∅
D P = Seq(G)× U Seq(G)× U {0} × U P + P \ ({0} × U)

Table 1. For each algorithm, this table gives the combinatorial description of
the triple T := (H〈1〉,H〈2〉,D). Here, the sum denotes the combinatorial sum
associated with the union of disjoint copies. In our framework, the copies come
from the two possible values taken by ε.

We observe in Table 1 that the sum of the last two columns is equal to the sum of the first two
columns, or, alternatively, the sum of the last two columns provides twice the first column:

H〈2〉FS +H〈2〉B = 2L = 2H〈2〉JP = H〈2〉JP +H〈2〉JP−
H〈1〉FS +H〈1〉B = 2 ({0} × G) = 2H〈1〉JP = H〈1〉JP +H〈1〉JP−
DFS +DB = 2P = 2DJP = DJP +DJP−

 .

The following combinatorial relation between the four triples T] = (H〈2〉] ,H〈1〉] ,D]) relative to each
algorithm thus holds: TB + TFS = 2 TJP = TJP + TJP− .
We now prove this property that will be called in the sequel the Sum Property. The proof is based
on the strategy of each algorithm and highlights the relations between the algorithms. It will be
useful in the sequel of the paper, in particular in the beginning of Section 4 and during the whole
Section 5.

Proposition 2. The following relation, called the Sum Property, holds between the four triples

T] = (H〈2〉] ,H〈1〉] ,D]) relative to each algorithm:

(24) TB + TFS = 2 TJP = TJP + TJP− .

Proof. We consider the two following maps defined on R

U(1) := UJP ×UJP− , U(2) := UB ×UFS .
10



Each of them outputs a pair in R2 that respectively satisfies, with the choice of ε,

U(1)(R) = (U+(R),U−(R)), U(2)(R) = [[η = 1]](U+(R),U−(R)) + [[η = −1]](U−(R),U+(R)) .

We choose two boolean functions α and β defined onR, and we now consider the two corresponding

maps from R to R. The first one, U
(1)
α , built from U(1) and α, outputs the first component of

U(1) when α = 1, and, otherwise, the second one, which gives

U(1)
α (R) = [[α = 1]] U+(R) + [[α = −1]] U−(R) .

The second one, U
(2)
β , built from U(2) and β, outputs the first component of U(2) when β = 1,

and, otherwise, the second one, which gives

(25)
U

(2)
β (R) = [[β = 1]][[η = 1]] U+(R) +[[β = −1]][[η = 1]] U−(R)

+ [[β = 1]][[η = −1]] U−(R) +[[β = −1]][[η = −1]] U+(R) .

This second map thus satisfies the two relations

(26)
U

(2)
β (R) = [[βη = 1]]U+(R) +[[βη = −1]]U−(R)

U
(2)
β (R) = [[β = 1]] UB(R) +[[β = −1]] UFS(R) .

The two maps U
(1)
α and U

(2)
β are equal as soon as the two booleans α and β are related via the

equality α = β · η. In this case, the first map uses the triple

T (1)
α = [[α = 1]] TJP + [[α = −1]] TJP− = TJP = TJP− ,

that does not depend on the choice of α, whereas the second one uses the triple

T (2)
β = [[β = 1]] TB + [[β = −1]] TFS .

With the two choices α = 1, β = η, then α = −1, β = −η, we obtain the two equalities

T (2)
η = [[η = 1]] TB + [[η = −1]] TFS = TJP , T (2)

−η = [[η = −1]] TB + [[η = 1]] TFS = TJP ,

that finally entails the combinatorial equality TB + TFS = 2TJP , which was to be proved. �

We will now Prove Proposition 1. Before proving it, we first focus on some particular features of
the three algorithms under study.

– First, the quotient pair (A,B) plays a different role in the Jacobi–Perron and in the fully
subtractive algorithms, on the one side, and in the Brun algorithm, on the other side. As
the Brun algorithm divides the largest component by the second largest one, the degree
degA of the quotient A always satisfies degA ≤ 0.

– Second, the degenerate phase of the Brun algorithm is empty.

Note also that, unlike the classical real case for Jacobi–Perron algorithm (see e.g. [30]), there are
no Markov admissibility restrictions on the pairs (Ak, Bk) of quotients that are produced by the
algorithm. In other words, every sequence (+, Ak, Bk), with the pairs of polynomials (Ak, Bk) in
H, is admissible.

Proposition 1 is proved in Sections 2.5, 2.6 and 2.7. Using the description of each algorithm of
interest according to the literature –namely Jacobi–Perron or its opposite version in Section 2.5,
Brun in Section 2.6, fully subtractive in Section 2.7–, we explain, in each case, how it indeed follows
the strategy defined by its strategic sign. We also describe, in each case, the triples (H〈1〉,H〈2〉,D),
and check the equalities of Table 1.
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2.5. Jacobi–Perron and opposite Jacobi–Perron algorithm. We first describe the Jacobi-
Perron algorithm. The description of the opposite Jacobi–Perron algorithm follows by exchanging
the two components R1 and R2. The specific component is either the first component or the second
one (for the opposite case). We first describe the algorithm, and then, the associated continued
fraction map.

Gcd algorithm. We start with an element R(0) ∈ R. At each step k, the specific component is
the first component R1 of the triple R. Hence, during each step of the non-degenerate phase, the
first component R1 is not zero, and the algorithm divides the last two components R2 and R3 by
the specific component R1. The largest component then becomes R1, that we thus choose as the

third component of the next triple R̂. A step of the Jacobi–Perron algorithm performs
R1 = R̂3

R2 = AR̂3 + R̂1

R3 = B R̂3 + R̂2

with A = A+(R) =

[
R2

R1

]
, B = B+(R) =

[
R3

R1

]
.

We are always in the case where ε = +.

In matricial notation, this can be written as R = M+(A,B) R̂, R̂ = N+(A,B) .

In the same vein, for the opposite version, the specific component is the second component R2 of
the triple R and the algorithm performs

R2 = R̂3

R1 = AR̂3 + R̂2

R3 = B R̂3 + R̂1

with A = A−(R) =

[
R1

R2

]
, B = B−(R) =

[
R3

R2

]
.

We are always in the case where ε = −.

In matricial notation, this gives R = M−(A,B) R̂, R̂ = N−(A,B) .

In both cases, the inequality between the two non-specific components (degR2 < degR3 for the
Jacobi-Perron algorithm or degR1 < degR3 for the opposite version) always holds. Moreover, the
following holds:

– For the Jacobi-Perron algorithm, consider the quotient A = [R2/R1];
– when degR1 ≤ degR2, the quotient A is not zero, and 0 ≤ degA < degB;
– when degR1 > degR2, the quotient A is equal to zero and only one division is

performed.
– For the opposite version, consider the quotient A = [R1/R2];

– when degR2 ≤ degR1, the quotient A is not zero, and 0 ≤ degA < degB;
– when degR2 > degR1, the quotient A is equal to zero and only one division is

performed.

In both cases, the sets H〈i〉, the set D and the sign ε satisy
H〈1〉 = {0} × G = {0} × {P ∈ Fq[X] : degB ≥ 1},
H〈2〉 = L = {(A,B) | 0 ≤ degA < degB},
D = P = Seq(G)× U ,
ε = +1 = η2.

Furthermore, the Jacobi–Perron algorithm yields the bijection (15).

Continued fraction map. The associated continued fraction map TJP is then defined on L2 as7

TJP(f) = (0, 0), (f1 = 0), TJP(f) =

(
f2

f1
−A(f),

1

f1
−B(f)

)
(f1 6= 0) ,

with A(f) = A+(f) =

[
f2

f1

]
, B(f) = B+(f) =

[
1

f1

]
.

We only describe the map for the Jacobi-Perron algorithm. The description of the opposite
version will be clear. The continued fraction map TJP provides an extension of the non-degenerate

7We use the following convention: the quantity
[
f
g

]
is set to 0 if g = 0.
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phase of the Jacobi–Perron gcd algorithm, in the following sense: when TJP is applied to a pair
f = (f1, f2) ∈ Fq(X)2 of the form

f1 = R1/R3 and f2 = R2/R3 with R = (R1, R2, R3) ∈ R,

the trajectory of f = (f1, f2) under TJP is finite and provides the same sequence of quotients as
the non-degenerate phase of Jacobi–Perron gcd algorithm on the triple R = (R1, R2, R3).

2.6. The Brun algorithm. The specific component is the second largest component (in terms
of degree). We describe the algorithm and then, the associated continued fraction map.

Gcd algorithm. The specific component here is the second largest component with respect to
the degree (provided it is not zero). When R ∈ R, the specific component is either R1 or R2. In
case of equality of the degrees, i.e., when degR1 = degR2, the choice of the specific component is
made according to the sets R± defined above in (7).
When the second largest component is equal to zero, this means that the two components R1, R2

are both equal to zero and the algorithm ends. The degenerate phase thus does not exist.

For each step, there are two cases according to the position of R with respect to sets R±.

– Assume first that R belongs to R+, i.e., degR1 ≥ degR2 (η(R) = +1). The specific
component is R1 and the algorithm performs

R1 = R̂3

R2 = AR̂3 +R̂1

R3 = B R̂3 +R̂2

with A =

[
R2

R1

]
, B =

[
R3

R1

]
.

We are in the case ε = +1.
In matricial notation, this gives R = M+(A,B) R̂, R̂ = N+(A,B)R.
In this case, the quotients (A,B) belong to the set

{(A,B) | A ∈ Fq, degB ≥ 1} = Fq × G.
When degR1 > degR2, then A = 0, and only one division is performed. When degR1 =
degR2, two divisions are performed and A ∈ F?q .

– Otherwise, when R belongs to R−, i.e., degR1 < degR2 (η(R) = −1), the specific com-
ponent is R2, there is only one division that is performed and the algorithm is written
as 

R1 = AR̂3 +R̂2 = R̂2

R2 = R̂3

R3 = B R̂3 +R1

with A = 0 =

[
R1

R2

]
, B =

[
R3

R2

]
.

We are in the case ε = −1.
In matricial notation, this gives R = M−(A,B) R̂, R̂ = N−(A,B)R.
The quotients (A,B) belong to the set

{(A,B) | A = 0, degB ≥ 1} = {0} × G.
In summary. The sets H〈i〉, the set D, and the sign ε satisfy

H〈1〉 = {0} × G + {0} × G
H〈2〉 = F?q × G
D = U
ε = η

and Brun’s algorithm yields the bijection (15).

Continued fraction map. As the equality ε = η always holds, the associated continued fraction
TB is defined on L2 as follows:

TB(f) =


(
f2

f1
−A+(f),

1

f1
−B+(f)

)
if η(f) = +1 ,(

1

f2
−B−(f),

f1

f2
−A−(f)

)
if η(f) = −1 ,

and if the involved denominator (f1 or f2) is equal to 0, then TB(f) := (0, 0).
13



The continued fraction map TB provides an extension of the non-degenerate phase of the Brun
gcd algorithm, in the following sense: when TB is applied to a pair (f1, f2) ∈ Fq(X)2 of the form

f1 = R1/R3 and f2 = R2/R3 with R = (R1, R2, R3) ∈ R,

the trajectory of (f1, f2) under TB is finite and provides the same sequence of quotients as the
(non-degenerate phase of the) Brun gcd algorithm on the triple R = (R1, R2, R3).

2.7. The fully subtractive algorithm. The specific component is the component of smallest
degree.

Gcd algorithm. When the smallest component is non-zero, the algorithm chooses it as the specific
component, divides the two largest components by the smallest one and, after such divisions, the
smallest one becomes the largest one, and thus the third component. The degenerate phase begins
when the smallest component is zero.

Non-degenerate phase. We first consider the non-degenerate phase where each of the two
components of the pair (R1, R2) is non-zero, and, as for the Brun algorithm, we distinguish two
cases according to the ordering of the degrees of the first two components.

– If R ∈ R+, i.e., degR1 ≥ degR2 (η(R) = +1), the specific component is R2 and the
algorithm performs

R1 = AR̂3 +R̂2

R2 = R̂3

R3 = B R̂3 +R̂1

with A =

[
R1

R2

]
, B =

[
R3

R2

]
.

We are in the case ε = −.
In matricial notation, this yields R = M−(A,B) R̂, R̂ = N−(A,B)R.
In this case, two divisions are performed, and the quotients (A,B) belong to the set

L = {(A,B) | degB > degA ≥ 0}.
– If now R ∈ R−, i.e., degR1 < degR2 (η(R) = −1), the specific component is R1 and the

algorithm performs
R1 = R̂3

R2 = AR̂3 +R̂1

R3 = B R̂3 +R̂2

with A =

[
R2

R1

]
, B =

[
R3

R1

]
.

We are in the case ε = +.
In matricial notation, this writes R = M+(A,B) R̂, R̂ = N+(A,B)R .
In this case, two divisions are performed and the quotients (A,B) belong to the set

{(A,B) | degB > degA ≥ 1} = L \
(
F?q × G

)
.

Finally, the quotients (A,B) which occur in the non-degenerate phase belong to the set

H = H〈2〉 ∪H〈1〉 with H〈1〉 = ∅, H〈2〉 = L+
(
L \

(
F?q × G

))
.

Degenerate phase. The set D decomposes as D+ ∪ D− with D± = D ∩R±, i.e.,{
D+ = {(R1, R3) | R1 = 0 or degR1 < degR3, R3 monic} = P
D− = {(R2, R3) | R2 6= 0, degR2 < degR3, R3 monic} = P \ ({0} × U) .

The difference between the two cases is due to the inequality between degR1 and degR2 which
may be strict or not (depending on whether we are in R− or in R+).

In summary. The sets H〈i〉, the set D, and the sign ε are
H〈1〉 = ∅
H〈2〉 = L+

(
L \

(
F?q × G

))
D = P + P \ ({0} × U)
ε = −η

and the fully subtractive algorithm yields the bijection (15).
14



The continued fraction map. As the equality ε = −η always holds, the associated continued
fraction TFS is defined on L2 as follows:

TFS(f1, f2) =


(

1

f2
−B−(f),

f1

f2
−A−(f)

)
if η(f) = +1 ,(

f2

f1
−A+(f),

1

f1
−B+(f)

)
if η(f) = −1 .

If the involved denominator (f1 or f2) is equal to 0, TFS(f1, f2) := (0, 0).
The continued fraction map TFS provides an extension of the non-degenerate phase of the FS gcd
algorithm, in the following sense: when TFS is applied to a pair f = (f1, f2) ∈ Fq(X)2 of the form

f1 = R1/R3 and f2 = R2/R3 with R = (R1, R2, R3) ∈ R,

the trajectory of f = (f1, f2) under TFS is finite and provides the same sequence of quotients as
the non-degenerate phase of the FS gcd algorithm on the triple R = (R1, R2, R3).

