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ABSTRACT

This paper is an attempt to bring some theory on the top of some previously unproved experimental statements
about the double-base number system (DBNS). We use results from diophantine approximation to address the
problem of converting integers into DBNS. Although the material presented in this article is mainly theoretical,
the proposed algorithm could lead to very efficient implementations.
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1. INTRODUCTION

The Double-Base number system (DBNS), introduced by V. Dimitrov and G. A. Jullien1 has advantages in
many applications, like cryptography2 and digital signal processing.3 Recently, in his Ph.D. dissertation,4

R. Muscedere proposed hardware-based solutions for the difficult operations in the Multi-Dimensional Logarith-
mic Number System (MDLNS), which can be seen as a generalization of the DBNS. He addresses the problems of
addition, subtraction, and conversion from binary. Efficient methods have been proposed – using lookup-tables
with specific addressing scheme – for digital signal processing applications, where the dynamic range of the num-
bers do not usually exceed 16-to-32 bits. However, such table-based solutions become unrealistic to implement
as the numbers grow, as with cryptographic applications for example, and seem also quite difficult to generalize.

The main objective of this paper is to find one of the probably many theoretical approaches to the problem
of converting a number from binary to DBNS. We tackle the problem using continued fractions, Ostrowski’s
number systems, and diophantine approximation.

In the Double-Base number system, we represent integers in the form

x =
∑
i,j

di,j 2i 3j , (1)

where di,j ∈ {0, 1} and i, j are non-negative, independent integers. Following from B. M. M. de Weger’s definition
of s-integer5 – an integer is called s-integer if all of its prime divisors are among the first s primes – we shall
refer to numbers of the form 2a3b as 2-integers in the rest of the paper.

Clearly, this representation is highly redundant. For every integer x, the representations with the minimum
number of 2-integers (less than, or equal to x) are called the canonic double-base number representations. For
example, 127 has 783 different representations, among which 3 are canonic (with only three 2-integers).

127 = 2233 + 2132 + 2030 = 2233 + 2430 + 2031 = 2531 + 2033 + 2230.
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Finding the canonic DBNS representation of an integer from its binary representation is a difficult problem.
A greedy algorithm was proposed6 which gives the so-called near-canonic double-base number representation.
Given x, it finds the largest 2-integer s less than or equal to x, and continues with x− s until reaching zero. It
is proved that the greedy algorithm terminates in O

(
log x

log log x

)
iterations.

In this paper we investigate the problem of finding the largest 2-integer less than or equal to x. Although this
is not a difficult problem, we shall see that our solution is much more efficient than the straightforward approach
performing the exhaustive search.

More precisely, we try to find two non-negative integers a, b such that 2a3b ≤ x, and among the solutions to
this problem, 2a 3b is the largest possible value, i.e.

2a3b = max
{
2c3d, such that (c, d) ∈ N2, and 2c3d ≤ x

}
. (2)

If we let a, b ∈ N be such that 2a3b ≤ x, our problem can be reformulated as finding non-negative integers a
and b such that

a log 2 + b log 3 ≤ log x, (3)

and such that, no other integers c, d ≥ 0 give a better left approximation to log x.

Let us define α = log3 2 and β = {log3 x} = log3 x − blog3 xc (β is the fractional part of log3 x). Then we
try to find the best left approximation to log3 x with non-negative integers. If a, b are solutions to this problem,
then, for all c, d ∈ N2, with c 6= a, d 6= b, we have

c α + d < aα + b ≤ β + blog3 xc. (4)

A graphical interpretation to this problem is to consider the line ∆ of equation v = −α u + log3 x. The
solutions are the points with integer coordinates, located in the area defined by the line ∆ and the axes (in grey
on Fig. 1). The best solution is the point which best approximates log3 x.
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Figure 1. Graphical interpretation to the problem of finding the largest 2-integer less than x.

To solve this problem, we use results from the theory of continued fractions and diophantine approximation.
We introduce the necessary mathematical background in the next section.



2. CONTINUED FRACTIONS AND OSTROWSKI’S NUMBER SYSTEM

A simple continued fraction is an expression of the form

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where the partial quotients ai are integers ≥ 1. A continued fraction is represented by the sequence (an)n∈N
which can either be finite or infinite.

