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Abstra
t The dis
rete plane P(a, b, c, µ, ω) is the set of points (x, y, z) ∈
Z3

satisfying 0 ≤ ax+by+cz+µ < ω. In the 
ase ω = max(|a|, |b|, |c|), the
dis
rete plane is said naive and is well-known to be fun
tional on a 
oordi-

nate plane. The aim of our paper is to extend the notion of fun
tionality

to a larger family of arithmeti
 dis
rete planes by introdu
ing a suitable

orthogonal proje
tion dire
tion (α, β, γ) satisfying αa+βb+ γc = ω. We

then apply this fun
tionality property to the enumeration of some lo
al


on�gurations, that is, the (m, n)-
ubes su
h as introdu
ed in [VC99℄.

The dis
rete plane P(a, b, c, µ, ω) is the set of integer points (x, y, z) ∈ Z3

satisfying 0 ≤ ax + by + cz + µ < ω. In the 
ase ω = max(|a|, |b|, |c|),
the dis
rete plane is said naive and is well-known to be fun
tional on one of

the 
oordinate planes, that is, for any point of P of this 
oordinate plane,

there exists a unique point in the dis
rete plane obtained by adding to P
a third 
oordinate. Naive planes have been widely studied, see for instan
e

[Rev91,DRR94,DR95,AAS97,VC97,Col02,BB02℄.

The present paper extends the notion of fun
tionality for naive dis
rete planes

to a larger family of arithmeti
 dis
rete planes. For that purpose, instead of pro-

je
ting on a 
oordinate spa
e, we introdu
e a suitable orthogonal proje
tion

on a plane along a dire
tion (α, β, γ), in some sense dual to the normal ve
-

tor of the dis
rete plane P(a, b, c, µ, ω), that is, αa + βb + γc = ω, so that the

proje
tion of Z3
and the points of the dis
rete plane are in one-to-one 
orre-

sponden
e. One interest of the notion of fun
tionality is that it redu
es a three-

dimensional problem to a two-dimensional one, allowing a better understanding

of the 
ombinatorial and geometri
 properties of dis
rete planes. We thus ap-

ply this fun
tionality property to the enumeration of some lo
al 
on�gurations,

the (m, n)-
ubes, for a large family of arithmeti
 dis
rete planes, following the

approa
h of [Vui99,BV01℄.

For 
larity issues, we have 
hosen to work here in a three-dimensional spa
e

but all the results and methods presented extend in a natural way to Rn
, with

n ≥ 2, as well as to arithmeti
 dis
rete lines.
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1 Basi
 notions and arithmeti
 dis
rete planes

Let (a, b, c) ∈ R3
, µ ∈ R and ω ∈ R⋆

+; the arithmeti
 dis
rete plane P(a, b, c, µ, ω)
is de�ned as follows:

P(a, b, c, µ, ω) = {(x, y, z) ∈ Z3 | 0 ≤ ax + by + cz + µ < ω}.

Moreover, if ω = max{|a|, |b|, |c|} (resp. ω = |a|+ |b|+ |c|) then P(a, b, c, µ, ω) is
said to be naive (resp. standard).

In the present paper, in order to simplify the notation and to fa
ilitate the

generalization of our results to higher dimensions, we use a ve
tor-based repre-

sentation. Let {−→e1,
−→e2 ,

−→e3} be the 
anoni
al basis of the R-ve
tor spa
e R3
. Let

−→v and

−→
v′ be two ve
tors of R3

. The notation (−→v ,
−→
v′ ) stands for the usual s
alar

produ
t in R3
. Let i ∈ {1, 2, 3}, we denote by vi = (−→v ,−→ei ) the i-th 
oordinate

of

−→v related to the basis {−→e1 ,
−→e2 ,−→e3}.

Hen
e, for any arithmeti
 dis
rete plane P, there exist a ve
tor

−→v ∈ R3
and

two real numbers µ ∈ R and ω ∈ R⋆
+ su
h that

P = {−→x ∈ Z3 | 0 ≤ (−→x ,−→v ) + µ < ω}.

In the sequel of this paper, we denote su
h a plane by P(−→v , µ, ω). For a given

−→α ∈ Z3
, let Π−→α : R3 → {−→x ∈ R3 | (−→α ,−→x ) = 0} stand for the orthogonal

proje
tion map onto the plane (−→α ,−→x ) = 0. We furthermore use the notation

π−→α when we 
onsider the restri
tion of the proje
tion Π−→α to a subset of R3
, as

for instan
e π−→α : P → {−→x ∈ R3 | (−→α ,−→x ) = 0}, for a dis
rete plane P.