2.8. Convergence of the algorithms. This section relates the behaviour of the algorithms on
polynomials and on continued fractions. It proves that the convergents defined in (21) provide
rational approximations of f that converge toward f . The convergence of the algorithms plays a
central role in the context of simultaneous rational approximation.

Proposition 3. The convergents (P1,n/Qn, P2,n/Qn) defined in (21) provide rational approxima-
tions of f = (f1, f2), and the following holds

(27)

∥∥∥∥fi − Pi,n
Qn

∥∥∥∥ < 1

‖Qn‖
.

This is a well-known property for the Jacobi–Perron algorithm (see [26, 27]) and for the Brun
algorithm (see [3, 17]). We give here a unified proof that applies to each of the three algorithms.

Proof. We first recall that the third column of the matrix M[1..n] defined in (19) or (20) is equal
to (P1,n, P2,n, Qn). We also consider the inverse matrix N[1..n] of M[1..n]. We let denote by

m
(n)
ij the coefficient of M[1,n] at the i-th row and j -th column, and by n

(n)
ij the coefficient of

N[1,n] at the i-th row and j -th column. The product matrix M[1..n] involves as factors the
matrices Mεk(Ak, Bk) (with εi = ±1), or –depending on the case (a) or (b)– a sequence of matrices
Ma(B), or a sequence of matrices Mb(B). In a similar way, the product matrix N[1..n] involves
as factors the matrices Nεk(Ak, Bk) (with εi = ±1), or –depending on the case (a) or (b)– a
sequence of matrices Na(B) = Ma(B)−1, or a sequence of matrices Nb(B) = Mb(B)−1. Moreover,

since all these matrices have a determinant equal to ±1, the coefficient n
(n)
ij is, up to the sign,

a determinant of the matrix M[1..n]. More precisely, if the indices (i1, i2) and (j1, j2) satisfy
{i1, i2, i} = {j1, j2, j} = {1, 2, 3}, one has

n
(n)
ij = ±(m

(n)
i1j1

m
(n)
i2j2
−m(n)

i1j2
m

(n)
i2j1

) .

The proof is based on the following lemma:

Lemma 1. The following relations hold

degm
(n)
33 = degQn, degm

(n)
ij < degQn for (i, j) 6= (3, 3), ∆n := max

(
deg n

(n)
ij

)
≤ degQn .

Proof. It is based on the particular form of the matrices Mε(A,B), Nε(A,B), Ma(B),Mb(B),
Na(B), Nb(B) and is easily proven by induction on n. �

The estimate (27) is now deduced from the lemma: Starting with f = (f1, f2) ∈ L2, we let denote
by g = (g1, g2) the vector g = Tn(f). One has:∥∥∥∥fi − Pi,n

Qn

∥∥∥∥ =

∥∥∥∥∥m(n)
i1 g1 +m

(n)
i2 g2 +m

(n)
i3

m
(n)
31 g1 +m

(n)
32 g2 +m

(n)
33

− m
(n)
i3

m
(n)
33

∥∥∥∥∥
=

∥∥∥g1

(
m

(n)
i1 m

(n)
33 −m

(n)
31 m

(n)
i3

)
+ g2

(
m

(n)
i2 m

(n)
33 −m

(n)
32 m

(n)
i3

)∥∥∥
‖m(n)

33 ‖ · ‖m
(n)
31 g1 +m

(n)
32 g2 +m

(n)
33 ‖
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Lemma 1 entails the ultrametric equality

‖m(n)
31 g1 +m

(n)
32 g2 +m

(n)
33 ‖ = ‖m(n)

33 ‖
and the denominator is thus equal to ‖Qn‖2. For the numerator and for i = 1, one has

m
(n)
11 m

(n)
33 −m

(n)
31 m

(n)
13 ) = ±n(n)

22 , m
(n)
12 m

(n)
33 −m

(n)
32 m

(n)
13 = ±n(n)

21 ,

whereas, for i = 2, one has

m
(n)
21 m

(n)
33 −m

(n)
31 m

(n)
23 = ±n(n)

12 , m
(n)
22 m

(n)
33 −m

(n)
32 m

(n)
23 = ±n(n)

11 .

Then, Lemma 1 entails that the absolute value of the numerator is less than ‖Qn‖ and then∥∥∥∥fi − Pi,n
Qn

∥∥∥∥ ≤ ‖Qn‖‖Qn‖2
=

1

‖Qn‖
.

�

3. Models, methodology and main results

The sequel of the paper is devoted to probabilistic analyses, in two different frameworks:

– the gcd algorithms (that act on R) in Section 4; here, one deals with discrete inputs
(polynomials), and the probabilistic model is called the discrete model;

– their associated continued fraction maps (that act on L2) in Section 5; here, one deals
with continuous inputs, and the probabilistic model is called the continuous model.

First, Sections 3.1 and 3.2 describe the costs of algorithmic interest in each model (algorithms
and continued fraction maps). Then, we focus on each model, the discrete one in Section 3.3 and
the continuous model in Section 3.4. In each section, we make precise the probabilistic model,
describe the methodogy that will be developed there, and state the main results obtained. We
then focus in Section 3.5 on asymptotic Gaussian laws that play a central role in the paper. The
last two sections perform a comparaison between the models (in Section 3.6) and the algorithms
(in Section 3.7).

3.1. Main costs for the gcd algorithms. We consider seven costs which intervene in a natural
way in the complexity of the non-degenerate phase of the three algorithms under study.

Remark. We focus here on the non-degenerate phase for two reasons. First, we want to compare
the probabilistic behaviours of truncated trajectories with the behaviour of the algorithms on
polynomials, and, truncated trajectories only involve the degenerate phase with zero probability.
Second, and this is related to the previous remark, the non-degenerate phase on polynomials has
costs that are of strictly larger order than the degenerate phase. We return to this fact at the
beginning of Section 4.5.

We first consider total costs C that give a measure of the total complexity of the degenerate phase.
There are two main cases:

– The first case deals with total costs C that are called additive. They are defined via step-
costs c that intervene in each step as a measure of the complexity of this step R 7→ U(R)
and that only depend on the quotient Q(R) := (A,B) produced during this step. We then
let ĉ(R) := c(Q(R)). We give below five instances of such interesting costs c (see (28)).

– The second case deals with bit-complexites.

In the first case, we consider five step-costs c, defined on the pair (A,B) of quotients, namely

(28)
(i) c0(A,B) = 1 (ii) d(A,B) = 1 + [[A 6= 0]]
(iii) dB(A,B) = degB
(iv) δ(A,B) = δ(A) + δ(B) (v) ν(A,B) = ν(A) + ν(B).

Here, δ(W ) et ν(W ) denote respectively the number of monomials which are possibly present in
the polynomial W and ν(W ) the number of monomials which are indeed present in the polynomial
W . More precisely, for a non-zero polynomial W ∈ Fq[X] of the form

W = wnX
n + wn−1X

n + · · ·+ w1X + w0, with wn 6= 0,
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one has δ(W ) = deg(W ) + 1 = n+ 1, ν(W ) = Card{k | 1 ≤ k ≤ n, wk 6= 0} .
Note that ν(W ) ≥ 1 at soon as W 6= 0. One moreover sets δ(0) = ν(0) = 0.

The total costs associated with these step-costs are described as follows: one has for

(i) the number S(R) of steps;
(ii) the total number of divisions;
(iii) the degree degR3;
(iv) or (v) the total space that is needed for the storage of all the quotients with two
possibilities depending on the representation of polynomials, the usual one for (iv) and
the sparse one for (v).

On an input R, the total cost C is written as

(29) C(R) =

S(R)−1∑
i=0

ĉ (Ui(R)), with ĉ(S) := c(Q(S)) ,

where Q(S) is the pair (A,B) of quotients produced on S.

The last two costs (the bit-complexity costs) rely on two different notions of bit-complexity of a
polynomial division of the form R = AR′ +R′′, namely

– the usual bit-complexity equals δ(A) · δ(R′),
– the sparse8 bit complexity equals ν(A) · δ(R′).

Then, there are two versions of the total bit-complexity of the algorithm on the input R, namely
the total bit-complexity and the total sparse bit-complexity, that are respectively equal to

Φδ(R) =

S∑
k=1

δ(Rk,3) (δ(Ak) + δ(Bk)) , Φν(R) =

S∑
k=1

δ(Rk,3) (ν(Ak) + ν(Bk)) ,

where (Rk,1, Rk,2, Rk,3)k stands for the sequence of polynomials in R produced by the algorithm.
The additive formula degRk,3 = degBk + degRk−1,3 entails another form for these complexities
that only involves δ(Ak), ν(Ak), δ(Bk), ν(Bk). We will return later to this important remark (see
Section 5.5).

Remark. These costs provide realistic measures of the complexity when the cardinality q of the
field Fq is fixed. When the cardinality q varies, and in particular when q → ∞, this cardinality
must be taken into account and the costs δ, ν,Φδ,Φν are replaced by their “underlined” conterparts

δ := (log q) δ, ν := (log q) ν, Φδ := (log q)2 Φδ, Φν := (log q)2 Φν .

3.2. Main costs for the continued fraction maps. With f = (f1, f2) ∈ L2, we associate its
trajectory and its truncated trajectory at level n defined as

(f,T(f),T2(f), · · · ,Tn(f), · · · ), (f,T(f),T2(f), · · · ,Tn(f)) .

We consider total costs Cn that give a measure of the total complexity of the truncated trajectory.
As previously, there are two main cases:

– The first case deals with total costs Cn that are called additive. They are defined via
step-costs c that intervene in each step of the trajectory as a measure of the complexity
of the generic step f 7→ T(f) and only depend on the quotient Q(f) := (A,B) produced
in this step. One then lets ĉ(f) := c(Q(f)). The instances of the step-costs c are the same
as previously, and are described in (28).

– The bit-complexites which do not enter the previous case.

In the first case, the total costs associated with the step-costs given in (28) are described as follows:
one has for

(i) the length n of the trajectory;
(ii) the total number of divisions performed;

8Sparse complexity is called fine complexity in [7]. We have chosen here the term “sparse” which better reflects

what this cost aims to describe.
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(iii) the degree degQn of the denominator of the n-th convergent (P1,n/Qn, P2,n/Qn) of
the input f ;
(iv) or (v) the space that is needed to store the continued fraction expansion, with two
versions: the usual storage for (iv) or the sparse storage for (v).

On an input f , the total cost Cn(f) is written as

(30) Cn(f) =

n−1∑
i=0

ĉ (Ti(f)) , with ĉ(g) := c(Q(g)) ,

where Q(g) is the pair (A,B) of quotients produced on g.

In the second case, we are interested in the bit-complexities that are needed for computing the
n-th convergent, depending on the representation (usual or sparse) of the quotients associated
with cost c = δ or c = ν, namely

Φc;n(f) :=

n∑
k=1

[c(Ak(f)) + c(Bk(f)] δ(Qk−1(f)) .

Remark. As in the discrete model, these costs are well adapted when the cardinality q of the field
Fq is fixed. When the cardinality q varies, and in particular when q →∞, we replace δn, νn,Φδ,Φν
by their “underlined” conterparts

(31) δn := (log q) δn, νn := (log q) νn, Φδ;n := (log q)2 Φδ;n Φν;n := (log q)2 Φν,n .

3.3. The discrete model. We first describe the model, then the methods, and finally the results.

Discrete model on R. The size of a triple R = (R1, R2, R3) ∈ R is chosen as the maximum
degree of its three components, namely degR3. The finite set Rm
(32) Rm := {R := (R1, R2, R3) | m = degR3 > max(degR1, degR2), R3 monic }

gathers triples of polynomials with size m, and is endowed with the uniform probability Pm.

We wish to study the probabilistic behaviour of each of the seven costs C ∈ {c0, d, dB , δ, ν,Φδ,Φν}
defined on R and related to the behaviour of a gcd algorithm, notably when the size m of the
input tends to ∞. More precisely, we consider the restriction Cm of C to each Rm, and we let
denote its expectation by E[Cm] and its variance by V[Cm].

Methods. [Analytic combinatorics] We use methods from analytic combinatorics, which we briefly
describe here informally. The reference is the book of Flajolet and Sedgewick [11].

We consider each subset X of Table 1. There is a natural notion of size, denoted as || · || and
defined here as the maximum degree. There is also a cost c defined on X , as described in Section
3.1. We associate with X its (plain) generating function (gf) and its bivariate generating function
(bgf), defined as

X(z) :=
∑
x∈X

z||x|| =
∑
n≥0

Xnz
n Xc(z, u) :=

∑
x∈X

z||x||uc(x) =
∑
n,k

Xn,kz
nuk ,

where the coefficients Xn and Xn,k are respectively the number of elements of size n, and the
number of elements of size n with cost equal to k. They are respectively denoted as [zn]X(z) and
[znuk]X(z, u).

There are two steps in analytic combinatorics: the symbolic step and the analytical step. The
symbolic step views a generating function as a formal object, and builds gf’s with a symbolic
dictionary. The analytic step views a generating function as a function of one complex variable z,
and uses an analytic dictionary, between the (dominant) singularity of a gf and the asymptotics
of its coefficients.

The symbolic step is the main tool for obtaining Tables 2 and 3. It deals with the gf’s with their
initial combinatorial definition and transfers the main combinatorial operations into operations
on gf’s. These combinatorial operations are the combinatorial (disjoint) sum X + Y, the product
X × Y, the class Seq(X ) of the finite sequences built on X . They translate as X(z) + Y (z),
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X(z) · Y (z) and finally as 1/(1 − X(z)). These are instances provided in Table 2. This finally
transfers the combinatorial equality (15) into the equality (36), i.e.,

R = Seq(H)×D into R(z) =
D(z)

1−H(z)
.

There are also extensions for bgf’s, notably when they are relative to additive costs in the sense
of Section 3.1. Then the bivariate generating function of the total cost is a quasi-inverse of the
bivariate generating function of the step cost. We thus obtain Eqn (49).

The analytic step considers a generating function as a function of the complex variable z, and deals
with it. The study of its dominant singularity (the singularity with the smallest module), and
notably, its location and its nature, provide asymptotic information on the coefficients of the gf’s
or bgf’s. Here, all the generating functions are rational fractions and their dominant singularities
are always dominant simple poles. Then, the following simple analytic transfers hold

X(z) has a simple dominant pole at z = ρ =⇒ [zm]X(z) ∼m→∞ B · ρ−m
X(z, u) has a simple dominant pole at z = ρ(u) =⇒ [zm]X(z, u) ∼m→∞ B(u)ρ(u)−m

for some constants B,B(u).

