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Abstra
t

Iterated morphisms of the free monoid are very simple 
ombinatorial obje
ts whi
h

produ
e in�nite sequen
es by repla
ing iteratively letters by words. The aim of

this paper is to introdu
e a formalism for a notion of two-dimensional morphisms;

we show that they 
an be iterated by using lo
al rules, and that they generate

two-dimensional patterns related to dis
rete approximations of irrational planes

with algebrai
 parameters. We asso
iate su
h a two-dimensional morphism with

any usual Pisot unimodular one-dimensional iterated morphism over a three-letter

alphabet.

Key words: dis
rete plane, multidimensional 
ombinatori
s on words, iterated

morphism, Z

2

-a
tion, tiling.

1 Introdu
tion

Iterated morphisms (also 
alled substitutions or in
ation rules) are very simple


ombinatorial obje
ts whi
h produ
e in�nite sequen
es by iteration: roughly

speaking, a morphism repla
es a letter by a word. They 
an be seen as one

of the mathemati
al translations of a ma
ro in 
omputer s
ien
e (repla
em-

ent of the name of the ma
ro by its de�nition). These morphisms are widely

studied and have a ri
h stru
ture, shown by their natural intera
tions with
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ombinatori
s on words, ergodi
 theory, linear algebra, spe
tral theory, ge-

ometry of tilings, theoreti
al 
omputer s
ien
e, Diophantine approximation,

trans
enden
e, graph theory, and so on (see [Que87℄ and the referen
es in

[PF02,AS03℄).

This paper aims at introdu
ing a formalism and some examples for a notion

of two-dimensional morphism that 
an be iterated, either by means of global

pla
ing rules, or by lo
al rules. One of the purposes of the introdu
tion of su
h

a devi
e is to make possible the iteration of the two-dimensional morphism to

get in spe
i�
 
ases an expli
it 
onstru
tion of a dis
rete approximation of a

plane.

Sin
e we will in the rest of the paper try to extend the theory to higher

dimension, let us point here a \trivial" fa
t in dimension 1 whi
h be
omes

mu
h more 
ompli
ated in higher dimension: letters in �nite words are natu-

rally ordered by their rank of apparition. As a 
onsequen
e, the set of �nite

words has a stru
ture of monoid, that is, two �nite words W

1

;W

2


an be

naturally \
ombined" to give the word W

1

W

2

by putting the two words side

by side. This allows a simple de�nition of iterated morphisms using the rule

�(W

1

W

2

) = �(W

1

)�(W

2

). This de�nition is obviously 
onsistent, and 
an be

extended in a natural way to �nite and in�nite one-dimensional sequen
es.

Two-dimensional patterns

It is a mathemati
al re
ex to try to extend a one-dimensional theory to several

dimensions. But the theory of words seems so strongly one-dimensional that

the tentative might seem arti�
ial in this 
ase, although it is quite fun to

work on. However, a number of re
ent advan
es in mathemati
s and physi
s

(tilings, quasi-
rystals, Z

d

-a
tions and higher-dimensional symboli
 dynami
s,

see for instan
e [Sen95,Rob96,BM00,LP02℄) point to the need of a good theory

of higher-dimensional words. The basi
 setting is not yet 
ompletely 
lear. In

parti
ular, many results in tilings seem to depend on Delone sets or similar

sets, whi
h have weaker stru
tures than latti
es. The theory seems diÆ
ult

in this 
ase, and we will restri
t in this paper to the �rst nontrivial 
ase:

two-dimensional in�nite sequen
es, seen as sequen
es (U

i;j

) indexed by Z

2

.

Following the de�nition of one-dimensional words, it is natural to de�ne two-

dimensional words as geometri
al patterns that 
ontain no information on the

lo
ation of the pattern inside Z

2

. More pre
isely, a two-dimensional nonpointed

pattern is a map from a �nite subset of Z

2

to the alphabet up to a translation.

A three-letter example is given by a 1, put on the left handside of a 3 and

below a 2 (See Fig. 1.1).

The main problem is that unlike the one-dimensional 
ase, there is here no

natural monoid stru
ture: there is no privileged way to put two �nite non-

pointed patterns side by side. It is also very un
lear whether a given 
olle
tion
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2

3 1

Fig. 1.1. A nonpointed pattern (with no lo
ation information).

of nonpointed patterns 
an tile the plane, while in the 
ase of one-dimensional

words, this is obviously always possible. Remark however that, in the parti
-

ular 
ase of re
tangular patterns of the same size, it is possible to de�ne two


anoni
al operations (putting one re
tangle on the side, or on the top, of the

other) [GA97℄.

Two-dimensional substitution rules

We want to de�ne in this setting two-dimensional morphisms. Following the

one-dimensional de�nition, we 
all a two-dimensional substitution rule a map

that asso
iates with ea
h letter a �nite (two-dimensional) nonpointed pattern.

To be 
alled a morphism, we need to be able to apply this substitution rule,

not only to letters, but also to patterns and sequen
es.

Asso
iating with ea
h letter a nonpointed pattern is not enough to realize

this: we �rst need more information to know where to pla
e the image of the

letter at the origin (there is an obvious solution in the one-dimensional 
ase:

it is natural to pla
e at the origin the �rst letter of the word image of the

initial letter); then, we need to know the relative lo
ations of the patterns

substituted to adja
ent letters, and a 
onsisten
y problem arises. Indeed, it is

not 
lear that there is a good way to apply the morphism to a �nite pattern

or to a two-dimensional sequen
e: there might be overlaps. Furthermore, if

this is possible, do we obtain in this way a �xed point? Can we obtain all of

a two-dimensional sequen
e?

Note that there is one 
ase where the existen
e of the two-dimensional iterated

morphism is not problemati
, and the theory is quite easy: if we asso
iate to

ea
h letter a re
tangular pattern of �xed size, it is 
lear that the image of any

pattern or sequen
e is well de�ned; one 
an 
onsider that su
h a morphism

naturally splits into one-dimensional iterated morphisms [AS03,Han00℄.

Our motivation in this paper is to show, on a nontrivial example (that is, not

re
tangular), that the obstru
tions above 
an be over
ome. The answer to the

iteration problem itself is not easy to prove, and requires some additional geo-

metri
 
onstru
tions. Indeed, in the rest of the paper, we study a very simple

example of a two-dimensional substitution rule on the three-letter alphabet

f1; 2; 3g:

�

0

: 1 7!

2

1

2 7! 3 3 7! 1:

It is 
lear on the �rst letter that this formula is not a usual one-dimensional

morphism. However, the way to extend the de�nition from letters to �nite

nonpointed patterns and sequen
es is un
lear: for example, should the image
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of 12 be

2 3

1

or

2

3 1

; or some other possibility?

We will give two solutions to this problem: we endow a two-dimensional mor-

phism �

0

�rst with global rules v, se
ond with a set of lo
al rules S and an

initial rule I. Lo
al rules are more 
onvenient to iterate, but it is easier to

prove 
onsisten
y for global rules; we will prove 
onsisten
y for (�

0

;v) on a

parti
ular sequen
e U , and then prove that (�

0

;v) and (�

0

; I;S) a
t in the

same way on U ; this will prove 
onsisten
y of the lo
al rules on this parti
ular

sequen
e whi
h is a �xed point of both morphisms.

Global pla
ing rules

A �rst step to solve the problem of iterating su
h a two-dimensional sub-

stitution rule is to extend its de�nition to pointed patterns: let us de�ne a

two-dimensional pointed pattern as a map from a �nite subset of Z

2

to the al-

phabet (so that two pointed patterns represent the same nonpointed pattern if

and only if they are translate of ea
h other; the di�eren
e between nonpointed

and pointed patterns is the same as the di�eren
e between a �nite word, and

its o

urren
es in a sequen
e). The set of pointed patterns is denoted by L

�

,

that is, the set of �nite words on the alphabet L = Z

2

� f1; 2; 3g with some


ombinatorial restri
tions (the pointed letters have di�erent lo
ations, see Se
-

tion 2).

An example of a pointed pattern is given by a 1 lo
ated at the index (0; 0),

a 2 at the index (0; 1) and a 3 at the index (�1; 0). This pointed pattern 
an

be written as the word ((0; 0); 1)((0; 1); 2)((�1; 0); 3). The underlying non-

pointed pattern is shown in Fig. (1.2). The interest of pointed patterns is that

a natural stru
ture lies on L

�

, that is, the 
on
atenation.

2 (0,1)

3 (-1,0) 1 (0,0)

A pointed pattern

(letters are pre
isely lo
ated)

2

3 1

The asso
iated nonpointed pattern

(with no lo
ation information)

Fig. 1.2. The pointed pattern ((0;0); 1)((0;1); 2)((�1;0); 3) and its nonpointed pat-

tern.

A two-dimensional substitution rule � asso
iates with ea
h letter a nonpointed

pattern. To extend its de�nition to pointed patterns, we add a global pla
ing

rule v: for ea
h nonpointed pattern �(i), 
hoose a spe
ial pointed pattern

that represents it; to a letter i in position (m;n), the global rule asso
iates a

pointed pattern �(i)+v((m;n); i) whi
h is a translate of the spe
ial represen-

tative of �(i) by a translation ve
tor v((m;n); i). We will de�ne su
h global

pla
ing rules pre
isely in Se
tion 2. For example, global pla
ing rules for the

4



substitution rule �

0

are given by v((m;n); i) = (1� n;m� n� r(m;n)),

where r is an expli
it fun
tion.

(�

0

;v) : ((m;n); 1) 7! ((1� n;�1 +m� n� r); 1)((1� n;m� n� r); 2)

((m;n); 2) 7! ((1� n;m� n� r); 3)

((m;n); 3) 7! ((1� n;m� n� r); 1):

We prove in Se
tion 6 that these global rules 
an be iterated, sin
e, at least on

some parti
ular sequen
e obtained by iterating an original letter, two disjoint

pointed patterns map to disjoint patterns. Hen
e, a two-dimensional substitu-

tion rule endowed with a global rule appears to be a �rst appropriate de�nition

for a two-dimensional morphism. To di�erentiate this from what will follow,

we 
an 
all this a two-dimensional morphism de�ned by a global rule.

Su
h a de�nition is however in
onvenient for expli
it 
omputation, sin
e one

needs at ea
h step global information. In parti
ular it is diÆ
ult to iterate it

in order to generate an in�nite two-dimensional sequen
e. Moreover, this 
an

work expli
itly only for very parti
ular sequen
es, as 
an be seen from the one-

dimensional 
ase. Indeed, one-dimensional in�nite sequen
es have a natural

referen
e point: their initial letter. Giving su
h a pla
ing rule in dimension one

means that we know that a letter i in position n maps to a word starting in a

position v(n; i) whi
h depends on n. But, by 
onstru
tion, this position v(n; i)

depends on the whole pre�x of length n, so that for iterated morphisms of

non
onstant length, there 
annot be a rule that is valid for all one-dimensional

in�nite sequen
es. This does not prevent, of 
ourse, of giving a rule that is

valid, for example, only for one of the �xed points of the iterated morphism:

this is what we do in Se
tion 6.