Let us re
all a 
lassi
al property of naive dis
rete planes having a positive

normal ve
tor:

Theorem 1. [DRR94℄ Let P = P(−→v , µ, ω) be a naive dis
rete plane. If vi = ω,
for i = 1, 2 or 3, then P is in bije
tion with the integer points of the plane

(−→ei ,
−→x ) = 0 by the proje
tion map Π−→ei

, that is, the restri
tion map π−→ei
: P −→

Π−→ei
(Z3) is a bije
tion. The plane (−→ei ,

−→x ) = 0 is 
alled a fun
tional plane of P.

An analogous result holds for standard dis
rete planes:

Theorem 2. [BV00℄ Let P = P(−→v , µ, ω) be a standard dis
rete plane. Let

−→α =
−→e1 + −→e2 + −→e3. Then, the restri
tion map π−→α : P −→ Π−→α (Z3) is a bije
tion.

2 Generalized fun
tionality

First, let us noti
e that in ea
h of the two 
ases investigated in Theorem 1 and 2,

the following property holds: let P be a naive or a standard dis
rete plane with

normal ve
tor

−→v and with thi
kness ω; then there exists a ve
tor

−→α in Z3
su
h

that the restri
tion map π−→α : P −→ Π−→α (Z3) is a bije
tion, and (−→α ,−→v ) = ω.
In this se
tion, we extend this property to any dis
rete plane P(−→v , µ, ω)

whatever its thi
kness ω by introdu
ing a dual ve
tor

−→α ∈ Z3
su
h that

(−→v ,−→α ) = ω. Furthermore, we improve this result by showing that the proje
-

tions π−→α are the only ones whi
h provide a one-to-one 
orresponden
e between

the dis
rete plane P(−→v , µ, ω) and the proje
tion of Z3
; this will then yield a one-

to-one 
orresponden
e between a dis
rete plane and a two-dimensional latti
e.
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2.1 A bije
tive proje
tion for arithmeti
 dis
rete planes

Theorem 3. Let P = P(−→v , µ, ω) be a dis
rete plane where

−→v ∈ R3
is a non-

zero ve
tor, µ ∈ R and ω ∈ R⋆
+. Let

−→α ∈ Z3
su
h that gcd(α1, α2, α3) = 1 and

(−→α ,−→v ) 6= 0. Then, π−→α : P −→ Π−→α (Z3) is a bije
tion if and only if |(−→α ,−→v )| =
ω.

The proof of Theorem 3 �rst requires a te
hni
al lemma:

Lemma 1. Let P = P(−→v , µ, ω) be a dis
rete plane with (−→v , µ, ω) ∈ R3×R×R⋆
+.

1. If dimQ(v1, v2, v3) = 1, then there exists (
−→
v′ , µ′, ω′) ∈ Z3 × Z × N su
h that

P = P(
−→
v′ , µ′, ω′) and gcd(v′1, v

′

2, v
′

3) = 1.
2. If dimQ(v1, v2, v3) > 1, then the family ((−→x ,−→v ) + µ)−→x ∈P is dense in [0, ω[.

Proof. 1. Let us suppose that dimQ(v1, v2, v3) = 1. Then, there exists ζ ∈

R⋆
+ su
h that (ζv1, ζv2, ζv3) ∈ Z3

. Let

−→
v′ = ζ−→v , µ′ = ⌈−ζµ⌉ and ω′ =

⌈ζω − ζµ⌉ − ⌈−ζµ⌉. An easy 
omputation gives P(−→v , µ, ω) = P(
−→
v′ , µ′, ω′).

Finally, a

ording to [AAS97℄,

−→v 
an be 
hosen with gcd(v1, v2, v3) = 1.
2. If dimQ(v1, v2, v3) > 1, then we 
on
lude by the 
lassi
al following result:

the set {m + nα | (m, n) ∈ Z2} is dense in R if α /∈ Q.

With the hypothesis of Lemma 1, let us observe that P(
−→
v′ , µ′, ω′) is a naive

(resp. standard) dis
rete plane, if so is P(−→v , µ, ω).

Proof of Theorem 3. We assume w.l.o.g that (−→α ,−→v ) > 0. Let

−→x =

(x1, x2, x3),
−→
x′ = (x′

1, x
′

2, x
′

3) ∈ Z3
; π−→α (−→x ) = π−→α (

−→
x′ ) if and only if there ex-

ists (k, k′) ∈ Z2
su
h that k′(

−→
x′ − −→x ) = k−→α . With no loss of generality we


an suppose that gcd(k, k′) = 1; then, k′
divides gcd(α1, α2, α3) and |k′| = 1.

In other words, π−→α (−→x ) = π−→α (
−→
x′ ) if and only if there exists k ∈ Z su
h that

−→
x′ = −→x + k−→α . Moreover,

−→x + k−→α ∈ P if and only if

−((−→x ,−→v ) + µ)

(−→α ,−→v )
≤ k <

ω − ((−→x ,−→v ) + µ)

(−→α ,−→v )
.