As the expectation E[uCm ] is written as E[uCm ] = [zm]X(z,u)
[zm]X(z) , the analytic step yields the estimate

(33) E[uCm ] ∼ B(u)

B

[
ρ

ρ(u)

]m
,

that may give interesting hints on the distribution of Cm. With extra hypotheses on the previous
estimates (33) (mainly, good analytic properties, a good knowledge about remainder terms, and
a so-called condition of “variability” on the function ρ/ρ(u)), we will see in Section 3.5 that this
indeed entails that the distribution is asymptotically Gaussian. We return to this notion in Section
3.5.

Results. Our results are as follows (see Theorem 1 and Proposition 7):

– For each of the three algorithms and for each additive cost C associated with a step-cost
c, the expectations E[Cm] and variances V[Cm] are asymptotically linear with respect to
the size m, and involve constants Mc = Mc,], Vc = Vc,], with

E[Cm] ∼Mcm, V[Cm] ∼ Vcm.

Moreover, the expectation of each bit-complexity cost Φδ or Φν is asymptotically quadratic
with respect to the size m, and satisfy

E[Φδ,m] ∼Mδ
m2

2
, Em[Φν,m] ∼Mν

m2

2
.

We provide precise expressions for the dominant constants Mc = M],c and Vc = V],c in
terms of the pair (], c) formed by the algorithm and the cost (see Table 6 and Proposition
7).

– Second, for each of the three algorithms and for each of the four additive costs C associated
with step-cost c ∈ {c0, d, δ, ν}, an asymptotic Gaussian law holds (see Section 3.5 and
Theorem 1).

3.4. The continuous model. We first describe the model, then the methods, and finally the
results.

Continuous model on L2. Here, the set L2 is endowed with its Haar measure, which involves
the Haar measure µ on L and is here µ⊗ µ. We consider a continued fraction map T and a cost
c ∈ {c0, dB , d, δ, ν}. This gives rise to a cost Cn defined on the n-th truncated trajectory, as in
Section 3.2. We are interested in the behaviour of the cost Cn(f) on the truncated trajectory at
level n, when the level n of truncature tends to ∞.

Methods. [Dynamical analysis] We view each continued fraction map as a dynamical system.
We associate with this dynamical system its transfer operators, here the density transformer (i.e.,
the Perron–Frobenius operator) defined in (74), together with its bivariate version defined in (78).

19



Here, the branches of map T are homographies, whose Jacobian has a constant absolute value.
This entails that the map T is µ⊗µ invariant and the quotients define independent and identically
distributed random variables. Furthermore, the (bi-variate) transfer operator that underlies the
dynamical system is closely related to the (bi-variate) generating function of the discrete model.

Results. Our results are as follows (see Theorem 3 and Propositions 9 and 10):

– Each of the three continued fraction maps T = T] is µ ⊗ µ preserving and ergodic, with
an entropy E(T).

– The cost Cn(f) satisfies the following: For each additive cost C, the cost (1/n)Cn(f)
admits almost everywhere a constant limit, and for each bit-complexity cost C, the cost
(1/n2)Cn(f) also admits almost everywhere a constant limit. In both cases, this limit is

denoted by M̃c.
– For each continued fraction map and each additive cost c, the following relation holds

between the two constants of the expectations (the discrete constant and the continuous
constant):

3Mc = M̃c · E(T) ;

it involves the entropy E(T) that is furthermore equal to 3Eµ⊗µ[dB ].

– For each continued fraction map, and for each cost c ∈ {dB , d, δ, ν}, the associated cost
Cn follows a Gaussian law, except in the case (FS, d) where the cost d (the number of
divisions that are performed) is constant and equal to 2 (see Theorem 3). Moreover, we

provide expressions for the constants Ṽc involved in the variance (see Table 8).

3.5. Gaussian laws, exact or asymptotic. We begin with some generalities on Gaussian laws,
that may be exact, or asymptotic.

We first consider a sequence (Cn)n of random variables. It is well known that, if Cn is a sum
X1 +X2 + · · ·+Xn of n random variables independent and of the same distribution as X, then the
equality E[uCn ] =

(
E[uX ]

)n
holds and Cn follows an exact Gaussian law. This situation happens

in the continuous model, as described in Section 3.4.

There are many cases where a sequence (Cm)m of variables has a distribution that does not lead
to an exact power for E[uCm ], but only to a “Quasi-Powers” phenomenon (as called by Hwang
[15] who introduced it). In this Quasi-Powers framework, the estimate

E[uCm ] = K(u)A(u)m (1 +O(εm)) , εm → 0

holds on a complex neighbourhood of u = 1, with analytic functions K(u), A(u) and a uniform
remainder O(εm). This situation is omnipresent in analytic combinatorics. It indeed occurs, here,
in the discrete model, for most of the additive costs under study. When a supplementary condition,
called the admissibility condition, is fulfilled by the first two derivatives of the function A(u) at
u = 1, it may be proven that Cm follows an asymptotic Gaussian law. We now recall the definition
in the framework of the discrete model.

Definition. Consider the set R of inputs, the sequence (Rm) of subsets of the inputs of size m
endowed with the uniform probability P and a cost C : R → R+.
The sequence (Cm)m of the restrictions of C to Rm is said to follow an asymptotic Gaussian law
if there exist

– two sequences of real numbers (am), (bm),
– a sequence (rm) of functions rm : R→ R, with limm→∞ sup{rm(y) | y ∈ R} = 0

for which the following holds:

P
[
R ∈ Rm |

Cm(R)− am√
bm

≤ y
]

=
1√
2π

∫ y

−∞
e−t

2/2dt+ rm(y).

The expectation E[Cm] and the variance V[Cm] of the cost Cm then satisfy

E[Cm] ∼ am, V[Cm] ∼ bm.
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In Section 4.6, we will provide a theorem, called Theorem A, that is ready for use in our framework
and entails that the Quasi-Powers framework holds. If moreover the admissibility condition on
A(u) is fulfilled, we then obtain an asymptotic Gaussian law.

3.6. Comparison between the models. Even though the two probabilistic models are different,
they study, in both cases, the cost of trajectories, as seen from (29) and (30). In the discrete model,
the trajectories deal with discrete inputs (polynomial triples of R) and they stop as soon as they
reach an element of D, after a finite number of steps S = S(R) which is a random variable,
depending on the input R ∈ R. In the continuous model, the trajectories deal with continuous
inputs (pairs f ∈ L2), and they are truncated in a deterministic way, after a given number n of
steps, which does not depend on the inputs.

However, we establish the following strong relation between the two models, that already holds in
the one-dimensional case, both in the real and the polynomial case (see for instance [32]):

The finite trajectories of the discrete model behave on average exactly in the same
way as the truncated trajectories of the continuous model behave everywhere.

This relation is strongly based on the relation between the bivariate generating function Hc(z, u)
relative to the step-cost c, and the transfer operator Hc,u associated with the same cost: as proved
in (79), the dominant eigenvalue of the operator Hc,u equals Hc(1/q

3, u).

3.7. Comparison between the algorithms. We use the estimates shown in Tables 6 and 8 to
compare the three algorithms under study.

– The constants Mc, M̃c, Vc, Ṽc are rational fractions in q with integer coefficients.

– The constants Mc or M̃c are in Θ(1) when q → ∞ and their limit (for q → ∞) depends
neither on the algorithm nor on the model, with

Mc0 ∼ 1, MdB ∼ M̃dB ∼ 2, Md ∼ M̃d ∼ 1, Mδ ∼ M̃δ ∼Mν ∼ M̃ν ∼ 3.

– The constants for the variance Vc in the discrete model exhibit two possible behaviours:
the fully subtractive and the Jacobi–Perron algorithms have all their variance constants
Vc in Θ(1/q) when q → ∞, whereas they are in Θ(1) for the Brun algorithm. Moreover,
the behaviour of the variances of the Jacobi–Perron and the fully subtractive algorithms
are very close. They both satisfy

qVc0 ∼ 1, qVδ ∼ 2, qVν ∼ 3,

and they slightly differ for the cost d, with

qVd ∼ 5 (JP), qVd ∼ 8 (FS).

– The variance constants Ṽc in the continuous model are in Θ(1/q) with various possible

limits for qṼc. However, there are two exceptions: first, for the FS algorithm, as the cost

d is constant and equal to 2 (there are always two “real”divsions), the constant Ṽd is zero;

second, for the Brun algorithm, the constant ṼdB is in Θ(1/q2), a sort of reminiscence of
the discrete case, where the constant VdB is zero.

4. Probabilistic analysis of the three gcd algorithms

The present section is devoted to the discrete case, and we analyse the behaviour of the three
gcd algorithms on polynomials. As already mentioned, this is the first analysis conducted in this
case. We use here analytic combinatorics, and, as recalled in Section 3.3, the main tools are
generating functions (gf in short), first plain gf’s, then bivariate gf’s, and even trivariate gf’s.

We first recall the analytic combinatoric framework for the classical Euclid algorithm in Section
4.1. We continue with three sections that implement the symbolic step (as described in Section
3.3). After Section 4.2 that describes the plain generating functions, the next three sections
are devoted to bivariate generating functions (bgf’s). Our final object of interest are the total
costs defined in Section 3.1 and we are mainly interested in their bgf’s, obtained in Proposition
6; however, we proceed by steps: first basic bgf’s in Section 4.3 with Proposition 4, then bgf’s
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associated with a step-cost in Section 4.4 with Proposition 5, and finally bgf’s associated with a
total cost in Section 4.5. We indeed view most of them as trivariate generating functions (tgf’s).

The next three sections are devoted to the analytic step of analytic combinatorics (see Section
3.3). We first state in Section 4.6 that an asymptotic Gaussian law holds for additive costs (see
Section 3.5 for a definition); the proof of the result is done in the next two sections. Section 4.7
performs the general computations needed, then Section 4.8 applies the previous computations
to each pair (algorithm, cost) and obtain constants that intervene in the mean values and in the
variances.

The section ends with a study of the bit complexities in Section 4.9.

4.1. Generating functions for the classical Euclid algorithm. We deal with the set

P = {(R1, R2) ∈ F2
q[X] | degR1 < degR2, R2 monic} ,

and the size of a pair R is the maximum degree of its two components, namely degR2. The subset
of the elements of P of size n (i.e., degR2 = n) has cardinality

qn ·

(
1 +

n−1∑
m=0

(q − 1)qm

)
= q2n,

and the generating function P (z) of P is

P (z) :=
∑
n≥0

q2nzn =
1

1− q2z
.

The set G of possible quotients and the set U of possible gcd’s are described in (3) and their
generating functions are

(34) G(z) = (q − 1)

(
1

1− qz
− 1

)
=

(q − 1)qz

1− qz
, U(z) =

1

1− qz
.

Due to (4), and the symbolic method, Euclid’s algorithm decomposes the generating function P (z)
of the inputs as

(35) P (z) =
U(z)

1−G(z)
.

4.2. Plain generating functions for the three algorithms. The size of a tripleR = (R1, R2, R3) ∈
R is the maximum degree of its three components, namely degR3. The finite setRm gathers triples
of polynomials of size m as

Rm := {R := (R1, R2, R3) | m = degR3 > max(degR1, degR2), R3 monic } .

Its cardinality is equal to

qm ·

(
1 +

m−1∑
k=0

(q − 1)qk

)2

= q3m ,

and the generating function R(z) of R is thus

R(z) :=
∑
m≥0

q3mzm =
1

1− q3z
.

With the bijection (15), together with the principles of the symbolic method, the generating
function R(z) of the inputs decomposes as the product of two terms, namely

(36) R(z) =
1

1− q3z
=

D(z)

1−H(z)
.

Here, the generating function D(z) of the set D is easily obtained from its combinatorial description
given in Table 1, that is transferred, via the symbolic step, into the third line of Table 2. Moreover,
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the generating function H(z) of the set H of quotients (where the size of a quotient (A,B) is the
largest degree of the pair, i.e., degB) involves the generating function L(z) of the set L:
(37)

L(z) =
∑

(A,B)∈L

zdegB =
∑
n≥1

(q − 1)qnzn
n−1∑
m=0

(q − 1)qm = (q − 1)
∑
n≥1

(qz)n(qn − 1) = G(zq)−G(z) .

Finally, in the three cases, H(z) is expressed with G(z) and G(zq), as seen from the first two lines
of Table 2. In the three cases, we may check by computation the equality (36), that itself entails
the following two equalities at z = 1/q3:

(38) H(1/q3) = 1, (1/q3)H ′(1/q3) = D(1/q3) .

Jacobi–Perron Brun Fully subtractive

H(z) L(z) +G(z) (q + 1)G(z) 2L(z)− (q − 1)G(z)

= G(zq) = (q + 1)G(z) = 2G(zq)− (q + 1)G(z)

D(z) P (z) U(z) 2P (z)− U(z)

Table 2. Expressions of the plain generating functions in terms of L(z) and
G(z). As seen from the Sum Property of Proposition 2, the sum of the last two
columns is equal to twice the first column.

4.3. Basic bivariate generating functions. The plain generating function H(z) of H, relative
to the size degB = max(degB, degA), does not take into account the role played by the polynomial
A. We thus introduce a further variable u: for A 6= 0, it marks the total degree, i.e., degA+degB,
and for A = 0, it marks degB. The associated bivariate generating functions are

(39) H(2)(z, u) =
∑

(A,B)∈H
A6=0

zdegB udegB+degA, H(1)(z, u) =
∑

(A,B)∈H
A=0

zdegB udegB .

Due to Proposition 1 which relates the sets H〈i〉 to sets L and G, we are led to the bivariate
generating functions L(zu, u) and G(zu) where the generating function L(z, u) involves the set L
defined in (23) and satisfies

L(z, u) :=
∑

(A,B)∈L

zdegBudegA =
∑
n≥1

(q− 1)qnzn
n−1∑
m=0

(q− 1)qmum =
(q − 1)2

qu− 1

∑
n≥1

(qz)n((qu)n− 1) .

Then, L(z, u) is expressed as a finite difference which involves the function G computed in (34)

(40) L(z, u) = (q − 1)
G(zqu)−G(z)

qu− 1
, L(z) = L(z, 1) = G(zq)−G(z) .

Then, Proposition 1 entails the expressions of the two bivariate generating functions H(i)(z, w) in
terms of L(zw,w) and G(zw) that are provided in Table 3.

Jacobi–Perron Brun Fully subtractive

H〈2〉(z, w) L(zw,w) (q − 1)G(zw) 2L(zw,w)− (q − 1)G(zw)

H〈1〉(z, w) G(zw) 2G(zw) 0

Table 3. Expressions of H〈i〉(z, w) in terms of L(zw, u) and G(zw). As seen
from the Sum Property of Proposition 2, the sum of the last two columns is equal
to twice the first column.