Lo
al rules

It is mu
h more 
onvenient to be able to use a lo
al information: a two-

dimensional substitution rule de�nes the images of letters as nonpointed pat-

terns; in addition, the initial rule de�nes the image of a parti
ular pointed

letter, thus giving a starting point for the iteration, and lo
al rules will de�ne

the images of a �nite number of well-
hosen nonpointed patterns, so that the

morphism 
an be iterated, using paths made of nonpointed patterns. This is

exa
tly what is done when 
omputing one-dimensional iterated morphisms:

one does not 
ompute the exa
t position of a given letter, but one only uses

the fa
t that letters follow ea
h other. Roughly speaking, a lo
al rule says how

to pla
e the image of a letter with respe
t to the images of the neighbouring

letters. If we know where to lo
ate the image of the initial letter, we 
an 
om-

pute the values of adja
ent letters by using a �nite number of patterns, and

in this way, 
ompute the image of the 
omplete sequen
e.

For example, we will see that the lo
al rules shown in Fig. 1.3, in addition to
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a natural initial rule for the pointed letter ((1; 0); 1), 
an be used to de�ne a

two-dimensional morphism (�

0

; I;S) with lo
al rules in a 
onsistent way; it

turns out that (�

0

; I;S) and (�

0

;v) have the same �xed point.

There are however signi�
ant problems in this approa
h also; we 
an raise four

questions:

� One must 
hoose a good set of patterns, suÆ
ient to allow iteration, and

minimal if possible, for simpli
ity. One 
he
ks in our 
ase that one 
an

restri
t to some two-letter patterns.

� There is then a problem of 
onsisten
y: if two points, of 
oordinates, say,

(0; 0) and (i; j) of a �nite pointed pattern 
an be joined by two di�erent

paths of nonpointed patterns 
orresponding to lo
al rules, then this gives

two independent ways to pla
e the pattern 
orresponding to letter in posi-

tion (i; j) with respe
t to the pattern image of (0; 0). For 
onsisten
y, these

two pla
ement rules must be the same.

� Furthermore, the images of di�erent letters must not overlap.

� The image of an in�nite sequen
e must not have \holes": all positions in the

image must be in
luded in one (and exa
tly one) pattern image of a letter.

A 
onsequen
e of these problems is that, in general, the two-dimensional mor-

phism will only be de�ned on a subset of all possible �nite patterns and in�nite

sequen
es.

2

1

7!

2

3 1

3 1

7!

2

1

1

1

1

7!

2

2 1

1

2 1

7!

2

1

3

1

3

7!

2 1

1

Fig. 1.3. A set of lo
al rules for the substitution rule �

0

.

The main result of this paper is that the problems above 
an be solved for the

substitution rule �

0

:

Theorem. The two-dimensional substitution rule �

0

endowed with the set

S of �ve lo
al rules given in Fig. 1.3 and the initial rule I : ((1; 0); 1) 7!

((1; 0); 1)((1; 1); 2) (see Fig. 2.1) de�nes a two-dimensional morphism with

lo
al rules (�

0

; I;S). The rules are 
onsistent and 
an be iterated on the pat-

terns (�

0

; I;S)

n

((1; 0); 1). The su

essive images of ((1; 0); 1) appear to be

subpatterns of ea
h others; they generate an in�nite two-dimensional sequen
e

denoted (U(m;n))

Z

2

and 
alled the �xed point of (�

0

; I;S).

Unfortunately, although this theorem appears to be a purely 
ombinatorial

result, we do not know any 
ombinatorial proof of it, and we would be very

interested in su
h a proof. To prove this 
ombinatorial result, we need to
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use a quite devious path, giving to the two-dimensional morphism (�

0

; I;S)

a geometri
 interpretation in terms of dis
rete approximation of a plane, as

we explain below. Indeed, the 
lass of two-dimensional morphisms with lo
al

rules introdu
ed in this paper 
an be seen as a symboli
 translation of a ge-

ometri
 formalism inspired by Rauzy's 
onstru
tion of its well-known fra
tal

[Rau82℄ and studied in [IO93,AI01,AIS01℄. A �rst example of a family of su
h

two-dimensional morphisms with lo
al rules has been introdu
ed in [ABI02℄

asso
iated with the Ja
obi-Perron 
ontinued fra
tion algorithm. For more de-

tails, see also Chap. 8 in [PF02℄.

Dis
rete planes

Our approa
h is the following: we lift Z

2

into R

3

by introdu
ing the transpose

t

M of the matrix M of in
iden
e of the substitution rule �

0

. The a
tion of

this matrix is stri
tly 
ontra
ting on a plane determined by the eigenvalues of

modulus stri
tly less than 1. We introdu
e the dis
rete plane approximation

P of the 
ontra
ting plane following [IO93,Vui98,BV00b,AI01℄ as the upper

boundary of the union of all unit 
ubes with integral verti
es that interse
t

the 
ontra
ting plane. This 
onstru
tion is inspired by the 
ut-and-proje
t

formalism in quasi
rystals [Sen95℄.

We then introdu
e generalized substitutions from [AI01℄; these are rules �

P

that a
t on fa
es of the dis
rete plane and map them onto �nite unions of

fa
es.

There exists a bije
tion � between the points of the dis
rete plane and a

latti
e in the diagonal plane x + y + z = 0, given by the proje
tion on the

diagonal plane along the dire
tion (1; 1; 1). We use the bije
tion � to express

the formalism of generalized substitution �

P

as a two-dimensional morphism

with global rules (�;v) a
ting on two-dimensional patterns. This morphism

(�;v) appears to be our example (�

0

;v).

There is no problem to generalize su
h a 
onstru
tion. Indeed, a generalized

substitution �

P

is atta
hed to a one-dimensional iterated morphism that sat-

is�es the so-
alled Pisot unimodular property. For example, the generalized

substitution whi
h produ
es �

0

is atta
hed to �

0

: 1 7! 13; 2 7! 1; 3 7! 2.

Observe that the in
iden
e matrix of �

0

is the transpose of that of �

0

; this

duality property is the 
ore of the de�nition of the generalized substitutions

[AI01,AIS01℄.

The deep relationship between �

0

and the underlying geometry is expressed

in the following result.

Theorem. The �xed point (U(m;n))

Z

2

of the two-dimensional morphism with

global rules (�

0

;v) turns out to be a bije
tive 
oding for the dis
rete plane

asso
iated with the one-dimensional iterated morphism �

0

: 1 7! 13; 2 7!

1; 3 7! 2.

Sket
h of the paper
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We �rst introdu
e in Se
tion 2 the example �

0

and dis
uss its 
ombinatorial

properties. Global rules and lo
al rules are de�ned for this substitution rule.

The remaining of this paper is then devoted to the proof of 
onsisten
y of

these rules.

More pre
isely, we introdu
e in Se
tion 3 the notion of a dis
rete plane as-

so
iated with a plane in R

3

. We prove that the verti
es in the dis
rete plane

proje
t onto a regular latti
e � in the main diagonal plane x+ y+ z = 0. This

allows to 
ode the dis
rete plane by an in�nite two-dimensional sequen
e U ,

that 
ontains all the information ne
essary to rebuild the dis
rete plane. Let us

emphazise that it is quite unexpe
ted that a dis
rete plane 
an be re
oded by

using a regular latti
e. We study this two-dimensional sequen
e in Se
tion 4.

We then re
all in Se
tion 5 the notion of generalized substitution from [AI01℄,

that is, of a morphism whi
h a
ts on fa
es of the dis
rete plane. We extend

this de�nition to Z

2

in Se
tion 6 via the proje
tion of the dis
rete plane onto

the regular latti
e �. Hen
e we obtain a two-dimensional morphism endowed

with global rules and we prove that it 
an be iterated. We dedu
e lo
al rules

and prove that they are 
onsistent in Se
tion 6.2.

For the sake of 
larity, some te
hni
al results are proved in the appendix.

Observe that everything done in the present paper works in the n-dimensional


ase. We restri
t ourselves to the two-dimensional 
ase in order to be able to

give pi
tures of our obje
ts.

2 An example of a two-dimensional morphism

Before introdu
ing the notion of two-dimensional morphisms, we need a pre
ise

formalism to des
ribe the obje
ts on whi
h the two-dimensional morphism will

a
t, namely, patterns.

2.1 Patterns

Roughly speaking, we want a two-dimensional pattern to be a bounded planar

shape made of letters of a �nite alphabet. We have already restri
ted ourselves

to the alphabet f1; 2; 3g.

Two-dimensional pointed letters

Let us �rst de�ne the basi
 
omponent of a pattern, that is, a letter lo
ated

at a given position: a two-dimensional pointed letter denotes any pair (x; i),

where x 2 Z

2

is the lo
ation of the pointed letter in the plane, and i 2 f1; 2; 3g

the letter itself. The set of two-dimensional pointed letters is denoted L:

L = Z

2

� f1; 2; 3g:

8



Two-dimensional pointed patterns

A pointed patternW is a �nite set of pointed letters with distin
t lo
ation. It is

represented as a word on the alphabet L, and denoted W = (x

1

; i

1

) : : : (x

j

; i

j

),

where j is the number of pointed letters in this pattern. Su
h a de�nition is


onsistent and does not depend on the order of the pointed letters as soon as

all x

k

's are di�erent. Hen
e, we de�ne the set L

�

of pointed patterns, 
alled

two-dimensional language as follows:

L

�

= f(x

1

; i

1

) : : : (x

j

; i

j

); j 2 N ;

8 1 � k � j; (x

k

; i

k

) 2 L; x

k

6= x

k

0

if k 6= k

0

g:

For instan
e, the pattern ((0; 0); 1 )((0; 1); 3)((0; 2); 2)((0; 3); 2) denotes the

pattern

1 3 2 2

, where the itali
 
hara
ter 1 is at position (0; 0).

Both ((0; 0); 2)((0;�1); 1 )((�1;�1); 3) and ((�1;�1); 3)((0; 0); 2)((0;�1);

1 ) denote the following pattern, where the 1 is at position (0;�1):

2 (0,0)

3 (-1,-1) 1 (0,-1)

The size of a pattern W = (x

1

; i

1

) : : : (x

j

; i

j

) is equal to j. Its support is the

set (x

1

; : : : ;x

j

) 2 Z

2

.

Observe that in the theory of one-dimensional words, there is no need for su
h

a formalism sin
e there is no 
onfusion when one writes w = w

1

w

2

: : : w

n

, but

this is no more true if the pattern is not 
onne
ted.

It will be 
onvenient below to 
onsider pointed patterns whose support 
on-

tain a given point, for instan
e the point (1; 0); in that 
ase, a short way to

represent this pattern is to draw them as nonpointed patterns, with the letter

at (1; 0) written in bold fa
e, see the �gure below.

