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Abstract. Odometers or “adding machines” are usually introduced in the
context of positional numeration systems built on a strictly increasing sequence
of integers. We generalize this notion to systems defined on an arbitrary infinite
regular language. In this latter situation, if (A, <) is a totally ordered alphabet,
then enumerating the words of a regular language L over A with respect to
the induced genealogical ordering gives a one-to-one correspondence between
N and L. In this general setting, the odometer is not defined on a set of
sequences of digits but on a set of pairs of sequences where the first (resp. the
second) component of the pair is an infinite word over A (resp. an infinite
sequence of states of the minimal automaton of L). We study some properties
of the odometer like continuity, injectivity, surjectivity, minimality,. . .We then
study some particular cases: we show the equivalence of this new function with
the classical odometer built upon a sequence of integers whenever the set of
greedy representations of all the integers is a regular language; we also consider
substitution numeration systems as well as the connection with β-numerations.

1. Introduction

To any infinite regular language L over a totally ordered alphabet (A, <), an
abstract numeration system S = (L, A, <) is associated in the following way [24].
Enumerating the words of L by increasing genealogical order gives a one-to-one
correspondence between N and L, the non-negative integer n being represented by
the (n+1)-th word of the ordered language L. In particular, these systems generalize
classical positional systems like the k-ary systems, the Fibonacci system or more
generally the numeration systems built on a sequence of integers satisfying a linear
recurrence relation whose characteristic polynomial is the minimal polynomial of a
Pisot number [8].

In this framework of abstract numeration systems, the properties of the so-
called S-recognizable sets of integers have been extensively studied (see for instance
[24, 34, 35]). Moreover, these abstract systems have been extended to allow not only
the representation of integers but also of real numbers [25]. In this latter situation,
a real number is represented by an infinite word which is the limit of a converging
sequence of words in L. Clearly, these systems lead to the generalization of various
concepts related to the representation of integers like the automatic sequences or
the summatory functions of additive functions [22, 36].

In this paper, we want to define and study the properties of odometers (also
called adding machines) in the framework of abstract numeration systems built on
an infinite regular language. In [21] odometers for positional numeration systems
defined on a strictly increasing sequence (Un)n∈N of integers such that U0 = 1
are investigated. In this latter situation, the odometer function — conventionally
defined on a set a right-infinite words — can be defined on the set R of left-infinite
words · · ·α2α1α0 satisfying a greedy property [16], i.e., for all ℓ ≥ 0,

(1)

ℓ∑

i=0

αiUi < Uℓ+1.
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(We will also consider the greedy property (1) for finite words in the following.) We
have chosen to consider left-infinite words (as in [17, 18], and contrarily for instance
to the choice made in [21]) to avoid technical difficulties arising in the general
situation of abstract numeration systems: working with right-infinite words would
have required for instance to consider the mirror image of the regular language L
whose minimal automaton is not necessarily the automaton obtained by reversing
the edges in the minimal automaton of L. Furthermore, this choice of notation is
consistent with the one commonly used for finite words. Indeed the most significant
digits are usually written first: the prefix αk · · ·α0 of a word in R has value αkUk +
· · ·+ α0U0. The odometer is thus defined as the infinite extension of the successor
function acting on the finite words of the form αk · · ·α0.

As an example, let us consider a finite word: the usual decimal representation
of one hundred seventy-two is the word “172” and adding one leads to the word
“173”. Moreover, the language of the finite words representing all the integers can
be embedded into R by concatenating ω0 to the left of a greedy representation
starting with the least significant digit as the rightmost element. So, one hundred
seventy-two gives the element ω(0)172 ∈ R. Adding one to an infinite word in R
can produce a carry propagating to the left. As an example, the application of the
odometer to ω(0)2999 gives ω(0)3000. In the case of the Fibonacci system where
U0 = 1, U1 = 2 and Un+2 = Un+1 + Un applying the odometer to ω(0)101010 gives
ω(0)1000000 (indeed, to be in R the greedy condition (1), i.e., the pattern“11”does
not occur, must be satisfied).

One of the pioneering works concerning odometers is due to Vershik [46, 47] who
introduced the seminal notion of adic transformation based on Bratteli diagrams
[6], one motivation being the question of the approximation of ergodic systems.
An adic transformation acts as a successor map on a Markov compactum (which
might be considered as an analog of a Markov chain) defined as a lexicographically
ordered set of infinite paths in an infinite labeled graph whose transitions are pro-
vided by an infinite sequence of transition matrices. In the stationary case (the
transition matrices coincide, the infinite graph is a tree whose levels all have the
same structure), (generalized) adic transformations correspond to substitutions and
stationary odometers (see [26, 48] and [13]); for a survey of the relations between
stationary adic transformations and substitutions, see [31], Chap. 7; see also [41].
Our approach is naturally inspired by the adic formalism but our framework is more
general since we cannot represent our language L just by considering the transitions
in its minimal automaton: in particular, final (acceptance) states play a crucial role
in our study (see for instance Example 22), and primitivity of the adjacency matrix
of the minimal automaton is no more a sufficient condition for unique ergodicity,
contrary to the adic case.

There is an important literature devoted to the study of odometers. Let us briefly
quote [4] which continues the study of [21] from a combinatorial and topological
point of view, and [3] for a metrical approach. Odometers can also be defined
for two-sided dynamical systems as investigated in [17, 39]; we refer to [42] for
the golden ratio case. See also [7] for an ergodic application of this notion in the
framework of unimodal maps and wild attractors. Lastly, let us mention [18] which
studies the sequential properties of the successor function for positional numeration
systems.

One key-point in our study is the fact that we need to take into account not only
infinite words but also the corresponding sequence of states: hence, the odometer
is not only defined on a set of sequences of digits but on a set of pairs of sequences
where the first (resp. the second) component of the pair is an infinite word over A
(resp. an infinite sequence of states of the minimal automaton of L). We illustrate



ODOMETERS ON REGULAR LANGUAGES 3

this situation in Example 9 continued in Example 23, where a sequence of digits is
associated to two sequences of states, each of the two corresponding pairs having
a different image under the action of the odometer. Nevertheless, in the particular
case of positional numeration, then Proposition 34 implies that we can forget the
sequence of states, the reason being that we have in this case an underlying greedy
algorithm. We stress the fact that in the general case of an abstract numeration
system we cannot determine the successor without the information provided by the
sequence of states; this is due in particular to the role played by the final states in
the minimal automaton of the language.

We take as a definition for the set K on which the odometer τ is defined the set
of left-infinite sequences (x, y) over the alphabet A×Q, where A is the alphabet on
which the language is defined, and Q is the set of states of the minimal automaton
recognizing L, with natural admissibility conditions provided by the automaton:
the sequence x is a limit of suffixes of words in the language L, whereas y denotes
the corresponding path in the automaton. For odometers defined upon classical
numeration systems as studied in [21], the sequences of digits for which the carry
can propagate to infinity when adding one play a special role (as illustrated and
studied in details in [4, 3]). In our framework, the corresponding role will be played
by the maximal words of fixed length and the set of their limit points in K, that we
denote Max(K). We prove in particular that any element of Max(K) is ultimately
periodic and that Max(K) is finite (Theorem 21). The set Max(K) plays a special
role concerning the continuity of the odometer τ : indeed the continuity cannot be
ensured on Max(K) whatever is the value taken by τ for the points in this set.
Moreover, we prove that τ is surjective onto K\Min(K), injective on K\Max(K),
one-to-one from K \Max(K) onto K \Min(K), and continuous on K \Max(K);
furthermore, if the odometer is continuous then the dynamical system (K, τ) is
minimal. Let us observe that the set of discontinuity points is finite since it is
included in Max(K) which is finite.

This paper is organized as follows. After recalling the basic notions required in
this paper, we define in Section 2 the set K on which the odometer acts, and state
a few preliminary properties. Special focus is given on its extremal elements in
Section 3, which allows us to define the odometer in Section 4. Its first properties
(continuity, injectivity, surjectivity and minimality) are then stated in Section 5. We
illustrate this study by making explicit the connection with a few well-known situ-
ations where the odometer is perfectly described: we consider the case of positional
number systems in Section 6, the case of substitution numeration systems (with
special focus on Pisot substitutions) in Section 7, and the case of β-numeration
in Section 8. We consider the possibility of getting a real representation of the
odometer in Section 9 and end this paper by considering some special cases in
Section 10.

2. Preliminaries

Let A = {a0 < a1 < · · · < ak} be a finite and totally ordered alphabet. In this
paper L ⊂ A∗ will always denote a regular language such that

(2) the minimal automaton of L has a loop of label a0 in the initial state

In particular, this implies that a∗
0L ⊆ L or otherwise stated, that w ∈ L ⇔ ∀n ≥

0, an
0w ∈ L. In some sense, property (2) can be related to the property of numer-

ation systems built on a sequence of integers (Un)n∈N such that if w = wk · · ·w0 is
the greedy representation of an integer wk Uk + · · · + w0 U0 then 0nw, n ∈ N, still
satisfies the greedy condition (1) and represents the same integer. Here, we will
be able to write an arbitrary number of a0’s on the left of any word in L and still
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obtain words belonging to L. Property (2) will therefore ensure the embedding of
the finite words of L representing the non-negative integers into some set of infinite
sequences that will be precised later (Definition 1 below).

The minimal automaton of L is denotedML = (Q, q0, A, δ, F ) where Q is the set
of states, q0 is the initial state, F ⊆ Q is the set of final states and δ : Q× A→ Q
is the transition function. We assume that δ is total or equivalently that ML is
complete, i.e., δ is defined for all pairs (q, a) ∈ Q × A (notice that even with this
assumption, ML might contain a sink, i.e., a non-final state s such that for any
a ∈ A, δ(s, a) = s). As usual, δ can be extended to Q×A∗. Using these notations,
property (2) is expressed asML has a loop in q0 of label a0. For the properties of
the minimal automaton, see for instance [14, 38].