With Table 3 and (40), we derive the following result:
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Proposition 4. [Expressions of the basic bgf’s] The following matricial expressions hold for the
bivariate bgf ’s H〈i〉(z, w) (i = 1, 2), namely

(41)

H
〈i〉
JP(z, w)

H
〈i〉
B (z, w)

H
〈i〉
FS(z, w)

 = Γ〈i〉(w)

[
G(zqw2)
G(zw)

]
,

expressed9 in terms of the matrices Γ〈i〉(w), defined as

(42) Γ〈2〉(w) :=

(
q − 1

qw − 1

) 1 −1
0 (qw − 1)
2 −(qw + 1)

 , Γ〈1〉(w) :=

0 1
0 2
0 0

 .
4.4. Bivariate generating functions associated with a step-cost. We are now ready to
study the bgf Hc(z, u) relative to a step-cost of interest c ∈ {c0, d, db, δ, ν}, defined in (28). With
a cost c defined on the pair (A,B) with c(A,B) = cA(A) + cB(B) and c(0) = 0, we associate

Hc(z, u) :=
∑

(A,B)∈H

zdegBucA(A)+cB(B) .

Costs c = c0, dB. According to (39), the bivariate generating functions Hc(z, u) of interest are,
first, for the step-cost c = c0 (corresponding to the cost S) and for the cost c = dB

H1(z, u) = uH(z), HdB (z, u) = H(uz) .

Costs c = d, δ, ν. The bivariate generating functions relative to the number of divisions d or the
number of monomials (δ or ν) that appear in the pair (A,B) are

Hd(z, u) = u2H〈2〉(z) + uH〈1〉(z) , Hδ(z, u) = u2H〈2〉(z, u) + uH〈1〉(z, u),

Hν(z, u) = u2H〈2〉 (z, t) + uH〈1〉 (z, t) , with t := u

(
q − 1

q

)
+

(
1

q

)
.

Indeed, for the costs ν, δ that count the number of monomials, the multiplication of the H〈i〉 terms,
by u or u2 respectively, corresponds to the leading term (which is non-zero), whereas, for the cost
ν, the variable u inside H(i)(z, u) is indeed replaced by the variable t = u(q − 1)/q + (1/q) which
is associated with the Bernoulli law on Fq defined by

P[x = 0] = 1
q , P[x 6= 0] = q−1

q .

Using now trivariate generating functions (tgf’s), we define a unified framework for the bgf’s
relative to all these five step-costs. We indeed consider the two trivariate gf’s

(43) I(z, u, w) := uH(zw), J(z, u, w) := u2H〈2〉 (z, w) + uH〈1〉 (z, w) ;

we associate furthermore with a cost c, a function γc defined as

(44) γc(u) = (u, 1) (c = 1), γc(u) = (1, u) (c = dB), γc(u) = (u,wc(u)) (c = d, δ, ν),

that involves itself the function wc(u) that satisfies

(45) wd(u) = 1, wδ(u) = u wν(u) = u q−1
q + 1

q .

This leads to the equalities

for costs c0, dB : Hc(z, u) = I(z, γc(u)), for costs d, δ, ν: Hc(z, u) = J(z, γc(u)) ,

and using now Proposition 4, we obtain the following result.

9The Sum Property of Proposition 2 is now expressed on the lines of the matrices.
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Proposition 5. [Expressions for the bgf’s relative to a step-cost] The bgf Hc(z, u) is viewed in
all the cases as a trivariate generating function (tgf) H(z, u, w) that is expressed in terms of the
tgf ’s I and J defined in (43) and of the function γc defined in (44).
Consider the matrix Γ(u,w) that is expressed in terms of matrices Γ〈i〉(u,w) defined in (42) as10

Γ(u,w) = (qw − 1)(u2Γ〈2〉(w) + uΓ〈1〉(w)) ,

(46) namely Γ(u,w) =

 u2(q − 1) −u2(q − 1) + u(qw − 1)
0 u2(qw − 1)(q − 1) + 2u(qw − 1)

2(q − 1)u2 −(q − 1)u2(qw + 1)

 ,
and for which the Sum Property of Proposition 2 holds on the lines. Then,

– For costs c0, dB, the bgf Hc(z, u) involves the tgf I and equals I(z, γc(u)). The tgf I(z, u, w)
satisfies

(47)

IJP(z, u, w)
IB(z, u, w)
IFS(z, u, w)

 = u
Γ(1, 1)

q − 1

[
G(zqw)
G(zw)

]
=

1 0
0 (q + 1)
2 −(q + 1)

[G(zqw)
G(zw)

]
.

– For costs d, δ, ν, the bgf Hc(z, u) involves the tgf J and equals J(z, γc(u)). The tgf J(z, u, w)
satisfies

(48)

JJP(z, u, w)
JB(z, u, w)
JFS(z, u, w)

 =
Γ(u,w)

qw − 1

[
G(zqw2)
G(zw)

]
.

4.5. Bivariate generating functions for total additive costs. We now focus on the total
costs C that occur during the execution of the non-degenerate phase of the algorithm.

We do not consider costs of the degenerate phase. Such a study would involve a bivariate generating
function D(z, u) that would be a variation of the plain generating function D(z) of the degenerate
phase. We already know that 1/q3 is the unique pole of R(z) (see (36)) whereas D(z) has a
dominant pole located at 1/q2 (in the Jacobi–Perron or in the fully subtractive cases) or 1/q
(in the Brun case), that is always larger than 1/q3. This entails that the growth order of the
asymptotic costs of the degenerate phase will be strictly smaller than those of the degenerate
phase.

As the cost C is the total cost associated with the step-cost c, the symbolic method recalled in
Section 3.3 proves that the bgf RC(z, u) is obtained by replacing in the expression (36) the quasi-
inverse D(z)/(1−H(z)) by the quasi-inverse D(z)/(1−Hc(z, u)). As Hc(z, u) is itself viewed as
a tgf H(z, u, w), this leads to the expression of Rc(z, u) as a tgf R(z, u, w):

(49) RC(z, u) =
D(z)

1−Hc(z, u)
, R(z, u, w) =

D(z)

1−H(z, u, w)

where H(z, u, w) is described in Proposition 5. The denominator 1−H(z, u, w) thus plays a central
role, as it will bring the dominant singularity. It depends on both the algorithm and the cost.

We first obtain a general form for this denominator that is always a polynomial (in z) of degree
at most two. The present section then continues with five different classes that occur in a more
precise description of the denominator 1 − H(z, u, w). Finally, Proposition 6 describes the tgf’s
R(z, u, w) in these five cases. This will be the final step of the symbolic study.

Bivariate generating functions Rc(z, u) and the Sum Property. Before dealing with precise
computations, we first provide a general point of view. With each step-cost c and each algorithm
], we thus associate a bivariate generating function

RC,](z) =
D](z)

1−Hc,](z, u)
=

D](z)

1−H](z, u, w)
.

10The Sum Property of Proposition 2 is now expressed on the lines of the matrices.
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In fact, further analysis (see Theorem A) shows that only the following denominators are involved

1−Hc,JP (z, u) = 1−HJP (z, u, w),

1−Hc,B(z, u) = 1−HB(z, u, w), 1−Hc,FS(z, u) = 1−HFS(z, u, w) ,

and the Sum Property holds for these denominators. For each pair (c, ]), the analysis of the
cost (see Theorem A) involves more precisely the functions u 7→ ρc,](u) for which the equality

1 − Hc,](ρc,](u), u) = 1 holds, via their inverses ρ−1
c,] . This explains why the Sum Property does

not really intervene in the study of the discrete model11.

General form for RC(z, u). As was already the case for H(z, u, w), there are two different cases
depending on whether the step-cost c belongs to {1, dB} or {d, δ, ν}.
Costs d, δ, ν. One has, with (48) and (46),1−HJP(z, u, w)

1−HB(z, u, w)
1−HFS(z, u, w)

 =

1
1
1

− Γ(u,w)

qw − 1

[
G(zqw2)
G(zw)

]
.

Then, by recalling the expression of G as G(z) = (q − 1)qz/(1 − qz), the trivariate generating
functions (relative to costs d, δ, ν) satisfy the following matricial relations

(qw − 1)(1− zq2w2)(1− zqw)

1−HJP(z, u, w)
1−HB(z, u, w)
1−HFS(z, u, w)


= (qw − 1)(1− zq2w2)(1− zqw)

1
1
1

− (q − 1)Γ(u,w)

[
zq2w2(1− zqw)
zqw(1− zq2w2)

]
.

The bgf RC(z, u) (relative to the step-costs d, δ, ν) is thus written as

(50) Rc(z, u) = R(z, γc(u)), with R(z, u, w) = D(z)
(qw − 1)(1− zq2w2)(1− zqw)

Q(u,w)(z)
.

Here, the denominator Q(u,w)(z) = Q](u,w)(z) is a polynomial of degree at most two in z, i.e.,

Q](u,w)(z) = (qw − 1)(1− zq2w2)(1− zqw)−E](u,w)zq2w2(1− zqw)−F](u,w)zqw(1− zq2w2) ,

where E] and F] are the coefficients of the ] line of the matrix (q − 1)Γ(u,w) described in (46).

Costs c0, dB. In the same vein, for the costs c0 and dB , the bgf Hc(z, u) is viewed as a trivariate
generating function that satisfies, with (47),

(1− zq2w)(1− zqw)

1−HJP(z, u, w)
1−HB(z, u, w)
1−HFS(z, u, w)

 = (1− zq2w)(1− zqw)

1
1
1

− uΓ(1, 1)

[
zq2w(1− zqw)
zqw(1− zq2w)

]
.

The bivariate generating function RC(z, u) (relative to step-costs c0, dB) is thus written as

(51) RC(z, u) = R(z, γc(u)) with R(z, u, w) = D(z)
(1− zq2w)(1− zqw)

Q(u,w)(z)

where the denominator Q(u,w)(z) = Q](u,w)(z) is a polynomial of degree at most two in z, i.e.,

Q(u,w)(z) = Q](u,w)(z) = (1− zq2w)(1− zqw)− uE] zq2w(1− zqw)− uF] zqw(1− zq2w) ,

where E] and F] are the coefficients of the ] line of the matrix M(1, 1) described in (46).

Degree of polynomial Q(u,w). There are cases where the polynomial Q](u,w) involved in (50)
or in (51) is in fact of degree 1. This situation arises when one of the two coefficients E] and F]
is zero, and there is a simplification with the numerator. This is the case for the five step-costs
of the Brun algorithm (with E] = 0), or for the step-costs c0 or dB of the JP algorithm (with
F] = 0). These seven cases lead to trivariate gf’s where the denominator is a polynomial of degree
1 in z and are then gathered in a subclass called the linear class (LC in short), whereas the other

11We will see that the Sum Property directly intervenes in the analysis of the continuous model.
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cases (all step-costs for the FS algorithm and step-costs d, δ, ν for the JP algorithm) are gathered
in a subclass called the quadratic class (QC in short).

Linear class. There are three subclasses, called LC1, LC2 and LC3.

LC1. For the costs c0 and dB of the Brun algorithm, the polynomial QB(u,w)(z) factorizes as
QB(u,w)(z) = (1− zq2w)(1− zqw(1 + uFB) with FB = (q2 − 1) and

(52) RB(z, u, w) =
DB(z)(1− zqw)

1− zqw(1 + u(q2 − 1))
, Q̃(u,w)(z) = 1− zqw(1 + u(q2 − 1)) .

LC2. For the costs c0 and dB of the JP algorithm, the polynomial QJP (u,w)(z) factorizes as
QJP (u,w)(z) = (1− zqw)(1− zq2w(1 + uEJP ) with EJP = (q − 1) and

(53) RJP (z, u, w) =
DJP (z)(1− zq2w)

1− zq2w(1 + u(q − 1))
, Q̃(u,w)(z) = 1− zq2w(1 + u(q − 1)) .

LC3. For the costs d, δ, ν of the Brun algorithm, one has FB(u,w) = (q−1)(qw−1)[u2(q−1)+2u],
the polynomial QB(u,w)(z) factorizes as

QB(u,w)(z) = (qw − 1)(1− zq2w2)[1− z qw − (u2(q − 1)2 + 2u(q − 1))zqw)]

= (qw − 1)(1− zq2w2)[1− zqw(1 + u2(q − 1)2 + 2u(q − 1)]

(54) and RB(z, u, w) =
DB(z)(1− zqw)

1− zqw (1 + u(q − 1))2
, Q̃(u,w)(z) = 1− zqw(1 + u(q − 1))2 .

Quadratic class. In the quadratic subclass, there are also two subcases. The first class, called
QC1, gathers the costs d, δ, ν for algorithms FS and JP, whereas the second class, called QC2,
gathers the costs c0, dB for the FS algorithm; see Table 4 for a summary.

QC1. We begin with (50). The polynomial Q(u,w)(z) is a polynomial of the second degree in
the variable z, i.e.,

(55) Q(u,w)(z) = b̂(u,w)z2 − zâ(u,w) + (qw − 1)

whose coefficients are{
b̂(u,w) = b̂](u,w) = (qw)3(qw − 1 + E](u,w) + F](u,w)) ,
â(u,w) = â](u,w) = (qw)2(qw − 1 + E](u,w)) + (qw)(qw − 1 + F](u,w))

In each algorithm (JP or FS), each coefficient â](u,w) or b̂](u,w) is written as

â](u,w) = F̂ (w) + Ĝ(w)K](u), b̂(u,w) = L̂(w)O](u) ,

where F̂ , Ĝ, L̂ satisfy

F̂ (w) = qw(qw − 1)(qw + 1), L̂(w) = (qw)3(qw − 1), Ĝ(w) = qw(qw − 1) .

Moreover, the polynomials K] and O] satisfy

(56) (JP case) KJP(u) = u2(q − 1)2 + u(q − 1), OJP(u) = 1 + u(q − 1)

(57) (FS case) KFS(u) = u2(q − 1)2, OFS(u) = 1− (q − 1)2u2 .

Then (qw − 1) is a common factor of the three terms in (55). We then work with the following
reduced version of Q(u,w)(z)

(58) Q̃(u,w)(z) = Q̃](u,w)(z) := b](u,w)z2 − za](u,w) + 1

where the coefficients

(59) a](u,w) := F (w) +G(w)K](u), b](u,w) = L(w)O](u) ,

involve K,O defined previously together with

(60) F (w) = qw(qw + 1), G(w) = qw, L(w) = (qw)3 .
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QC2. We begin with (51). The polynomial Q(u,w)(z) is a polynomial of the second degree in
the variable z, i.e.,

Q(u,w)(z) = Q](u,w)(z) = (1−zq2w)(1−zqw)−2u(q−1)zq2w(1−zqw)+u(q2−1)zqw(1−zq2w) .

