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Abstract The discrete plane B(a, b, ¢, p, w) is the set of points (x,y, z) €
72 satisfying 0 < az+by—+cz+p < w. In the case w = max(|al, |b], |c|), the
discrete plane is said naive and is well-known to be functional on a coordi-
nate plane. The aim of our paper is to extend the notion of functionality
to a larger family of arithmetic discrete planes by introducing a suitable
orthogonal projection direction («, 3, ) satisfying aa + 8b+ yc = w. We
then apply this functionality property to the enumeration of some local
configurations, that is, the (m, n)-cubes such as introduced in [VC99].

The discrete plane B(a, b, c, u,w) is the set of integer points (x,y,2) € Z3
satisfying 0 < ax + by + ¢z + p < w. In the case w = max(|al,|b],|c|),
the discrete plane is said naive and is well-known to be functional on one of
the coordinate planes, that is, for any point of P of this coordinate plane,
there exists a unique point in the discrete plane obtained by adding to P
a third coordinate. Naive planes have been widely studied, see for instance
[Rev91,DRR94,DR95,AAS97,VC97,Col02,BB02].

The present paper extends the notion of functionality for naive discrete planes
to a larger family of arithmetic discrete planes. For that purpose, instead of pro-
jecting on a coordinate space, we introduce a suitable orthogonal projection
on a plane along a direction (¢, 3,7), in some sense dual to the normal vec-
tor of the discrete plane B(a,b, ¢, p,w), that is, aa + b + y¢ = w, so that the
projection of Z3 and the points of the discrete plane are in one-to-one corre-
spondence. One interest of the notion of functionality is that it reduces a three-
dimensional problem to a two-dimensional one, allowing a better understanding
of the combinatorial and geometric properties of discrete planes. We thus ap-
ply this functionality property to the enumeration of some local configurations,
the (m,n)-cubes, for a large family of arithmetic discrete planes, following the
approach of [Vui99,BV01].

For clarity issues, we have chosen to work here in a three-dimensional space
but all the results and methods presented extend in a natural way to R™, with
n > 2, as well as to arithmetic discrete lines.



1 Basic notions and arithmetic discrete planes

Let (a,b,c) € R?, u € Rand w € R%; the arithmetic discrete plane PB(a, b, ¢, p, w)
is defined as follows:

Bla,b,c,p,w) = {(z,y,2) € Z% | 0 < ax + by + cz + pu < w}.

Moreover, if w = max{|al, |b|, |¢|} (resp. w = |a| + |b] + |¢|) then P(a, b, ¢, u,w) is
said to be naive (resp. standard).

In the present paper, in order to simplify the notation and to facilitate the
generalization of our results to higher dimensions, we use a vector-based repre-
sentation. Let {e7, 3, e3} be the canonical basis of the R-vector space R®. Let

¥ and ' be two vectors of R®. The notation (v, 7) stands for the usual scalar
product in R3. Let ¢ € {1,2,3}, we denote by v; = (v, €;) the i-th coordinate
of ¥ related to the basis {e_f, €,€3}.

Hence, for any arithmetic discrete plane 93, there exist a vector ¥ € R and
two real numbers 1 € R and w € R? such that

P={2€Z|0<(7,V)+pu<w}

In the sequel of this paper, we denote such a plane by (7, u,w). For a given
o €73 let Iy : R3 — {7 € R¥ | (@, 7) = 0} stand for the orthogonal
projection map onto the plane (@, @) = 0. We furthermore use the notation
7 when we consider the restriction of the projection IT+ to a subset of R3, as
for instance g : P — {7 € R3 | (@, @) = 0}, for a discrete plane P.

Let us recall a classical property of naive discrete planes having a positive
normal vector:

Theorem 1. [DRRY}] Let B = B(V', u,w) be a naive discrete plane. If v; = w,
for i = 1,2 or 3, then B is in bijection with the integer points of the plane
(e;,2) = 0 by the projection map I, that is, the restriction map g =P —
I (Z3) is a bijection. The plane (€;, ') = 0 is called a functional plane of B.