For any state q ∈ Q, we denote by Lq the regular language accepted by ML

from state q,

Lq = {w ∈ A∗ | δ(q, w) ∈ F},

and by uq(n) the number of words of length n in Lq. In particular, L = Lq0 .
Since A is totally ordered, we can order the words of A∗ using the genealogical

ordering. Let u, v ∈ A∗. We say that u < v if |u| < |v| or if |u| = |v| and there exist
p, u′, v′ ∈ A∗, a, b ∈ A, a < b such that u = pau′ and v = pbv′. If M is a language
over A, we define Max(M) as the set of the greatest words of each length in M ,
i.e.,

Max(M) = {u ∈M | ∀v ∈M, |u| = |v| ⇒ v ≤ u}.

Observe that for all n ≥ 0, #(Max(M) ∩ An) ∈ {0, 1}. In the same way, we can
also define the set Min(M) containing the smallest word of each length in M . It is
well-known that if M is regular then Max(M) and Min(M) are also regular [40].

If w = w0 · · ·wℓ is a word over A then the reversal (or mirror) of w is wℓ · · ·w0

and is denoted w̃. If M is a language, then M̃ is the language {w̃ | w ∈ M}. If
x = · · ·x2x1x0 is a left-infinite word then x̃ is the right-infinite word x0x1x2 · · · .

Let x = · · ·x2x1x0 be a left-infinite word. We say that xk · · ·x0 is a prefix of x
of length k + 1. For a finite word y = y1 · · · yp · · · yp+ℓ, we say that yp · · · yp+ℓ is a
suffix of y of length ℓ + 1.

A left-infinite word (xi)i∈N belongs to L̃ if there exists a sequence (wn)n∈N of
words in L such that for all ℓ > 0 there exist Nℓ > 0 such that for all n ≥ Nℓ, a suffix
of wn of length at least ℓ is a prefix of x. Otherwise stated, if we use the topology
induced by the infinite product topology on AN, a left-infinite word x = (xi)i∈N

belongs to L̃ if and only if if and only if the right-infinite word x̃ = x0x1x2 · · · is

the limit of a converging sequence of words in L̃ (or equivalently, if and only if there
exists a sequence of words in L whose suffixes are converging to x).

Abstract numeration systems being more general than positional numeration
systems, we do not have a property equivalent to the greedy condition (1). In the
framework of positional numeration systems, this greedy condition is enough to be
able to define the odometer function on the set of left-infinite words R satisfying
(1). This is no more true for abstract numeration systems and therefore we will
not only consider words but also the extra information given by the sequence of
reached states in ML. This is the reason of the introduction of the set K defined
below.

Definition 1. We define the set K ⊆ ω(A×Q) by (x, y) = (· · ·x2x1x0, · · · y2y1y0)
belongs to K if and only if the following conditions hold

(1) x belongs to L̃,
(2) y0 belongs to F ,
(3) for all i ≥ 0, δ(yi+1, xi) = yi.
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As we shall see in Example 9, a left-infinite word x in L̃ can give rise to more
than one sequence of states. So this extra information cannot be retrieved from x.

Remark 2. If (x, y) = (· · ·x2x1x0, · · · y2y1y0) belongs to K then for all k ∈ N,
xk · · ·x0 belongs to Lyk+1

.

Remark 3. Let k ≥ 0. If (x, y) = (· · ·x2x1x0, · · · y2y1y0) belongs to K then
yk · · · y0 is completely determined by xk · · ·x0 and yk+1. This is due to the third
condition in the definition of K and becauseML is deterministic.

Definition 4. Let j ≥ 0. A finite word (x, y) = (xkxk−1 · · ·x0, ykyk−1 · · · y0) ∈
(A × Q)k+1, k > j, (resp. an infinite word (x, y) = (· · ·x2x1x0, · · · y2y1y0) ∈
ω(A × Q)), is said to have the property maxj and we write (x, y) ∈ maxj if
xj · · ·x0 belongs to Max(Lyj+1). In the same way, (x, y) has the property minj if
xj · · ·x0 ∈Min(Lyj+1).

Lemma 5. Let (x, y) = (· · ·x2x1x0, · · · y2y1y0) ∈ K and j ≥ 0. If (x, y) has
property maxj (resp. minj) then for all k < j, (x, y) has also the property maxk

(resp. mink).

Proof. Assume that (x, y) ∈ maxj but (x, y) 6∈ maxk, k < j. Therefore there
exists x′

k · · ·x
′
0 accepted from yk+1 and genealogically greater than xk · · ·x0. So

xj · · ·xk+1x
′
k · · ·x

′
0 belongs to Lyj+1 and is greater than xj · · ·x0. This is a contra-

diction. �

Corollary 6. Let (x, y) = (· · ·x2x1x0, · · · y2y1y0) ∈ K and j ≥ 0. If (x, y) 6∈maxj

(resp. (x, y) 6∈minj) then for all i ≥ j, (x, y) 6∈maxi (resp. (x, y) 6∈mini).

Notation 7. Let q be a given state in Q. For any word w = wℓ · · ·w1 in L, we
denote by pq(w) the word over A×Q defined by

pq(w) := (wℓ, δ(q, wℓ))(wℓ−1, (δ(q, wℓwℓ−1)) · · · (w1, δ(q, wℓ · · ·w1)) ∈ (A×Q)ℓ

which represents simultaneously the label and the path given by the states reached
consecutively in ML by reading w.

Let us now present some other properties of this set K.

Proposition 8. For each x ∈ L̃, there exists y ∈ ωQ such that (x, y) belongs to K.

Proof. Since x belongs to L̃, there exists a sequence (xn)n∈N of words in L whose
suffixes are converging to x. For an infinite number of n ∈ N, the last letter
of pq0(xn) is a same element in A × F . We take the corresponding subsequence
(xk1(n))n∈N. For an infinite number of n, the words pq0(xk1(n)) have the same
suffix of length two. So we consider the corresponding subsequence (xk2(n))n∈N. If
we iterate this process, the suffixes of the words in the sequence (xkn(1))n∈N are
converging to x and the sequence (pq0(xkn(1)))n∈N is converging to a word (x, y) in
ω(A×Q) such that (x, y) belongs to K. �

Example 9. In this example, we consider a regular language L ⊂ {a < b < c}∗

satisfying the hypothesis a∗L ⊂ L and given by its minimal automaton depicted in
Figure 1. We just present some elements belonging to K:

(ω(abb), ω(012)), (ωa, ω0), (ω(a)b, ω(1)2),

(ω(cbb)ab, ω(120201012)01) and (ω(cbb)ab, ω(201012120)01).

Notice that the last two elements have the same first component but have differ-
ent sequences of states. This situation can happen in very simple situations like
(ωb, ω(012)) and (ωb, ω(201)). We shall see that the odometer function will act
differently on these two elements of K even if they have the same first component.
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Figure 1. The minimal automaton of a language L.

As shown in the previous example, to one infinite word x ∈ L̃, it may correspond
more than one sequence of states. If two such sequences give rise to elements in K
then they differ almost everywhere.

Lemma 10. Let (x, y) and (x, y′) be two elements of K such that y 6= y′. Then
there exists an index i such that yi 6= y′

i and for all n ≥ 0, yi+n 6= y′
i+n.

Proof. This is a direct consequence of Remark 3. �

The next proposition shows that to any finite word in L corresponds at least one
element in K. The same kind of properties holds in the case of numeration systems
built on a sequence of integers. If w is the greedy representation of an integer (most
significant digit on the left), then ω0w belongs to the set R of left-infinite words
satisfying the greedy property (1).

Proposition 11. If w = wk · · ·w0 belongs to L then there exists yk · · · y0 ∈ Qk+1

such that (ω(a0)wk · · ·w0,
ω(q0) yk · · · y0) belongs to K.

Proof. By our assumption (2) on L, if w belongs to L then an
0w also belongs to

L, n ≥ 0. According to Notation 7, if (wk, yk) · · · (w0, y0) = pq0(wk · · ·w0) then
(a0, q0)

n (yk, wk) · · · (y1, w1) = pq0(a
n
0 wk · · ·w1). The result follows easily. �

3. Properties of Max(K) and Min(K)

For odometers defined upon classical positional systems related to a sequence
(Un)n∈N of integers, some sequences of digits play a special role (see in particular
[4, 3]). Namely, they are the sequences for which the carry when adding one can
propagate to infinity. A sequence · · ·α2α1α0 is of this kind if

ℓj∑

i=0

αiUi = Uℓj+1 − 1

for a strictly increasing infinite sequence (ℓj)j∈N of indices. In our framework, the
corresponding elements in K belong to the set Max(K) that we define below. The
elements which have the dual property belong to Min(K). In this section, we
concentrate on the structural properties of the sets Max(K) and Min(K).

Definition 12. Let us define two particular subsets of K,

Max(K) = {(x, y) ∈ K | ∀i ≥ 0, (x, y) ∈maxi}

and
Min(K) = {(x, y) ∈ K | ∀i ≥ 0, (x, y) ∈mini}.

Let us observe that following Lemma 5, then it is sufficient in the definition of
Max(K) (resp. Min(K))) that there exist infinitely many i such that (x, y) ∈maxi

(resp. (x, y) ∈mini). The following lemma is obvious.

Lemma 13. Let L be a regular language satisfying our assumption (2).
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• A word w belongs to Min(L) if and only if for all n ≥ 0, an
0w belongs to

Min(L) (assuming that a0 is the smallest letter in the ordered alphabet A).
• Let q be a state ofML. If vw belongs to Max(Lq) then the word w belongs

to Max(Lδ(q,v)).

Definition 14. Let w be the smallest word in Min(L), i.e., w is the first word in
the ordered language L. If w = w1 · · ·wℓ is not the empty word ε (i.e., if q0 6∈ F )
then we have a path in ML of the form

q0
w1−→ q1

w2−→ · · ·
wℓ−→ qℓ ∈ F.

We set 0 = (ω(a0)w, ω(q0) q1 · · · qℓ). Otherwise w = ε and we set 0 = (ω(a0),
ω(q0)).

Proposition 15. The sets Max(K) and Min(K) are non-empty.

Proof. As a consequence of Lemma 5 and Lemma 13, the element 0 given in Defi-
nition 14 belongs to Min(K).