We then set Q̃(u,w)(z) = Q(u,w)(z). This gives

(61) Q̃(u,w)(z) = Q̃](u,w)(z) := b](u,w)z2 − za](u,w) + 1 ,

(62) where a](u,w) := F (w) +G(w)K(u), b](u,w) = L(w)O(u) ,

(63) F (w) = qw(q+1), G(w) = qw, L(w) = q3w2, O(u) = 1−u(q−1)2, K(u) = u(q−1)2 .

Now, in all the cases (LC and QC), one checks that 1/q3 is the smallest root of Q̃](u,w)(z) for
(u,w) = (1, 1).

The study is summarized in the following proposition:

Proposition 6. [Expression of the bgf’s relative to a total cost] For any of the five step-costs
c, the bgf (RC(z, u)/D(z)) of the total cost C is a rational fraction with respect to z viewed as a
trivariate generating function (tgf) R(z, u, w) where (u,w) = γc(u) with γc defined in (44).

– For the subclass QC1 (the Jacobi–Perron and the fully subtractive algorithms for the costs

d, δ, ν), the tgf is given in (50) and it involves the polynomial Q̃(u,w)(z) given in (58).
– For the subclass QC2 (costs c0, dB for the FS algorithm), the tgf is given in (51) and it

involves the polynomial Q̃(u,w) given by (61).
– For the subclasses of the linear class (the Brun algorithm for all the costs, and the Jacobi–

Perron algorithm for the step-costs c0 and dB), the tgf ’s are given in (52), (54) and (53).

Table 4 describes the result according to the pair (algorithm, cost).

Step-cost c Jacobi–Perron Brun Fully subtractive

Cost c0 LC2 LC1 QC2

Eqn (53) Eqn (52) Eqn (51), (61)

Degree dB LC2 LC1 QC2

Eqn (53) Eqn (52) Eqn (51), (61)

Cost d QC1 LC3 QC1

Eqn (50), (58) Eqn (54) Eqn (50) (58)

Cost δ QC1 LC3 QC1

Eqn (50), (58) Eqn (54) Eqn (50), (58)

Cost ν QC1 LC3 QC1

Eqn (50), (58) Eqn (54) Eqn (50), (58)

Table 4. Distribution of the five subclasses – three linear subclasses (LC1, LC2,
LC3) and two quadratic subclasses (QC1, QC2) – according to the pair formed
by an algorithm and a cost. The number of the equation provides the expression

of the bivariate generating function and the polynomial Q̃.

4.6. Asymptotic Gaussian law for additive costs. We have now a precise expression for the
bgf RC(z, u) associated with a total cost C defined from the step cost c ∈ {c0, d, dB , δ, ν}. This
bgf is a rational function. The symbolic step ends, and we now begin the analytic step of analytic
combinatorics.
Section 3.5 reminds us of what is an asymptotic Gaussian law and why asymptotic Gaussian laws
are expected for costs C, in a “Quasi-Powers” framework. This is the case here, and the following
theorem, which is the main result of this section, indeed proves that such asymptotic Gaussian
laws occur, as soon as the step cost is not dB .
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Theorem 1. Consider the input set

R := {R := (R1, R2, R3) | degR3 > max(degR1, degR2), R3 monic}
together with its subsets Rm of size m, the three algorithms of interest, and the four additive
costs c ∈ {c0, d, δ, ν}. For each algorithm, and each total cost C associated with c, an asymptotic
Gaussian law holds.
Furthermore, the expectation E[Cm] and the variance V[Cm] are asymptotically linear with respect
to the size m, and, for any pair (], c), there exist constants Mc = M],c and Vc = V],c such that the
expectations and the variances of the cost c satisfy

E[Cm] ∼Mc ·m V[Cm] ∼ Vc ·m.

The constants Mc and Vc are given in Table 6.

We have excluded the cost dB . The cost dB is constant on each Rm and equal to m. It cannot be
asymptotically Gaussian as confirmed by the results below.

The proof of Theorem 1 is based on a general theorem of analytic combinatorics, given in Theorem
IX. 9 (page 656 of [11]). The general statement of this last theorem is given when the bivariate
generating function of the cost is meromorphic. This theorem is itself a consequence of the Quasi-
Powers theorem due to Hwang [15]. Here, we are in a specific case where the bivariate generating
function is a rational fraction whose denominator is a polynomial of degree at most two in z. This
is why we provide a specific theorem, called Theorem A, that is a particular case of Theorem IX.
9 in [11] and that is ready for use here.

We first recall the following notation: for a function u 7→ f(u) that satisfies f(1) = 1, we let

(64) M(f) := f ′(1), V(f) := f ′′(1) + f ′(1)− f ′(1)2 .

Theorem A. [Adaptation of Theorem IX.9 in [11]] We consider a total cost C associated with
a step cost c. We assume that its bivariate generating function RC(z, u) is also a trivariate
generating function R(z, u, w) of the form

RC(z, u) = R(z, u, w) =
N(w)(z)

Q̃(u,w)(z)
,

where N(w)(z) is a rational fraction in z and Q̃(u,w)(z) is a non-constant polynomial of degree
at most two in z, both having coefficients that are polynomials in u and w.

We assume that the following holds:

(i) The plain generating function R(z) = R(z, 1, 1) has a denominator Q̃(1, 1)(z) which has
two distinct roots (when it is of degree 2), and the smallest root is located at z = ρ. The
numerator N(w)(z) is analytic and takes non-zero values on a domain of the form

{(z, w) | z in a neighbourhood of {z | |z| < ρ}, w in a neighbourhood of w = 1}.
(ii) There exists a non-constant analytic function ρ(u,w) analytic at (1, 1) that defines on a

real neighbourhood of (1, 1) the smallest root of the polynomial Q̃(u,w)(z). We denote by
ρc(u) the function equal to ρ(γc(u)) where the function γc is defined in (44).

(iii) The admissibility condition holds : the term V
(

ρ
ρc(u)

)
is non-zero.

Then, an asymptotic Gaussian law holds for the restriction Cm of cost C to Rm. Moreover, the
expectation and the variance of the cost Cm are linear with respect to m and satisfy

(65) E[Cm] = mM

(
ρ

ρc(u)

)
+O(1), V[Cm] = mV

(
ρ

ρc(u)

)
+O(1).

We will prove that the bgf’s RC(z, u) associated with a total cost C defined from the four step-
costs c ∈ {c0, d, δ, ν} fullfill all the hypotheses of the previous theorem. This will entail Theorem
1. Even though we know that the cost c = dB cannot be Gaussian, we perform the computation
also in this case, since it will be partly needed in the analysis of the continuous model.
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Hypothesis (i) clearly holds with ρ = 1/q3 in our five cases (QC1, QC2, LC1, LC2, LC3), according
to Formulae (50), (51), (52), (54), (53). It remains to perform two tasks:

– The first task studies the function

(66) gc(u) =
ρ

ρc(u)
, where ρc is defined via the equality Hc(ρc(u), u) = 1 ,

and is already mentioned in the beginning of Section 4.5. One performs a general compu-
tation of the constants M[gc] and V[gc] which appear in (65).

– The second task computes these constants fore each pair (algorithm, cost) and checks that
condition (iii) holds (except in the case of the cost dB).

We begin with the first task, performed in the next section. The second task will be performed in
Section 4.8.

4.7. General expressions of constants relative to the mean and variance. We compute
the constants M[gc] and V[gc] which appear in (65). There are five different cases, according to
the three linear subclasses and the two quadratic subclasses. We begin with the linear class.

(A) Linear class. There is only one root located at ρ(u,w), with

(LC1) ρ(u,w)−1 = qw(1 + u(q2 − 1)), gc0(u) = q−2(1 + u(q2 − 1)), gdB (u) = u .
(LC2) ρ(u,w)−1 = q2w(1 + u(q − 1)) gc0(u) = q−1(1 + u(q − 1)), gdB (u) = u .
(LC3) ρ(u,w)−1 = qw (1 + u(q − 1))2 gc(u) = q−2wc(u)(1 + u(q − 1))2 ,

where wc(u) is defined in (45).

We then compute M[gc] and V[gc] in each case (see Table 6). We already check that V[gdB ] is
indeed equal to 0 in cases (LC1) and (LC2).

(b) Quadratic class. There is a common framework for the two cases QC1 and QC2. As we
are interested in the function gc(u) which involves the function ρc(u)−1, we deal with reciprocical
polynomials which moreover involve pairs (u,w) equal to γc(u). Omitting the explicit references
to the cost and the algorithm, we are then led to the polynomial

Q̂(z, u) = z2 − a(u)z + b(u) , a(u) := a(γc(u)), b(u) := b(γc(u)

where a(u,w) and b(u,w) are previously defined in (59) and (62). We first study the function f

for which the polynomial Q̂ satisfies Q̂(f(u), u) = 0. We then return to the function g = ρ · f with
ρ = 1/q3.

We consider the derivatives of the polynomial Q̂(z, u):

Q̂′z(z, u) = 2z − a(u), Q̂′u(z, u) = −za′(u) + b′(u)

Q̂′′z2(z, u) = 2, Q̂′′u2(z, u) = −za′′(u) + b′′(u), Q̂′′zu(z, u) = −a′(u) .

In particular, at point (q3, 1), the derivatives involve the function

(67) σ(u) := a(u)− b(u)

q3
,

and are equal to

Q̂′z(q
3, 1) = 2q3 − a(1), Q̂′u(q3, 1) = −q3a′(1) + b′(1) = −q3σ′(1)

Q̂′′z2(q3, 1) = 2, Q̂′′u2(q3, 1) = −q3σ′′(1), Q̂′′zu(q3, 1) = −a′(1) .

At u = 1, the polynomial Q̂(f(u), u) equals Q̂(q3, 1). As q3 is a simple root of Q̂(z, 1), this entails

that the derivative Q̂′z(q
3, 1) = 2q3 − a(1) is not equal to zero.

The relation Q̂(f(u), u) = 0 holds. Taking the first derivative leads to the equality

f ′(u) Q̂′z(f(u), u) + Q̂′v(f(u), u) = 0 .
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This gives at point (q3, 1) the relation f ′(1) (2q3 − a(1))− q3a′(1) + b′(1) = 0 .
This determines the value of f ′(1), and then, the value of M[g]:

(68) M[g] = g′(1) =
σ′(1)

2q3 − a(1)
.

The second derivative of the function u 7→ Q̂(f(u), u) is equal to

f ′′(u) Q̂′z(f(u), u) + f ′(u)2 Q̂′′z2(f(u), u) + 2f ′(u) Q̂′′zu(f(u), u) + Q̂′′v2(f(u), u) = 0 .

This gives at (q3, 1) the relation f ′′(1)(2q3 − a(1)) + 2f ′(1)2 − 2a′(1)f ′(1)− q3σ′′(1) = 0.
This determines the value of g′′(1), namely

g′′(1)(2q3 − a(1)) = σ′′(1)− 2q3g′(1)2 + 2a′(1)g′(1) ,

and entails the value of (2q3 − b(1))V[g], equal to

(69) (2q3 − a(1))V[g] = σ′′(1) + g′(1)2(a(1)− 4q3) + g′(1)(2q3 − a(1) + 2a′(1)) ,

which gives
(70)
(2q3−a(1))3 V[g] = σ′′(1)(2q3−a(1))2 +σ′(1)2(a(1)−4q3)+σ′(1)(2q3−a(1)+2a′(1))(2q3−a(1)) .

We thus have obtained in (68) and (70) the expressions of the two constants M[g] and V[g] in
terms of the functions a(u) and b(u). These functions come from functions a(u,w) and b(u,w)
that are described in (59) and (62). This ends the proof of the first task.

4.8. Explicit computations for the expectations and the variances. It remains to compute
these values M[gc] and V[gc] for each pair (algorithm, cost) and check that they are positive for
c 6= dB . This has already been done for the class (LC). This is now the goal of this section for the
class (QC).

The vectorial function γc has two components, denoted12 by γ
(u)
c and γ

(w)
c . It is completely defined

by the two derivatives

(71) θ(c)
u :=

∂

∂u
γ(u)
c , θ(c)

w =
∂

∂u
γ(w)
c

that are constant functions, equal respectively to

θ
(d)
u = θ

(c0)
u = θ

(δ)
u = θ

(ν)
u = 1, θ

(dB)
u = 0,

θ
(c0)
w = θ

(d)
w = 0, θ

(δ)
w = θ

(dB)
w = 1, θ

(ν)
w = q−1

q .

Then, for any function (u,w) 7→ x(u,w) and any cost c, the derivatives of the function u 7→ x(γc(u))
satisfy

[x(γc(u))]′ = θ(c)
u

∂

∂u
x(u,w)

∣∣
(u,w)=γc(u)

+ θ(c)
w

∂

∂w
x(u,w)

∣∣
(u,w)=γc(u)

.

This applies in particular to the functions a(u) := a(γc(u)), b(u) := b(γc(u)).

The expressions (68) and (69) involve the five values

a(1), a′(1), a′′(1), b′(1), b′′(1) ,

that are thus expressed with the five functions F,G,K,L,O and their derivatives together with θu
and θw, as described in Table 5(a). The functions F,G,K,L,O and their derivatives are described
in Table 5(b) below.

With these two tables, we compute the values of the mean values Mc and of the variances Vc that
are provided in Table 6. And, in each case (except for the cost dB) we check that the polynomials
involved in Vc are strictly positive for q ≥ 2.

12In Section 5.4, the second component of γc will be denoted as βc.
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a(1) = F (1) +G(1)K(1)

a′(1) = θwF
′(1) + θwG

′(1)K(1) + θuG(1)K ′(1)

b′(1) = θwL
′(1)O(1) + θuL(1)O′(1)

a′′(1) = θ2
wF
′′(1) + θ2

wG
′′(1)K(1) + 2θuθwG

′(1)K ′(1) + θ2
uG(1)K ′′(1)

b′′(1) = θ2
wL
′′(1)O(1) + 2θuθwL

′(1)O′(1) + θ2
uL(1)O′′(1).