An analogous result holds for standard discrete planes:

Theorem 2. [BV00] Let P = P(V', p,w) be a standard discrete plane. Let @ =
€1 + es + e3. Then, the restriction map n : B — II=(Z3) is a bijection.

2 Generalized functionality

First, let us notice that in each of the two cases investigated in Theorem 1 and 2,
the following property holds: let ‘3 be a naive or a standard discrete plane with
normal vector v and with thickness w; then there exists a vector @ in Z? such
that the restriction map 7w : P — Il (Z3) is a bijection, and (@', V') = w.
In this section, we extend this property to any discrete plane P(7, p, w)
whatever its thickness w by introducing a dual vector @ € Z3 such that
(¥, @) = w. Furthermore, we improve this result by showing that the projec-
tions m5 are the only ones which provide a one-to-one correspondence between
the discrete plane (7', i1, w) and the projection of Z3; this will then yield a one-
to-one correspondence between a discrete plane and a two-dimensional lattice.



2.1 A bijective projection for arithmetic discrete planes

Theorem 3. Let P = B(V, p,w) be a discrete plane where v € R? is a non-
zero vector, p1 € R and w € RY.. Let o € 73 such that ged(oy, an, a3) = 1 and
(&, V) #0. Then, ng = B — 5 (Z>) is a bijection if and only if |(&/, V)| =
w.

The proof of Theorem 3 first requires a technical lemma:

Lemma 1. Let P = P(V', p,w) be a discrete plane with (V' p,w) € R3xRxRY.

-
1. If dimg(v1, ve,v3) = 1, then there exists (v',p',w') € Z* x Z x N such that

L= %(y,u’,w’) and ged(vy, vh,v5) = 1.
2. If dimg(v1, ve,v3) > 1, then the family (%, V) + 1)z ey is dense in [0, wl.

Proof. 1. Let us suppose that dimg(vy,v2,v3) = 1. Then, there exists { €
—
R* such that (Cvr,Cva,Cus) € Z3. Let v/ = (v, ¢/ = [—(u] iI}ld W =
[Cw— ] — [—C¢p]. An easy computation gives P(0', pu,w) = P(v', ', w’).
Finally, according to [AAS97], ¥ can be chosen with ged(vy, v, vs) = 1.
2. If dimg(v1,v2,v3) > 1, then we conclude by the classical following result:

the set {m + na | (m,n) € Z*} is dense in R if a ¢ Q.
|

-
With the hypothesis of Lemma 1, let us observe that (v, /', w’) is a naive
(resp. standard) discrete plane, if so is P(', u, w).

Proof of Theorem 3. We assume w.lo.g that (o, %) > 0. Let @ =
— -
(z1,72,23), 2" = (2,04, 2%) € Z3; 75 (7) = m(2') if and only if there ex-
—
ists (k,k') € Z? such that k'(2' — 7)) = k'a’. With no loss of generality we
can suppose that ged(k, k') = 1; then, k' divides ged(a1, ag, a3) and |k/| = 1.
—
In other words, 74 (7) = 7 (z’) if and only if there exists k € Z such that
- = — — — . .
2! =@ + k'o. Moreover, @ + ko € P if and only if
—
v

(@) 4w, w-(T.T) 4
@) ST &Y

1) Let us first assume that (o, v') = w. Then,

and we have proved that 7+ : 8 — II5(Z3) is a bijection.
2) Conversely, let us assume that 7 : 8 — Il (Z?) is a bijection.
i. If dimg(v1,v2,v3) = 1, then, thanks to Lemma 1, we can suppose that
v € 73, with ged(vi, v2,v2) = 1, and (u,w) € Z x N*, Let @ € Z? such
that (7', 7) 4+ =0. Then @ € Pand (¥ + @, V) +pu=(7,7) +

(&, 7)) +p = (a,?) > 0. Moreover, 75 (7 + @) = 75 (). Since



T is injective then @ + @ ¢ B, and hence (@, ¥’) > w. On the other
e = T =
hand, let «’ € Z° such that (2', V) +pu = —1. Then, (2' + @, V) +pu =

=
(2/,V)+ (a,?) +p = (d,7) —1 > 0. Since 7 is surjective and
(@, W) >0, then 2 + @ € P, that is, (o, v) — 1 < w, or equivalently,

(o, ) < w.

ii. Let us suppose that dimg(vi,ve,v3) > 2. Then, each interval
—(((?,?))-Ht) w—(g?,?g-ﬂt)

integer if and only if (@, v') = w by Lemma 1.