1) Let us �rst assume that (−→α ,−→v ) = ω. Then,

#

[[

−((−→x ,−→v ) + µ)

(−→α ,−→v )
,
ω − ((−→x ,−→v ) + µ)

(−→α ,−→v )

[[

= 1,

and we have proved that π−→α : P −→ Π−→α (Z3) is a bije
tion.

2) Conversely, let us assume that π−→α : P −→ Π−→α (Z3) is a bije
tion.

i. If dimQ(v1, v2, v3) = 1, then, thanks to Lemma 1, we 
an suppose that

−→v ∈ Z3
, with gcd(v1, v2, v2) = 1, and (µ, ω) ∈ Z × N⋆

. Let

−→x ∈ Z3
su
h

that (−→x ,−→v ) + µ = 0. Then −→x ∈ P and (−→x + −→α ,−→v ) + µ = (−→x ,−→v ) +
(−→α ,−→v ) + µ = (−→α ,−→v ) > 0. Moreover, π−→α (−→x + −→α ) = π−→α (−→x ). Sin
e
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π−→α is inje
tive then

−→x + −→α /∈ P, and hen
e (−→α ,−→v ) ≥ ω. On the other

hand, let

−→
x′ ∈ Z3

su
h that (
−→
x′ ,−→v ) + µ = −1. Then, (

−→
x′ +−→α ,−→v ) + µ =

(
−→
x′ ,−→v ) + (−→α ,−→v ) + µ = (−→α ,−→v ) − 1 ≥ 0. Sin
e π−→α is surje
tive and

(−→α ,−→v ) > 0, then −→x + −→α ∈ P, that is, (−→α ,−→v ) − 1 < ω, or equivalently,
(−→α ,−→v ) ≤ ω.

ii. Let us suppose that dimQ(v1, v2, v3) ≥ 2. Then, ea
h interval

[

−((−→x ,−→v )+µ)
(−→α ,−→v )

, ω−((−→x ,−→v )+µ)
(−→α ,−→v )

[

, with

−→x ∈ P, 
ontains one and exa
tly one

integer if and only if (−→α ,−→v ) = ω by Lemma 1.

Proje
ting a

ording to

−→α 
orresponds to looking at the plane along a di-

re
tion parallel to

−→α . Moreover, Theorem 3 states that, looking at the dis
rete

plane P(−→v , µ, ω) along this dire
tion, one 
an see all points of P(−→v , µ, ω) as

if they were on the plane (−→α ,−→x ) = 0. In Se
tion 2.3, we show that a natural

regular latti
e stru
ture emerges from this point of view.

As a generalization of fun
tional planes for naive dis
rete planes, we de�ne:

De�nition 1. Let P = P(−→v , µ, ω) be a dis
rete plane with

−→v ∈ R3
a non-zero

ve
tor, µ ∈ R and ω ∈ R⋆
+. Let

−→α ∈ Z3
su
h that π−→α : P −→ Π−→α (Z3) is a

bije
tion. The plane (−→α ,−→v ) = 0 is 
alled a (generalized) fun
tional plane of P.

2.2 Existen
e of a dual ve
tor

In the 
ase of an arithmeti
 dis
rete plane with normal ve
tor

−→v ∈ R3
and

thi
kness ω ∈ R⋆
+, there is no reason for a ve
tor

−→α ∈ Z3
to exist satisfying

(−→α ,−→v ) = ω (
onsider the 
ase (v1, v2, v3, ω) is Q-free). However, if P(−→v , µ, ω)
is an arithmeti
 dis
rete plane with normal ve
tor

−→v ∈ Z3
, then, a

ording to

Lemma 1, we 
an suppose that ω ∈ Z and gcd(v1, v2, v3) = 1. We then dedu
e

from Bezout's Lemma that there exists a ve
tor

−→α ∈ Z3
su
h that (−→α ,−→v ) = ω.

Let us prove now that

−→α ∈ Z3

an be 
hosen su
h that gcd(α1, α2, α3) = 1.

Theorem 4. Let P(−→v , µ, ω) be an arithmeti
 dis
rete plane with (−→v , µ, ω) ∈
Z3 ×Z×Z⋆

+ and gcd(v1, v2, v3) = 1. There exists

−→α ∈ Z3
su
h that (−→α ,−→v ) = ω

and gcd(α1, α2, α3) = 1. In other words, there exists

−→α ∈ Z3
su
h that π−→α :

P(−→v , µ, ω) −→ Π−→α (Z3) is a bije
tion.