JP and FS case (costs d, δ, ν)

F (w) = qw(1 + qw) F (1) = q(q + 1) F ′(1) = q(2q + 1) F ′′(1) = 2q2

L(w) = (qw)3 L(1) = q3 L′(1) = 3q3 L′′(1) = 6q3

G(w) = qw G(1) = q G′(1) = q G′′(1) = 0

JP case (costs d, δ, ν)

K(u) = u2(q − 1)2 + u(q − 1) K(1) = q(q − 1) K′(1) = (q − 1)(2q − 1) K′′(1) = 2(q − 1)2,

O(u) = 1 + u(q − 1) O(1) = q O′(1) = (q − 1) O′′(1) = 0

FS case (costs d, δ, ν)

K(u) = u2(q − 1)2 K(1) = (q − 1)2 K′(1) = 2(q − 1)2 K′′(1) = 2(q − 1)2,

O(u) = 1− (q − 1)2u2 O(1) = 1− (q − 1)2 O′(1) = −2(q − 1)2 O′′(1) = −2(q − 1)2

= q(2− q)
FS case (costs c0, dB)

F (w) = qw(1 + q) F (1) = q(q + 1) F ′(1) = q(q + 1) F ′′(1) = 0

L(w) = q3w2 L(1) = q3 L′(1) = 2q3 L′′(1) = 2q3

G(w) = qw G(1) = q G′(1) = q G′′(1) = 0

K(u) = u(q − 1)2 K(1) = (q − 1)2 K′(1) = (q − 1)2 K′′(1) = 0,

O(u) = 1− (q − 1)2u O(1) = 1− (q − 1)2 O′(1) = −(q − 1)2 O′′(1) = 0

= q(2− q)

Table 5. (a) Top: General expressions of the derivatives of the functions a(u) =
a(γc(u)) and b(u) = b(γc(u)). (b) Below: Expressions of the derivatives of the
functions F,G,K,L,O.

Remark. All the dominant constants (mean values and variances) are rational fractions in q with
integer coefficients. All the mean values are in Θ(1) for q →∞, and the constants involved depend
only on the cost, not on the algorithm. They respectively satisfy

Mc0 ∼ 1 (c = 1), Md ∼ 2 (c = d), Mδ,Mν ∼ 3 (c = δ, ν).

The variance constants Vc exhibit two possible behaviours. For the Jacobi–Perron and the fully
subtractive, they are in Θ(1/q) when q → ∞, whereas they are in Θ(1) for the Brun algorithm.
Moreover, the behaviours of the variances for the Jacobi–Perron and fully subtractive algorithms
are very close. They both satisfy

qVc0 ∼ 1, qVδ ∼ 2, qVν ∼ 3,

and they slightly differ for the cost d, with

qVd ∼ 5 (JP), qVd ∼ 8 (FS).

4.9. Average values for the bit-complexities. The bivariate generating functions RΦc(z, u)
for the bit-complexities Φc involve, for c = δ, ν, the cumulative generating function

Ĥc(z) :=
∂

∂u
Hc(z, u)

∣∣
u=1

under the form

RΦc(z, u) =
1

1−H(z)
· uĤc(z) · T (zu) =

1

1−H(z)
· Ĥc(z) · u ·

(
1

1−H(uz)

)
·D(uz) .
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Jacobi–Perron Brun Fully subtractive

Mc0

q − 1

q

q2 − 1

q2
q2 − 1

q(q + 2)

Md
(2q + 1)(q − 1)

q(q + 1)

2(q − 1)

q

2(q2 − 1)

q(q + 2)

Mδ
3q2 + q − 1

q(q + 1)

3q − 2

q

3q2 + 4q − 2

q(q + 2)

Mν
3(q − 1)

q

3(q − 1)

q

3(q − 1)

q

MdB 1 1 1

Jacobi–Perron Brun Fully subtractive

Vc0
q − 1

q2
(q2 − 1)2

q4
(q2 − 1)(2q2 + q + 2)

q2(q + 2)3

Vd
(5q3 + 5q2 + 3q + 1)(q − 1)

q2(q + 1)3
2
(q − 1)2

q2
4(2q2 + q + 2)(q2 − 1)

q2(q + 2)3

Vδ
2q5 − q4 − q3 + q + 1

q2(q − 1)(q + 1)3
(q − 1)(4q − 1)

q2
2(q5 + q4 − 2q2 − 2q + 4)

q2(q − 1)(q + 2)3

Vν 3
q − 1

q2
6
(q − 1)2

q2
3
q − 1

q2

VdB 0 0 0

Table 6. Top: Expressions for the constants Mc (expectations) for the five ad-
ditive costs c. Below: Expressions for the constants Vc (variances) for the five
additive costs c. We have explained in Section 4.5 why one cannot expect precise
relations between the first column and the sum of the last two columns.

Indeed, consider an input for which the algorithm performs j iterations, and, for k ∈ [1..j] and
c ∈ {δ, ν}, consider the cost c(Ak, Bk) · uδ(Rk,3) defined on the set Hj ×D. Its generating function
is, for a given pair (k, j),

Hk−1(z) · Ĥc(z) · u ·Hj−k(uz) ·D(uz) .

We then take the sum over all the indices (k, j) with k ≤ j.
The associated cumulative series satisfies

R̂Φc(z) :=
∂

∂u
RΦc(z, u)

∣∣
u=1

=
Ĥc(z)

1−H(z)
·
(
R(z) + zD′(z) + zH ′(z) · R(z)

1−H(z)

)
,

and its dominant part is given by

(72)
Ĥc(z)

1−H(z)
· zH ′(z) · R(z)

1−H(z)
= z

Ĥc(z)H
′(z)

D2(z)
·R3(z) .

Now, the equality (1/q3)H ′(1/q3) = D(1/q3) (see (38)) entails the following:

MΦδ =
1

2q3

H ′(1/q3)

D(1/q3)
Mδ =

1

2
Mδ, MΦν =

1

2q3

H ′(1/q3)

D(1/q3)
Mν =

1

2
Mν .

We have then proven:

Proposition 7. Consider any of the two bit-complexity costs Φδ or Φν . Their expectations on
Rm satisfy

Em[Φδ] ∼Mδ ·
m2

2
, Em[Φν ] ∼Mν ·

m2

2
,
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where Mδ and Mν are the constants that appear in Table 6.

Remark. Observe that the three algorithms have the same expectation for the cost ν and for the
sparse bit-complexity; we found no explanation for this surprising fact.

5. Probabilistic analysis in the continuous model

This section is devoted to the analysis in the continuous model and deals with continued fraction
maps. When the set L of Laurent formal power series with negative degree is endowed with its
(normalized) Haar measure µ, the Gauss Artin continued fraction map TG : L → L (defined in
(5)) is µ-preserving (see e.g. [4]). Here, L2 is endowed with the Haar measure µ⊗µ and we study
the three continued fraction maps T] (where ] refers to JP, B or FS according to the algorithm)
acting on L2 endowed with µ ⊗ µ. As previously, we provide a unified proof for the ergodic and
probabilistic study of the continuous case that applies to each continued fraction map.

We have shown in Section 2 that the continued fraction maps, described respectively in Section
2.5, 2.6 and 2.7, are defined via branches (or inverse branches) that are homographies of the same
form. Our unified framework deals here with the transfer operator that is defined in Section 5.2,
and then extended in Section 5.3. The transfer operator uses in its definition a change of variables
formula that is first stated in Section 5.1. We prove here that the absolute value of the Jacobian
of each branch is constant. This entails (see Theorem 2) that each T] is µ⊗µ preserving and that
the sequences of quotients (εk, Ak, Bk)k form sequences of independent and identically distributed
random variables. This also entails a close relation between transfer operators and associated
(bivariate) generating functions. Precise computations of the expectations and the variances are
performed in Section 5.4. We then study the bit-complexity costs in Section 5.5. Finally, Section
5.6 deals with the possible values taken by the degrees of the convergents.

There are various metric results in the continuous model in the literature. However, as already said,
the corresponding algorithms are not exactly the ones that are studied here, but they are clearly in
the same spirit. In particular, the properties stated in Theorem 2 have already been established in
the Jacobi–Perron and in the Brun cases (see [26, 27] and [17], respectively). However, the fact that
the Haar measure is invariant for continued fraction maps (in the context of formal power series
with coefficients in a finite field) is proven “by hands”, and not clearly related to nice properties
of the transfer operator. Observe that a similar situation arises in many beta-numeration contexts
for formal power series (see [4, 22, 34]), where the invariance of the Haar measure is also proven
“by hands” and not clearly related with properties of the Jacobian of the inverse branches. One of
the interests of the transfer approach developed here is to provide simple proofs for Haar measure
invariance.

5.1. A change of variables formula. We state here a change of variables formula that plays a
central role in the definition of the transfer operator, studied in Section 5.2.

Proposition 8. Consider the Haar measure µ⊗µ on L2 and the homographies h(±1,A,B) associated

respectively with the matrices M±1(A,B). Then, for any Borel subset F ∈ L2 and for any ε = ±1,
the measure µ⊗ µ(hε,A,B((F )) satisfies

(73) µ⊗ µ(hε,A,B(F )) = ‖Jac(hε,A,B)‖µ⊗ µ(F ) =
1

q3 degB
µ⊗ µ(F ),

where Jac(g) stands for the Jacobian of the application g.

There are two different proofs for the previous proposition.

Proof A. There exists a general change of variables formula that holds in the ultrametric case.
It is cited for instance in [8], see also [31]. This general formula entails the first equality in (73).
Moreover, when h is associated with a matrix Mε(A,B), its Jacobian Jac(h) admits a particularly
simple expression. First, the Jacobian of the homography h(ε,A,B) is related to its denominator
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D[h(ε,A,B)], via the equality Jac(h(ε,A,B)(g)) = D−3[h(ε,A,B)](g) (see also [33, Proposition 5.2]).
Second, this denominator D[h(ε,A,B)](g) is of the form

B(h) + g2 (ε = +1), B(h) + g1 (ε = −1) .

In both cases, as gi ∈ L and degB ≥ 1, the ultrametric equality ||B(h) + gi|| = ||B(h)|| = qdegB

holds and entails the equality

||Jac(h(ε,A,B))(g)|| = ||D−3[h(ε,A,B)](g)|| = q−3 degB .

Proof B. It is done “by hands” and it is based on the following assertions, which provide a proof
of the change of variables formula for the case of simple transformations. This can be formulated
in dynamical terms along the following two assertions. Assertion (i) is a classical statement for
the beta-transformation Sβ and Assertion (ii) is a classical statement for the Gauss map and its
proof can be found e.g. in [4, 7].

(i) For any β ∈ Fq((X−1)), deg β > 0, the map Sβ : L → L, f 7→ βf − [βf ] is µ-measure
preserving and for any A ∈ Fq[X], degA < deg β (it also holds for A = 0) and for any
Borel subset E of L, one has

µ({f ∈ L | [βf ] = A, Sβ(f) ∈ E}) =
1

qdeg β
µ(E).

(ii) For any B ∈ Fq[X], degB ≥ 1, and for any Borel subset E of L, one has

µ({f ∈ L |
[

1

f

]
= B,

1

f
−B ∈ E} =

1

q2degB
µ(E).

Proof. Let us prove Assertion (i). As Sβ is an endomorphism of L onto itself (i.e., Sβ(f + g) =
Sβ(f) +Sβ(g)), it is Haar measure preserving. We let denote by (a−1, a−2, . . . , a−k)(f) the k-uple
of coefficients of f with index running from −1 to −k. Suppose that deg β = k > 0. For each
A ∈ Fq[X], degA < k, we can find a k-uple (a−1, a−2, . . . , a−k) ∈ Fkq such that [βf ] = A if
and only if (a−1, a−2, . . . , a−k)(f) = (a−1, a−2, . . . , a−k). It is enough to show the assertion for a
cylinder set of the form

E = {f ∈ L | (a−1, a−2, . . . , a−`)(f) = (c−1, c−2, . . . , c−`)}

with (c−1, c−2, . . . , c−`) ∈ F`q, ` ≥ 1. There exists (a−(k+1), a−(k+2), . . . , a−(k+`)) ∈ F`q such that

{f ∈ L | [βf ] = A, (a−1, a−2, . . . , a−`)(Sβ(f)) = (c−1, . . . , c−`)}
= {f ∈ L | [βf ] = A, (a−(k+1), a−(k+2), . . . , a−(k+`))(f) = (c−1, . . . , c−`)}.

This entails the equality µ({f ∈ L | [βf ] = A, Sβ(f) ∈ E}) = 1
qk
µ(E) = 1

qdeg β
µ(E). �

We now prove Proposition 8.

Proof. We give the proof in the case ε = −1 for the map T defined in Section 2.2. It is enough to
show the assertion when F is of the form E1 × E2, where E1 and E2 are Borel subsets of L. By
Fubini’s theorem, we have

µ⊗ µ({(f1, f2) | η(f1, f2) = −1, A− = A, B− = B, T(f1, f2) ∈ E1 × E2})

=

∫∫
〈+,A,B〉

1E1×E2

(
1

f2
−B, f1

f2
−A

)
dµ⊗ µ

=

∫
[1/f2]=B

(∫
[f1/f2]=A

1E1×E2

(
1

f2
−B, f1

f2
−A

)
dµ(f1)

)
dµ(f2)

=

∫
[1/f2]=B

1E1

(
1

f2
−B

)(∫
[f1/f2]=A

1E2

(
f1

f2
−A

)
dµ(f1)

)
dµ(f2).
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For any f2 with [1/f2] = B, we now use Assertion (i) for the internal integral with β = 1/f2 and
thus deg β = degB, and then Assertion (ii). This gives

=
1

qdegB
µ(E2)

∫
[1/f2]=B

1E1

(
1

f2
−B

)
dµ(f2)

=
1

qdegB
µ(E2)

1

q2 degB
µ(E1) =

1

q3 degB
µ⊗ µ(E1 × E2).

�

5.2. The transfer operator. Let T = T] be one of the three continued fraction maps of interest,
with ] ∈ {JP,B,FS}. We recall that the set of quotients H] depends on the continued fraction
map. With a given quotient (ε,A,B) ∈ H], one associates the inverse branch h],(ε,A,B) of T]. This

is the map acting on L2 satisfying h],(ε,A,B)(g) = f if and only if T](f) = g with the produced
quotient being (ε,A,B). We know that the following holds for the three continued fraction maps:

– the inverse branch h],(ε,A,B) is the homography associated with the matrix Mε(A,B);

– the map h(ε,A,B) : L2 → h(ε,A,B)(L2) is a bijection.

We now omit the reference to the algorithm. We consider the density transformer H associated
with the map T. This operator, also called the Perron–Frobenius operator, was introduced early in
the study of dynamical systems as the dual of the Koopman operator f 7→ f ◦T for non-invertible
maps. Then Ruelle [28] introduced a more general notion of transfer operators; this was further
adapted to various contexts, notably to the continued fraction case by Mayer [23]. For more on
transfer operators, see for instance [1].
Here, the transfer operator acts on L1

µ⊗µ(L2) and it associates with a density φ the new density

that holds on L2 after one iteration of the map T. As the inverse branches are full, the transfer
operator is defined for φ ∈ L1(µ⊗ µ) and g ∈ L2 as

(74) H[φ](g) =
∑

(ε,A,B)∈H

‖Jac(h(ε,A,B))(g)‖ φ ◦ h(ε,A,B) (g) .

With Proposition 8, the norm of the Jacobian is a constant function, and the operator is

H[φ](g) =
∑

(ε,A,B)∈H

1

q3 degB
φ ◦ h(ε,A,B) (g) .