, with @ € 9B, contains one and exactly one

Projecting according to @ corresponds to looking at the plane along a di-
rection parallel to . Moreover, Theorem 3 states that, looking at the discrete
plane B(7, u,w) along this direction, one can see all points of (', u,w) as
if they were on the plane (@, @) = 0. In Section 2.3, we show that a natural
regular lattice structure emerges from this point of view.

As a generalization of functional planes for naive discrete planes, we define:

Definition 1. Let 8 = P(V, u,w) be a discrete plane with v € R a non-zero
vector, i € R and w € R%. Let & € Z* such that 7o : P — 5 (Z%) is a
bijection. The plane (&, V) = 0 is called a (generalized) functional plane of 3.

2.2 Existence of a dual vector

In the case of an arithmetic discrete plane with normal vector ¥ € R? and
thickness w € R, there is no reason for a vector o € 77 to exist satisfying
(@, 7') = w (consider the case (vy,vs,vs,w) is Q-free). However, if B(0’, p, w)
is an arithmetic discrete plane with normal vector @ € Z3, then, according to
Lemma 1, we can suppose that w € Z and ged(vy,ve,v3) = 1. We then deduce
from Bezout’s Lemma that there exists a vector & € Z3 such that (@, v) = w.
Let us prove now that @ € 73 can be chosen such that ged(aq, ag, a3) = 1.

Theorem 4. Let B(7, pu,w) be an arithmetic discrete plane with (U, pu,w) €
73 x Z x 2% and ged(vi,v2,v3) = 1. There exists @ € Z* such that (0!, V) = w
and ged(aq, ag,a3) = 1. In other words, there ezists o € 73 such that T
PV, p,w) — I (Z3) is a bijection.

Proof. Let ﬁ € 73 such that (ﬁ, 7)) = 1. Then, (wﬁ,?) =w. Let W € {7 ¢
73 | (7, 0) = 0}, let d = ged(uy, uo, u3) and let @ = wf +d'%. Then, an
easy computation gives (@', ) = w and ged(aq, oo, a3) = 1. We end the proof
by applying Theorem 3. |

We have illustrated Theorem 4 in Figure 1 in the case of a discrete line for a
better visualisation of the situation.



Fig. 1. Generalized functionality: the orthogonal projection of the discrete line 0 <
Tx1 + 1022 + p < 24 onto the line 2x 4+ y = 0.

2.3 Functional regular lattice associated to an arithmetic discrete
plane

Let us see now how any arithmetic discrete plane 3 can be recoded in a functional
way on a regular two-dimensional lattice, despite its three-dimensional structure.

Let P = P(7, p,w) be an arithmetic discrete plane. Let @ € Z3 such that
ged(ag,az,a3) = 1 and (@, v) = w (in case (V,p,w) € Z% x Z x N*, and
ged(vy, ve,v3) = 1, the existence of such a vector @ comes from Theorem 4).
One of the coefficients «;, for i € {1,2,3} being non-zero, we assume in this
section that ag # 0 with no loss of generality.

First, let us notice that since IIg (@) = 6), then, for all @ € Z3,

Then, for all 7" € Z3,
I5(7) = a1z (1) + 2215 (e3) + 23115 (e3)

_ (agxl — a1x3) H—>(6—1)) + <OZ3{E2 — a2x3> H—>(€_2>)

Q3 a3
and _ N
Iz R — {7 eR|(a,7)=0}
? — O£3I1—O£1$3? + a312—o¢2137) (]-)
ged(ar,a3) 1 ged(az,a3) 25
with q 4
7 = B0 @) ana T = B0 7,

We thus deduce that I'y = I (Z3) = II5(P) is a sub-lattice of the two-
—

—
dimensional lattice Z f1 + Z f5. The lattice Iy is called a functional lattice of .
This generalizes the concept of functionality defined for naive discrete planes as
a projection onto the integer points of one of the coordinate planes.