We use the same idea as in the proof of Proposition 8. Let wi be the i-th word
of Max(L) (clearly, |wi| < |wi+1| for all i ≥ 1). An infinite number of wi’s have the
same last letter ak1 and lead inML from q0 to a same final state qk1 . We therefore
consider the corresponding subsequence (wk1(n))n∈N built upon those wi’s. We
iterate this process: an infinite number of words among the wk1(n)’s have the same
suffix ak2ak1 and finally lead inML to the states qk2 followed by qk1 . Therefore we
build a sequence converging to

(· · · ak2ak1 , · · · qk2qk1).

Thanks to Lemma 13, this element belongs to Max(K). �

Example 16. We consider the language and the automaton given in Example 9.
It is easy to check that (ω(c)b, ω(021)2), (ωc, ω(021)) and (ωc, ω(102)) belong to
Max(K). We also have 0 = (ω(a)b, ω(0)1) and (ωa, ω1) as elements of Min(K). To
show that these elements are the only ones, we will need some more results about
the structure of Max(Lq) and Min(Lq).

3.1. Structure of Max(Lq). In some particular cases, the structure of Max(Lq)
is easy to obtain. Recall that a state s is a sink if for any a ∈ A, δ(s, a) = s and s
is not a final state.

Notation 17. Let q be a state inML. If there exists a ∈ A such that δ(q, a) is not
the sink then we denote by m(q) the largest letter having this property, otherwise
we set m(q) = ε.

Let us introduce a small algorithm to detect what we will call the maximal cycles
in ML.

Algorithm 18. Let q ∈ Q.

• Set y0 ← q and i← 0.
• If m(yi) 6= ε then set yi+1 ← δ(yi, m(yi)) and i← i + 1.

Otherwise the algorithm halts.
• If y0, . . . , yi are all different, repeat the previous step.

Otherwise, a cycle is found and the algorithm halts.

After applying this algorithm to a state q ∈ Q which is not the sink, we can have
two kinds of situations. If we encounter some state yk such that m(yk) = ε then
we have obtained something like

y0
m(y0)
−→ y1

m(y1)
−→ · · · −→ yk−1

m(yk−1)
−→ yk
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where all the yi’s are different and yk belongs necessarily to F (because ML is
minimal). Or we have the situation

y0
m(y0)
−→ y1

m(y1)
−→ · · · −→ yk

m(yk)
−→ · · · −→ yk+n

m(yk+n)
−→ yk

where y0, . . . , yk+n are all different; we say that (yk, m(yk), . . . , yk+n, m(yk+n), yk)
is a maximal cycle starting in yk and the word m(yk) · · ·m(yk+n) is the label of this
cycle. Notice that two maximal cycles have no state in common or share exactly
the same states. In this latter case, the label of one of the two cycles is a cyclic
permutation of the other one.

Example 19. Considering the automaton of Example 9, we have three maximal
cycles: (0, c, 2, c, 1, c, 0), (2, c, 1, c, 0, c, 2) and (1, c, 0, c, 2, c, 1) all having the same
label ccc and sharing the same states.

Lemma 20. If C is a maximal cycle of label w starting in q, then there exist an
integer k ≤ |w| depending only on C and k words u1, . . . , uk of minimal length such
that |ui| 6≡ |uj| mod |w| if i 6= j and

Max(Lq) = w∗{u1, . . . , uk}.

Proof. Let w be the label of a maximal cycle C starting in q. If v belongs to
Max(Lq) then by construction of the maximal cycle, wv also belongs to Max(Lq).
Assume now that u, v ∈ Max(Lq) are such that |u| ≡ |v| mod |w| and |u| < |v|.
Therefore, there exists i such that wiu belongs to Max(Lq) and |wiu| = |v|. But
Max(Lq) contains at most one word of each length, so wiu = v. Consequently, if v
belongs to Max(Lq) then it is of the form wnu for some n ≥ 0 and w is not a prefix
of u. For each j ∈ {0, . . . , k−1} there is at most one u of this kind such that |u| ≡ j
mod |w| (actually u is the smallest word of length j + n|w| possibly belonging to
Max(Lq), n ≥ 0). Notice that it does not mean that |u| < |w|. Clearly two states
in the same maximal cycle give rise to the same kind of maximal set. �

It is more difficult to express the form of Max(Lq) when this set is infinite and
q does not belong to a maximal cycle. But hopefully we have a more general result
extending Lemma 20 which holds even if q does not belong to a maximal cycle.
Indeed, since #(Max(Lq)∩An) ≤ 1 for all n ∈ N then it is well-known (see [30] or
[40]) that there exists a finite set R of words, an integer k ≥ 0 and words ui, wi ∈ A∗,
vi ∈ A+, i = 0, . . . , k such that

(3) Max(Lq) =

k⋃

i=0

ui v∗i wi ∪R

where the languages ui v∗i wi are pairwise disjoint and also disjoint from R. Other-
wise stated, if i 6= j then

{|uiwi|+ n|vi| : n ∈ N} ∩ {|ujwj |+ n|vj | : n ∈ N} = ∅

and {|uiwi| + n|vi| : n ∈ N} ∩ |R| = ∅, for all i (|R| denotes the set of lengths of
elements of R). One can observe that the form of Max(Lq) given in Lemma 20 is
a special case of (3).

3.2. Structure of Max(K). We now have gathered all the required elements to
be able to deduce information on the elements of Max(K) from the languages
Max(Lq).

Theorem 21. Any element in Max(K) is ultimately periodic and Max(K) is finite.
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Proof. (a) The ideas of the first part of this proof are the same as in [25, Lemma
7]. Let q be such that #Max(Lq) =∞. If x is a word in Max(Lq) of length large
enough then thanks to (3) there exist unique words u, v, w (depending on x) such
that x = uvnw. Among

(4) δ(q, u), δ(q, u v), . . . , δ(q, u v#Q)

a same state appears at least twice. Let t be the first state appearing twice in this
list. Let i < j be the smallest integers such that δ(q, u vi) = δ(q, u vj) = t. We
set P = (j − i)|v|. We can already notice that P is bounded by #Q · |v|. In what
follows, we write simply t, i, j, P assuming that the word x is understood from the
context.
(b) We use Notation 7. Consider again the word x = uvnw ∈Max(Lq) introduced
in (a). For n large enough, pq(uvnw) is a word over A×Q having

i) a non-periodic prefix pq(u vi) of length bounded by |u|+ #Q · |v|;
ii) a maximal periodic factor having a period of length P ; actually the Eu-

clidean division of n− i by P/|v| gives

n− i = m
P

|v|
+ r with r < P/|v|;

the periodic factor corresponding to vmP/|v| is pt(v
mP/|v|) and the period

corresponding to vP/|v| is pt(v
P/|v|) where t is as in (a) the first state ap-

pearing twice in the list (4);
iii) a non-periodic suffix of length bounded by |w| + P ; indeed this factor cor-

responds to vrw and is of the form pt(v
rw).

For a better understanding, the situation is sketched in Figure 2.

v v
t

v
t

v
t

v
t

v v

v v

u w

vi

j

vn−i

r

m−th appearance
of the period

first appearance
of the period

non−periodic suffixnon−periodic prefix

Figure 2. A schematic representation of pq(uvnw).

(c) Let n′ > n and x′ = uvn′

w. Then pq(uvnw) and pq(uvn′

w) have the same prefix
corresponding to u vi. The periodic factors have the same period of length P but
the number of repetitions could be larger for x′. Finally, if n and n′ are not con-
gruent modulo P/|v| then the corresponding suffixes could be different, otherwise
the suffixes are the same. Notice that there are only finitely many possible suffixes
corresponding to the words of the form vrw for r = 0, . . . , P/|v| − 1.
(d) From the previous observations, we can easily exhibit elements in Max(K). Let
n0 be large enough and set zm = pq(u vn0+mP/|v| w) for m ≥ 0. From the previ-
ous point, the sequence (zm)m∈N ∈ ω(A × Q) admits a sequence of suffixes which
converges to an ultimately periodic element in K. From Lemma 13, this element
belongs to Max(K).
(e) Clearly, any element (x, y) = (· · ·x1x0, · · · y1y0) in Max(K) is ultimately peri-
odic. Indeed, since Q is finite, a state q must appear infinitely often in y, say, in
strictly increasing positions k(n). For each n, xk(n−1) · · ·x0 belongs to Max(Lq)
and the words of this kind have a longer and longer common suffix when n is in-
creasing. As a consequence of (a), (x, y) is ultimately periodic with x of the form
ω(v)w, for some finite words v and w.
(f) In (d), we have obtained elements of Max(K) of a special form but in (e) we
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have shown that any element in Max(K) is of this kind. To conclude, we have to
show that Max(K) is finite. First from (3), for each state q the number of words ui,
vi, wi used to obtain the structure of Max(Lq) is finite. For each of these 3-tuples
(ui, vi, wi) of words, we can obtain ultimately periodic elements in Max(K) but
the period of such an element is bounded by #Q · |vi| (see (a)) and the length of
its prefix is bounded by |wi|+ #Q · |vi| (see (b)). In other words, we have a finite
number of 3-tuples (ui, vi, wi) each one giving at most a finite number of elements
in Max(K). �

This proof shows that the elements of Max(K) can be determined by the knowl-
edge of the languages Max(Lq). As we will see in the following example, obtaining
the decomposition of the form (3) for the languages Max(Lq) gives rise to all the
elements in Max(K). Moreover, observe that these languages Max(Lq) can be
efficiently obtained fromML.

Naturally, Algorithm 18, Lemma 20 and Theorem 21 are easily adapted to the
set Min(K). In this case, similarly as in Notation 17, if there exists a ∈ A such
that δ(q, a) is not the sink then we denote by m(q) the smallest letter having this
property.