2 (1,1)

3 (0,0) 1 (1,0)

A pointed pattern whose

support 
ontains (1; 0)

2

3 1

Its short representation,

with the letter

at (1; 0) emphasized

Nonpointed patterns

The latti
e Z

2

a
ts by translation on pointed patterns: if W = (x

1

; i

1

) : : :

(x

j

; i

j

) 2 L

�

is a pointed pattern and y 2 Z

2

is a ve
tor, let W + y =

(x

1

+ y; i

1

) : : : (x

j

+ y; i

j

). We de�ne a nonpointed pattern as a pointed pat-

tern up to a translation; it is thus a pattern 
onsidered without a pre
ise

9



lo
ation in Z

2

.

Ea
h pointed pattern represents a unique nonpointed pattern, 
alled its un-

derlying nonpointed pattern. Conversely, a pointed pattern whi
h represents a

nonpointed pattern is 
alled a representative.

De�nition 2.1 (Substitution rule) A two-dimensional substitution rule �

on three letters is a map from f1; 2; 3g on the set of �nite two-dimensional

nonpointed patterns on f1; 2; 3g.

An example is given by �

0

: 1 7!

2

1

, 2 7! 3, 3 7! 1.

This is what we represent usually as a 2-dimensional morphism; note however

that this de�nition is not 
omplete: it tells us by what we must repla
e ea
h

letter, but not how to pla
e the patterns we obtain. In dimension 1, (and if

we 
onsider only patterns whose support is an interval of N , that is, usual

words!) this problem does not o

ur, be
ause it has an obvious solution, using

the natural order on N , or the monoid stru
ture on the set of words.

We must now explain how to obtain the image, not of a letter, but of a pattern,

an then iterate the morphism. Note that the morphism we obtain will only be

de�ned in a meaningful way on some patterns, not all in general. Espe
ially, we

will need to extend the de�nition as a morphism on patterns. Let us introdu
e

the most natural operation on pointed patterns, that is, union.

Union of pattern

One de�nes as follows an algebrai
 operation on pointed patterns whi
h 
or-

responds to the union. If W = (x

1

; i

1

) : : : (x

j

1

; i

j

1

) and V = (y

1

; k

1

) : : :

(y

j

2

; k

j

2

) 2 L

�

satisfy x

l

6= y

m

for every l; m, let

W:V = (x

1

; i

1

) : : : (x

j

1

; i

j

1

)(y

1

; k

1

) : : : (y

j

2

; k

j

2

):

Noti
e that this operation provides a pointed pattern if and only if x

l

6= y

m

for

every l; m. Su
h a pair of pointed patterns is 
alled disjoint pointed patterns.

If W

1

, W

2

, : : : , W

k

are pointed patterns, their union W

1

: : : : :W

k

is also de-

noted �

j�k

W

j

. Let us oberve that the set L

�

is not stable under this operation.

Let L

�

w

denote the set of weighted pointed patterns, that is, the set of all pat-

terns on Z

2

�A with no 
ondition about the support: a letter (x; i) may appear

twi
e (or more) in a su
h a weighted pattern, as well as both the letters (x; 1)

and (x; 2). Geometri
ally, weighted patterns have no real meaning but L

�

w

endowed with the union be
omes a monoid.
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2.2 Two-dimensional morphisms with lo
al rules

An example of a substitution rule is given by �

0

: 1 7!

2

1

, 2 7! 3, 3 7! 1. The

aim of this se
tion is to illustrate what we mean by de�nining a 2-dimensional

morphism from the substitution rule �

0

.

Suppose one wants to iterate �

0

starting from 1 at the position (1; 0). A �rst

problem o

urs at the beginning: where will we pla
e the nonpointed pattern

�

0

(1)? We de�ne an initial rule to solve this problem.

De�nition 2.2 (Initial rule) Let � be a two-dimensional substitution rule.

An initial rule for � is given by a map I whi
h sends a given pointed letter

((m;n); a) to a pointed pattern whose support 
ontains ((m;n); a) and whi
h

represents the pattern �(a). The letter ((m;n); a) is 
alled the initial pointed

letter of the initial rule I.

For example, Fig. 2.1 shows the initial rule I : ((1; 0); 1) 7! ((1; 0); 1)((1; 1); 2)

for the two-dimensional substitution rule �

0

; the initial letter ((1; 0); 1) has

been written in bold fa
e.

1 (1,0)

7!

2 (1,1)

1 (1,0)

Fig. 2.1. An initial rule for the substitution rule �

0

A se
ond problem o

urs at the se
ond iteration: what is the pla
e of the image

of 2 with respe
t to that of 1? Hen
e we need more information to iterate the

pro
ess.

De�nition 2.3 (Lo
al rules) Let � be a two-dimensional substitution rule.

A lo
al rule is given by a map W 7! �(W ), where W is a nonpointed pattern

of size 2 (that underlies a pointed pattern denoted (x; a)(y; b)) and �(W ) is a

nonpointed pattern that underlies the disjoint union of a pointed pattern that

represents �(a) and a pointed pattern that represents �(b). The nonpointed

pattern W is 
alled the initial pattern of the lo
al rule.

The intuitive meaning of the rule will be that, if we know how to pla
e the

image of a, we will know how to pla
e the image of b when it is in a parti
ular

position with respe
t to a.

As an example, let us thus introdu
e the following set S of 5 lo
al rules given

in Fig. 2.2: if we know the pla
e of the image of a given letter, we know the

pla
e of the images of the adja
ent letters by using our 5 lo
al rules. We use

11



bold 
hara
ters in Fig. 2.2 in the image of

1

1

to indi
ate the pla
e of the

respe
tive images. One 
an note that the image of the letter 1 whi
h is in the

lowest position is lo
ated above the image of the other 1. In fa
t this produ
es

a spiral movement whi
h will allow one to 
over all Z

2

when iterating �

0

.

2

1

7!

2

3 1

3 1

7!

2

1

1

1

1

7!

2

2 1

1

2 1

7!

2

1

3

1

3

7!

2 1

1

Fig. 2.2. Lo
al rules for the substitution rule �

0

.

De�nition 2.4 (Covered pattern) A pointed pattern W is 
overed by a set

of lo
al rules if for every pair (x; a) and (x

0

; b) of pointed letters in W there

exists a path of lo
al rules from one letter to the other, that is, there ex-

ists (y

1

; j

1

); � � � ; (y

n

; j

n

) pointed letters of the pattern su
h that (y

1

; j

1

) =

(x; a); (y

n

; j

n

) = (x

0

; b); and for 0 � k � n � 1, the pattern asso
iated with

(y

k

; j

k

)(y

k+1

; j

k+1

) is the initial nonpointed pattern of one of the lo
al rules.

In that 
ase, we say that the path joins (x; a) and (x

0

; b).

A nonpointed pattern is said 
overed if it admits a 
overed pointed represen-

tative.

One 
he
ks that the images of the initial nonpointed patterns of the 5 lo
al

rules given for the example �

0

are themselves 
overed. Hen
e, we are now able

to extend the image of any pattern 
overed by these 5 lo
al rules.

De�nition 2.5 (Morphism de�ned by lo
al rules) Let � be a two-dim-

ensional substitution rule. A two-dimensional morphism de�ned by lo
al rules

(�; I;S) is given by the substitution rule �, an initial rule I, and a �nite


olle
tion S of lo
al rules asso
iated to this substitution rule.

The morphism (�; I;S) a
ts on 
overed patterns whose support 
ontains the

initial pointed letter ((m;n); a) of I. One �rst lo
ates the image of ((m;n); a)

and then apply the lo
al rules in S. Nevertheles, the image of a pointed letter

should not depend on the path used to join it to ((m;n); a).

De�nition 2.6 (Consisten
y) A pointed pattern is said to be 
onsistent for

a morphism with lo
al rules if:

(1) it 
ontains the initial letter ((m;n); a) of the initial rule I;

(2) it is 
overed by the set of lo
al rules;

(3) the image of a pointed letter is well de�ned, that is, it does not depend

on the path of lo
al rules used to join it ((m;n); a);

12



(4) the images of two di�erent pointed letters are disjoint.

We 
an now build the image of some parti
ular 
onsistent patterns. One 
an

�nd in Fig. 2.3 the �rst iterations of (�

0

; I;S), that we denote for short �

0;l

.

Ea
h iteration �

0;l

n

((1; 0); 1) is split into two parts, one part 
orresponding

to �

0;l

n�1

((1; 0); 1) whereas the other one is the image of the 
orrespond-

ing part in �

0;l

n�1

((1; 0); 1) (that is, the 
omplement of �

0;l

n�2

((1; 0); 1) in

�

0;l

n�1

((1; 0); 1)). These �rst iterations are pointed patterns: the bold symbol

1 denotes the initial letter ((1; 0); 1).

1 7!

2

1

7!

2

3 1

7!

2

3 1

1

7!

2

2 1

3 1

1

7!

2 2

3 1 2 1

3 1

1

7!

2 2

3 1 2 1

3 1

2 1

3 1

1

:

Fig. 2.3. Iteration of the lo
al rules asso
iated with �

0

.

We 
an already make a �rst observation: the pointed pattern �

0;l

n

((1; 0); 1)

is a subpattern of �

0;l

n+1

((1; 0); 1). Furthermore if one iterates the pro
ess,

one 
an note that the images of the letters do not depend of the set of rules

de�ned to link them to the (1; 0) (this 
an be made in di�erent ways), and

there are no overlaps by pla
ing the images of the di�erent letters, that is, the

rules are 
onsistent.

Hen
e one gets larger and larger nested pointed patterns. Moreover, the pat-

terns grow with no \holes", and eventually 
over any point in Z

2

(see Se
tion

6.2 for a proof). More pre
isely the sequen
e of �nite patterns (�

0;l

n

((1; 0); 1))


onverges in f1; 2; 3g

Z

2

for the topology over f1; 2; 3g

Z

2

endowed with the prod-

u
t topology (whi
h 
oin
ides with the natural topology on tilings). Hen
e,

we will prove the following theorem, whi
h is a more pre
ise version of the

theorem stated in the introdu
tion:

Theorem 2.7 (Lo
al rules) The two-dimensional substitution rule �

0

, en-

dowed with the initial lo
al rule I : ((1; 0); 1) 7! ((1; 0); 1)((1; 1); 2) and
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the set of lo
al rules S given in Fig. 2.2, de�nes a two-dimensional mor-

phism with lo
al rules (�

0

; I;S), that we denote �

0;l

. The pointed patterns

�

0;l

n

((1; 0); 1) are all 
onsistent. Moreover, the sequen
e of pointed patterns

(�

0;l

n

((1; 0); 1))

n2N


onverges in f1; 2; 3g

Z

2

to the following in�nite sequen
e

U = (U(m;n))

Z

2

, where � > 1 denotes the largest root of x

3

� x

2

� 1:

U(m;n) = 1 if (�

2

m+ �n) mod (�

2

+ �+ 1) 2℄0; �

2

℄;

U(m;n) = 2 if (�

2

m+ �n) mod (�

2

+ �+ 1) 2℄�

2

; �

2

+ �℄;

U(m;n) = 3 if (�

2

m+ �n) mod (�

2

+ �+ 1) 2℄�

2

+ �; �

2

+ � + 1℄:

Remark that � � 1; 46557 is the se
ond smallest Pisot number.