3 From a functional lattice to the associated discrete
plane

Let P = P(7, ,w) be an arithmetic discrete plane and Iy be a functional
lattice of B (see Section 2.3). A natural question is: “given an element 3 € Iy,
how can we recover the unique vector @ € B such that 74 (7)) = ?? ? In
the following, we investigate this question for the classical classes of arithmetic
discrete planes, namely the naive, the standard [Rev91,DRR94,DR95] and the

graceful ones [BB99,BB02].

3.1 Generalized functionality for a particular class of discrete planes

Let B(7’,pu,w) be an arithmetic discrete plane and let @ € Z*® such that
(@, W) = w. In this section, we assume that there exists i € {1,2,3} such
that «; = 1. This condition includes the set of naive, standard and graceful
arithmetic planes (see Section 3.2). Let us thus suppose that a3 = 1. In this
case, let us notice that I'y = ZE} + ZE.

Let 3§ € I'w. From now on, if no confusion is possible with the representation
of ¥ related to the basis {el, €2, 63} we will denote (y1,y2) the unique pair of
mtegers such that 7 = y1 f1 + Y2 fg

Let 7 € P and let ¥ = 75 (Z) € I'y. According to (1), one has z; =
Y1 + a1zs and 2 = ya + agxs. Hence, (7', V') + p = y1v1 + y2v2 + z3(ayvy +
vy + v3) + p and

0<(Z,7)+p=uv1y1 + vaya + T3w + p1 < w. (2)

Thus, glven any Y € 72, we can easily recover the unique vector 7 € 9 such
that 7ra>( )=Ty. Indeed, let us first note that (2) yields an explicit formula
for the height 3 of the points of B, that is, x3 = — LWMJ Let us call

— —
Hy & @ I'y — Z the function which to _any point y1 f1 + y2fs € ['m associates
the height x5 of the corresponding point = € 9B, that is, the unique point 7 € P

—

such that 74 (7) = ¥:

Hyw: § - \"Ulyl +v2y2 + MJ .
w
One thus obtains:

Pr0p051t10n 1. If ag =1, then the function 77_) : I'gy — B is defined by, for
al y €Iy :

t t
U1 a1

77%}(7): Yo | + Hy w(y1,y2) | a2 |. (3)
0 1



3.2 Classical examples

Let us suppose that v € N3, and v3 = max{vy, vy, v3}. If P is a naive or a
standard discrete plane, then we can suppose a3 = 1, since v; > 0 fors € {1,2,3}.
In the special case of naive discrete planes, we recover the already known formula:

Corollary 1. If B is a naive discrete plane, then o = es, for all T € B,
7w (T) = x1e] + w263 and for all ¥ € 'z,

Vlyl + VaY2 + #J —
— | e3.

3 (V) = yiel +yees — .
3

€3
Concerning the case of the standard discrete planes, we obtain, as a direct con-
sequence of Proposition 1:

Corollary 2. If B is a standard discrete plane, then & = e] + es + es, for all
— — — — —
T eP, 5 () =(x1 —x3)e1 + (x2 — x3)es, and for all y € 'z,

t t

Y1 1

1= v1Y1 + V2y2 +
— - e 1
e (V) y02 { U1 + v2 + v3 J 1

Let us suppose now that 8 = PB(7', u,w) is a graceful plane, that is, 0 < vy, <
vy < vz and w = max(vy +ve, v3). If v1 +v2 < w3, then P is a naive discrete plane
and this case has already been studied. Let us then assume that w = v1 + vo.
Let @ = ] + e5. Then, for all @ € P, 75 (@) = (1 — x2)e] + x3€3.