Example 22. Continuing again Example 9. We are now able to show that Max(K)
contains exactly the elements (ω(c)b, ω(021)2), (ωc, ω(021)) and (ωc, ω(102)). We
have a maximal cycle of label ccc containing the three states of ML, so using
Lemma 20 we obtain Max(L0) = (ccc)∗{c, cc, ccb}, Max(L1) = (ccc)∗{ε, b, cc} and
Max(L2) = (ccc)∗{ε, c, cb}. Let us first see which elements in Max(K) come from
the words in Max(L0). The word (ccc)nc read from the state 0 gives in ML the
path

0
c
→ 2

c
→ 1

c
→ 0 · · ·

c
→ 2

c
→ 1

c
→ 0

c
→ 2.

With Notation 7, we have

p0((ccc)
nc) = ((ccc)nc, (210)n2).

Reading this path to the left and letting n tend to infinity gives the element
(ωc, ω(210)2) = (ωc, ω(102)). In the same way, the word (ccc)ncc gives (ωc, ω(021))
and finally (ccc)nccb gives (ω(c)b, ω(021)2). If we do the same for the words in
Max(Li), i = 1, 2, then we consider paths starting in i and we obtain exactly the
same three elements of K. It is clear that each set Max(Lq) produces the same
elements of Max(K) because all the states are in the same maximal cycle.

Let us now show that Min(K) contains exactly 0 = (ω(a)b, ω(0)1) and (ωa, ω1).
Here we have two minimal cycles: (0, a, 0) and (1, a, 1). So thanks to the analogue
of Lemma 20, we have Min(L0) = a∗b and Min(L1) = a∗. From the analogue of
(3), one finds Min(L2) = a∗ab∪{ε, c}. For instance, starting in state 2 and reading
anab gives the path

2
a
→ 0

a
→ 0 · · ·

a
→ 0

a
→ 0

b
→ 1.

Reading this path to the left and letting n tend to infinity gives the element 0.
Starting in 0 with anb also leads to the same element 0. Finally starting in 1 with
an gives (ωa, ω1). Obviously, if two states q and q′ belong to two different minimal
cycles then the sets Min(Lq) and Min(Lq′) will never lead to a same element in
Min(K) because the two cycles have no state in common.

4. Defining the odometer

In [21], if a left-infinite word · · ·α2α1α0 of digits belonging to the set R of left-
infinite words satisfying the greedy condition (1) is such that there exists M such
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that for all ℓ ≥M

[αℓ · · ·α0] :=
ℓ∑

i=0

αiUi < Uℓ+1 − 1

then the odometer maps · · ·α2α1α0 onto · · ·αk+2αk+1α
′
k · · ·α

′
0 ∈ R where α′

k · · ·α
′
0

is the representation of [αk · · ·α0]+1 computed through the greedy algorithm (and
it is shown that the result is independent of the choice of the index k ≥ M).
Obviously, the representations of [αk · · ·α0] and [αk · · ·α0]+1 have the same length.
Otherwise, infinitely often the situation [αℓ · · ·α0] = Uℓ+1 − 1 occurs and then the
odometer is defined to map · · ·α2α1α0 onto ω0.

Here we want to do the same in the context of abstract numeration systems
and define a function τL : K → K, or simply τ if L is clearly understood, having
the expected adding behavior for an odometer. First we define τ on K \Max(K).
Assume that for (x, y) = (· · ·x1x0, · · · y1y0) ∈ K there exists i ≥ 0 such that
(x, y) 6∈maxi. For each state q ofML, we define the function

Succq : Lq → Lq

mapping the k-th word in the genealogically ordered language Lq to the (k + 1)-th
one in the same language (if Lq is finite, we decide that Succq maps the largest
word in Lq onto the smallest one). Since (x, y) 6∈ maxi, it is clear that xi · · ·x0

and Succyi+1(xi · · ·x0) have the same length. Let us denote this latter word be-
longing to Lyi+1 by x′

i · · ·x
′
0. We set y′

i = δ(yi+1, x
′
i) and y′

j = δ(y′
j+1, x

′
j) for

j = i − 1, . . . , 0. In other words, y′
i, . . . , y

′
0 are the states reached in ML when

reading x′
i · · ·x

′
0 from yi+1. In particular, observe that y′

0 belongs to F . Hence
(· · ·xi+1 x′

i · · ·x
′
0, · · · yi+1 y′

i · · · y
′
0) belong to K. The function τ is defined by

τ(· · · xi+1 xi · · ·x0, · · · yi+1 yi · · · y0) = (· · ·xi+1 x′
i · · ·x

′
0, · · · yi+1 y′

i · · · y
′
0).

We have to show that τ is well-defined. Assume that there exist i < j such that
(x, y) 6∈ maxi and (x, y) 6∈ maxj . (Notice that in view of Corollary 6, if (x, y) 6∈
maxi then for all k ≥ i, (x, y) 6∈ maxk.) Then the previous construction does
not depend on the choice of the index. Indeed, notice that by definition of K,
δ(yj+1, xj · · ·xi+1) = yi+1 and as a consequence of the genealogical ordering,

Succyj+1(xj · · ·xi+1xi · · ·x0) = xj · · ·xi+1 Succyi+1(xi · · ·x0).

Therefore, as a consequence of Remark 3, the corresponding sequences of states are
the same: if y′′

j · · · y
′′
0 are the states reached inML when reading Succyj+1(xj · · ·x0)

from yj+1, we have

y′′
j · · · y

′′
i+1y

′′
i · · · y

′′
0 = yj · · · yi+1y

′
i · · · y

′
0.

Thus, the value of τ does not depend on the index i such that (x, y) 6∈maxi.

Example 23. We still consider the language and the automaton given in Example
9. For instance, (x, y) = (ω(a)bccabb, ω(0)102012) belongs to K. The word b belongs
to Max(L1) so (x, y) ∈max1 but bb belongs to L0 \Max(L0) so (x, y) 6∈max2. It

is easy to see that the next word accepted from 0 is cc and the path is 0
c
→ 2

c
→ 1,

thus

τ(ω(a)bcca|bb, ω(0)1020|12) = (ω(a)bcca|cc, ω(0)1020|21).

If we had considered the word ccabb accepted from state 1 (because (x, y) 6∈max5),
the next word in L1 is ccacc and this would have lead to the same element in K:

τ(ω(a)b|ccabb, ω(0)1|02012) = (ω(a)b|ccacc, ω(0)1|02021).

In the next section, we will see that in general, the continuity of the odometer
cannot be ensured on Max(K) whatever is the value taken by τ for the points



12 V. BERTHÉ AND M. RIGO

in this set (see Example 31). Therefore, we decide that for all (x, y) ∈ Max(K),
τ(x, y) = 0, where 0 is the canonical element of Min(K) given in Definition 14.

Remark 24. When applying τ to two elements (x, y) and (x, y′) in K having the
same first component x but two distinct sequences of states y and y′, we can obtain
elements for which the first components are different. This new phenomenon does
not appear in positional numeration systems due to the greedy property (1) that
must be satisfied by any element in R. To convince the reader that such a phe-
nomenom can appear in our general framework, consider once again the language
and the automaton given in Example 9. We already know that (ωb, ω(012)) and
(ωb, ω(201)) belong to K. If we compute τ , we obtain

τ(ωb, ω(012)) = (ω(b)cc, ω(120)21) and τ(ωb, ω(201)) = (ω(b)c, ω(120)2).

Indeed, b ∈Max(L1), Succ0(bb) = cc and for the second computation, Succ0(b) = c.
Naturally, since positional numeration systems are particular cases of abstract

systems, there are situations where τ can be computed without the use of the
sequence of states. This very strict case is studied in Section 6 and in particular in
Proposition 34. Nevertheless, in our general framework, the use of pairs cannot be
avoided.

Remark 25. We can as in [21] or [46] define a partial ordering onK, called antipodal
order, in the following way. We have (x, y) ≺ (x′, y′) if (x, y) = (x′, y′) or there
exists some index k such that xk < x′

k and for all j > k, (xj , yj) = (x′
j , y

′
j).

The elements in Max(K) are therefore the maximal elements in (K,≺). For any
(x, y) 6∈ Max(K), then its image under τ is the smallest (with respect to ≺) of all
the elements in K which are larger than (x, y). Hence the map τ is a successor
function which can be considered as an adic transformation following [46, 47].

5. Properties of the odometers

The aim of this section is to state some general properties of the odometer like
continuity, injectivity, surjectivity, minimality, . . .

Proposition 26. The map τ is surjective onto K \Min(K).

Proof. The proof is immediate. Let (x, y) = (· · ·x1x0, · · · y1y0) be such that (x, y)
is not in mini for some i. Therefore, there exists a word x′ = x′

i · · ·x
′
0 of length

i + 1 such that Succyi+1(x
′
i · · ·x

′
0) = xi · · ·x0. As usual, if y′ = y′

i · · · y
′
0 is the path

followed in ML from yi+1 when reading x′ then

τ(· · · xi+2xi+1x
′, · · · yi+2yi+1y

′) = (x, y).

�

Remark 27. A similar result holds in the framework of positional number systems:
the odometer is proved to be surjective if and only if ω0 admits an antecedent (see
[21]).

Proposition 28. The map τ is injective on K \Max(K).

Proof. Let (x, y) = (· · ·x1x0, · · · y1y0) and (x′, y′) = (· · ·x′
1x

′
0, · · · y

′
1y

′
0) be in K \

Max(K) and such that τ(x, y) = τ(x′, y′). Let i and i′ be such that xi · · ·x0 6∈
Max(Lyi+1) and x′

i′ · · ·x
′
0 6∈ Max(Ly′

i′+1
). Pose I = sup{i, i′}. Thanks to Lemma

5, (x, y) and (x′, y′) do not belong to maxI so the application of τ will at most
affect their suffix of length I + 1. Since τ(x, y) = τ(x′, y′), we have xj = x′

j and
yj = y′

j for all j > I. Therefore, xI · · ·x0 and x′
I · · ·x

′
0 belongs to LyI+1 = Ly′

I+1

and have the same successor. So these two words are the same. The conclusion
that yI · · · y0 and y′

I · · · y
′
0 are the same comes from Remark 3. �
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Corollary 29. The map τ is one-to-one from K \Max(K) onto K \Min(K).