Then, the constant function φ ≡ 1 on L2 is an eigenfunction for the operator H. The associated
eigenvalue involves the generating function H(z) introduced in Section 4.2, and this yields

(75) H[1] =

 ∑
(ε,A,B)∈H

q−3 degB

1 = H(1/q3) 1 = 1 ,

where the last equality H(1/q3) = 1 comes from the fact that the rational fraction 1/(1−H](z))
has a pole at z = 1/q3. This entails the invariance of µ⊗ µ under the action of T.

Moreover, for any triple (ε, A,B) ∈ H] and any Borel set F ∈ L2, Proposition 8 entails the equality

µ⊗ µ
(
{f | (ε, A,B)(f) = (ε,A,B), f ∈ T−1(F )}

)
= µ⊗ µ(h(ε,A,B)(F )) =

1

q3 degB
µ⊗ µ(F ) .

We then conclude, by induction on the number of partial quotients considered, that the quotients
(εn, An, Bn)n are independent and define identically distributed random variables on L2. We have
then proven the following.

Theorem 2. Each continued fraction maps T], with ] ∈ {JP,B, FS}, is µ ⊗ µ-preserving. The
sequence (εn, An, Bn)n≥1 is formed with independent and identically distributed random variables
with respect to the probability measure µ⊗ µ and the map T] is ergodic with respect to µ⊗ µ.
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5.3. Additive costs in the continuous model. The following result deals with the cost Cn
along the n-th truncated trajectory associated with a step-cost c. This step-cost c gives rise to
a cost ĉ defined on L2, via the equality ĉ(f) = c(Q(f)), where Q(f) is the quotient pair (A,B)
computed by T on f . As already seen in Section 3.2, the following equality holds:

(76) Cn(f) = ĉ(f) + ĉ(T(f)) + · · ·+ ĉ(Tk(f)) + · · ·+ ĉ(Tn−1(f)) .

This cost Cn has two characteristics:

– The equality (76) is written as an ergodic sum: the ergodic theorem (and here in fact, the
strong law of large numbers) entails a convergence that holds almost everywhere.

– It is also written as a sum of i.i.d. variables, and the central limit theorem applies.

Theorem 3. The following holds for any continued fraction maps T] with ] ∈ {JP,B, FS} and
any step-cost c defined in (28):

(i) Any cost Cn defined in (76) satisfies

1

n
Cn(f)→ M̃c , (a.e in L2) , with M̃c = Eµ⊗µ[ĉ] .

(ii) The cost Cn is written as a sum of independent and identically distributed random vari-

ables, whose expectation and variance, respectively denoted as M̃c and Ṽc, are expressed via
the generating function u 7→ `c(u) = Hc(1/q

3, u). The function Hc(z, u) was introduced
in Section 4.5 as the bivariate generating function of the cost c. The following equalities
hold:

(77) M̃c = Eµ⊗µ[ĉ] = M[`c] = `′c(1), Ṽc = Vµ⊗µ[ĉ] = V[`c] = `′′c (1) + `′c(1)− `′c(1)2 ,

and they involve the cost ĉ defined from the step-cost c as ĉ(f) = c(Q(f)).

(iii) When the cost c is not constant, the variance Vµ⊗µ[ĉ] is positive, the central limit theorem
applies, and the cost Cn asymptotically follows a Gaussian law, with

E[Cn] = n M̃c, V[Cn] = n Ṽc .

Remark. Assertion (iii) does not apply to the pair (FS, d) where the cost d is constant and equal
to 2.

Proof. (i) First, each (generic) cost Cn(f) along the n-th truncated trajectory associated with a
step-cost c defined on L2 is written as the sum

Cn(f) = ĉ(f) + ĉ(T(f)) + · · ·+ ĉ(Tk(f)) + · · ·+ ĉ(Tn−1(f)) ,

that involves the associated cost ĉ defined on L2. The quantity (1/n)Cn(f) is thus an ergodic
sum, and the ergodic theorem entails

lim
n→∞

1

n
Cn(f) = Eµ⊗µ[ĉ] =

∫
L2

ĉ(f) dµ⊗ µ (a.e) .

(ii) Due to Theorem 2, the cost Cn is the sum of independent and identically distributed random
variables. In order to study the distribution of each elementary random variable, we consider
a perturbation of the transfer operator defined in (74). Such operators have been introduced
by Ruelle [28] in the study of the thermodynamic formalism, and are now strongly used in the
dynamic analysis method.
We associate with the step-cost c the operator Hc,u(= Hc,u,]), that depends on a complex variable
u, and is defined as

(78) Hc,u[φ](g) =
∑

(ε,A,B)∈H

‖Jac(h(ε,A,B))(g)‖uc(A,B) φ ◦ h(ε,A,B) (g)

=
∑

(ε,A,B)∈H

(q−3 degB)uc(A,B) φ ◦ h(ε,A,B) (g) .
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As previously, the constant function φ ≡ 1 on L2 is an eigenfunction for the operator Hc,u, and
the associated eigenvalue involves the bivariate generating function Hc(z, u) introduced in Section
4.2 at point z = 1/q3 as

(79) Hc,u[1] =
∑

(ε,A,B)∈H

(q−3 degB)uc(A,B) 1 = Eµ⊗µ[uĉ] 1 = Hc(1/q
3, u) 1 .

This entails the equality Eµ⊗µ[uc] = Hc(1/q
3, u), and thus, taking the derivatives with respect

to u at u = 1 of the function `c(u) := Hc(1/q
3, u) leads to the two equalities that involve the

quantities defined in (64) and described in (77).

With a fixed step-cost c and an algorithm ], we then associate the operator H],c,u. The Sum
Property of Proposition 2 now extends to the operators, and the following equality between the
three operators holds:

2 HJP,c,u = HB,c,u + HFS,c,u .

As these three operators admit the same eigenfunction φ ≡ 1 on L2, this also entails the Sum
Property for their associated eigenvalues u 7→ `c(u) and thus for the (first or second) derivatives
of the functions `c. Then, the Sum Property extends to the associated M[`c] but not13 to the
associated V[`c] that satisfy

2M[`JP,c] = M[`B,c] + M[`FS,c], V[`JP,c] = V[`B,c] + V[`FS,c] + 2M[`B,c] ·M[`FS,c] .

Then, the equalities hold

(80) 2 M̃JP,c = M̃B,c + M̃FS,c 2ṼJP,c = ṼB,c + ṼFS,c − 2
(
M̃2
JP,c − M̃B,c · M̃FS,c

)
.

(iii) With p(h) := q−3 degB , the Cauchy-Schwartz inequality leads to∑
p(h)uc(h) ≤

(∑
p(h)u2c(h)

)1/2 (∑
p(h)

)1/2

,

and the equality holds if and only if the terms are collinear. This only happens when the cost c(h)
does not depend on the branch h.

�

5.4. Computation of expectations and variances. We now perform precise computations for

the constants M̃c = M[`c] and Ṽc = V[`c] that are involved in (77). In particular, for any additive

cost c, we compare the constant M̃c with the constant Mc which occurs in the analysis of the
gcd algorithm that deals with finite trajectories. We prove that a finite trajectory behaves on
average in the same way as a truncated trajectory behaves almost everywhere. We also provide

a precise expression of the constants Ṽc which intervene in the variances. The computations are
summarized in Table 8.

Proposition 9. The following holds for any continued fraction map T = T], where ] refers to
JP, B or FS according to the algorithm, and for any additive cost c ∈ {d, dB , δ, ν}:

(i) The entropy of the dynamical system (L2,T, µ⊗ µ) is expressed in terms of the degree dB
of the quotient B and satisfies

E(T) = 3Eµ⊗µ[dB ] .

(ii) The relation

3 M̃c = Mc · E(T)

holds between the expectation M̃c = Eµ⊗µ[c] in the continuous model, the dominant con-
stant Mc described in (65) which appears in the analysis of the discrete model and the
entropy.

13This is due to the term `′(1)2 inside [`].
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(iii) The relation (83) holds between the function `c defined in Theorem 3(ii), the functions
ρ−1
c and σc that arise in the analysis of the discrete model, and the second component βc

of the vectorial function γc defined in (44), together with a function ∆c described in Table
7.

(iv) The following relations hold

M̃c = M[`c] = σ′c(1) ∆c(1) ,

Ṽc = V[`c] = σ′′c (1) ∆c(1)− σ′c(1)2∆c(1)2 + σ′c(1)
[
∆c(1) + 2θ

(c)
w ∆′c(1)

]
.

(v) The constants associated with each pair (algorithm, cost) are shown in Table 8. Except in

the case (FS, d), the variance constants Ṽc involve polynomials that are (strictly) positive
for q ≥ 2.

Proof. (i) Theorem 2 shows that the process which emits at each discrete time k the triple
(εk, Ak, Bk) is memoryless. Denote by p(h) the probability of emitting the quotient (ε, A,B).
Then, the entropy is just equal to

E(T]) :=
∑
h∈H]

p(h) logq p(h) = 3
∑

(ε,A,B)∈H]

1

q3 degB
degB = Eµ⊗µ[3 degB] = 3ĤdegB(1/q3)

where Ĥc(z) is the cumulative gf of the cost c, equal (by definition) to (∂/∂u)Hc(z, u)|u=1. In the
case of cost dB , Section 2 proves the equality HdB (z, u) = H(zu) that entails

1

3
E(T ) = ĤdegB(1/q3) = (1/q3)H ′(1/q3) .

Furthermore, the equality (1/q3)H ′(1/q3) = D(1/q3) (see (38)) implies that the entropy is also
equal in each case to 3D(1/q3).

(ii) The constant Mc which occurs in the analysis of the discrete model is equal to M[gc] where
gc appears in (66). The function gc is related itself to another function ρc defined by the implicit
equality Hc(ρc(u), u) = 1 via the relation ρc(u) = (q3gc(u))−1. Taking the derivative with respect
to u leads to the equality

ρ′c(u)
∂

∂z
Hc(ρc(u), u) +

∂

∂u
Hc(ρc(u), u) = 0 .

Now, at u = 1, the equality gc(1) = 1 and the relation ρ′c(1) = −(1/q3)g′c(1) holds. Furthermore,
the equality Hc(z, 1) = H(z) holds and the partial derivative (∂/∂z)Hc(z, 1)

∣∣
z=1/q3

is just equal

to H ′(1/q3). Using now (i), and the relation with the entropy, we conclude with the equality

−g′c(1)
1

q3
H ′(1/q3) + `′c(1) = 0, M[gc] E(T ) = 3M[`c] .

(iii) We could compute the second derivative of the relation Hc(ρc(u), u) = 1 at u = 1. However,

we prefer to adopt a more direct method, which directly deals with the polynomial Q̃ introduced

in Section 4.5, and more precisely with its reciprocal polynomial Q̂ also introduced there.

Quadratic class. For the subclass QC1, one has

(QC1) 1−H
(

1
z , u, w

)
=

1

z2

Q̂(u,w)(z)

(1− qw
z )(1− q2w2)

z )
=

Q̂(u,w)(z)

(z − qw)(z − q2w2)
,

where Q̂(u,w) is the reciprocal of Q̃(u,w) given in (58). In the same vein, for the subclass QC2,
one has

(QC2) 1−H
(

1
z , u, w

)
=

1

z2

Q̂(u,w)(z)

(1− qw
z )(1− q2w)

z )
=

Q̂(u,w)(z)

(z − qw)(z − q2w)
,

where Q̂(u,w) is the reciprocal of Q̃(u,w) given in (61).
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Linear class. There are analog formulae that involve the function ρ(u,w), namely

(LC1), (LC3) 1−H
(

1
z , u, w

)
=

1− 1
zρ
−1(u,w)

1− 1
z qw

, (LC2) 1−H
(

1
z , u, w

)
=

1− 1
zρ
−1(u,w)

1− 1
z q

2w
,

or, equivalently

(LC1), (LC3) 1−H
(

1
z , u, w

)
=
z − ρ−1(u,w)

z − qw
, (LC2) 1−H

(
1
z , u, w

)
=
z − ρ−1(u,w)

z − q2w
.

We now focus on the point (z, u, w) where z = q3 and (u,w) = γc(u) where γc is defined in (44).

The second component of the vectorial function γc was previously denoted as γ
(w)
c at the beginning

of Section 4.8, and its derivative was denoted there by θ
(c)
w (see Eqn. (71)). This function γ

(w)
c is

presently denoted, in a lighter way, by βc, so that the equality β′c(u) = θ
(c)
w holds.

For the (whole) quadratic class, the polynomial Q̂(q3, γc(u)) equals q3(q3 − σc(u)) where the
function σc is defined in (67). This gives for this class

(81) (QC1) 1− `c =
q3 − σc

(q2 − βc)(q − β2
c )
, (QC2) 1− `c =

q3 − σc
(q2 − βc)(q − βc)

.

For the linear subclass, the quantity 1− `c is equal respectively to

(82) (LC1), (LC3) 1− `c =
q3 − ρ−1

c

q(q2 − βc)
, (LC2) 1− `c =

q3 − ρ−1
c

q2(q − βc)
.

A unified formula. In all the cases, the following equality holds:

(83) 1− `c = (q3 − σc) ∆c ◦ βc .

Here, the function σc is defined in (67) for the quadratic subclass and equal to ρ−1
c for the linear

subclass. The function βc is the second component of the vectorial function γc. The function
w 7→ ∆c(w) only depends on the subclass and is defined in Table 7.

Subclass σc Expression of w 7→ ∆c(w) ∆′c(1)

QC1 Eqn (67) [(q2 − w)(q − w2)]−1 (2q2 + q − 3) (q2 − 1)−2 (q − 1)−2

QC2 Eqn (67) [(q2 − w)(q − w)]−1 (q2 + q − 2) (q2 − 1)−2 (q − 1)−2

LC1 ρ−1
c [q(q2 − w)]−1 q−1(q2 − 1)−2

LC2 ρ−1
c [q2(q − w)]−1 q−2(q − 1)−2

LC3 ρ−1
c [q(q2 − w)]−1 q−1(q2 − 1)−2

Table 7. Expressions of the functions σc, ∆c and ∆′c(1) for each subclass.

(iv) Then, in all the cases, due to (83), the expectation M[`c] and the variance V[`c] are expressed
with possibly the first two derivatives of the function σc, together with the derivatives of the

function w 7→ ∆c(w) and the derivative θ
(c)
w of the second component βc of γc. All these values

are taken at u = 1. We now omit the reference to the cost c in the next computations.

Taking the first derivative of (83) gives:

−`′(u) = θw(q3 − σ(u)) ∆′(β(u))− σ′(u) ∆(β(u)) .

This leads to the equality `′(1) = σ′(1)∆(1), and
(84)

(QC) M[`] =
σ′(1)

(q − 1)(q2 − 1)
, (LC1), (LC3) M[`] =

σ′(1)

q(q2 − 1)
, (LC2) M[`] =

σ′(1)

q2(q − 1)
.