Up to a permutation on the set {a, a2, a3z}, we recover the following from
Proposition 1:

Proposition 2. If B is a graceful plane. Then & = e + €3 and the function
71%)1 : I — B is defined by, for all i € I'z,

t t

0 VoY V3Y2 + M !
_ 21 — U3Y2
Wa’l(g): Y1 +[W—‘ 1

Y2 1 2 0

4 Plane partitions and local configurations

The aim of this section is to apply the previous results to the study of (m,n)-
cubes and local configurations, generalizing the study performed for naive planes
in [VC97,5¢h97,Gér99,VC99,Col02]. For the sake of consistency, we call them
here mi-cubes rather than (m,n)-cubes.

Let P = P(7, u, w) be an arithmetic discrete plane and let @ € Z? such that
ged(aq, oo, a3) = 1 and (@, 7)) = w (recall that if ¥ € Z3 and ged (v, v, v3) =
1, then the existence of @ is ensured by Theorem 4). Let us assume furthermore
that a3 = 1.

Let m € (N*)2 be given. By mi-cube, we mean a local configuration in the
discrete plane that can be observed thanks to 7 through an m-window in the
projection lattice I'5;. More precisely,



Definition 2. Let m € (N*)2. The mi-cube C(y,m), with y € I's, is defined
as the following subset of P:

i
7

c(y,m) = {7%}@4 ), 7€ [[O,ml[[x[[(),mz[[}.

In order to enumerate the different types of mi-cubes that occur in 98, we repre-
sent them as local configurations as follows.

Definition 3. The mi-local configuration LC(y',m), with ¥ € Z? and m €
(N*)2, is defined as follows:

— — —
LC( Yy 7m) = I:H‘B,E)( z ) - H‘B,E)( Y )] ?E[[O,ml—l[ﬁ-‘r[[(),mQ—l[[E :

We say that %y is an index of occurrence of the local configuration LC (7, m).
Let us note that a local configuration is a plane partition.

Ezample 1. For instance, let us consider the arithmetic discrete plane ‘B =

PB(V, u,w) with ¥ = dej + 25 + 5ez, p=0and w = 9. Let @ = e; + e3. We
- =

illustrate the local configuration LC(fy + fo,3(e1 + €3)) of B and its preimage

by w%} in Fig. 2.

—

fe

Fig. 2. From left to right: a local configuration of the discrete plane B(4e7 + 2es +

5es,0,7) and its corresponding preimage by We:él-s-e_s’

We follow here the approach developed in [Vui99]. For a naive discrete plane 9, it

is well known that, given two points @ and 2’ of 98 such that their projections
by 7 are 4-connected in the functional plane, then |r3 — 25| < 1. In other
words, the difference between the height of 7 and ;’) is at most 1. A quite
unexpected fact is that this property holds for any arithmetic discrete plane with
as = 1. More precisely, it is easy to see that, for all 3 € I", Hy = (7 + 71)) —
Hy = (7)) takes only two values, namely — [ | and — [ | — 1. In the same
way, Hy = (7 + E) — Hy = (7)) takes only the values — [ %2 | and — |22 | — 1.
In each case, one of these values is odd, whereas the other one is even; we define
Ej, and Oy, to be respectively the even and the odd value taken by —[*] and
—L%J — 1; we similarly define F, and O,. It is now natural to introduce the
following two-dimensional sequence:

2
U= (Uy)yer, = Hpz(¥) mod2)ycr. €{0,1}7.



By definition, it is easily seen that the sequence U satisfies:

Y101 + Y2v2 + 1

VY € I'z, Uy =0 if and only if — =

mod 2 € [0, 1].
Let w = [wy]ye[o,mi—1]x[0,mo—1] D€ @ word of size m; x my over {0, 1}. We define
the complement W of w as follows: W = [W,]ye[0,m;—1]x[0,ms—1[» Where 1=0
and 0 = 1. Let us recall [Vui99,BV00] that the set of factors of the sequence U
is stable under complementation. We thus introduce the following equivalence
relation:

v ~ w if and only if v € {w,w}.