Proof. It is a direct consequence of the fact that τ(K \Max(K)) ⊂ K \Min(K).
Indeed the restriction of τ on K \Max(K) is surjective onto K \Min(K) since the
image of Max(K) equals {0} ⊂Min(K). �

The topology on ω(A×Q) is as usual induced by the distance d defined by

d((x, y), (x′, y′)) = 2−k where k = inf{i | (xi, yi) 6= (x′
i, y

′
i)}.

Proposition 30. The map τ is continuous on K \Max(K).

Proof. Let (u, v) ∈ K \Max(K) and ǫ > 0. We show that there exists η > 0 such
that if d((u, v), (x, y)) < η then d(τ(u, v), τ(x, y)) < ǫ. Let j be the smallest index
such that (u, v) 6∈ maxj . If there exists i > j such that (u, v) and (x, y) have the
same prefix of length i + 1 then τ(u, v) and τ(x, y) also have the same suffix of
length i + 1. Clearly, one can take

η = 2− sup{1−log2 ǫ,j+1}.

�

The following example shows that τ is generally not continuous on the points of
Max(K).

Example 31. Consider the regular language L accepted by the automaton depicted
in Figure 3 (where the sink is not represented). For instance, (u, v) = (ωd, ω(21))

c

d

d1 234 0
c

b a a

b,cd

Figure 3. The minimal automaton of a language L.

belongs to Max(K). The points

(ω(a) b (dd)n, ω(0) 1 (21)n) and (ω(a) c (dd)n, ω(0) 1 (21)n)

can be chosen arbitrarily close of (u, v) for n large enough. Whatever is the value
of τ(u, v), the map τ is not continuous at (u, v). Indeed,

τ(ω(a) b (dd)n, ω(0) 1 (21)n) = (ω(a) c (aa)n, ω(0) 1 (11)n)

but

τ(ω(a) c (dd)n, ω(0) 1 (21)n) = (ω(a) d (bb)n, ω(0) 3 (33)n).

So clearly, if a point (x, y) is close from an element in Max(K) then its image
τ(x, y) is close from an element in Min(K) but nothing more can be said.

Proposition 32. The set K is a compact subset of ω(A×Q). If the odometer τ is
continuous, then the dynamical system (K, τ) is minimal, that is, every non-empty
closed subset of K invariant under the action of τ is equal to K.

Proof. We follow here the proof of [21] adapted to our situation. The compactness
of K is immediate as a closed subset of ω(A×Q).

We assume that τ is continuous. Let us prove that the closure of the orbit
{τn(x, y) | n ∈ N} of any point (x, y) ∈ K is equal to K, which immediately implies
the minimality.



14 V. BERTHÉ AND M. RIGO

Let us first observe that the orbit {τn(0) | n ∈ N} of 0 is dense in K. Indeed,
let (x, y) ∈ K. Let (wn)n∈N be a sequence of words in L such that x is the limit
of suffixes of words of the sequence (wn)n∈N. Let ln denote the n-th word in the
ordered language L. The point τn(0) is by definition equal to ω(a0, q0)pq0(ln),
according to Notation 7. Hence (x, y) is a limit of elements of {τn(0) | n ∈ N}, and
K, which is a closed set, is the closure of {τn(0) | n ∈ N}.

Now if (x, y) ∈ Max(K), then τ(x, y) = 0 and 0 belongs to the orbit of (x, y),
which implies that the closure of the orbit of (x, y) is equal to K.

Let us suppose that x 6∈Max(K). Let

D : K \Max(K)→ N : x 7→ sup{k | (x, y) ∈maxk}.

Let us prove that D does not take bounded values on the orbit of (x, y). Suppose
on the contrary that there exists C such that D(τn(x, y)) < C, for every n; in
particular, (x, y) does not have the property maxC ; by definition of the odometer,
after a suitable number of iterations of τ , say, n, then τn(x, y) is easily seen to
belong to maxC , hence a contradiction. There thus exists an increasing sequence of
integers (nk)k∈N such that τnk(x, y) ∈maxk. By compactness of K, one can extract
from (nk)k∈N an increasing sequence (mk)k∈N such that the sequence (τmk(x, y))k∈N

converges; its limit belongs to Max(K), according to Lemma 5. By continuity of
τ , (τmk+1(x, y))k∈N converges toward 0, which implies that the closure of the orbit
of (x, y) contains 0 and thus equals K. �

6. Equivalence with positional number systems

Let (Un)n∈N be a strictly increasing sequence of integers such that U0 = 1. Such
a sequence is called a positional number system. We assume furthermore that the set
L = 0∗ repU (N) of all the greedy representations of the integers is a regular language
over a finite alphabet AU (from now on repU (n) denotes the U -representation of
n computed by the greedy algorithm with the most significant digit on the left).
The finiteness of AU implies that the ratio Un+1/Un is bounded. In particular,
for L = 0∗ repU (N) (or equivalently for repU (N)) to be regular, it is shown in [40]
that the sequence (Un)n∈N must satisfy a linear recurrence relation with constant
coefficients. In [23], a sufficient condition is given in terms of the polynomial of the
recurrence that (Un)n∈N satisfies. The reader can also see the special case treated
in [27]. As an example, the set repU (N) is regular whenever the sequence (Un)n∈N

satisfies a linear recurrence relation whose characteristic polynomial is the minimal
polynomial of a Pisot number [8].

In this small section, we study the link between the odometer τL built over the
language L and the odometer τU presented in [21], with left-infinite sequences for the
sake of consistency in notation, contrarily to the convention used in [21]. Notice
that we allow leading zeroes in the greedy representations to obtain a language
satisfying hypothesis (2).

Remark 33. Notice that, in this particular setting, as a consequence of the greedy
algorithm, if uv belongs to L then v belongs also to L.

Proposition 34. Let (Un)n∈N be a strictly increasing sequence of integers such that
U0 = 1, τU be the odometer associated to this sequence according to [21], and let us
assume that the language L = 0∗ repU (N) associated to the numeration system built

upon the sequence (Un)n∈N is regular. Let p1 : K → L̃ be the projection mapping
(x, y) onto x. Then the following relation holds on K:

p1 ◦ τL = τU ◦ p1.
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Proof. Let us first observe that the set on which τU is defined and acts, which is the

set of left-infinite words satisfying the greedy property (1), is exactly L̃, following
Remark 33.

Let (x, y) = (· · ·x1x0, · · · y1y0) be an element in K \Max(K). Thus there exists
i such that (x, y) 6∈maxi.

Notice that if u belongs to Lq, since ML is accessible, then there exists v such
that vu belongs to L. So thanks to Remark 33, u also belongs to L.

Therefore xi · · ·x0 belongs to both Lyi+1 and L. Since xi · · ·x0 does not belong to
Max(Lyi+1), then it does not belong to Max(L) which means that xiUi+ · · ·+x0U0

is strictly less than Ui+1 − 1. We set x′
i · · ·x

′
0 = Succyi+1(xi · · ·x0), so with our

notation

τL(· · ·xi+1 xi · · ·x0, y) = (· · ·xi+1 x′
i · · ·x

′
0, y

′)

for some y′ ∈ ωQ. We have to show that the successor of the word xi · · ·x0 in the
genealogically ordered language L is x′

i · · ·x
′
0 which means therefore that

xiUi + · · ·+ x0U0 + 1 = x′
iUi + · · ·+ x′

0U0

and thus τU (· · ·xi+1 xi · · ·x0 ) = (· · ·xi+1 x′
i · · ·x

′
0). To the contrary, assume that

there exists zi · · · z0 ∈ L such that xi · · ·x0 < zi · · · z0 < x′
i · · ·x

′
0. Let v be such

that δ(q0, v) = yi+1. The words vxi · · ·x0 and vx′
i · · ·x

′
0 are accepted from q0

and satisfy therefore the greedy condition (1). Since zi · · · z0 < x′
i · · ·x

′
0, vzi · · · z0

satisfies the greedy condition and so it belongs to L. Since ML is deterministic,
zi · · · z0 is also accepted from yi+1. Therefore x′

i · · ·x
′
0 6= Succyi+1(xi · · ·x0) which

is a contradiction.
Consequently if p1 is the projection mapping (x, y) onto x, then we have shown

that on K \Max(K), the following holds

(5) p1 ◦ τL = τU ◦ p1.

Observe that here, 0 is (ω0, ωq0) because the empty word ε is the representation of
0 and belongs to L. If (x, y) belongs to Max(K) then τL(x, y) = 0 and it is clear

that
∑i

ℓ=0 xℓ Uℓ = Ui+1−1 for an infinite number of indices i. Therefore from [21],
τU (x) = ω0 and the relation (5) holds on the whole set K. �

Remark 35. A characterization of the continuity of the odometer for positional
number system is given in [18], in terms of the right subsequentiality of the successor
function on 0∗L. We will see in Proposition 46 that we can have τL continuous
whereas τU is not continuous.

7. Substitution numeration systems

After having established in the previous section the connection with the classical
odometer for positional number systems, we consider in the present section a second
type of classical systems, namely the substitution numeration systems.

7.1. Definition. Let Σ = {a1, · · · , ad} be an alphabet (here, Σ does not need
to be totally ordered). Let σ : Σ → Σ+ be a substitution, i.e., a morphism of
the free monoid Σ∗ such that σ(a1) ∈ a1Σ

+. To this substitution, we associate
a deterministic automaton Mσ = (Q, a1, A, δ, F ) in the classical way. The set of
states is Q = Σ ∪ {s} where a sink state s 6∈ Q is possibly added to Q in order to
makeMσ complete when σ is not a uniform substitution (a substitution is said to
be uniform if the images of all the letters have the same length). The alphabet of
the automaton is

A = {0, . . . , sup
a∈Σ
|σ(a)| − 1}.
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There is an edge of label i ∈ A between two states a and b, that is, δ(a, i) = b, if
and only if the (i+1)-th letter in σ(a) is b. The initial state is a1 and all the states
are final, i.e., F = Σ.