2.3 Two-dimensional morphisms with global rules

For the proof of the pre
eeding theorem we will need to endow �

0

with global

rules.

De�nition 2.8 (Morphism de�ned by global rules) Let � be a two-di-

mensional substitution rule; for any pattern �(a), 
hoose a parti
ular repre-

sentative �(a). A global rule is a map v from the set of all pointed letters

to Z

2

. A two dimensional morphism with global rules is de�ned as a map

(�;v) : (x; a) 7! �(a) + v(x; a).

It is un
lear that a global morphism 
an be applied to a large pointed pattern

(there 
ould be overlaps); in fa
t, we have the de�nition:

De�nition 2.9 (Consisten
y) We say that a pointed pattern W is 
onsis-

tent for a morphism with global rules (�;v) if, for any two distin
t pointed

letters 
ontained in W , their images by (�;v) are disjoint pointed patterns.

The following result will be proved in Se
tion 6.2.

Theorem 2.10 (Global pla
ing rules) For all (m;n) 2 Z

2

, de�ne r =

�d(�

2

m+ �n)=(�

2

+ � + 1)e+ 1, and de�ne (m

0

;n

0

) = v(m;n) = (1� n;m

�n� r):

Using the two-dimensional substitution rule �

0

, de�ne a two-dimensional mor-

phism with global rules (�

0

;v) by

� the image under �

0

of the letter 1 lo
ated at (m;n) in the sequen
e U is the

pattern

2

1

, where 1 is lo
ated at (m

0

;n

0

);

� the image of the letter 2 lo
ated at (m;n) is the pattern

3

lo
ated at (m

0

;n

0

),
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� the image of the letter 3 lo
ated at (m;n) is the the pattern

1

lo
ated at

(m

0

;n

0

).

The sequen
e (U(m;n))

Z

2

is 
onsistent for the two-dimensional morphism with

global rules (�

0

;v); moreover, it is a �xed point of this morphism.

The sequen
e U is a two-dimensional Sturmian word following [BV00a,BV00b℄.

Two-dimensional Sturmian words have many interesting 
ombinatorial prop-

erties whi
h allow us to 
onsider them as a higher-dimensional generalization

of Sturmian words. Classi
 one-dimensional Sturmian words 
ode the approx-

imation of a line by a dis
rete line made of horizontal and verti
al segments

with integral verti
es (for more details, see for instan
e [PF02,Lot02℄). We

will re
all a proof of the fa
t that these multidimensional sequen
es 
ode dis-


rete plane approximations in Se
tion 4. In our example, the sequen
e U is a

dis
rete approximation of the plane �

2

x + �y + z = 0 in R

3

.

These multidimensional sequen
es are also generated by two-dimensional mor-

phisms governed by the Ja
obi-Perron algorithm. Namely, a geometri
 inter-

pretation of the Ja
obi{Perron algorithm is given in [ABI02℄ as an indu
tion

pro
ess. Consequently, one 
an asso
iate with the Ja
obi{Perron algorithm a

sequen
e of two-dimensional morphisms whi
h generates the two-dimensional

Sturmian sequen
es mentioned above. This is the pro
ess we want to extend

here to a 
lass of morphisms. Indeed, this paper aims mainly at explaining the

pro
ess that allows one to dedu
e the lo
al rules above from a one-dimensional

iterated morphism, and more generally from any iterated morphism that sat-

is�es the Pisot unimodular property on a three-letter alphabet. Observe again

that we have no dire
t 
ombinatorial proof of Theorems 2.7 and 2.10 and that

we would be very interested in getting one.

3 Dis
rete plane asso
iated with an irrational plane

The aim of this se
tion is to introdu
e the notion of a dis
rete approximation

of a plane following [IO94,IO93,Vui98,BV00b,ABI02℄. Let (e

1

; e

2

; e

3

) denote

the 
anoni
al basis of R

3

.

We 
all integral 
ube any translate of the fundamental 
ube with integral

verti
es, that is, any set (p;q; r) + C where (p;q; r) 2 Z

3

and C denotes the

fundamental unit 
ube (see Fig. 3.1):

C = f�e

1

+ �e

2

+ �e

3

; (�; �; �) 2 [0; 1℄

2

g:

Let P � R

3

be a plane with equation ax + by + 
z + h = 0. We suppose that
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e1 e2

e3

Fig. 3.1. The fundamental 
ube C.

the plane has totally irrational dire
tion, that is, the triple (a; b; 
) satis�es no

rational relation. We also suppose that a; b; 
 > 0.

We will approximate the plane P by sele
ting points with integral 
oordinates

above and within a bounded distan
e of the plane. The dis
rete plane is de�ned

as a union of fa
es of integral 
ubes that 
onne
t these points.

De�nition 3.1 [BV00b,ABI02℄ Let S be the set of integral 
ubes that interse
t

the lower 
losed half-spa
e ax + by + 
z + h � 0.

The dis
rete plane asso
iated with P is the boundary of the set S. This dis
rete

plane is denoted P.

A vertex of the dis
rete plane P is an integral point that belongs to the dis
rete

plane. Let V denote the set of verti
es of P.

Fig. 3.2. A part of the dis
rete plane P for the plane �

2

x + �y + z = 0, where

�

3

= �

2

+ 1.

3.1 Verti
es in the dis
rete plane

In this se
tion we give a numeri
al 
hara
terization of the verti
es of the

dis
rete plane P. We re
over the results of [ABI02℄ by giving a more detailed

proof for the sake of 
larity.

Proposition 3.2 ([ABI02℄) An integral point (p;q; r) is a vertex of the dis-


rete plane P if and only if 0 < ap+ bq + 
r + h � a+ b + 
.
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Proof The proof needs some intermediate steps.

(1) The integral 
ube (p;q; r) + C is in
luded in the set S if and only if

ap + bq + 
r + h � 0. Indeed, the 
ube (p;q; r) + C is in
luded in S if

it interse
ts the lower half-spa
e ax + by + 
z + h � 0. Sin
e a; b; 
 are

positive, if a point belongs to the lower half-spa
e, then every other point

that is \below" also belongs to the half-spa
e. Consequently, the 
ube

(p;q; r)+ C interse
ts this half-spa
e if and only its lowest point (p;q; r)

belongs to it, that is, ap + bq + 
r + h � 0.

(2) An integral point (p;q; r) 2 Z

3

belongs to S if and only if ap+bq+
r+h �

a+ b + 
.

Indeed the point (p;q; r) belongs to S if it belongs to an integral 
ube

(p

1

;q

1

; r

1

) + C in
luded in S, that is, ap

1

+ bq

1

+ 
r

1

+ h � 0. Sin
e we

know that (p;q; r) 2 (p

1

;q

1

; r

1

)+C, that is, p�p

1

; q�q

1

; r�r

1

2 f0; 1g,

a 
hara
terization for integral verti
es in S is given by ap+ bq+ 
r+h �

a+ b + 
.

In other words, an integral point belongs to the set S if and only if

its translate by the ve
tor (�1;�1;�1) belongs to the lower half-spa
e

ax + by + 
z + h � 0

(3) Observe that, sin
e the set S is 
overed by integral 
ubes, an integral

point (p;q; r) belongs to the interior of S if and only if all the 
ubes


ontaining (p;q; r) also belong to S.

Consequently, the point (p;q; r) 2 Z

3

belongs to P if it is on its boundary,

that is, if the following 
onditions are satis�ed:

� the point (p;q; r) 2 S, that is, ap+ bq + 
r + h � a+ b + 
;

� the point (p;q; r) does not belong to the interior of S, that is, there exists

a 
ube (p

1

;q

1

; r

1

) + C that 
ontains (p;q; r) and that is not in
luded in S.

Hen
e, there must exist (p

1

;q

1

; r

1

) su
h that p� p

1

; q � q

1

; r � r

1

2 f0; 1g

and ap

1

+ bq

1

+ 
r

1

+h > 0. An equivalent 
ondition is ap+ bq+ 
r+h > 0.

3.2 Partition of the dis
rete plane by pointed fa
es

By 
onstru
tion, a dis
rete plane is a union of fa
es of integral 
ubes. We

would like to de�ne a true partition by these fa
es; this is impossible if we

take 
losed fa
es, sin
e edges will then belong to two fa
es, or if we take open

fa
es, sin
e verti
es and edges will then belong to no fa
e. We need to introdu
e

a 
onvention to de�ne a notion of 
anoni
al fa
es that are neither open nor


losed. (The main di�eren
e between the notation here and that of [ABI02℄ lies

in our 
hoi
e of the distinguished verti
es of the fa
es of type 1, 2, 3 (see Fig.

3.3); this 
hoi
e is motivated by Proposition 3.3 where the su

essive lengths
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of intervals are a, b, 
 (and not 
, b, a, as in [ABI02℄).)

Let E

1

, E

2

, and E

3

be the three following basi
 protiles for the dis
rete plane:

E

1

= f�e

2

+ �e

3

; (�; �) 2 [0; 1[

2

g

E

2

= f��e

1

+ �e

3

; (�; �) 2 [0; 1[

2

g

E

3

= f��e

1

� �e

2

; (�; �) 2 [0; 1[

2

g:

We 
all fa
e of type i pointed on (p;q; r) or shortly pointed fa
e the set

(p;q; r) + E

i

.

Noti
e that ea
h fa
e 
ontains exa
tly one integral point. We 
all it the distin-

guished vertex of the fa
e. Hen
e, the point (p;q; r) is the distinguished vertex

of the fa
e (p;q; r) + E

i

.

1

x

y

z

Fa
e of type 1

x y

z

2

Fa
e of type 2

x y

z

3

Fa
e of type 3

Fig. 3.3. The three di�erent kinds of pointed fa
es in R

3

The reason for the presen
e of the semi-open intervals and of the signs in the

de�nition of the fa
es is that su
h a 
hoi
e of fa
es provides a true partition

for the dis
rete plane. This result is not immediate sin
e problems may o

ur

on edges and integral verti
es. The proof requires the following intermediate

result, whose proof is given in the Appendix for the sake of 
larity.

Proposition 3.3 A point (p;q; r) 2 Z

3

is the distinguished vertex of a fa
e of

type 1 (resp. 2 or 3) in the dis
rete plane P if and only if ap+bq+
r+h 2℄0; a℄

(resp. ℄a; a+ b℄ or ℄a+ b; a+ b+ 
℄). If so, (p;q; r) belongs to no other fa
e in

the dis
rete plane.

Proof See Appendix A.

Geometri
ally, this proposition means that an integral point x = (p;q; r) is

the distinguished vertex of a fa
e of type 1 in the dis
rete plane P if and only

if x is stri
tly above the plane P whereas (p� 1;q; r) = x � e

1

is below the

plane. Similarly, it is the distinguished vertex of a fa
e of type 2 if x � e

1

is

above the plane and x� e

1

� e

2

is below. The type is 3 if x� e

1

� e

2

is above

the plane and x� e

1

� e

2

� e

3

is below.

Theorem 3.4 The pointed fa
es form a partition of the dis
rete plane P.