An important result is that every irrational real number α can be expressed uniquely as an infinite simple
continued fraction, written is a compact abbreviated notation as α = [a0, a1, a2, a3, . . . ]. Similarly, every rational
number can be expressed uniquely as a finite simple continued fraction. For example, the infinite continued
fraction expansions of the irrationals π and e are

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, . . . ]
e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ].

The quantity obtained by restricting the continued fraction to its first n + 1 partial quotients

pn

qn
= [a0, a1, a2, . . . , an]

is called the nth convergent. The series (pn)n∈N and (qn)n∈N are computed inductively, starting with p−1 =
1, q−1 = 0, p0 = 0, q0 = 1, and for all n ∈ N

pn+1 = an+1 pn + pn−1, qn+1 = an+1 qn + qn−1. (5)

The sequence of the convergents of an infinite continued fraction gives a series of rational approximations of
an irrational number. For example, the first convergents of π are listed in table 1.

Partial quotients Convergents Value

[3] 3 3.000000000

[3, 7] 22
7 3.142857143

[3, 7, 15] 333
106 3.141509434

[3, 7, 15, 1] 355
113 3.141592920

[3, 7, 15, 1, 292] 103993
33102 3.141592653

Table 1. The first partial quotients and convergents of π.

Ostrowski’s number system7 is associated with the series (qn)n∈N of the denominators of the convergents of
the continued fraction expansion of an irrational number 0 < α < 1. The following proposition holds.

Proposition 1. Every integer N can be written uniquely on the form

N =
m∑

k=1

dk qk−1, (6)

where {
0 ≤ d1 ≤ a1 − 1, and 0 ≤ dk ≤ ak for k > 1,

dk = 0 if dk+1 = ak+1.



For example, if α = 1+
√

5
2 = [1, 1, 1, 1, . . . ] is the golden section, we obtain the well known Fibonacci number

system, and the condition dk = 0 if dk+1 = ak+1 correspond to the fact that we do not have two consecutive
ones. This representation is called the Zeckendorf representation.8

Ostrowski’s representation of integers can be extended to real numbers.9 The base is given by the sequence
(θn)n∈N , where θn = (qnα− pn). We have the following proposition.

Proposition 2. Every real number β such that −α ≤ β < 1− α can be written uniquely on the form

β =
+∞∑
k=1

bk θk−1, (7)

where 
0 ≤ b1 ≤ a1 − 1, and 0 ≤ bk ≤ ak for k > 1,

bk = 0 if bk+1 = ak+1,

bk 6= ak for infinitely many even and odd integers.

Prop. 2 can be used to approximate β modulo 1 (i.e. by only considering the fractional part) by numbers of
the form Nα. If we represent β using (7), the best approximations are given by the integers

Nn =
n∑

k=1

bk qk−1. (8)

In some circumstances, it might be interesting to define the best left approximations of β. In this case, we
represent β according to the base (|θn|)n∈N. The following proposition holds.

Proposition 3. Every real number β such that 0 ≤ β < 1, can be written uniquely on the form

β =
+∞∑
k=1

ck|θk−1|, (9)

where 
0 ≤ ck ≤ ak for k > 1,

ck+1 = 0 if ck = ak,

ck 6= ak for infinitely many even integers.

In this case, the sequence of best left approximations is more difficult to define due to the alternate signs of
(θn)n∈N. In the next section, we present an algorithm10 which solves this problem.

3. DEFINITION OF THE SEQUENCE OF NON-HOMOGENEOUS BEST
APPROXIMATIONS OF β

Let the irrationals 0 < α < 1 such that α = [0, a1, a2, . . . ], and 0 < β ≤ 1 be given. Non-homogeneous left
approximations of β are numbers of the form kα + l less than or equal to β, where k, l are integers. It is clear
that there are infinitely many such approximations. We are trying to define two increasing sequences of integers
(kn)n∈N and (ln)n∈N, such that for all n ∈ N

0 < knα− ln < kn+1α− ln+1 < β,

and, furthermore, for all n, for all k < kn+1, k 6= kn, and for all l ∈ Z such that 0 ≤ kα− l ≤ β, then

0 < kα− l < knα− ln < β.