In the literature [9, 10, 11, 12, 31, 33] the notion of prefix automaton (respectively
prefix-suffix automaton) can also be found: in this latter case, the label i between a
and b is replaced by the prefix of length i of σ(a) (respectively, the prefix of length
i of σ(a) and the suffix of length |σ(a)| − i− 1 of σ(a)) (if i = 0 then the prefix is
ε). It is well-known (see for instance [11, 12]) that each integer n ≥ 1 has a unique
decomposition of the form

(6) n =
ℓ∑

i=1

|σi−1(mi)|

where mℓ · · ·m1 is the label of a path read in the prefix automaton from the initial
state a1 with mℓ 6= ε.

Let us recall that d denotes the cardinal of the alphabet Σ. The incidence
matrix of the substitution σ is defined as the d × d matrix whose entry of index
(a, b) counts the number of occurrences of the letter a in σ(b). The incidence matrix
of σ coincides with the transpose of the adjacency matrix of the automatonMσ.

Since the alphabet A = {0, 1, . . . , supa∈Σ |σ(a)| − 1} is totally ordered by the
usual ordering on N, we can order the words of the language L ⊂ A∗ accepted by
Mσ using the genealogical ordering. This leads to an abstract numeration system
S = (L, A, <) built upon L.

7.2. Equivalence between substitution and abstract numeration systems.

In this section, we give a new interpretation of the numeration systems built upon
a substitution according to (6).

Let M′
σ be the automaton built upon Mσ but having an extra state a0 which

is the initial state of this new automaton. For k = 2, . . . , |σ(a1)|, we add an edge
labeled by k − 1 from a0 to the k-th letter of σ(a1). Observe that if L is the
language accepted byMσ then L\0A∗ is the language accepted byM′

σ. This kind
of construction is also classical and was for instance used in [36]; the point here is to
realize a one-to-one correspondence between the n-th word of the ordered language
and the non-negative integer n; allowing leading zeroes introduces perturbations in
the genealogical ordering, and thus in this one-to-one correspondence. We denote
from now on by L′ the language accepted by M′

σ.

Example 36. Consider the substitution on Σ = {a1, a2} defined by σ(a1) = a1a2a1

and σ(a2) = a1. We have the following automataMσ and M′
σ sketched in Figure

4. Here A = {0, 1, 2} and the sink has not been represented.

Mσ

2

1

0,2

0

1
a

0 1
a

2
a

Figure 4. The automataMσ andM′
σ.

Naturally, we can also order the words of the language L′ ⊂ A∗ accepted by
M′

σ using the genealogical ordering. This leads to an abstract numeration system
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S′ = (L′, A, <) built upon L′. The representation of the integer n is defined as the
(n + 1)-th word w of L′ and we write valS′(w) = n (let us recall that the first word
of L′ is the empty word).

The following proposition allows us to make the connection with the substitutive
numeration system as expressed in (6).

Proposition 37. The (n+1)th word w1 · · ·wℓ of the genealogically ordered language
L′ generates the prefix u0 · · ·un−1 of length n of σω(a1) as follows: u0 · · ·un−1 is
equal to the concatenation of σℓ−i[δ(a1, w1 · · ·wi−10) · · · δ(a1, w1 · · ·wi−1(wi − 1))]
in decreasing order of indices 1 ≤ i ≤ ℓ, where w1 · · ·wi−1 is understood as ε if
i = 1, as well as δ(a1, w1 · · ·wi0) · · · δ(a1, w1 · · ·wi(wi − 1)) if wi = 0. In other
words, u0 · · ·un−1 is equal to

σℓ−1[δ(a1, 0) · · · δ(a1, (w1−1))] · · ·σ0[δ(a1, w1 · · ·wℓ−10) · · · δ(a1, w1 · · ·wl−1(wℓ−1))]

and

n =

ℓ−1∑

i=0

∣∣σi[δ(a1, w1 · · ·wi−10) · · · δ(a1, w1 · · ·wi−1(wi − 1))]
∣∣ .

Proof. The proof is based on the fact that the prefix of σ(q) of length t ≤ |σ(q)|
read from the state q ∈ Σ is equal to δ(q, 0) · · · δ(q, t− 1).

Let us recall that for a state q, uq(n) denotes the cardinal of the set of the words
of length n accepted from q. If w = w1 · · ·wℓ ∈ L′ (this means in particular that
w1 > 0), then with respect to the automatonM′

σ the following formula holds (see
[24, 25])

(7)

valS′(w) =

ℓ−1∑

i=0

ua0(i) +
∑

b<w1

uδ(a0,b)(ℓ− 1)

+
∑

b<w2

uδ(a0,w1b)(ℓ− 2) + · · ·+
∑

b<wℓ

uδ(a0,w1···wℓ−1b)(0).

The interested reader can find a combinatorial interpretation of this formula in [22].
We have two immediate observations

ℓ−1∑

i=0

ua0(i) = ua1(ℓ− 1) and ∀q ∈ Σ, ∀n ∈ N,uq(n) = |σn(q)|.

We are now able to prove the equivalence of the two formulas (6) and (7). First
notice that δ(a0, 0) is the sink s ofM′

σ. Therefore uδ(a0,0)(n) = 0 for all n. If b 6= 0
then δ(a0, b) = δ(a1, b). The first two terms in (7) can be written as

|σℓ−1(a1)|+
∑

0<b<w1

∣∣σℓ−1[δ(a1, b)]
∣∣ =

∣∣σℓ−1[δ(a1, 0) · · · δ(a1, w1 − 1)]
∣∣ .

Notice that for the latter equality, we have used the fact that δ(a1, 0) = a1 and that
σ is a morphism. Consequently, (7) can be written as

valS′(w) =

ℓ∑

i=1

∣∣σℓ−i[δ(a1, w1 · · ·wi−10) · · · δ(a1, w1 · · ·wi−1(wi − 1))]
∣∣ .

This gives another interpretation of (6).
�
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7.3. First properties of the odometer. Since the infinite language L accepted
byMσ satisfies property (2), then one can consider the set K built upon (L, A, <).

Let us observe that L′ does not satisfy (2), but that L̃ and L̃′ do coincide. The set
K is a subshift of finite type of ω(A×Q) since every state (except the sink) inMσ

is a final state. Let us observe

Proposition 38. The set K corresponds to the subset of ω(A × Σ) of sequences
(· · ·x1x0, · · · y1y0) satisfying ∀i ≥ 0, yi+1 is the (xi + 1)-th letter of σ(yi). Further-
more,

Max(K) = {(x, y) ∈ K| ∀i ≥ 0, xi = |σ(yi)| − 1},

Min(K) = {(x, y) ∈ K| ∀i ≥ 0, xi = 0}.

Proof. There is an edge in the automatonMσ of label i between two states u and v
if and only if the (i + 1)-th letter in σ(u) is v; furthermore, all the states are initial

and final. Hence L̃ is equal to the set of mirror images of labels of right-infinite

paths in the automaton M̃σ obtained by reversing the transition relations inMσ,
which implies the desired description of K. The characterization of Max(K) and
Min(K) is immediate.

�

Let us recall that the odometer τ is one-to-one from K\Max(K) onto K\Min(K)
following Corollary 29.

Remark 39. The automatonMσ associated to a substitution σ is not necessarily
minimal. Indeed, if you consider the Thue-Morse substitution defined by σ(a1) =
a1a2 and σ(a2) = a2a1 then it is easy to see that Mσ accept {0, 1}∗ and is not
minimal. To obtain unambiguous constructions, we have always considered the
minimal automaton of a language but clearly, we could define a set K and an
odometer τ depending on the choice of a finite deterministic automaton which is
not necessarily minimal. We just need a loop in the initial state a1 labeled by the
smallest letter 0 of the alphabet (it is always the case for the automaton associated
to a substitution σ which satisfies σ(a1) ∈ a1A

+).

7.4. The Pisot case. Nevertheless, there are some cases for which the automa-
ton Mσ can be proved to be minimal. A substitution is said of Pisot type if the
eigenvalues of its incidence matrix satisfy the following: there exists a dominant
eigenvalue α such that for every other eigenvalue λ, one gets 0 < |λ| < 1 < |α|. A
substitution of Pisot type is primitive and the characteristic polynomial χσ of its
incidence matrix is irreducible over Q [10]. Let us recall that χσ is also the minimal
polynomial of the adjacency matrix ofMσ.

Proposition 40. Let σ be a Pisot substitution. The automaton Mσ is minimal.

Proof. Let σ be a substitution of Pisot type. The automatonMσ is accessible since
σ is primitive, that is, all its states can be reached from its initial state a1. Hence
the minimal polynomial χσ of its adjacency matrix is dividable by the minimal
polynomial of the minimal automaton recognizing the language Mσ. Since χσ is
irreducible, this implies that both polynomials do coincide, and thus that Mσ,
which is deterministic, is the minimal automaton recognizing the language Mσ. �

In the particular case of a Pisot substitution, we are now able to give a dynamical
interpretation of (K, τ). Let S denote the shift map on ΣZ: S((wi)i∈Z) = (wi+1)i∈Z.
A word u ∈ ΣZ such that there exists a positive integer k with Sk(u) = u is called
a periodic point under the action of σ. Let us recall that the (two-sided) symbolic
dynamical system generated by a primitive substitution σ is the pair (Xσ, S), where
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Xσ is the set of two-sided sequences in ΣZ with the same set of factors of any periodic
point u of σ; this definition does not depend on the choice of u by primitivity of σ.

We use here the notation and results of [9, 10] adapted to our framework. Fol-
lowing [29], every two-sided sequence v in Xσ has a unique decomposition

v = Sk(σ(w)), with w ∈ Xσ and 0 ≤ k < |σ(w0)|

(w0 denotes here the 0-th coordinate of w).
Let {

θ : Xσ → Xσ : v 7→ w,
where v = Sk(σ(w)), with 0 ≤ k < |σ(w0)|.

The map θ is called the desubstitution map.
Let {

γ : Xσ → (A× Σ) : v 7→ (k + 1, w0),
where v = Sk(σ(w)), with w ∈ Xσ and 0 ≤ k < |σ(w0)|.

In other words, if γ(v) = (k, q), then v0 is the (k + 1)-th letter of σ(q). Hence,
for every v ∈ Xσ, the mirror image of the sequence (γ ◦ θi(v))i∈N is easily seen to
belong to K. Let us now define

Γ : Xσ → K : v 7→ ˜(γ ◦ θi(v))i∈N.