Proof See Appendix A.
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4 Two-dimensional sequen
e asso
iated with an irrational plane

We 
an now introdu
e a symboli
 
oding of the dis
rete plane as a two-

dimensional sequen
e with values in the three-letter alphabet f1; 2; 3g. We �rst

proje
t the verti
es of the dis
rete plane in the diagonal plane x+ y + z = 0;

we thus obtain a bije
tion between V and the latti
e Z

2

.

4.1 De�nition of the proje
tion onto the diagonal plane

Let � be the aÆne proje
tion on the plane x + y + z = 0 along the dire
tion

(1; 1; 1).

Geometri
ally, this proje
tion simply means that we look at the plane from

the diagonal dire
tion towards the origin. In parti
ular, let us noti
e that

the image by this proje
tion of the unit 
ube is nothing else than a regular

hexagone (see Fig. 4.1).

1e
e2

e3

�

7!

π(e1)

π(e3)= − e1 π(e2)) −π(

e2)π(

Fig. 4.1. The proje
tion of the fa
es E

1

, E

2

and E

3

in the diagonal plane endowed

with the latti
e generated by �(e

1

) and �(e

2

).

A simple 
omputation gives: �(p;q; r) = (p� r)�(e

1

) + (q � r)�(e

2

).

Hen
e, the proje
tion � of the latti
e Z

3

is a latti
e in x+ y + z = 0:

� =

n

(p� r)�(e

1

) + (q � r)�(e

2

); (p;q; r) 2 Z

3

o

= Z �(e

1

) + Z �(e

2

):

4.2 Proje
tion of the dis
rete plane onto the diagonal plane

A quite unexpe
ted result is that a dis
rete plane 
an be re
oded on a regular

latti
e, despite its three-dimensional stru
ture. An illustration of this result

is given in Fig. 4.2. This is no longer true for instan
e when 
onsidering a

dis
rete plane approximation in R

4

.

Proposition 4.1 ([ABI02℄) The proje
tion � is a bije
tion from the set of

verti
es V in the dis
rete plane P onto the latti
e �.
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Proof Let g = m�(e

1

) + n�(e

2

) be a point in the latti
e �. A point

(p;q; r) 2 V proje
ts on g if and only if �(p;q; r) = (p � r)�(e

1

) + (q �

r)�(e

2

) = g = m�(e

1

) + n�(e

2

). Hen
e m = p� r and n = q � r.

Sin
e (p;q; r) 2 V, the 
oordinates satisfy 0 < ap + bq + 
r + h � a + b + 
.

Hen
e, 0 < am + bn + r(a + b + 
) + h � a + b + 
 whi
h implies r =

�d

am+bn+h

a+b+


e+ 1. Consequently, (p;q; r) exists and is uniquely determined, so

that � is a bije
tion from the set of verti
es onto �.

Expli
it formulas are dedu
ed from the proof:

� : (p;q; r) 2 V 7! (p� r)�(e

1

) + (q � r)�(e

2

) 2 �; (4.1)

�

�1

: m�(e

1

) + n�(e

2

) 2 � 7!

0

B

B

B

B

B

�

m

n

0

1

C

C

C

C

C

A

+

 

�

&

am + bn + h

a+ b + 


'

+ 1

!

0

B

B

B

B

B

�

1

1

1

1

C

C

C

C

C

A

2 V:

From the spa
e... ... to the diagonal plane.

Fig. 4.2. Verti
es in the dis
rete plane proje
t onto a regular latti
e.

4.3 Two-dimensional sequen
e asso
iated with an irrational plane

Fig. 4.2 illustrates that Proposition 4.1 dire
tly provides a tiling for the diag-

onal plane with the three diamonds: T

1

= �(E

1

),T

2

= �(E

2

), and T

3

= �(E

3

),

shown in Fig. 4.3.

Tile 1

Tile 2

Tile 3

Fig. 4.3. The three basi
 protiles in the plane x+ y + z = 0.

Let us summarize the results obtained in the pre
eding se
tions:
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� Let (m;n) 2 Z

2

. There exists a unique 
orresponding point in the latti
e

�, namely, g = m�(e

1

) + n�(e

2

) 2 �.

� There exists a unique vertex with 
oordinates (p;q; r) in the dis
rete plane

P su
h that the point g 2 � is the proje
tion through � of this point, that

is, (p;q; r) = �

�1

(g) 2 P.

� The vertex (p;q; r) 2 P is the distinguished vertex of a unique fa
e. The

type of this fa
e is 
ompletely determined by ap+bq+
r+h mod (a+b+
).

Hen
e, it be
omes natural to asso
iate with ea
h pair (m;n) 2 Z

2

the type of

the 
orresponding fa
e in the dis
rete plane P. This is shown in Fig. 4.4.

From the planar tiling... ... to the two-dimensional 
oding.

Fig. 4.4.

The results proved above imply that this 
oding is one-to-one, meaning that

su
h a 
oding is suÆ
ient to rebuild the whole dis
rete plane P, as shown in

Fig. 4.5.

Theorem 4.2 Let (m;n) 2 Z

2

and g = m�(e

1

) + n�(e

2

) in the latti
e �.

There exists a unique integer U(m;n) 2 f1; 2; 3g su
h that �

�1

(g) is the

distinguished vertex of a fa
e of type U(m;n) in the dis
rete plane P :

U(m;n) = 1 if (am + bn + h) mod (a+ b + 
) 2℄0; a℄;

U(m;n) = 2 if (am + bn + h) mod (a+ b + 
) 2℄a; a + b℄;

U(m;n) = 3 if (am + bn + h) mod (a+ b + 
) 2℄a + b; a + b+ 
℄:

The sequen
e (U(m;n))

Z

2

is 
alled the the two-dimensional 
oding asso
iated

with the plane ax+ by + 
z + h = 0.
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A two-dimensional


oding..

... provides a planar

tiling...

... that gives a dis
rete

plane.

Fig. 4.5. From a two-dimensional 
oding to a dis
rete plane.

5 A three-dimensional morphism a
ting on the fa
es of a dis
rete

plane

The aim of this se
tion is to re
all the formalism of [AI01℄ whi
h introdu
es

generalized substitutions a
ting on fa
es of a dis
rete plane P, and repla
ing

them by �nite unions of fa
es in
luded in P. For more details on generalized

substitutions, see [AI01,AIS01℄ and Chap. 8 in [PF02℄.

5.1 Dis
rete plane asso
iated with Pisot unimodular morphisms

One-dimensional iterated morphisms

Let A be the �nite alphabet f1; 2; 3g and A

�

the set of �nite words de�ned

over A. The empty word is denoted ". A one-dimensional iterated morphism

� is an endomorphism of the free-monoid A

�

su
h that the image of a letter

of A is never empty; we also require that for at least one letter a, we have

j�

n

(a)j ! +1, where jwj denotes the length of the word w. It extends in a

natural way to in�nite or biin�nite sequen
es in A

N

and A

Z

.

Abelianization

Let l : A

�

7! N

3

be the natural homomorphism obtained by abelianization of

the free monoid: if jW j

a

denotes the number of o

urren
es of the letter a 2 A

in a �nite word W , then we have l(W ) = (jW j

1

; jW j

2

; jW j

3

) 2 N

3

.

With ea
h one-dimensional iterated morphism � on A is 
anoni
ally asso
i-

ated its in
iden
e matrix M = (m

i;j

)

1�i;j�3

de�ned by m

i;j

= j�(j)j

i

(jW j

i

,

whi
h 
ounts the number of o

urren
es of the letter i in W ), so that we have

l(�(W )) = Ml(W ) for every W 2 A

�

.

Iterated morphism of Pisot type

A morphism � on three letters is of Pisot type if its eigenvalues satisfy � >

1 > j�

1

j � j�

2

j > 0. In parti
ular, the dominant eigenvalue � is a Pisot
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number. Furthermore, its in
iden
e matrix M is primitive [CS01,PF02℄, that

is, it admits a power with stri
tly positive entries.

An iterated morphism � is unimodular if det M = �1.

Till the end of the paper, � denotes an iterated morphism on three

letters that is unimodular and of Pisot type.

Dis
rete plane asso
iated with a one-dimensional Pisot iterated morphism

Let � > 1 > j�

1

j � j�

2

j denote the eigenvalues of the iterated morphim �. Let

P be the 
ontra
ting plane (that is, the real plane generated by the eigenve
tors

asso
iated with �

1

; �

2

) of the in
iden
e matrixM of �. In parti
ular,P is stable

under the a
tion ofM and its inverse M

�1

. Similarly, the lower half-spa
e and

the upper half-spa
e are stable under the a
tion of M and M

�1

.

Numeri
ally, the equation of P is ax+by+
z = 0, where (a; b; 
) = v is a nor-

malized expanding left eigenve
tor asso
iated with the expanding eigenvalue

�. The Perron-Frobenius theorem ensures that (a; b; 
) is a stri
tly positive

ve
tor with no rational relationship sin
e M is primitive. Observe that the

ve
tor (a; b; 
) has algebrai
 
oordinates. Let P be the dis
rete plane for the

plane P.

Example

Let �

0

be the following iterated morphism �

0

: 1 7! 13, 2 7! 1, 3 7! 2.

Its in
iden
e matrix is M with:

M =

0

B

B

B

B

B

�

1 1 0

0 0 1

1 0 0

1

C

C

C

C

C

A

M

�1

=

0

B

B

B

B

B

�

0 0 1

1 0 �1

0 1 0

1

C

C

C

C

C

A

:

Its 
hara
teristi
 polynomial is X

3

�X

2

� 1, hen
e its admits one eigenvalue

� > 1, whi
h is the se
ond smallest Pisot number, and two 
omplex 
onjugate

eigenvalues of modulus stri
tly smaller than 1. The 
ontra
ting plane of this

matrix has equation �

2

x+�y+z = 0 (it is perpendi
ular to the left eigenve
tor

asso
iated with � (that is, (�

2

; �; 1)) whereas its expanding dire
tion is given

by the right eigenve
tor asso
iated with � (that is, (�

2

; 1; �)).

Noti
e that this iterated morphism belongs to the 
lass of modi�ed Ja
obi-

Perron substitutions following [IO93℄ (see also [PF02℄, Chap. 8). This 
lass of

morphisms is dedu
ed from the generalized modi�ed Ja
obi-Perron 
ontinuous

fra
tion algorithm (whi
h is a two-point extension of Brun's algorithm). Their

matri
es of in
iden
e des
ribe this algorithm in its linear additive form.
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5.2 Generalization of the one-dimensional iterated morphism to the dis
rete

plane

In [AI01,AIS01℄, the de�nition of the iterated morphism � is extended by

duality to the fa
es (p;q; r) + E

i

on the dis
rete plane P.

Let P

�

denote the set of �nite pointed patterns on the dis
rete plane, that is,

the set of �nite disjoint unions of fa
es in the dis
rete plane.

Remark that the generalized substitutions introdu
ed in [AI01,AIS01℄ (and

denoted E

�

1

(�) in these papers) a
t on fa
es whi
h for te
hni
al reasons do not


orrespond exa
tly to the fa
es (E

1

; E

2

; E

3

). The fa
es that are 
onsidered in

[AI01,AIS01℄ are (E

�

1

; E

�

2

; E

�

3

) su
h that x+E

�

i

= x+E

i

+ e

1

+ � � �+ e

i

. The

formalism of generalized substitution that is introdu
ed in [AI01℄ provides the

following formula with our notation.