Proof. Let

−→
β ∈ Z3

su
h that (
−→
β ,−→v ) = 1. Then, (ω

−→
β ,−→v ) = ω. Let −→u ∈ {−→x ∈

Z3 | (−→x ,−→v ) = 0}, let d = gcd(u1, u2, u3) and let

−→α = ω
−→
β + d−1−→u . Then, an

easy 
omputation gives (−→α ,−→v ) = ω and gcd(α1, α2, α3) = 1. We end the proof

by applying Theorem 3.

We have illustrated Theorem 4 in Figure 1 in the 
ase of a dis
rete line for a

better visualisation of the situation.
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PSfrag repla
ements

−→e1

−→e2

O −→α

(−→α ,−→x ) = 0

Fig. 1. Generalized fun
tionality: the orthogonal proje
tion of the dis
rete line 0 ≤
7x1 + 10x2 + µ < 24 onto the line 2x + y = 0.

2.3 Fun
tional regular latti
e asso
iated to an arithmeti
 dis
rete

plane

Let us see now how any arithmeti
 dis
rete plane P 
an be re
oded in a fun
tional

way on a regular two-dimensional latti
e, despite its three-dimensional stru
ture.

Let P = P(−→v , µ, ω) be an arithmeti
 dis
rete plane. Let

−→α ∈ Z3
su
h that

gcd(α1, α2, α3) = 1 and (−→α ,−→v ) = ω (in 
ase (−→v , µ, ω) ∈ Z3 × Z × N⋆
, and

gcd(v1, v2, v3) = 1, the existen
e of su
h a ve
tor

−→α 
omes from Theorem 4).

One of the 
oe�
ients αi, for i ∈ {1, 2, 3} being non-zero, we assume in this

se
tion that α3 6= 0 with no loss of generality.

First, let us noti
e that sin
e Π−→α (−→α ) =
−→
0 , then, for all

−→x ∈ Z3
,

Π−→α (−→e 3) = −
α1

α3
Π−→α (−→e1) −

α2

α3
Π−→α (−→e2).

Then, for all

−→x ∈ Z3
,

Π−→α (−→x ) = x1Π−→α (−→e1) + x2Π−→α (−→e2) + x3Π−→α (−→e3)

=

(

α3x1 − α1x3

α3

)

Π−→α (−→e1) +

(

α3x2 − α2x3

α3

)

Π−→α (−→e2)

and

Π−→α : R3 −→ {−→x ∈ R3 | (−→α ,−→x ) = 0}
−→x 7→ α3x1−α1x3

gcd(α1,α3)

−→
f1 + α3x2−α2x3

gcd(α2,α3)

−→
f2 ,

(1)

with

−→
f1 =

gcd(α1, α3)

α3
Π−→α (−→e1) and

−→
f2 =

gcd(α2, α3)

α3
Π−→α (−→e2).

We thus dedu
e that Γ−→α = Π−→α (Z3) = Π−→α (P) is a sub-latti
e of the two-

dimensional latti
e Z
−→
f1 + Z

−→
f2. The latti
e Γ−→α is 
alled a fun
tional latti
e of P.

This generalizes the 
on
ept of fun
tionality de�ned for naive dis
rete planes as

a proje
tion onto the integer points of one of the 
oordinate planes.
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3 From a fun
tional latti
e to the asso
iated dis
rete

plane

Let P = P(−→v , µ, ω) be an arithmeti
 dis
rete plane and Γ−→α be a fun
tional

latti
e of P (see Se
tion 2.3). A natural question is: �given an element

−→y ∈ Γ−→α ,

how 
an we re
over the unique ve
tor

−→x ∈ P su
h that π−→α (−→x ) = −→y ? � In

the following, we investigate this question for the 
lassi
al 
lasses of arithmeti


dis
rete planes, namely the naive, the standard [Rev91,DRR94,DR95℄ and the

gra
eful ones [BB99,BB02℄.

3.1 Generalized fun
tionality for a parti
ular 
lass of dis
rete planes

Let P(−→v , µ, ω) be an arithmeti
 dis
rete plane and let

−→α ∈ Z3
su
h that

(−→α ,−→v ) = ω. In this se
tion, we assume that there exists i ∈ {1, 2, 3} su
h

that αi = 1. This 
ondition in
ludes the set of naive, standard and gra
eful

arithmeti
 planes (see Se
tion 3.2). Let us thus suppose that α3 = 1. In this


ase, let us noti
e that Γ−→α = Z
−→
f1 + Z

−→
f2 .

Let

−→y ∈ Γ−→α . From now on, if no 
onfusion is possible with the representation

of

−→y related to the basis {−→e1 ,
−→e2 ,

−→e3}, we will denote (y1, y2) the unique pair of

integers su
h that

−→y = y1
−→
f1 + y2

−→
f2 .