The following theorem is a direct consequence of [9, 10].

Theorem 41. [9, 10] Let σ be a Pisot substitution. The map Γ is continuous and
onto K; it is one-to-one except on the orbit of periodic points of σ. Furthermore,

Γ ◦ S = τ ◦ Γ and Γ ◦ θ = SK ◦ Γ,

where SK denotes the shift map acting on elements of ω(A× Σ).

Proof. We know from [9] that (Xσ, S) is measure-theoretically isomorphic with the
subshift of finite type D defined as the set of labels of infinite paths D in the mirror
image of the prefix-suffix automaton defined as follows: there is an edge from a to b
of label (p, a, s) if σ(b) = a, and all the states (which are the letters of Σ) are both
initial and final. Let us prove that K and D are in one-to-one correspondence. This
comes from the fact that the following map is one-to-one:

K → D, (x, y) 7→ (δ(yi+1, 0) · · · δ(yi+1, xi − 1), yi, si)i∈N,

where si is the suffix of size |σ(yi+1)| − xi − 1 of σ(yi+1). Now from Remark 25,
the map τ coincides with the adic transformation acting on D. It just remains to
apply the results of [9, 10]. �

Remark 42. Two dynamical systems can be built over K, i.e., (K, τ) and (K, SK).
Theorem 41 gives us two combinatorial interpretations for these systems: the action
of the desubstitution map θ (the “inverse” of σ) on Xσ corresponds to the action of
the shift SK on K, whereas the action of the shift S on Xσ corresponds to action
of the odometer τ on K.

Remark 43. There exists furthermore a unique shift invariant measure on the
dynamical system (Xσ, S) since σ is primitive ((Xσ, S) is said uniquely ergodic);
for more details see for instance [32]. This measure can be naturally carried on
(K, τ) via the map Γ (which is one-to-one except on a countable number of points).
Theorem 41 means that (K, τ) endowed with this measure is measure-theoretically
isomorphic with (Xσ, S). One interest of this approach is that it provides us some
insight on a metrical study of (K, τ), according to [3].
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Remark 44. It is possible to give a combinatorial interpretation of Min(K) and
Max(K) in this framework. Following [9], Min(K) and Max(K) correspond re-
spectively to the periodic points (under the action of σ) of Xσ (we denote this
set Per(Xσ)) and to the preimages S−1(Per(Xσ)) under the shift S of those peri-
odic points. Both sets do not have necessarily the same cardinal as illustrated for
instance in Section 8, Proposition 46, below.

8. The case of sofic beta-numerations

This section gathers results of Section 6 and 7 within the framework of β-
numeration. Let U = (Un)n∈N be a positional numeration system such that the
ratio Un+1/Un is bounded, as defined in Section 6. We add now the following extra
hypothesis of right-extendibility: repU (N)0∗ is included in repU (N); the positional
number system U is then said to be a Bertrand numeration system. Bertrand
numeration systems are closely related to β-expansions as recalled below.

Let β > 1 be a positive real number. The Rényi β-expansion of a real number x ∈
[0, 1] is defined as the sequence (xi)i≥1 with values in {0, 1, . . . , ⌈β⌉ − 1} produced
by the β-transformation Tβ : [0, 1]→ [0, 1] : x 7→ βx (mod 1) as follows

∀i ≥ 1, xi = ⌊βT i−1
β (x)⌋, and thus x =

∑

i≥1

xiβ
−i.

Let dβ(1) = (ti)i≥1 denote the β-expansion of 1. Let d∗β(1) = dβ(1), if dβ(1) is

infinite, and d∗β(1) = (t1 . . . tm−1(tm−1))ω, if dβ(1) = (t1 . . . tm−1tm) is finite (with

tm 6= 0). The set Dβ of β-expansions of numbers in [0, 1) is exactly the set of
sequences (ci)i≥1 that satisfy:

∀k ∈ Z, (ci)i≥k <lex d∗β(1).

For more details, see for instance [28]. We denote by F (Dβ) the set of finite factors
of the sequences in Dβ .

Numbers β such that dβ(1) is ultimately periodic are called Parry numbers and
those such that dβ(1) is finite are called simple Parry numbers. If β is a Parry
number (simple or not), the minimal automatonMβ recognizing the set of factors
of F (Dβ) can easily be constructed (representations of this classical automatonMβ

can be found in [20] or [25]). Furthermore, let us recall that when β is assumed to
be Pisot, then β is either a Parry number or a simple Parry number, and (Xβ , S)
is sofic.

Bertrand numeration systems are characterized by the following theorem:

Theorem 45. [5] Let U be a positional number system over a finite alphabet. Then
U is a Bertrand numeration system if and only if there exists a real number β > 1
such that L = 0∗ repU (N) = F (Dβ). Furthermore, L is regular if and only if β is a
Parry number.

There is a natural way to associate a substitution σβ with the β-numeration
when β is a Parry number (simple or not). These substitutions will be called
in all what follows β-substitutions. The automaton Mσβ

associated with σβ , as
defined in Section 7, coincides with the minimal automaton Mβ which recognizes
F (Dβ). For more details, see [15, 45]. Let us note that dβ(1) cannot be purely
periodic, hence one has either d∗β(1) = (t1 · · · tn−1(tn− 1))ω with tn 6= 0 or d∗β(1) =

t1 · · · tn(tn+1 · · · tn+p)
ω , with tn 6= tn+p and n ≥ 1.

• Assume dβ(1) = (t1 · · · tn−1tn) with tn 6= 0 and thus d∗β(1) = (t1 · · · tn−1(tn−
1))ω. Consider the substitution σβ defined over the alphabet {1, 2, . . . , n}
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by:

σβ :





1 7→ 1t12
2 7→ 1t23
...

...
n− 1 7→ 1tn−1n
n 7→ 1tn .

• Assume dβ(1) = d∗β(1) = t1 · · · tn(tn+1 · · · tn+p)
ω , with tn+1 · · · tn+p 6= 0p

and tn 6= tn+p. Furthermore n ≥ 1. Consider the substitution σβ defined
over the alphabet {1, 2, . . . , n + p} by:

σβ :





1 7→ 1t12
2 7→ 1t23
...

...
n + p− 1 7→ 1tn+p−1(n + p)
n + p 7→ 1tn+p(n + 1).

We assume from now on that the positional number system U is a Bertrand
numeration associated with β Pisot number; thus L = 0∗ repU (N) = F (Dβ) is an
infinite regular language which satisfies (2). We still denote τL the odometer acting
on K. When β is a simple Parry number such that the length of dβ(1) coincides
with its degree, then the substitution σβ is of Pisot type since the characteristic
polynomial of its incidence matrix coincides with the minimal polynomial of β.
Hence, the results of Section 7.4 do apply.

We end now this section by proving that the odometer τL is continuous when β is
a Pisot number, contrarily to the positional number systems case where continuity
holds if and only if β is a simple Parry number (see [21] and [18]).

Proposition 46. Let β be a Pisot number and let L = F (Dβ). Then the odometer
τL is continuous on K.

Proof. We know from Proposition 30 that τL is continuous on K \Max(K).
Let (x, y) ∈ Max(K). Let us prove that for any sequence (x(n), y(n))n∈N with

values in K which converges toward (x, y), then τL(x(n), y(n))n∈N converges toward
0 = (ω0, ωq0). Let (x(n), y(n))n∈N be such a sequence. We assume furthermore
that for n large enough, then (x(n), y(n)) 6∈ Max(K). There exists a state q for
which there exist infinitely many integers k such that xkxk−1 · · ·x0 ∈ Max(Lq).
Let N be fixed. Let k ≥ N such that xkxk−1 · · ·x0 ∈ Max(Lq) with q = yk+1.

For n large enough, (x(n), y(n)) coincides on its first N values with (x, y) and

(x(n), y(n)) 6∈ Max(K). In particular, x
(n)
k x

(n)
k−1 · · ·x

(n)
0 ∈ Max(Lq), with q = y

(n)
k+1.

Since (x(n), y(n)) 6∈ Max(K), there exists a non-negative integer l > k such that

x
(n)
l x

(n)
l−1 · · ·x

(n)
0 6∈ Max(L

y
(n)
l+1

). Let l0 denote the smallest of these integers. The

successor in L
y
(n)
l0+1

of x
(n)
l0

x
(n)
l0−1 · · ·x

(n)
0 is (x

(n)
l0

+ 1)0l0 . Furthermore, any edge la-

beled by 0 inMβ leads to the initial state q0 (recall that the interested reader can

find a representation of Mβ in [20, 25]). Hence τL(x(n), y(n)) admits as a suffix
(0N , yN

0 ) for n large enough, which ends the proof. �

Let us illustrate on an example the main difference between the present situation
and the positional number system one, for what concerns continuity. We consider
Example 5 in [21].

Example 47. Let β be the Pisot number 3+
√

5
2 . One has dβ(1) = 2(1)ω, hence β

is a Parry number. The corresponding substitution σβ is defined as σβ(a) = aab,
σβ(b) = ab. The minimal automaton of the language L = F (Dβ) is depicted in
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Figure 5. One has Max(La) = {21n : n ∈ N} and Max(Lb) = {1n : n ∈ N}, hence

0,1

a b

2

0

1

Figure 5. The automaton accepting F (Dβ), with β = 3+
√

5
2 .

Max(K) = {(ω1, ωb)}, hence τL(ω1, ωb) = 0 = (ω0, ωa).
The odometer τU based on the associated positional number system U is not con-

tinuous on ω1. Indeed, let x(n) := ω(0)21n, for n ∈ N; the sequence (x(n))n∈N takes

its values in L̃ and converges to ω1. One has τU (x(n)) = ω(0)10n+1, which converges
to ω0, whereas τU (ω1) = ω12, hence the discontinuity of τU on ω1. Nevertheless,
for every given n, x(n) has a unique antecedent in K with respect to the projection
p1: one has p1(

ω(0)21n, ω(a)bn) = x(n); ω1 admits exactly two antecedents: one
has p1(

ω1, ωa) = p1(
ω1, ωb) = ω1. The sequence (ω(0)21n, ω(a)bn)n∈N converges

to (ω1, ωb); one checks that τL(ω(0)21n, ω(a)bn) = (ω(0)10n+1, ωa) which tends to
(ω0, ωa) = 0 = τL((ω1, ωb)). Notice furthermore that τL(ω1, ωa) = (ω12, ωab).