De�nition 5.1 Let � be a one-dimensional iterated morphism on three letters

that is unimodular and of Pisot type. We 
all generalized substitution a
ting

on fa
es the following tranformation, denoted �

P

, that maps any fa
e of the

dis
rete plane P on a pattern in P. For every fa
e x+ E

i

� P, let

�

P

(x+ E

i

) =

[

k2f1;2;3g

[

P; �(k)=PiS

(M

�1

[x� l(P )� (e

1

+ � � �+ e

i

)℄

+ (e

1

+ � � �+ e

k

)) + E

k

� P

�

: (5.1)

The fa
es that o

ur in the image of a fa
e of type i are asso
iated with all

the o

urren
es of the letter i in the images of the letters of f1; 2; 3g. The

in
iden
e matrix of �

P

is hen
e the dual of that of �.

5.3 Example

Let �

0

denote our example 1 7! 13, 2 7! 1, 3 7! 2. Then

�

P

: x + E

1

7! (M

�1

[x� e

1

℄ + e

1

+ E

1

) [ (M

�1

[x� e

1

℄ + e

1

+ e

2

+ E

2

)

= (M

�1

x + e

1

� e

2

+ E

1

) [ (M

�1

x+ e

1

+ E

2

);

x + E

2

7!M

�1

[x� e

1

� e

2

℄ + e

1

+ e

2

+ e

3

+ E

3

= M

�1

x + e

1

+ E

3

;

x + E

3

7!M

�1

[x� 2e

1

� e

2

� e

3

℄ + e

1

+ E

1

= M

�1

x� e

2

� e

3

+ E

1

:
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# �

P

# �

P

# �

P

Fig. 5.1. The generalized substitution a
ting on fa
es asso
iated with �

0

.

5.4 Iteration of the substitution �

P

Formula (5.1) de�nes rules that allow one to repla
e a single fa
e in the dis
rete

plane P by a union of fa
es. Many points must be 
he
ked to be able to iterate

these rules:

� First, we must be sure that the rule maps a fa
e of the dis
rete plane into

a union of fa
es in
luded in the dis
rete plane.

� For 
onsisten
y, the union in Formula (5.1) must be disjoint.

� If one wants to iterate �

P

, one needs to be able to extend the de�nition of

�

P

to patterns of P

�

, that is, to �nite disjoint unions of fa
es in P. This is

possible as soon as two di�erent fa
es map to disjoint unions of fa
es.

The following theorem is given in [AI01℄. We detail its proof in the Appendix

to make the paper self-
ontained.

Theorem 5.2 Any one-dimensional iterated morphism that is unimodular

and of Pisot type over a three-letter alphabet 
an be extended to a generalized

substitution a
ting on fa
es of the dis
rete plane asso
iated with the 
ontra
t-

ing plane of the in
iden
e matrix of the iterated morphism. This generalized

substitution maps any pattern (that is, a �nite disjoint union of fa
es in the

dis
rete plane) on a pattern of the dis
rete plane.

The dis
rete plane is invariant under the a
tion of the substitution on fa
es.

Furthermore two distin
t fa
es have images whi
h do not interse
t.

Proof See Appendix A.

Remark: extension of �

P

to Z

3

. Nothing prevents us to extend the de�ni-

tion of the substitution on fa
es �

P

to the whole set of fa
es in the spa
e (and

not only to the fa
es that are in
luded in the dis
rete plane): Formula (5.1)

is available for any x 2 Z

3

and any type k, providing that the image of su
h
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a fa
e may 
ontain the same fa
e more than on
e. Hen
e, the substitution

�

P

extends to Z

3

� f1; 2; 3g as a weighted substitution. For a more pre
ise

formalism, see [AI01,AIS01℄.

6 Two-dimensional morphisms

6.1 Two-dimensional morphism with global rules asso
iated with a one-di-

mensional iterated morphism

Let � denote a one-dimensional iterated morphism that is unimodular and of

Pisot type. Let P stand for the 
ontra
ting plane for its in
iden
e matrix and

let P denote the dis
rete plane asso
iated with P. In Se
tion 5 was explained

how to extend the de�nition of � to the fa
es of the dis
rete plane, by intro-

du
ing a generalized substitution �

P

. In Se
tion 3 was proved that fa
es in

the dis
rete plane proje
t 
anoni
ally onto Z

2

� f1; 2; 3g. In this se
tion the

results of Se
tions 3 and 5 are mixed together to extend the de�nition of �

P

as

a two-dimensional morphism with global rules: we give a symboli
 translation

of (5.1).

De�nition 6.1 Let � be a one-dimensional iterated morphism that is uni-

modular and of Pisot type and M its in
iden
e matrix. The global pla
ing

rules asso
iated with � are de�ned from L to L

�

w

as follows:

(�;v) : ((m;n); i) 7!

K

�(k)=PiS

�

N(e

1

+ � � �+ e

k

)�NM

�1

(e

1

+ � � �+ e

i

)

�NM

�1

l(P ) +NM

�1

(m+ r(m;n); n+ r(m;n); r(m;n)); k

�

; (6.1)

where r(m;n) = �d(am + bn)=(a+ b + 
)e+ 1 and N =

0

B

�

1 0 �1

0 1 �1

1

C

A

.

Indeed, by using the maps � and �

�1

, one 
an give a formulation for (5.1) in

the latti
e Z

2

. More pre
isely, the point (m;n) 2 Z

2

admits a unique preimage

a

ording to � in the dis
rete plane P as �

�1

(m;n) (see (4.1)). We then apply

�

P

to the geometri
 fa
e �

�1

(m;n) + E

i

; its image shall be de
omposed into

a �nite union of geometri
 fa
es following (5.1) that we do proje
t a

ording

to �.

Let us note that if �

�1

(m;n) + E

i

is not a fa
e on the dis
rete plane, then

the pointed letters in the union might be weighted: for any (x; i), nothing

allows one to state that the image (�;v)(x; i) is a pointed pattern. We just

know that it is a weighted pointed pattern. However, from Theorem 5.2, we
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know that pointed patterns map to pointed patterns in the 
ase where the

pattern 
orresponds to a �nite part of the dis
rete plane P. Indeed, sin
e � is

a bije
tion (Prop. 4.1), a dire
t 
onsequen
e of Theorem 5.2 is the following:

Theorem 6.2 Let � be a one-dimensional iterated morphism that is unimod-

ular and of Pisot type on a three-letter alphabet. Let U = (U(m;n))

Z

2

be the


oding of the dis
rete plane asso
iated with � following Theorem 4.2. Let L

U

be the set of pointed patterns that appear in U .

Then, the global pla
ing rules given by (6.1) de�ne a two-dimensional mor-

phism, denoted (�;v), a
ting on L

U

.

Moreover, the 
oding U of the dis
rete plane is a �xed point for (�;v) whi
h

satis�es:

(1) for all (m;n), (�;v)((m;n); U(m;n)) is a pointed pattern that o

urs in

U ;

(2) for all (m;n), there exists a unique (s; t) su
h that (�;v)((s; t); U(s; t))


ontains the pointed letter ((m;n); U((m;n));

(3) if ((m;n); U((m;n)) and ((s; t); U((s; t)) are two distin
t pointed letters

in U , then their images under the a
tion of (�;v) are distin
t.

The only point whi
h remains to 
he
k here is the se
ond assertion. It is a dire
t


onsequen
e of the fa
t if (p;q; r) (resp. (u;v;w)) is the point of the dis
rete

plane P in bije
tion with g = m�(e

1

) + n�(e

2

) (resp. h = s�(e

1

) + t�(e

2

)),

then by de�nition of (�;v), (u;v;w) =M

�1

(p;q; r). In this sense, (�;v) 
an

be 
onsidered as an \invertible" map over U .

6.2 Proofs of Theorems 2.7 and 2.10

We now have gathered all the elements and tools we need to prove Theorem

2.7, and in parti
ular, the 
onsisten
y for the lo
al rules of Fig. 2.2.

Computation of the global rules

Let �

0

: 1 7! 13; 2 7! 1; 3 7! 2 and a = �

2

, b = � and 
 = 1, �

3

= �

2

+1. Let

r = r(m;n) = �d(am + bn)=(a+ b+ 
)e + 1. Then one 
omputes Formula

(6.1) in this 
ase, with v((m;n); i) = (1� n;m� n� r(m;n)):

(�

0

;v) : ((m;n); 1) 7! ((0;�1); 1)((0; 0); 2) + v((m;n); 1)

((m;n); 2) 7! ((0; 0); 3) + v((m;n); 2) (6.2)

((m;n); 3) 7! ((0; 0); 1) + v((m;n); 3):

27



Hen
e the two-dimensional substitution rule asso
iated with �

0

is given by:

�

0

: 1 7!

2

1

2 7! 3 3 7! 1:

The two-dimensional morphism with global rules (�

0

;v) a
ts on the set of

pointed patterns L

U

of the two-dimensional 
oding U of the plane ax+by+
 =

0 following Theorem 6.2. The expli
it expression for U is given by Theorem

4.2. The sequen
e U is a �xed point for (�

0

;v) with the pla
ing rule of (6.2).

>From the two-dimensional morphism with global rules (�

0

;v), let us dedu
e

the expression for the two-dimensional morphism with lo
al rules (�

0

; I;S),

that we denote �

0;l

.

Computation of the initial rule

One has U(1; 0) = 1 and and (�

0

;v)((1; 0); 1) = ((1; 0); 1)((1; 1); 2). The

initial letter ((1; 0); 1) of the initial rule I is sent on ((1; 0); 1)((1; 1); 2).

Computation of the lo
al rules

Let us suppose that the pointed pattern

3 1

o

urs at (m;n) in the �xed

point U , that is, the pattern W = ((m;n); 3)((m+ 1;n); 1) belongs to L

U

.

Hen
e,

� ma+ nb 2 ℄a+ b; a + b+ 
℄ modulo (a + b+ 
),

� (m+ 1)a+ nb 2 ℄0; a℄ modulo (a + b+ 
).

Observe that this pattern indeed o

urs somewhere in U by density of the set

of points ma + nb modulo (a+ b + 
).

We know that ma + nb 2℄a + b; a + b + 
℄ modulo (a + b + 
) and if we add

a to this quantity, then we obtain the number (m + 1)a + nb that belongs

to the interval ℄0; a℄ modulo (a + b + 
). Hen
e d(am + bn)=(a+ b + 
e and

d(am + bn + a)=(a+ b + 
)e di�er by exa
tly 1, so that

� r(m+ 1;n) = r(m;n)� 1,

� m

0

(m+ 1;n) = m

0

(m;n),

� n

0

(m+ 1;n) = n

0

(m;n) + 2.

Consequently,

(�

0

;v)((m;n)+((0; 0); 3)(1; 0); 1)) = (m

0

;n

0

)+((0; 0); 1)((0; 1); 2)((0; 0); 2):
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Symboli
ally this gives

3 1

7!