Let

−→x ∈ P and let

−→y = π−→α (−→x ) ∈ Γ−→α . A

ording to (1), one has x1 =
y1 + α1x3 and x2 = y2 + α2x3. Hen
e, (−→x ,−→v ) + µ = y1v1 + y2v2 + x3(α1v1 +
α2v2 + v3) + µ and

0 ≤ (−→x ,−→v ) + µ = v1y1 + v2y2 + x3ω + µ < ω. (2)

Thus, given any

−→y ∈ Z2
, we 
an easily re
over the unique ve
tor

−→x ∈ P su
h

that π−→α (−→x ) = −→y . Indeed, let us �rst note that (2) yields an expli
it formula

for the height x3 of the points of P, that is, x3 = −
⌊

v1y1+v2y2+µ
ω

⌋

. Let us 
all

HP,−→α : Γ−→α −→ Z the fun
tion whi
h to any point y1
−→
f1 + y2

−→
f2 ∈ Γ−→α asso
iates

the height x3 of the 
orresponding point
−→x ∈ P, that is, the unique point

−→x ∈ P

su
h that π−→α (−→x ) = −→y :

HP,−→α : −→y 7→ −

⌊

v1y1 + v2y2 + µ

ω

⌋

.

One thus obtains:

Proposition 1. If α3 = 1, then the fun
tion π−1
−→α

: Γ−→α −→ P is de�ned by, for

all

−→y ∈ Γ−→α :

π−1
−→α

(−→y ) =

t



y1

y2

0



 + HP,−→α (y1, y2)

t



α1

α2

1



. (3)
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3.2 Classi
al examples

Let us suppose that

−→v ∈ N3
, and v3 = max{v1, v2, v3}. If P is a naive or a

standard dis
rete plane, then we 
an suppose α3 = 1, sin
e vi ≥ 0 for i ∈ {1, 2, 3}.
In the spe
ial 
ase of naive dis
rete planes, we re
over the already known formula:

Corollary 1. If P is a naive dis
rete plane, then

−→α = −→e3, for all

−→x ∈ P,

π−→α (−→x ) = x1
−→e1 + x2

−→e2 and for all

−→y ∈ Γ−→α ,

π−1
−→e3

(−→y ) = y1
−→e1 + y2

−→e2 −

⌊

v1y1 + v2y2 + µ

v3

⌋

−→e3 .

Con
erning the 
ase of the standard dis
rete planes, we obtain, as a dire
t 
on-

sequen
e of Proposition 1:

Corollary 2. If P is a standard dis
rete plane, then

−→α = −→e1 + −→e2 + −→e3, for all

−→x ∈ P, π−→α (−→x ) = (x1 − x3)
−→e1 + (x2 − x3)

−→e2 , and for all

−→y ∈ Γ−→α ,

π−1
−→e3

(−→y ) =

t



y1

y2

0



 −

⌊

v1y1 + v2y2 + µ

v1 + v2 + v3

⌋

t



1
1
1



.

Let us suppose now that P = P(−→v , µ, ω) is a gra
eful plane, that is, 0 ≤ v1,≤
v2 ≤ v3 and ω = max(v1+v2, v3). If v1+v2 ≤ v3, then P is a naive dis
rete plane

and this 
ase has already been studied. Let us then assume that ω = v1 + v2.

Let

−→α = −→e1 + −→e2 . Then, for all
−→x ∈ P, π−→α (−→x ) = (x1 − x2)

−→e1 + x3
−→e3 .

Up to a permutation on the set {α1, α2, α3}, we re
over the following from

Proposition 1:

Proposition 2. If P is a gra
eful plane. Then

−→α = −→e1 + −→e2 and the fun
tion

π−1
−→α

: Γ−→α −→ P is de�ned by, for all

−→y ∈ Γ−→α ,

π−1
−→α

(−→y ) =

t



0
y1

y2



 +

⌈

v2y1 − v3y2 + µ

v1 + v2

⌉

t



1
1
0



.

4 Plane partitions and lo
al 
on�gurations

The aim of this se
tion is to apply the previous results to the study of (m, n)-

ubes and lo
al 
on�gurations, generalizing the study performed for naive planes

in [VC97,S
h97,Gér99,VC99,Col02℄. For the sake of 
onsisten
y, we 
all them

here

−→m-
ubes rather than (m, n)-
ubes.
Let P = P(−→v , µ, ω) be an arithmeti
 dis
rete plane and let

−→α ∈ Z3
su
h that

gcd(α1, α2, α3) = 1 and (−→α ,−→v ) = ω (re
all that if

−→v ∈ Z3
and gcd(v1, v2, v3) =

1, then the existen
e of

−→α is ensured by Theorem 4). Let us assume furthermore

that α3 = 1.
Let

−→m ∈ (N⋆)2 be given. By

−→m-
ube, we mean a lo
al 
on�guration in the

dis
rete plane that 
an be observed thanks to π−→α through an

−→m-window in the

proje
tion latti
e Γ−→α . More pre
isely,
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De�nition 2. Let

−→m ∈ (N⋆)2. The −→m-
ube C(−→y ,−→m), with −→y ∈ Γ−→α , is de�ned

as the following subset of P:

C(−→y ,−→m) =
{

π−1
−→α

(−→y +
−→
i ),

−→
i ∈ [[0, m1[[×[[0, m2[[

}

.