Remark 48. The sets K and L̃ are not in one-to-one correspondence. Indeed the
word ω0 admits several representations in K (see for instance Example 47 above
where the word ω0 admits as representations (ω0, ωa) or (ω0, ωban) for every n).
Hence we cannot deduce directly continuity results from Proposition 34. Let us
observe nevertheless that there is at most a countable number of antecedents to
elements of L̃ according to the projection p1 : K → L̃, (x, y) 7→ x, in the particular
situation described in the present section.

9. Real representation of the odometer

The aim of this section is to outline the first steps of a study of a geometric
representation of the dynamical system (K, τ). A geometric representation of the
dynamical system (K, τ) is a continuous map ϕ from K onto a geometric dynamical
system (Y, T ) such that ϕ◦ τ = T ◦ϕ, and on which there exists a partition indexed
by the alphabet A × Q such that every word (x, y) is the itinerary (represented
as a left-infinite sequence) of a point of (Y, T ) with respect to the partition. This
question is natural in the framework of arithmetics dynamics [41] : we will mainly
consider here situations where we “encode” rotations of the torus by producing
explicit arithmetic expansions of real numbers based on our abstract numeration
systems; see also see [31].

Let L be an arbitrary regular language satisfying (2). A first representation
which might be possible consists in extending the work of [24, 25, 37], where a
real value is attributed to limits of finite words for abstract numeration systems
built on an exponential regular language satisfying the following condition: there
exist β > 1 and P ∈ R[X ] such that for all states q ∈ Q, there exist some non-

negative real numbers aq such that limn→∞
uq(n)

P (n)βn = aq. (We recall that uq(n)

represents the number of words of length n in Lq.) We assume now that L̃ satisfies

this condition. (Clearly, if L is exponential then L̃ is also exponential because

#(L ∩ Σn) = #(L̃ ∩ Σn).) The main assumptions for building a representation

map rely therefore on the asymptotic behavior of the sequences
uq′ (n)

P (n)βn for all the

states q′ of the minimal automaton of L̃. Let v(n) denote the number of words of

length at most n in L (or in L̃), and valeL(w) the numerical value of w ∈ L̃, i.e., if
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valL̃(w) = n, then w is the (n+1)-th word of L̃. Let (x, y) ∈ K. Since x ∈ L̃, there

exists a sequence (wn)n∈N of words in L̃ which converges to x̃. The limit

lim
n→∞

valeL(wn)

v(|wn|)

does not depend on the choice of the sequence (wn)n∈N (see [24, Corollary 8]) and
is denoted by val∞(x). We thus can define a map r : K → R : (x, y) 7→ val∞(x). It
remains to explore the properties of such a representation map r.

We propose now a second possible geometric representation in the framework of
languages associated with substitutions. We continue here with the notation of Sec-
tion 7. A substitution is said unimodular if the determinant of its incidence matrix
equals±1. It is conjectured that for a Pisot unimodular substitution, the dynamical
system (Xσ, S), and hence (K, τ) according to Remark 43, is measure-theoretically
isomorphic to a rotation on the torus Td−1, where d denotes the cardinal of the
alphabet Σ. There are numerous families of substitutions for which this result is
known to hold true. For more details, see for instance Chap. 7 of [31]. One sim-
ple way to exhibit this rotation is to give a geometrical representation of (K, τ) as
explained in the next paragraph. We follow the formalism of [9, 10].

We assume now that σ is either a Pisot unimodular substitution (over the al-
phabet Σ of cardinal d), or that σ is a β-substitution associated to β Pisot unit
(of degree d), according to Section 8. Now L denotes either, in the first case,
the language associated with σ, as explained in Section 7, or L = F (Dβ), in the
second case. Let α1, . . . , αr denote the r real conjugates of β, and αr+1, . . . , αr+s,
αr+1,. . .,αr+s, denote its 2s complex conjugates (r+2s = d). Let us assume α1 > 1,
hence, |αi| < 1, for i ≥ 2.

We consider now eigenvectors either of the incidence matrix of σ for the substi-
tution case, or of the transpose of the adjacency matrix of the minimal automaton
ML recognizing L, in the beta-numeration case. Let ~v(1) be a left eigenvector as-
sociated with the eigenvalue α1 with coefficients in the field Q(α1). Let αk be an
eigenvalue and let ρk be the canonical morphism from Q(α1) onto Q(αk), extended

to Q(α1)
d. Let ~v(k) = ρk(~v(1)). For k, j = 1, · · · , d, v

(k)
j denotes the j-th coordinate

of ~v(k). We propose as a geometric representation of the set K in this framework
the following map ϕ : K → Rr−1 × Cs

(x, y) 7→

( ∑
i≥0 αi

2(v
(2)
δ(yi+1,0) + · · ·+ v

(2)
δ(yi+1,xi−1)), · · · ,

, · · · , αi
r+s(v

(r+s)
δ(yi+1,0) + · · ·+ v

(r+s)
δ(yi+1,xi−1))

)
.

The series involved are easily seen to converge. This map can be factorized as a
map on the torus. Indeed, let L denote the lattice

{
d∑

k=1

nk ~w(k) | nk ∈ Z,

d∑

k=1

nk = 0

}
,

where ~w(k) is the vector of Rr−1 × Cs whose coordinates are (v
(1)
k , · · · , v

(r+s)
k ).

Following [9, 10], the map

ϕL : K → (Rr−1 × Cs)/L ≡ Td−1, (x, y) 7→ ϕ(x, y) mod L

is well defined and continuous. Consider now the toral translation

T : (Rr−1 × Cs)/L→ (Rr−1 × Cs)/L : z 7→ z + ~w(1) mod L.

One checks that ϕL ◦ τ = T ◦ ϕL, and that ϕL is continuous and onto.
In particular, for some families of β-substitutions, this map is known to provide

a measure-theoretical isomorphism (this is the case in particular for numbers β
having the finiteness property (F) introduced in [19], which states that the set of
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non-negative real numbers with finite β-expansion coincides with the set of non-
negative elements of Z[1/β]). We deduce the following proposition from the results
of [19, 1] (see also [43, 44] for connected results):

Proposition 49. Assume that L = F (Dβ), where β > 1 is either

• the positive root of the polynomial Xm − t1x
m−1 − · · · − 1, where ti ∈ Z,

and t1 ≥ t2 ≥ · · · ≥ tm > 0,
• the dominant root of the polynomial Xm − t1x

m−1 − · · · − 1, where ti ∈ N,

and t1 >
∑d

i=2 |ti| > 0, and (t1, t2) 6= (2,−1),
• a cubic Pisot unit.

Then the map ϕL is one-to-one except on an at most countable number of points
and is a geometrical representation of (K, τ), the partition being given by the sets
ϕL({(x, y)| (x, y) ∈ K, y0 = q}), q ∈ Q.

Proof. The fact that ϕL is one-to-one except on an at most countable number of
points comes from [19] for the first case, and from [1] for the last two points. It
remains to prove that the sets ϕL{(x, y)| (x, y) ∈ K, y0 = q}, q ∈ Q are disjoint up
to sets of zero measure. This is a direct consequence of the fact that β-substitutions
satisfy the so-called strong coincidence condition, according to [2]. �

10. Some special cases

In [21], the odometer is defined on a set R of sequences of digits. Here, we have
introduced an odometer on a set K of pairs of infinite words. In this section, we
show that in some particular situations, we can restrict ourselves to unidimensional
sequences. So we exhibit hypothesis where the extra information given by the
sequence of states is useless. The interest relies on the fact that the odometer can

be directly defined on L̃, similarly to what occurs in the case of positional number
systems (Proposition 34).

Definition 50. Let d ≥ 1. A regular language L is said to be d-synchronizing if
there exists a function f : Ad → Q such that for any word w ∈ A∗ of length d
and any q ∈ Q, δ(q, w) is equal to f(w) (let us recall that δ denotes the transition
function of the minimal automaton of L). In other words, for any element (x, y) =
(x0x1 · · · , y0y1 · · · ) in K, for all i ≥ 0 the state yi is completely determined by
xi · · ·xi+d−1. A language is synchronizing if there exists a positive integer d such
that L is d-synchronizing. Otherwise stated, this means that y can be deduced from
x.

As a consequence, we obtain that the projection map p1 : K → L̃ (x, y) 7→ x is

injective, which implies, following Proposition 11, that both sets K and L̃ are in
one-to-one correspondence.

Example 51. Consider the language accepted by the automatonMσ depicted in
Figure 4 of Example 36. Here, we represent in Figure 6 the automatonMσ. This

0

1
0,2

a a
1 2

Figure 6. The automatonMσ.

language is 1-synchronizing. Indeed, assume that (x, y) is an element in K. The
factors possibly appearing in x are 00, 01, 02, 10, 20, 21 and 22. Actually, 11 and 12
cannot occur in x because no infinite path in the automaton depicted in Figure 6
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contains such a factor. Clearly, if xi ∈ {0, 2} then yi = a1 and if xi = 1 then
yi = a2.

Example 52. Continuing Examples 36 and 51, the language accepted by Mσ

depicted in Figure 4 is 1-synchronizing and we have the function

f : 0 7→ a1, 1 7→ a2, 2 7→ a1.

For this automatonMσ, we have δ(a1, 0) = δ(a2, 0) = f(0) = a1, δ(a2, 0) = f(1) =
a2, δ(a2, 1) is the sink, δ(a1, 2) = f(2) = a1 and δ(a2, 2) is also the sink.
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[30] G. Pǎun, A. Salomaa, Thin and slender languages, Discrete Appl. Math. 61 (1995), 257–270.
[31] N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lect. Notes in

Math. 1794, Springer-Verlag, Berlin, (2002).
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