We have the following theorem, inspired by [Vui99]:

Theorem 5. There is a natural bijection between the equivalence classes of the
relation ~ of the factors of the sequence U and the m-local configurations of .

Proof. Consider the local configuration L = LC(7%,m); we can associate to it
the mi X mo word

.
[L(Z) mod 2]76[07m171[[ﬁ+[07m271|1?2)’

that we denote for short L mod 2. If Hy (/) is even, then L mod 2 is a factor

of the two-dimensional sequence U; otherwise, Hm,g(ﬁ) is odd and L mod 2
is a factor of U and so is L mod 2, by stability of the set of factors of U by
complementation.

Conversely, let us show how we can canonically reconstruct a m-local config-
uration, with m € (N*)z, from a given mj x ma-factor w of the two-dimensional
sequence U. Let us first assume that w— = 0. We define a plane partition

0
H = [H(7)]7e[[0 1 11T, +[0.m2—1]T: by induction as follows: we set H(H) =0;
let Z° € [0,m; — 1]]?{4— [0, mo — 1]]?; be a non-zero vector. If w_, , =» = w=, then
— 7 — . -, 7 —
we set H(Z + f1) = H(Z') + Ep. Otherwise, we set H(Z + fi1) = H(Z ) + Ox,.

Similarly, if W, = Wy, then we set H(Z + E) = H(Z)+ E,. Otherwise, we

set H(Z + fo) = H(Z) + O,.

The plane partition H is a local configuration of B; indeed, if w occurs at
index ¥ in U, then H = LC(%y,m) and w = (H mod 2) since H(%) is even
(we have wy = 0). Now, if wg =1, we apply the same reconstruction process to
w. We recover again a local configuration LC(y', i) such that w = (LC(y,m)

mod 2). |

One deduces, in particular, from Theorem 5 that any local configuration of
the discrete plane ¥ occurs at least twice: once at an index 3 with H(%) even
and second, at an index 3 such that H (") is even.

Let us now investigate the enumeration of mi-cubes occuring in a given arith-
metic plane. The number of (3,3)-cubes included in a given naive arithmetic
discrete plane has been proved to be at most 9 in [VC97]. More generally, in

[Rev95,Gér99], the authors proved that, given a naive arithmetic discrete plane
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B, B contains at most mime m-cubes. In the following theorem, we show that
this property also holds for mi-local configurations in an arithmetic discrete plane
SB(', u,w), which is non-necessarily naive.

Theorem 6. Let P = P(V,p,w) be a discrete plane, o € Z3 such that
(a,7) =w and az = 1, and let m € (N*)2. Then, P contains at most mims
m-local configurations.

Proof. According to [Vui99,BV00], the factors of size m; x mg of the sequence U
are in one-to-one correspondence with the intervals of R/2Z of extremal points
—huitiave apd —Lvtieve 41 with (i1,4s) € [0,m1 — 1] x [0, ms — 1]. There are
at most 2mims such points and the result follows from Theorem 5. |

5 Conclusion and perspectives

The aim of the present work was to introduce suitable tools generalizing the
classical ones used in the study of arithmetic discrete planes. We have exhibited
a generalized functionality for arithmetic discrete planes (7", u,w) and proved
that, as soon as |(@,v)| = w and ged(ay, az,a3) = 1, there is a one-to-one
correspondence between B3 and a two-dimensional lattice I,. Thanks to these
results, we have shown for various classes of arithmetic discrete planes, how to
recover © € P in correspondence with any 3 € I',. We also have investigated
plane partitions and local configurations and extended the well-known result on
the number of (m,n)-configurations in a naive plane, that is, there are at most
mn such configurations.

This approach offers new perspectives to investigate further general prop-
erties of arithmetic discrete planes of any thickness. In particular, we plan
to use it to generate arbitrarily large parts of discrete planes via symbolic
substitutions following [ABS04], to recover the corresponding Farey tessela-
tion as well as the symmetry properties of m-local configurations of a discrete
plane [VC99], and finally as a new approach to the recognition problem of dis-
crete planes [FST96,FP99,VC00].
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