For simplicity, we define for all n, fn = |θn|. We have f−1 = 1, f0 = α, f1 = 1− a1α, and for all n > 1

fn+1 = fn−1 − an+1fn. (10)

The sequence (fn + fn+1)n∈N is decreasing, and since 0 < β ≤ 1, there exists a unique non-negative integer n
such that

fn + fn+1 < β ≤ fn + fn−1. (11)

Before we give the algorithm to define the series of best left non-homogeneous approximations of β, we prove
the two following lemmas.

Lemma 1. Let 0 < β ≤ 1 and (fn)n∈N defined as above. Then, there exists a unique non-negative integer n, a
unique non-negative integer c, and a unique real number e such that

β = cfn + fn+1 + e, (12)

with 0 < e ≤ fn, 1 ≤ c ≤ an+1 if n ≥ 1; and 1 ≤ c ≤ a1 − 1, if n = 0.

Proof. In n ≥ 1, then with fn +fn+1 < β ≤ fn +fn−1, and (10), we have fn < β−fn+1 ≤ fn−1 +fn−fn+1 =
(an+1 + 1)fn. If n = 0, then f0 + f1 < β ≤ 1 = f−1 = a1f0 + f1. Remark that a1 ≥ 2 in this case.

Lemma 2. Let α irrational such that 0 < α < 1 and α = [0, a1, a2, . . . ], and (pn)n∈N, (qn)n∈N, the sequences of
the numerators and denominators of the convergents of α. We define the integers k, l by setting{

k = qn, l = pn, if n is even;
k = −cqn + qn+1, l = −cpn + pn+1, if n is odd,

where c is the unique integer greater than 1 given by (12). Then we have 0 < β − (kα− l) < β.

Proof. Assume first that n is even. We have β− (kα− l) = β−fn, and thus 0 < β− (kα− l) < β. Now, if n is
odd, β−(kα−l) = β−[−c(qnα− pn) + (qn+1α− pn+1)] = β−cfn+fn+1 = e, and hence 0 < β−(kα−l) ≤ fn < β.
This concludes the proof.

We can now propose an algorithm which computes the two sequences of non-negative integers (kn)n∈N, and
(ln)n∈N such that (knα− ln)n∈N is the sequence of non-homogeneous best left approximations to β.

Algorithm 1 Computes the sequence (knα− ln)n∈N of non-homogeneous best left approximations to β.
With (fn)n∈N defined as above, we start with k0 = 0, l0 = 0, and we inductively define, the ni, ci, ei, ki, and li
as follows: If

β − (kiα− li) = cifni + fni+1 + ei,

with 0 < ei ≤ fni
, 1 ≤ ci ≤ ani+1, if ni > 0; and 1 ≤ ci ≤ a1 − 1, if ni = 0; then we set

ki+1 = ki + qni
, li+1 = li + pni

, if ni is even,

ki+1 = ki − ciqni
+ qni+1, li+1 = li − cipni

+ pni+1, if ni is odd.

This algorithm is inspired by11 where it is proved that it gives the best left approximations of β by numbers
of the form kα. For a similar algorithm, see.12–14 Note that β − ki+1α is equal to ei if ni is odd, and to
(c− 1)fni

+ fni+1 + ei, if ni is even. Hence, we may have ni+1 = ni. This happens if and only if ni is even and
ci > 1 ; this will then happen (ci − 1) times, and after the sequence ni continues to grow, if β is not a positive
multiple of α, so ni → +∞. Next we prove that this algorithm does actually provide the best left approximations
to β. The following proposition holds.



Proposition 4. Let 0 < α < 1 irrational such that α = [0, a1, a2, . . . ], and 0 < β ≤ 1 irrational be given.
Let (pn/qn)n∈N be the sequence of the convergents of α. Then, the increasing sequences of integers (ki)i∈N and
(li)i∈N given by the previous algorithm satisfy, for all i ∈ N,

0 < kiα− li < ki+1α− li+1 < β, (13)

and furthermore, for all i, for all ki < k < ki+1, and for all l ∈ Z, such that 0 ≤ kα− l ≤ β, then

0 ≤ kα− l < kiα− li < β. (14)

Proof. From Lemma 2, we have for all i, 0 < kiα− li < β. We first prove (13) by considering the cases ni even
and ni odd. If ni is even, then β > ki+1α−li+1 = (kiα−li)+qni

α−pni
= (kiα−li)+fni

> (kiα−li) > 0. We prove
the case ni odd in a similar way. If ni is odd, then β > ki+1α−li+1 = (kiα−li)−ci(qni

α−pni
)+qni+1α−pni+1 =

(kiα− li) + cifni
+ fni+1 > kiα− li > 0.