2

1

1

The proof of the 
omputation for the other lo
al rules in Fig. 2.2 follows the

same s
heme.

Consisten
y and 
onvergen
e towards the two-dimensional 
oding U

One �rst 
he
ks that the images of the initial nonpointed patterns of the 5

lo
al rules, as well as I((1; 0); 1), are themselves 
overed. Hen
e, we are now

able to extend the image of any pattern 
overed by these 5 lo
al rules.

All the pointed patterns �

0;l

n

((1; 0); 1) o

ur in U , sin
e U(1; 0) = 1, and

�

0;l

((1; 0); 1) = ((1; 0); 1)((1; 1); 2), whi
h underlies a lo
al rule. Observe that

the iteration using lo
al rules does not produ
e overlaps following Theorem

6.2. Furthermore, the image of a pointed letter does not depend on the path

of lo
al rules whi
h joins it to the initial letter (1; 0); 1), sin
e this value is

given by U . Hen
e the pointed patterns �

0;l

n

((1; 0); 1) are 
onsistent. In order

to prove that the sequen
e of pointed patterns �

0;l

n

((1; 0); 1) admits a limit

sequen
e de�ned everywhere in Z

2

, it remains to 
he
k that we 
over all Z

2

.

Covering of the full latti
e Z

2

This is equivalent with 
overing all the dis
rete plane P when we iterate �

P

starting from e

1

+E

1

. The idea of the proof is to strongly use the \inversibility"

of �

P

: a fa
e of the dis
rete plane x + E

i

is said to be the dire
t an
estor of

the fa
e y + E

j

if y + E

j

o

urs in �

P

(x + E

i

) in Formula (5.1). Indeed the

uni
ity of the dire
t an
estor 
omes from Theorem 5.2.

The main point is the following lemma, meaning that the dire
t an
estor of

a given fa
e that is far enough from the origin is nearer from the origin than

this fa
e. The Eu
lidean norm in R

3

is denoted jj jj.

Lemma 6.3 Let � denote one of the two 
omplex 
onjugate 
ontra
ting eigen-

values of the in
iden
e matrix of �

0

. Let x + E

i

be the dire
t an
estor of the

fa
e y + E

j

. Let

C =

1

q

j�j � j�j

 

3 + (�+ j�j)

�

3

�

3

+ 2

p

�

4

+ �

2

+ 1

!

and � =

q

j�j:

If jjyjj � C; then jjxjj � �jjyjj:

29



Proof See Appendix A.

As a 
onsequen
e, let y + E

j

be a fa
e in the dis
rete plane. Let y

0

+ E

j

0

=

y+E

j

, y

1

+E

j

1

, : : : , y

k

+E

j

k

be a �nite sequen
e of an
estors of y+E

j

, that

is, ea
h fa
e y

i

+E

j

i

o

urs in �

P

(y

i+1

+E

j

i+1

). Then Lemma 6.3 means that

jjy

i

jj � max fC; �

i

jjyjjg. This implies that there exists an integer N su
h

that y + E

j

o

urs in �

N

P

(y

N

+ E

j

N

), and y

N

belongs to the ball of radius C

in Z

3

.

It suÆ
es now to 
he
k that there exists an iteration starting from 1 whi
h


overs the ball of radius C in Z

3

to 
omplete the proof.

In our 
ase, one 
omputes � = 1; 46557 and j�j = 0; 826031, so that 75 � C �

80. One 
he
ks by 
omputation that �

P

100

(e

1

+E

1

) 
overs the ball of size 80

in R

3

, whi
h 
on
ludes the proof of Theorems 2.7 and 2.10.

6.3 Generalization of this proof to other two-dimensional morphisms

Lemma 6.3 holds for general Pisot unimodular one-dimensional iterated mor-

phisms. Hen
e, lo
al rules for a two-dimensional morphism arising from a Pisot

unimodular one-dimensional iterated morphism will allow one to generate the

full plane Z

2

as soon as the three following properties are satis�ed:

� The images of initial patterns of lo
al rules are themselves 
overed.

� The image of the initial letter of the initial rule is 
overed.

� There exists an iteration of (�; I;S) on the initial letter whi
h 
overs the

ball of radius C given in Lemma 6.3.

Some examples satisfy these 
onditions while other do not. It remains to un-

derstand whi
h 
lasses of examples do satisfy these 
onditions.

7 Additional remarks

This study is only a starting point, and many open problems remain. In par-

ti
ular, one would like to know the largest set on whi
h the two-dimensional

morphism with lo
al rules (�

0

; I;S) is de�ned. One would also like to have a

general (algebrai
) framework that allows to 
ompute, for a given set of lo
al

rules, the set of patterns and of sequen
es whi
h is 
onsistent for these rules.

Let us fo
us on the fa
t that the lo
al rules 
orrespond to a set of nonpointed

patterns. Nevertheless, if the image of a given letter is �xed, then one 
an

put the images of the adja
ent letters, thus produ
ing a pointed pattern. We
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have no general statement yet on the existen
e of the lo
al rules. But we


onje
ture that there always exists a set of �nite lo
al rules for any Pisot

unimodular iterated morphism. These rules need not be ne
essarily 
onne
ted

(as the images of the letters under the two-dimensional morphism). Observe

furthermore that the lo
al rules or the global pla
ing rules depend on the

one-dimensional morphism (�

0

; I;S) and not only on the matrix M.

Another question is the \seed" problem: what is the minimal pattern that gen-

erates the 
omplete sequen
e? Examples show that this question is not trivial.

As a related example, observe that if one wants to generate the above itera-

tions of (�

0

; I;S) starting from ((0; 0); 1) (and not ((1; 0); 1) as previously),

then one needs further lo
al rules for the beginning. One then 
an generate

any sequen
e with the same set of fa
tors as U using the extended �nite set

of lo
al rules.

If we understand reasonably well the theory of one given two-dimensional

morphism, it would remain to study the theory of an in�nite sequen
e of

morphisms following the S-adi
 approa
h (see for instan
e [Fer96℄ and [PF02℄

Chap. 12). In the setting of the paper, this amounts to go from the study of the


ontra
ting plane of a matrix (given by an equation with algebrai
 
oeÆ
ients)

to a general plane, using some kind of multidimensional 
ontinued fra
tion

algorithm. This study has already been started in [ABI02℄.

A Te
hni
al proofs

Proof of Proposition 3.3 Let us noti
e �rst that if four integral verti
es

that make a unit square all belong to the dis
rete plane P, then the asso
iated

fa
e is all in
luded in P. Hen
e, the dis
rete plane P 
ontains no square hole.

Indeed, when four integral verti
es make a square, one of their 
oordinates is


onstant. Suppose that it is the third 
oordinate. Hen
e the four verti
es are of

the form (p;q; r), (p+ 1;q; r), (p;q+ 1; r), (p+ 1;q+ 1; r). Sin
e (p;q; r) 2

P, we have ap+bq+
r+h > 0, so that the 
ube (p;q; r)+C is not in
luded in S.

But (p+ 1;q+ 1; r) 2 P, whi
h means a(p+1)+b(q+1)+
r+h � a+b+
, that

is, ap+ bq+ 
(r�1)+h � 0. Hen
e the 
ube (p;q; r� 1)+C is in
luded in S.

Consequently, the unit square with verti
es (p;q; r), (p+ 1;q; r), (p;q+ 1; r),

(p+ 1;q+ 1; r) is at the interse
tion of a 
ube in S and another 
ube outside

S. This means that the full square is at the boundary of S.

If ap+bq+
r+h 2℄0; a℄, then (p;q; r), as well as (p;q; r+ 1), (p;q+ 1; r) and

(p;q+ 1; r+ 1) satisfy the relation 0 < ax+by+
z+h � a+b+
, so that they

are verti
es in P and they are the 
orners of the fa
e (p;q; r) + E

1

, whose

distinguished vertex is (p;q; r). Hen
e, this fa
e is in
luded in the dis
rete
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plane.

If ap+bq+
r+h 2℄a; a+b℄, then (p;q; r) as well as (p� 1;q; r), (p;q; r+ 1)

and (p� 1;q; r+ 1) are verti
es of P and they are the 
orners of the fa
e

(p;q; r) + E

2

.

If ap + bq + 
r + h 2℄a + b; a + b + 
℄ then (p;q; r) as well as (p� 1;q; r),

(p;q� 1; r) and (p� 1;q� 1; r) are verti
es of theP and they are the 
orners

of the fa
e (p;q; r) + E

3

.

Hen
e (p;q; r) is the distinguished vertex of at least one fa
e in the dis
rete

plane P.

Conversely, if (p;q; r) belongs to two fa
es in P, then these fa
es must have

di�erent types sin
e two fa
es with the same type are disjoint by 
onstru
tion.

However, (p;q; r)+E

1

and (p;q; r)+E

2


annot be in
luded simultaneously in

P: if so, their 
losure is also in
luded in P, so that the points (p;q+ 1; r+ 1)

and (p� 1;q; r) belong simultaneously to P , while they 
annot both satisfy

the relationship 0 < ax + by + 
z + h � a + b + 
. Similarly, (p;q; r) +

E

1

and (p;q; r) + E

3


annot both be in
luded in P (both (p;q; r+ 1) and

(p� 1;q� 1; r) 
annot appear to be an integral vertex). The same holds for

(p;q; r)+E

2

and (p;q; r)+E

3

, where (p;q; r+ 1) and (p� 1;q� 1; r) would

both belong to V: An illustration is given in Fig. A.1. This proves the uni
ity.

Fig. A.1. Con�gurations that are forbidden in the dis
rete plane P .

Proof of Theorem 3.4 The fa
es partition the points in P that are neither

verti
es nor on edges. We proved above that verti
es are in
luded into exa
tly

one fa
e. Hen
e the fa
es of type 1,2 and 3 provide a partition of P as soon

as every edge is also in
luded into exa
tly one fa
e. It thus remains to prove

that every edge in the dis
rete plane P is in
luded in one and only one fa
e

of P and does not interse
t any other fa
e.

Let us oberve that if an edge is in
luded in P, then so does its 
losure sin
e

P is 
losed. Let [(p;q; r); (p;q; r+ 1)℄ � P be a verti
al edge in
luded in the

dis
rete plane (the proofs for the edges parallel to the other dire
tions are

similar).

From the proof of Proposition 3.2, the following holds:
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� We know that (p;q; r) belongs to P, that is, ap + bq + 
r + h > 0. This

implies (p;q; r) + C 6� S.

� We also know that (p;q; r+ 1) 2 P. This implies that the following in
lu-

sion holds (p� 1;q� 1; r) + C � S.

There are two other 
ubes in S whi
h might 
ontain this edge, that is, (p� 1;

q; r) + C and (p;q� 1; r) + C:

(1) Assume (p� 1;q; r) 2 P. Then (p� 1;q; r)+C 6� S, so that (p;q; r)+E

2

is in
luded in the boundary of S. This implies that this fa
e 
ontains the

edge [(p;q; r); (p;q; r+ 1)℄.