In order to enumerate the di�erent types of

−→m-
ubes that o

ur in P, we repre-

sent them as lo
al 
on�gurations as follows.

De�nition 3. The

−→m-lo
al 
on�guration LC(−→y ,−→m), with −→y ∈ Z2
and m ∈

(N⋆)2, is de�ned as follows:

LC(−→y , m) =
[

HP,−→α (−→z ) − HP,−→α (−→y )
]

−→z ∈[[0,m1−1[
−→
f1+[[0,m2−1[[

−→
f2

.

We say that

−→y is an index of o

urren
e of the lo
al 
on�guration LC(−→y ,−→m).

Let us note that a lo
al 
on�guration is a plane partition.

Example 1. For instan
e, let us 
onsider the arithmeti
 dis
rete plane P =
P(−→v , µ, ω) with −→v = 4−→e1 + 2−→e2 + 5−→e3 , µ = 0 and ω = 9. Let −→α = −→e1 + −→e3 . We

illustrate the lo
al 
on�guration LC(
−→
f1 +

−→
f2, 3(−→e1 + −→e2)) of P and its preimage

by π−1
−→α

in Fig. 2.

0 −1

−1−1

−2

−1

−2

−2−2

PSfrag repla
ements

−→
f1

−→
f2

PSfrag repla
ements

Fig. 2. From left to right: a lo
al 
on�guration of the dis
rete plane P(4−→e1 + 2−→e2 +
5−→e3 , 0, 7) and its 
orresponding preimage by π−1

−→
e2+

−→
e3

.

We follow here the approa
h developed in [Vui99℄. For a naive dis
rete plane P, it

is well known that, given two points

−→x and

−→
x′

of P su
h that their proje
tions

by π−→α are 4-
onne
ted in the fun
tional plane, then |x3 − x′

3| ≤ 1. In other

words, the di�eren
e between the height of

−→x and

−→
x′

is at most 1. A quite

unexpe
ted fa
t is that this property holds for any arithmeti
 dis
rete plane with

α3 = 1. More pre
isely, it is easy to see that, for all

−→y ∈ Γ , HP,−→α

(

−→y +
−→
f1

)

−

HP,−→α (−→y )) takes only two values, namely −
⌊

v1

ω

⌋

and −
⌊

v1

ω

⌋

− 1. In the same

way, HP,−→α

(

−→y +
−→
f2

)

−HP,−→α (−→y )) takes only the values −
⌊

v2

ω

⌋

and −
⌊

v2

ω

⌋

−1.

In ea
h 
ase, one of these values is odd, whereas the other one is even; we de�ne

Eh and Oh to be respe
tively the even and the odd value taken by −⌊ v1

ω
⌋ and

−⌊ v1

ω
⌋ − 1; we similarly de�ne Ev and Ov. It is now natural to introdu
e the

following two-dimensional sequen
e:

U = (U−→y )−→y ∈Γ−→
α

= (HP,−→α (−→y ) mod 2)−→y ∈Γ−→
α
∈ {0, 1}Z2

.
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By de�nition, it is easily seen that the sequen
e U satis�es:

∀−→y ∈ Γ−→α , U−→y = 0 if and only if −
y1v1 + y2v2 + µ

ω
mod 2 ∈ [0, 1[.

Let w = [wy ]y∈[[0,m1−1]]×[[0,m2−1[[ be a word of size m1×m2 over {0, 1}. We de�ne

the 
omplement w of w as follows: w = [wy]y∈[[0,m1−1[[×[[0,m2−1[[, where 1 = 0
and 0 = 1. Let us re
all [Vui99,BV00℄ that the set of fa
tors of the sequen
e U
is stable under 
omplementation. We thus introdu
e the following equivalen
e

relation:

v ∼ w if and only if v ∈ {w, w}.

We have the following theorem, inspired by [Vui99℄:

Theorem 5. There is a natural bije
tion between the equivalen
e 
lasses of the

relation ∼ of the fa
tors of the sequen
e U and the

−→m-lo
al 
on�gurations of P.