We now compute the constants V[`] involved in (77) that are relative to the variances.
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The second derivative at u = 1 of (83) just involves three terms taken at u = 1, namely

−`′′(u) = −θw σ′(u) ∆′(β(u))− σ′′(u) ∆(β(u))− θw σ′(u) ∆′(β(u)) .

This leads to the equality

`′′(1) = σ′′(1) ∆(1) + 2θw σ
′(1)∆′(1) .

Finally, the term V[`] for the variance satisfies:

(85) V[`] = `′′(1)− `′(1)2 + `′(1) = σ′′(1) ∆(1)− σ′(1)2∆(1)2 + σ′(1) [∆(1) + 2θw ∆′(1)] .

Jacobi–Perron Brun Fully subtractive

Entropy E 3q

q − 1

3q2

q2 − 1

3q(q + 2)

q2 − 1

M̃dB

q

q − 1

q2

q2 − 1

q(q + 2)

q2 − 1

M̃d
2q + 1

q + 1

2q

q + 1
2

M̃δ
3q2 + q − 1

q2 − 1

q(3q − 2)

q2 − 1

3q2 + 4q − 2

q2 − 1

M̃ν 3 3
q

q + 1
3
q + 2

q + 1

Jacobi–Perron Brun Fully subtractive

ṼdB
q

(q − 1)2
q2

(q2 − 1)2
q(2q2 + q + 2)

(q2 − 1)2

Ṽd
q

(q + 1)2
2(q − 1)

(q + 1)2
0

Ṽδ
q(5q2 + 7q + 1)

(q2 − 1)2
(2q − 1)(q2 − 2q + 2)

(q2 − 1)2
q(8q2 + q + 8)

(q2 − 1)2

Ṽν
6

q

3(3q − 2)

(q + 1)2
3(3q2 + 2q + 4)

q(q + 1)2

Table 8. Constants M[`c] for the mean (top) and V[`c] for the variance (below)
for the three algorithms and the costs of interest. We check in each table the
properties described in (80), namely

– for the means, the relation 2M̃c,JP = M̃c,B + M̃c,FS ,

– for the variances, the relation 2ṼJP,c = ṼB,c+ṼFS,c−2
(
M̃2
JP,c − M̃B,c · M̃FS,c

)
.

Remark. There are strong similarities between the present formulae (84) and (85) (here in the
continuous model) and formulae (68) and (70) that stand in the discrete model (at least in the
(QC) subclass).

(v) The constants relative to each pair (algorithm, cost) are summarized in Table 8 below. We
have checked that the polynomials involved are always positive for q ≥ 2 (except for the pair
(FS, d) as already mentioned).

Remark. As in the discrete case, all the dominant constants (mean values and variances) are
elements of Z(q). All the mean values are in Θ(1) for q → ∞, and the involved constants only
depend on the cost, not on the algorithm. This is the same as in the discrete case, and they
respectively satisfy

M̃dB ∼ 1, M̃d ∼ 2, M̃δ, M̃ν ∼ 3.
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The variance constants are in Θ(1/q) with two exceptions: first, the constant Ṽd is zero for the
FS algorithm, as expected; second, for the pair (Brun, dB), the variance is in Θ(1/q2), a sort of
reminiscence of the discrete case, where it is zero.

�

5.5. The case of bit-complexities. For each cost c ∈ {δ, ν}, we consider two notions of bit-
complexities. First, the bit-complexity, as defined in Section 3.2, satisfies for c ∈ {δ, ν}

Φc,n(f) =
∑n
i=1(c(Ai) + c(Bi)) δ(Qi−1)

= (c(A1) + c(B1)) +
∑n−1
i=2 (c(Ai) + c(Bi))

(
1 +

∑i−1
j=1 degBj

)
.

It involves the trajectory (f, T (f), · · · , Tn(f)) with quotients (εk, Ak, Bk) and the convergentsP1,k

P2,k

Qk

 = Mεk(Ak, Bk) · · ·Mε1(A1, B1)

0
0
1

 .

For a polynomial Qn, let Q̂n stands for Qn divided by its leading coefficient. We may also

consider the execution of the gcd algorithm on the triple (P1,n, P2,n, Q̂n) and get a sequence of

quotients (ε′k, A
′
k, B

′
k) that correspond to the execution of the algorithm on (P1,n, P2,n, Q̂n). The

quotients (ε′k, A
′
k, B

′
k) are just the quotients (εn−k, An−k, Bn−k) produced in the reverse order and

the sequence of polynomials produced by the algorithm is (P1,n,k, P2,n,k, Q̂n,k)1≤k≤n, where the
triples (P1,n,k, P2,n,k, Qn,k) are intermediate convergents defined for 1 ≤ k ≤ n− 1 asP1,n,k

P2,n,k

Qn,k

 = Mε′k+1
(A′k+1, B

′
k+1) · · ·Mεn(A′n, B

′
n)

0
0
1

 and

P1,n,n

P2,n,n

Qn,n

 =

0
0
1

 .

It turns out that

Φc(P1,n, P2,n, Q̂n) =
∑n
i=1(c(A′i) + c(B′i)) δ(Q̂n,i)

=
∑n−1
i=1 (c(A′i) + c(B′i))

(
1 +

∑n
j=i+1 degB′j

)
+ (c(A′n) + c(B′n))

=
∑n
i=2 (c(Ai) + c(Bi))

(
1 +

∑i−1
j=1 degBj

)
+ (c(A1) + c(B1)).

In both cases, the sequence (An, Bn)n≥1 is formed with independent and identically distributed
random variables with respect to µ⊗ µ, and we have for i < j

Eµ⊗µ[c(Ai) degBj ] = Eµ⊗µ[c(A)]Eµ⊗µ[dB ] Eµ⊗µ[c(Bi) degBj ] = Eµ⊗µ[c(B)]E[dB ].

We now use the following result from [7] that we recall below:

Proposition [7, Proposition 3 ] Let (Vn) and (Wn) be stationary and ergodic sequences of non-
negative valued random variables on a probability space (Ω,F , P ) with finite expectations µV and
µW , respectively. For P -a.e. ω ∈ Ω, we have

lim
n→∞

1

n2

n∑
k=1

Vk

n∑
j=k+1

Wj =
1

2
µV µW .

Once applied to our framework, we obtain the following result

Proposition 10. For c ∈ {δ, ν}, the following holds for the two notions of bit-complexity previously
defined:

lim
n→∞

1

2n2
Φc,n(f) = lim

n→∞

1

2n2
Φc(P1,n, P2,n, Qn) = Eµ⊗µ[c]Eµ⊗µ[dB ] .
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5.6. On the degree of convergents. We wish to study the possible values of degQk when k
varies. We are then interested in the indices N for which there exists some index k for which

degQk(f) =

k∑
i=1

degBi(f) = N .

If the degrees degBi were all equal to a constant dB , the integers N of interest would form an
arithmetical sequence with ratio dB , and their density would be equal to 1/dB . Even though the
degree dB is not a constant random variable, the following result exhibits such a (limit) density.

Proposition 11. We consider the sequence of sets

FN := {f ∈ L2 | ∃k degQk(f) = N} .
For the Jacobi–Perron and Brun algorithms, the measure of FN is independent of N , and is equal
to 1/Eµ⊗µ(dB). For the fully subtractive algorithm, this measure depends on N and satisfies

lim
N→∞

µ⊗ µ(FN ) =
1

Eµ⊗µ(dB)
.

Proof. We recall first that degQk =
∑k
i=1 degBi for the three algorithms.

In the case of the Jacobi–Perron and Brun continued fraction maps, the sequence (degBi)i≥1 is
an i.i.d. sequence with geometric distribution of parameter 1/q (for Jacobi–Perron) and 1/q2 (for
Brun). One has indeed, for any i ≥ 1 and any ` ≥ 1

µ⊗ µ
{
f ∈ L2 | degBi = `

}
=
q − 1

q`
, (JP), µ⊗ µ

{
f ∈ L2 | degBi = `

}
=
q2 − 1

q2`
(Brun) .

Then, degQk is a sum of k independent geometric variables of the same parameter q−1 or q−2,
respectively. This implies that the probability that degQk = N for some k is equal to (q − 1)/q
or (q2 − 1)/q2, respectively; it is thus independent of N .

For the fully subtractive algorithm, the distribution of degBi is not geometric. First of all, we
note that degQk = N implies k ≤ N . We let

νN = µ⊗ µ(FN ), αk = µ⊗ µ
{
f ∈ L2 | degBi = k

}
, ᾱ = (α1, α2, . . . , αn, · · · )

One has ν1 = α1. With ᾱ, we define the bi-infinite matrix Z by blocks as Z =

(
ᾱ
I∞

)
and denote

by z
(n)
ij , for n ≥ 1 the coefficient of the power Zn at the i-th row and the j-th column.

It is first clear that z
(N)
11 = νN . We now prove by induction the equality

z
(N)
1j = µ⊗ µ

(
{f ∈ L2 | ∃k (1 ≤ k ≤ N) degQk = N + j − 1 and degQk−1 < N}

)
.

Suppose that the claim holds for N ≥ 1. The following matricial equality holds:

z
(N+1)
1j = z

(N)
11 αj + z

(N)
1 j+1.

Because (An, Bn)n≥1 is an i.i.d. sequence, it turns out that z
(N+1)
1j is equal to

µ⊗ µ
(
{f ∈ L2 | ∃k (1 ≤ k ≤ N) degQk = N and degBk+1 = j}

)
+ µ⊗ µ

(
{f ∈ L2 | ∃k (1 ≤ k ≤ N) degQk = N + j and degQk−1 < N}

)
= µ⊗ µ

(
{f ∈ L2 | ∃k (1 ≤ k ≤ N) degQk = N, and degQk+1 = (N + 1) + j − 1}

)
+µ⊗ µ

(
{f ∈ L2 | ∃k (1 ≤ k ≤ N) degQk = N + j and degQk−1 < N}

)
= µ⊗ µ({f ∈ L2 | ∃k (1 ≤ k ≤ N) degQk+1 = (N + 1) + j − 1 and degQk−1 < N})

where we should note that k = N + 1 is possible only when degQN = N .

The matrix Z is an aperiodic irreducible stochastic matrix. We refer to [29, Chapter 5] for the
detail of the theory of non-negative matrices of countable infinite states. By the Perron–Frobenius
theorem, there exists a row stochastic eigenvector p such that each row of Zn converges to p as
n→∞. The first coordinate of p is the α that we need. The fact that Eµ⊗µ[dB ] <∞ implies that
the Markov chain associated with Z is positive recurrent. Moreover, the solution of the equation
uZ = u with u1 = 1 can be computed inductively, and this shows that the normalizing constant
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of u is equal to the inverse of Eµ⊗µ[dB ]. This proves the third assertion of the proposition, and
ends the proof �

6. Conclusion and open problems

To our knowledge, this is the first study that provides a unified analysis of multidimensional
gcd algorithms and their associated continued fraction maps for polynomials and formal power
series with coefficients in a finite field. This analysis is based on the use of the transfer operator,
which firstly provides a simple explanation for the invariance of the Haar measure. Secondly,
the generating functions appear as dominant eigenvalues of the transfer operator. In this way,
the main cost characteristics (expectation, variance) appear in a natural manner and are easily
computed and compared.

The following features are central for developing our unified framework:

(i) the algorithms are based on the choice of a specific component;
(ii) they perform the division of the other two components by the specific component;

(iii) the algorithms deal with partially ordered inputs.

The present formalism covers classical algorithms (in the case of real numbers) such as the Jacobi–
Perron, the Brun and the fully subtractive algorithms.

What about other algorithms? There exist other classical algorithms for real numbers, as the
Selmer algorithm and the Poincaré algorithm, and we consider their possible adaptations to the
context of positive characteristic.

– The Poincaré algorithm, described in [25], subtracts the smallest entry to the second largest
one, and the second largest one to the largest one. It does not fit into the present framework at
all, since it does not use the notion of a specific component, and it seems difficult to decompose a
step of this algorithm into two steps of a “specific flavour”.

– The Selmer algorithm subtracts the smallest entry to the largest one [30]. It may be adapted
in order to enter the present framework. Even though the classical version of the Selmer algo-
rithm uses subtractions, one can deal with its multiplicative version, more natural in the context
of positive characteristic. Then, the multiplicative version performs one division of the largest
component by the smallest component. Even though there is only one division, the framework
described by Condition (ii) may be extended. Generally speaking, our analyses may be relatively
easily adapted to algorithms that that do not perform all the divisions.

Concerning Condition (iii), the analysis will be more difficult in the case of totally ordered inputs.
As already mentioned in Section 2.2 just after Eqns (11) and (12), we need indeed to completely
re-order the input after the divisions. This involves a possible extra permutation µ (between R1

and R2) which acts after the divisions, whereas the permutation described by η (in the present
study) just observes the ordering of the pair before the divisions.

Higher dimensions. In the general unified framework of the paper (i.e., partially ordered
subsets), it seems possible to design a similar framework for higher dimensions (n ≥ 3). Consider
a set of (n+ 1)–uples of polynomials R = (R1, R2, . . . , Rn+1), partially ordered, with degRn+1 >
max(R1, R2, . . . , Rn). Consider also a specific component, always different from Rn+1 , defined by
ε ∈ [1..n]. It can be chosen by its position, with a given fixed ε (as in the case of the Jacobi-Perron
algorithm where ε = 1). There are then n positional algorithms of the Jacobi-Perron flavour.
However, they are however all of the same vein, and they share the same behaviour. The specific
component can also be chosen in terms of the rank η ∈ [1..n] of the specific component inside
the n-uple (R1, R2, . . . , Rn). The generalized Brun strategy is defined by ε = η = 1, whereas the
generalized fully subtractive strategy is defined by ε = η = n. For n+1 > 3, there are intermediate
strategies attached with each choice ε = η = i ∈ [1..n]. Similar algorithms have been considered
for subtractive algorithms in the real number case [9, 12].

The execution of such an algorithm will be considered as a succession of phases, as already seen
for the analysis of the ordered version of the Brun algorithm in n dimensions in the real case [6].
As in the present study, we expect the first phase –the only one which is not degenerate and which
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deals with the total dimension– to be the dominant one in terms of complexity and costs. The
bivariate generating functions of the main costs during the first phase will be written as rational
fractions with respect to z, with a denominator being a polynomial of degree at most n (in the
n-dimensional case); the other phases, the degenerate ones, deal with dimensions smaller than n,
and will have a negligible complexity compared to the first phase.
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(1995), 373–401.
[26] R. Paysant-Leroux and E. Dubois, Algorithme de Jacobi-Perron dans un corps de séries formelles, C. R. Acad.
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