(2) Assume (p� 1;q; r) 62 P. Then (p� 1;q; r) + C � S so that the fa
e

(p;q; r) +E

1

is in
luded in the boundary of the dis
rete plane, and 
on-

tains the edge [(p;q; r); (p;q; r+ 1)℄.

(3) Assume (p;q� 1; r) 2 P, then (p;q� 1; r) + C 6� S, and the fa
e

(p;q� 1; r) +E

1

is in
luded in the dis
rete plane and 
ontains the edge

[(p;q; r); (p;q; r+ 1)℄.

(4) Assume (p;q� 1; r) 62 P, then (p;q� 1; r) + C � S, and the fa
e

(p+ 1;q; r) +E

2

is in
luded in the dis
rete plane and 
ontains the edge

[(p;q; r); (p;q; r+ 1)℄.

In the last two 
ases, the edge [(p;q; r); (p;q; r+ 1)[ is in
luded in the 
losure

of a fa
e but not in this fa
e itself. Hen
e there exists exa
tly one fa
e in
luded

in P whi
h 
ontains [(p;q; r); (p;q; r+ 1)[ whi
h 
orresponds to one of the

�rst two 
ases.

Proof of Theorem 5.2 Two points need to be 
he
ked to state the theorem.

(1) The morphism �

P

is well de�ned from P to P

�

: the image of a fa
e in

the dis
rete plane is the union of distin
t fa
es in the dis
rete plane.

First, let us 
he
k that the union in Formula (5.1) is disjoint. Suppose

that two fa
es in this formula are equal. They must have the same type k.

Hen
e �(k) shall be de
omposed under the forms �(k) = P

1

jS

1

= P

2

jS

2

with l(P

1

) = l(P

2

). But, with no loss of generality one 
an suppose jP

1

j <

jP

2

j, so that P

1

is a stri
t pre�x of P

2

, leading to a 
ontradi
tion.

Let x + E

i

� P. Let us prove that all the pie
es in �

P

(x + E

i

) are

fa
es in P. Let �(k) = PiS, y = x� l(P )� (e

1

+ � � �+ e

i

) and M

�1

y +

(e

1

+ � � � + e

k

) + E

k

be a fa
e in �

P

(x + E

i

). >From the geometri
al

interpretation of Prop. 3.3, this fa
e is in
luded in the dis
rete plane if

and only if M

�1

y + e

k

is above the plane P and M

�1

y is below.

Sin
e x+E

i

� P, we know that x� (e

1

+ � � �+e

i

) = y+ l(P ) is below

the plane. Hen
e y is below P and so is M

�1

y.

We also know that e

k

=M

�1

Me

k

=M

�1

l�(k) =M

�1

[l(P )+e

i

+l(S)℄,

so that M

�1

y + e

k

= M

�1

(x � (e

1

+ � � � + e

i�1

)). By de�nition of P,

x� (e

1

+ � � �+ e

i�1

) is above the plane P, and so does M

�1

y + e

k

.
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(2) The morphism �

P


an be iterated on P

�

: two distin
t fa
es on the dis
rete

plane have images whi
h do not interse
t. Let y+E

k

be in the interse
tion

of �

P

(x

1

+ E

i

1

) and �

P

(x

2

+ E

i

2

). Then there exists �(k) = P

1

i

1

S

1

=

P

2

i

2

S

2

su
h that x

1

� l(P

1

)�(e

1

+ � � �+e

i

1

) = x

2

� l(P

2

)�(e

1

+ � � �+e

i

2

).

If jP

1

j = jP

2

j then i

1

= i

2

, whi
h implies x

1

= x

2

so that x

1

+ E

i

1

and

x

2

+ E

i

2

are the same. If jP

1

j 6= jP

2

j we 
an suppose that jP

1

j < jP

2

j.

Then l(P

2

) = l(P

1

) + e

i

1

+ z with z a nonnegative ve
tor. Hen
e the

ve
tor x

2

� (e

1

+ � � �+ e

i

2

) = z+ x

1

� (e

1

+ � � �+ e

i

1

�1

) is the sum of the

nonnegative ve
tor z with a ve
tor that is known to be above the plane

P. But x

2

� (e

1

+ � � � + e

i

2

) is also below the plane sin
e x

2

+ E

i

2

is in

the dis
rete plane, that is, a 
ontradi
tion.

Proof of Lemma 6.3 Let (x+E

i

) be the dire
t an
estor of y+E

j

, that is,

y + E

j

o

urs in �

P

(x+ E

i

).

Let �

s

denote the proje
tion onto the 
ontra
ting plane P of M along its

expanding dire
tion (�

2

; 1; �), and let �

u

denote the proje
tion onto the ex-

panding plane P along the 
ontra
ting dire
tion. Let (p;q; r) = x denote the


oordinates of x. One has:

�

u

(x) =

�

2

p+ �q + r

�

4

+ 2�

(�

2

; 1; �):

Sin
e (p;q; r) belongs to the dis
rete plane, then �

2

p+�q+r � �

2

+�+1 = �

4

,

jj�

u

(x)jj � K

�

=

�

4

�

4

+ 2�

p

�

4

+ 1 + �

2

;

and

jjxjj � jj�

s

(x)jj+K

�

:

Sin
e they have the same eigenspa
es, the maps �

u

and M

�1


ommute, and

�

u

(M

�1

x) =M

�1

�

u

(x) = �

�1

�

u

(x): We thus get

jj�

s

(M

�1

x)jj � jjM

�1

xjj+ jj�

u

(M

�1

x)jj � jjM

�1

xjj+ �

�1

K

�

:

Let � denote one the two 
onjugate 
omplex eigenvaluues ofM (j�j < 1); then

jj�

s

(x)jj = jjM�

s

(M

�1

x)jj � j�j jj�

s

(M

�1

x)jj � j�j(jjM

�1

xjj+ �

�1

K

�

):

From Formula (5.1), the points y and M

�1

x di�er at most by the sum of the

three basi
 ve
tors, hen
e jjM

�1

xjj � jjyjj+ 3, so that

jjxjj � jj�

s

(x) +K

�

� j�j(jjM

�1

xjj+ �

�1

K

�

) +K

�

� j�j(jjyjj+ 3 + �

�1

K

�

) +K

�

� j�j(jjyjj+K

0

�

);
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with K

0

�

= (3 +K

�

)=j�j+ �

�1

K

�

:

Now we have to noti
e that the real fun
tion a 7! j�j(a + K

0

�

) is an aÆne

fun
tion that is above any aÆne fun
tion with a greater slope as soon as a is

large enough. For instan
e, let j�j < � =

q

j�j < 1. Then, if a � K

0

�

�=(1��),

one has j�j(a+K

0

�

) � �a. This implies:

if jjyjj � C = K

0

�

�

1� �

, then jjxjj � � jjyjj:

A
knowledgements

We would like to thank D. Jamet for a 
areful reading of this paper.

Referen
es

[ABI02℄ P. Arnoux, V. Berth�e, and S. Ito. Dis
rete planes,Z

2

-a
tions, Ja
obi-Perron

algorithm and substitutions. Ann. Inst. Fourier, 52(2):305{349, 2002.

[AI01℄ P. Arnoux and S. Ito. Pisot substitutions and Rauzy fra
tals. Bull.

Belg. Math. So
. Simon Stevin, 8(2):181{207, 2001. Journ�ees Montoises

d'Informatique Th�eorique (Marne-la-Vall�ee, 2000).

[AIS01℄ P. Arnoux, S. Ito, and Y. Sano. Higher dimensional extensions of

substitutions and their dual maps. J. Anal. Math., 83:183{206, 2001.

[AS03℄ J.-P. Allou
he and J. O. Shallit. Automati
 sequen
es: Theory and

Appli
ations. Cambridge University Press, 2003. To appear.

[BM00℄ Mi
hael Baake and Robert V. Moody, editors. Dire
tions in mathemati
al

quasi
rystals, volume 13 of CRM Monograph Series. Ameri
an

Mathemati
al So
iety, Providen
e, RI, 2000.

[BV00a℄ V. Berth�e and L. Vuillon. Suites doubles de basse 
omplexit�e. J. Th�eor.

Nombres Bordeaux, 12(1):179{208, 2000.

[BV00b℄ V. Berth�e and L. Vuillon. Tilings and rotations on the torus: a two-

dimensional generalization of Sturmian sequen
es. Dis
rete Math., 223(1-

3):27{53, 2000.

[CS01℄ V. Canterini and A. Siegel. Geometri
 representation of substitutions of

Pisot type. Trans. Amer. Math. So
., 353(12):5121{5144, 2001.

35



[Fer96℄ S. Feren
zi. Rank and symboli
 
omplexity. Ergodi
 Theory Dynam.

Systems, 16:663{682, 1996.

[GA97℄ D. Giammaressi and Restivo A. Two-dimensional languages. Springer-

Verlag, Berlin, 1997.

[Han00℄ C. W. Hansen. Dynami
s of multi-dimensional substitutions. PhD thesis,

George Washington University, 2000.

[IO93℄ S. Ito and M. Ohtsuki. Modi�ed Ja
obi-Perron algorithm and generating

Markov partitions for spe
ial hyperboli
 toral automorphisms. Tokyo J.

Math., 16(2):441{472, 1993.

[IO94℄ S. Ito and M. Ohtsuki. Parallelogram tilings and Ja
obi-Perron algorithm.

Tokyo J. Math., 17(1):33{58, 1994.

[Lot02℄ M. Lothaire. Algebrai
 
ombinatori
s on words. Cambridge University

Press, 2002.

[LP02℄ J. C. Lagarias and P. A. B. Pleasants. Lo
al 
omplexity of Delone sets

and 
rystallinity. Canad. Math. Bull., 45(4):634{652, 2002. Dedi
ated to

Robert V. Moody.

[PF02℄ N. Pytheas-Fogg. Substitutions in Dynami
s, Arithmeti
s and

Combinatori
s. Le
tures Notes in Mathemati
s 1794, Springer-Verlag,

2002. Edited by V. Berth�e, S. Feren
zi, C. Mauduit and A. Siegel.

[Que87℄ M. Que��ele
. Substitution dynami
al systems|spe
tral analysis. Le
ture

Notes in Mathemati
s, 1294. Springer-Verlag, Berlin, 1987.

[Rau82℄ G. Rauzy. Nombres alg�ebriques et substitutions. Bull. So
. Math. Fran
e,

110(2):147{178, 1982.

[Rob96℄ E. A. Robinson, Jr. The dynami
al theory of tilings and

quasi
rystallography. In Ergodi
 theory of Z

d

a
tions (Warwi
k, 1993{

1994), volume 228 of London Math. So
. Le
ture Note Ser., pages 451{473.

Cambridge Univ. Press, Cambridge, 1996.

[Sen95℄ M. Sene
hal. Quasi
rystals and geometry. Cambridge University Press,

Cambridge, 1995.

[Vui98℄ L. Vuillon. Combinatoire des motifs d'une suite sturmienne

bidimensionnelle. Theoret. Comput. S
i., 209:261{285, 1998.

36