Proof. Consider the lo
al 
on�guration L = LC(−→y ,−→m); we 
an asso
iate to it

the m1 × m2 word

[L(−→z ) mod 2]−→z ∈[[0,m1−1[[
−→
f1+[[0,m2−1[[

−→
f2

,

that we denote for short L mod 2. If HP,−→α (−→y ) is even, then L mod 2 is a fa
tor

of the two-dimensional sequen
e U ; otherwise, HP,−→α (−→y ) is odd and L mod 2
is a fa
tor of U and so is L mod 2, by stability of the set of fa
tors of U by


omplementation.

Conversely, let us show how we 
an 
anoni
ally re
onstru
t a

−→m-lo
al 
on�g-

uration, with

−→m ∈ (N⋆)
2
, from a given m1 ×m2-fa
tor w of the two-dimensional

sequen
e U . Let us �rst assume that w−→
0

= 0. We de�ne a plane partition

H = [H(−→z )]−→z ∈[[0,m1−1]]
−→
f1+[[0,m2−1]]

−→
f2

by indu
tion as follows: we set H(
−→
0 ) = 0;

let

−→z ∈ [[0, m1−1]]
−→
f1 +[[0, m2−1]]

−→
f2 be a non-zero ve
tor. If w−→z +

−→
f1

= w−→z , then

we set H(−→z +
−→
f1) = H(−→z ) + Eh. Otherwise, we set H(−→z +

−→
f1) = H(−→z ) + Oh.

Similarly, if w−→z +
−→
f2

= w−→z , then we set H(−→z +
−→
f2) = H(−→z )+Ev. Otherwise, we

set H(−→z +
−→
f2) = H(−→z ) + Ov.

The plane partition H is a lo
al 
on�guration of P; indeed, if w o

urs at

index

−→y in U , then H = LC(−→y ,−→m) and w = (H mod 2) sin
e H(−→y ) is even

(we have w−→
0

= 0). Now, if w−→
0

= 1, we apply the same re
onstru
tion pro
ess to

w. We re
over again a lo
al 
on�guration LC(−→y ,−→m) su
h that w = (LC(−→y ,−→m)
mod 2).

One dedu
es, in parti
ular, from Theorem 5 that any lo
al 
on�guration of

the dis
rete plane P o

urs at least twi
e: on
e at an index

−→y with H(−→y ) even
and se
ond, at an index

−→y su
h that H(−→y ′) is even.
Let us now investigate the enumeration of

−→m-
ubes o

uring in a given arith-

meti
 plane. The number of (3, 3)-
ubes in
luded in a given naive arithmeti


dis
rete plane has been proved to be at most 9 in [VC97℄. More generally, in

[Rev95,Gér99℄, the authors proved that, given a naive arithmeti
 dis
rete plane
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P, P 
ontains at most m1m2
−→m-
ubes. In the following theorem, we show that

this property also holds for

−→m-lo
al 
on�gurations in an arithmeti
 dis
rete plane

P(−→v , µ, ω), whi
h is non-ne
essarily naive.

Theorem 6. Let P = P(−→v , µ, ω) be a dis
rete plane,

−→α ∈ Z3
su
h that

(−→α ,−→v ) = ω and α3 = 1, and let

−→m ∈ (N⋆)2. Then, P 
ontains at most m1m2
−→m-lo
al 
on�gurations.

Proof. A

ording to [Vui99,BV00℄, the fa
tors of size m1×m2 of the sequen
e U
are in one-to-one 
orresponden
e with the intervals of R/2Z of extremal points

− i1v1+i2v2

ω
and − i1v1+i2v2

ω
+ 1 with (i1, i2) ∈ [[0, m1 − 1]]× [[0, m2− 1]]. There are

at most 2m1m2 su
h points and the result follows from Theorem 5.

5 Con
lusion and perspe
tives

The aim of the present work was to introdu
e suitable tools generalizing the


lassi
al ones used in the study of arithmeti
 dis
rete planes. We have exhibited

a generalized fun
tionality for arithmeti
 dis
rete planes P(−→v , µ, ω) and proved

that, as soon as |(−→α ,−→v )| = w and gcd(α1, α2, α3) = 1, there is a one-to-one


orresponden
e between P and a two-dimensional latti
e Γα. Thanks to these

results, we have shown for various 
lasses of arithmeti
 dis
rete planes, how to

re
over

−→x ∈ P in 
orresponden
e with any

−→y ∈ Γα. We also have investigated

plane partitions and lo
al 
on�gurations and extended the well-known result on

the number of (m, n)-
on�gurations in a naive plane, that is, there are at most

mn su
h 
on�gurations.