Let us now consider ki < k < ki+1, and l ∈ Z such that 0 ≤ kα − l ≤ β, and let us try to prove (14). By
rewriting β − (kα− l), we have

0 ≤ β − (kα− l) = β − (kiα− li) + (kiα− li − ki+1α + li+1) + (ki+1α− li+1 − kα + l) ≤ β

. What we prove in the next two cases that depend on the parity of ni, is that β − (kα− l) > β − (kiα− li).

• Let us first assume that ni is even. We have

β − (kα− l) = β − (kiα− li)− fni
+ (ki+1α− li+1 − kα + l).

Thus, what remains to be proved is that the last term (ki+1α− li+1 − kα + l) is greater than fni
.

Since |ki+1 − k| < |ki+1 − ki| = qni
, we have |(ki+1α− li+1 − kα + l)| > fni

. Moreover, from (11) and
Algorithm 1, we know that |β − (kiα− li)− fni | ≤ fni−1.

If ki+1 − k 6= qni−1, then |(ki+1α− li+1 − kα + l)| > fni−1, and since 0 ≤ kα − l ≤ β, then we have
(ki+1α− li+1 − kα + l) > 0.

If ki+1 − k = qni−1, since ni − 1 is odd, we have (ki+1α− li+1 − kα + l) = (qni−1α− pni−1) = −fni−1 < 0.
And we get β− (kα− l) < β− (kiα− li)− fni

− fni−1 < 0, which is in contradiction with our assumption.

• If we now assume that ni is odd, we have

β − (kα− l) = β − (kiα− li)− (cifni + fni+1) + (ki+1α− li+1 − kα + l).

Here, what remains to be proved is that the last term (ki+1α− li+1 − kα + l) is greater than cifni
+ fni+1.

Since |ki+1 − k| < |ki+1 − ki| = qni+1 − ciqni , we have |(ki+1α− li+1 − kα + l)| > fni . Moreover, we also
know from (12) and Algorithm 1 that |β − (kiα− li)− cifni − fni+1| ≤ fni . Thus, we have (ki+1α− li+1−
kα + l) > 0.

Thus, in both cases we have β − (kα− l) > β − (kiα− li). This concludes the proof.

4. EXPLICIT SOLUTION OF THE NON-HOMOGENEOUS APPROXIMATION
PROBLEM

As briefly stated in the introduction, finding for the largest 2-integer less than or equal to x is equivalent to
finding the two non-negative integers a, b such that 2a3b ≤ x and amongst the many solutions to this problem
2a3b takes the largest possible value, i.e.

2a3b = max
{
2c3d, such that (c, d) ∈ N2, and 2c3d ≤ x

}
.



Let a, b ∈ N be one of the solutions to the approximation problem, that is, such that 2a3b ≤ x. Clearly, we
have

a log 2 + b log 3 ≤ log x.

If α = log3(2) (note that α is irrational and 0 < α < 1), and β = {log3(x)}, is the fractional part of log3(x) such
that β = log3(x)− blog3(x)c, then the problem reduces to finding the two non-negative integers a, b such that

aα + b ≤ β + blog3(x)c.

We note that a ≤ blog2(x)c and b ≤ blog3(x)c.
We are thus looking for (p, q) ∈ N2 such that{

pα− q ≤ β,
pα− q = max

{
rα− s such that (r, s) ∈ N2, and 0 ≤ rα− s ≤ β, r ≤ blog2(x)c, s ≤ blog3(x)c

}
.

From p, q, we easily get the non-negative exponents a, b by setting a = p and b = blog3(x)c − q.

Proposition 5. Let x ∈ N be given. Let α = log3(2), (0 < α < 1 and α 6∈ Q), β = {log3(x)}. Let n be such that
kn ≤ blog2(x)c < kn+1. Let q = kn, p = ln. Then

max
{
rα− s, such that (r, s) ∈ N2, and 0 ≤ rα− s ≤ β, r ≤ blog2(x)c, s ≤ blog3(x)c

}
= pα− q.