This approa
h o�ers new perspe
tives to investigate further general prop-

erties of arithmeti
 dis
rete planes of any thi
kness. In parti
ular, we plan

to use it to generate arbitrarily large parts of dis
rete planes via symboli


substitutions following [ABS04℄, to re
over the 
orresponding Farey tessela-

tion as well as the symmetry properties of

−→m-lo
al 
on�gurations of a dis
rete

plane [VC99℄, and �nally as a new approa
h to the re
ognition problem of dis-


rete planes [FST96,FP99,VC00℄.

A
knowledgements

We would like to thank Fabri
e Philippe for a 
areful reading of this paper.

Referen
es

[AAS97℄ Éri
 Andres, Raj A
harya, and Claudio Sibata. The Dis
rete Analyti
al

Hyperplanes. Graph. Models Image Pro
ess., 59(5):302�309, 1997.

[ABS04℄ Pierre Arnoux, Valérie Berthé, and Anne Siegel. Two-dimensional Iterated

Morphisms and Dis
rete Planes. Theoret. Comput. S
i., 319:145�176, 2004.

[BB99℄ Valentin E. Brimkov and Reneta P. Barneva. Gra
eful Planes and Thin

Tunnel-Free Meshes. In DGCI, 8th International Conferen
e, volume 1568 of

LNCS, pages 53�64, 1999.



11

[BB02℄ Valentin E. Brimkov and Reneta P. Barneva. Gra
eful Planes and Lines.

Theoret. Comput. S
i., 283:151�170, 2002.

[BV00℄ Valérie Berthé and Laurent Vuillon. Tilings and Rotations on the Torus:

A Two-Dimensional Generalization of Sturmian Sequen
es. Dis
rete Math.,

223:27�53, 2000.

[BV01℄ Valérie Berthé and Laurent Vuillon. Palindromes and Two-Dimensional Stur-

mian Sequen
es. J. Autom. Lang. Comb., 6(2):121�138, 2001.

[Col02℄ Marie Andrée Ja
ob-Da Col. About Lo
al Con�gurations in Arithmeti


Planes. Theoret. Comput. S
i., 283:183�201, 2002.

[DR95℄ Isabelle Debled-Renesson. Re
onnaissan
e des Droites et Plans Dis
rets.

Thèse de do
torat, Université Louis Pasteur, Strasbourg, Fran
e, 1995.

[DRR94℄ Isabelle Debled-Renesson and Jean-Pierre Reveillès. A New Approa
h to

Digital Planes. In Vision geometry III, Pro
. SPIE, volume 2356, Boston,

USA, 1994.

[FP99℄ Jean Françon and Laurent Papier. Polyhedrization of the boundary of a voxel

obje
t. In DGCI, 8th International Conferen
e, volume 1568 of LNCS, pages

425�434, 1999.

[FST96℄ Jean Françon, Jean-Mauri
e S
hramm, and Mohamed Tajine. Re
ognizing

Arithmeti
 Straight Lines and Planes. In DGCI, 6th International Workshop,

LNCS, pages 141�150, 1996.

[Gér99℄ Yan Gérard. Lo
al Con�gurations of Digital Hyperplanes. In DGCI, 8th

International Conferen
e, volume 1568, pages 65�75, 1999.

[Rev91℄ Jean-Pierre Reveillès. Cal
ul en Nombres Entiers et Algorithmique. Thèse

d'état, Université Louis Pasteur, Strasbourg, Fran
e, 1991.

[Rev95℄ Jean-Pierre Reveillès. Combinatorial Pie
es in Digital Lines and Planes. In

Vision geometry IV, Pro
. SPIE, 2573, volume 2573, pages 23�24, San Diego,

CA, 1995.

[S
h97℄ Jean-Mauri
e S
hramm. Coplanar Tri
ubes. In DGCI, 7th International

Workshop, volume 1347 of LNCS, pages 87�98, 1997.

[VC97℄ Joëlle Vittone and Jean-Mar
 Chassery. Coexisten
e of Tri
ubes in Digital

Naive Plane. In DGCI, 7th International Workshop, volume 1347 of LNCS,

pages 99�110, 1997.

[VC99℄ Joëlle Vittone and Jean-Mar
 Chassery. (n,m)-
ubes and Farey Nets for Naive

Planes Understanding. In DGCI, 8th International Conferen
e, volume 1568

of LNCS, pages 76�87, 1999.

[VC00℄ Joëlle Vittone and Jean-Mar
 Chassery. Re
ognition of Digital Naive Planes

and Polyhedrization. In DGCI, 9th International Conferen
e, volume 1953 of

LNCS, pages 296�307. IAPR, 2000.

[Vui99℄ Laurent Vuillon. Lo
al Con�gurations in a Dis
rete Plane. Bull. Belgian

Math. So
., 6:625�636, 1999.