If a = p, and b = blog3(x)c − q, we get the expected result

2a3b = max
{
2c3d, such that (c, d) ∈ N2, and 2c3d ≤ x

}
.

Proof. The proof comes directly from the proof of Prop. 4 in section 3.

Example 1. Let x = 23832098195. We try to find the two non-negative integers a, b such that 2a3b is the largest
2-integer less than or equal to x. Let α = log3(2) = 0.6309. We have β = {log3(x)} = {21.7495} = 0.7495.
(blog3(x)c = 21). We set k0 = 0, l0 = 0. The partial quotients in the continued fraction expansion of α, and the
corresponding convergents are given in table 2. Table 3 gives the first best non-homogeneous left approximations

i ai pi qi fi = |qiα− pi|
0 0 0 1 0.630930
1 1 1 1 0.369070
2 1 1 2 0.261860
3 1 2 3 0.107211
4 2 5 8 0.047438
5 2 12 19 0.012335
6 3 41 65 0.010434
7 1 53 84 0.001901

Table 2. Partial quotients of the continued fraction expansion of α = log3(2), and the corresponding sequences (pi)i≥0,
(qi)i≥0, and (|qiα − pi|)i≥0.

to β. We get a = 17 and b = 21 − 10 = 11. Note that we stop at this stage because the next best left
approximation would lead a negative exponent for the second base (21− 39 = −18). In order to find the DBNS
representation of x, we apply the same algorithm with the value x− 217311 = 613086611. For completeness, the
DBNS representation of x provided by the greedy algorithm is

x = 217311 + 27314 + 2738 + 2238 + 2930 + 2231 + 2031.



i ei ni ci ki+1 li+1 ki+1α− li+1

0 0.7495 1 1 1 0 0.1186
1 0.1186 4 2 9 5 0.0712
2 0.0712 4 1 17 10 0.0237
3 0.0237 5 1 63 39 −0.999

Table 3. Best left approximations of β = 0.7495 with numbers of the form k log3(2) − l.

5. DISCUSSIONS

A straightforward approach to the problem of finding the largest 2-integer less than or equal to x consists in
computing the distance between the line ∆ of equation v = −αu + β for all integer u from 0 to blog2(x)c, and
to keep the values (u, v) which lead to the smallest distance, i.e the smallest fractional part of β − αu for all
integer 0 ≤ u ≤ blog2(n)c. More efficiently, we can consider the line ∆′ : w = − log2(3)u + log2(x), and keep the
minimum distance among all integers 0 ≤ u ≤ blog3(x)c, simply because the function log3(t) grows faster than
log2(t).

In Fig. 1 we have plotted the line ∆ of equation v = −0.6309u + 0.7495 which corresponds to the previous
example, together with the points we have to scan in the straightforward approach, and those we deduce from the
proposed algorithm. We clearly remark that the algorithm based on continued fractions and Ostrowski’s number
system we have introduced in the previous sections only scans four possible solutions, whereas the straightforward
algorithm must scan all the points on a discrete line under ∆.
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9 351710
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Figure 2. Graphical interpretation of the problem of finding the largest 2-integer less than (or equal) to x = 23832098195
and the points scanned using both the straightforward approach and the proposed algorithm.

For large values of x, the proposed algorithm is much faster than the classical approach. We have implemented
the two solutions in Maple for integers of various size (see Table 4). Although the timings themselves are not very
relevant because of non-optimized Maple interpreted code, the ratios clearly show the efficiency of the proposed
algorithm.



Size of x (in bits) 163 241 337 459 595

Time with straightforward algo. 0.47 1.14 2.02 1.23 5.65
Time with new algo. 0.21 0.41 0.71 3.43 1.96

Time ratio 45% 39% 35% 36% 35%

Table 4. CPU time for binary to DBNS conversion using the greedy algorithm for numbers of various sizes. The largest
2-integer is computed at each step using the straightforward approach (line 2) and new proposed algorithm (line 3).

6. CONCLUSION

We proposed an algorithm to find the largest 2-integer less than or equal to an integer x. This operation is
required at each iteration of the greedy algorithm used to convert numbers into DBNS. This very preliminary
study will be pursue to answer some more difficult questions related to the double-base number system and its
generalization, the multi-dimensional logarithmic number system.
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