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Abstra
t A substitution is a non-erasing morphism of the free monoid.

The notion of multidimensional substitution of non-
onstant length a
t-

ing on multidimensional words introdu
ed in [AI01,ABS04℄ is proved to

be well-de�ned on the set of two-dimensional words related to dis
rete

approximations of irrational planes. Su
h a multidimensional substitu-

tion 
an be asso
iated to any usual Pisot unimodular substitution. The

aim of this paper is to try to extend the domain of de�nition of su
h

multidimensional substitutions. In parti
ular, we study an example of

a multidimensional substitution whi
h a
ts on a stepped surfa
e in the

sense of [Jam04,JP04℄.

1 Introdu
tion

Sturmian words are known to be 
odings of digitizations of an irrational straight

line [KR04,LOTH02℄. One 
ould expe
t from a generalization of Sturmian words

that they 
orrespond to a digitization of a hyperplane with irrational normal

ve
tor. It is thus natural to 
onsider the following digitization s
heme 
orre-

sponding to the notion of arithmeti
 planes introdu
ed in [Rev91℄: this notion


onsists in approximating a plane in R
3
by sele
ting points with integral 
oor-

dinates above and within a bounded distan
e of the plane; more pre
isely, given

v ∈ R
3
, µ, ω ∈ R, the lower (resp. upper) dis
rete hyperplane P(v, µ, ω) is the

set of points x ∈ Z
d
satisfying 0 ≤ 〈x,v〉 + µ < ω (resp. 0 < 〈x,v〉 + µ ≤ ω).

Moreover, if ω =
∑

|vi| = |v|1, then P(v, µ, ω) is said to be standard.

In this latter 
ase, one approximates a plane with normal ve
tor v ∈ R
3
by

square fa
es oriented along the three 
oordinates planes; for ea
h of the three

kinds of fa
es, one de�nes a distinguished vertex; the standard dis
rete plane

P(v, µ, |v|1) is then equal to the set of distinguished verti
es; after proje
tion

on the plane x+ y + z = 0, along (1, 1, 1), one obtains a tiling of the plane with

three kinds of diamonds, namely the proje
tions of the three possible fa
es. One


an 
ode this proje
tion over Z
2
by asso
iating to ea
h diamond the name of the

proje
ted fa
e. These words are in fa
t three-letter two-dimensional Sturmian

words (see e.g. [BV00℄).
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A generalization of the notion of stepped plane, the so-
alled dis
rete surfa
es,

is introdu
ed in [Jam04℄. Roughly speaking, a dis
rete surfa
e is a union of

pointed fa
es su
h that the orthogonal proje
tion on the plane x + y + z = 0
indu
es an homeomorphism from the dis
rete surfa
e to the plane. As done

for stepped planes, one provides any dis
rete surfa
e with a 
oding as a two-

dimensional word over a three-letter alphabet. In the present paper, we 
all

dis
rete surfa
es stepped surfa
es, sin
e su
h obje
ts are not dis
rete, in the

sense, that they are not subsets of Z
3
.

Let us re
all that a substitution is a non-erasing morphism of the free monoid.

A notion of multidimensional substitution of non-
onstant length a
ting on mul-

tidimensional words is studied in [AI01,AIS01,ABI02,ABS04℄, inspired by the

geometri
al formalism of [IO93,IO94℄. These multidimensional substitutions are

proved to be well-de�ned on multidimensional Sturmian words. Su
h a multidi-

mensional substitution 
an be asso
iated to any usual Pisot unimodular substi-

tution. The aim of the present paper is to explore the domain of de�nition of

su
h generalized substitutions. For the sake of 
larity, we have 
hosen to work

out in full details the example of [ABS04℄. We prove that the image of a stepped

surfa
e under the a
tion of this multidimensional substitution is well-de�ned.

Our proofs will be based on a geometri
al approa
h. We then use the fun
tio-

nality and the proje
tion on the plane x+ y+ z = 0 along (1, 1, 1) to re
over the

orresponding results for multidimensional words.

We work here in the three-dimensional spa
e for 
larity issues but all the

results and methods presented extend in a natural way to R
n
.

2 Basi
 notions

2.1 One-dimensional substitutions

Let A be a �nite alphabet and let A⋆
be the set of �nite words overA. The empty

word is denoted by ε. A substitution is an endomorphism of the free-monoid A⋆

su
h that the image of every letter of A is non-empty. Su
h a de�nition naturally

extends to in�nite or biin�nite words in AN
and AZ

.

We assume A = {1, . . . , d}. Let σ be a substitution over A. The in
iden
e

matrix of σ, denoted Mσ = (mi,j)(i,j)∈{1,...,d}2
, is de�ned by:

Mσ = (|σ(j)|i)(i,j)∈{1,...,d}2 ,

where |σ(j)|i is the number of o

urren
es of i in σ(j).
Let ψ : A⋆ → N

d
, w 7→ (|w|i)i∈{1,··· ,d} be the Parikh mapping, that is, the

homomorphism obtained by abelianization of the free monoid. One has for every

w ∈ A⋆
, ψ(σ(w)) = Mσψ(w).

Example 1. Let σ : {1, 2, 3} −→ {1, 2, 3}⋆
be the substitution de�ned by σ : 1 7→

13, 2 7→ 1, 3 7→ 2. Then,

Mσ =





1 1 0
0 0 1
1 0 0



 .
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A substitution σ is said to be a Pisot substitution if the 
hara
teristi
 poly-

nomial of its in
iden
e matrix Mσ admits a dominant eigenvalue λ > 1 su
h

that all its 
onjugates α satisfy 0 < |α| < 1. The in
iden
e matrix of a Pisot

substitution is primitive [CS01℄, that is, it admits a power with positive entries.

Finally, a substitution is said to be unimodular if detMσ = ±1.
From now on, let σ denote a unimodular Pisot substitution over

the three-letter alphabet A = {1, 2, 3}.

2.2 Stepped planes

There are several ways to approximate planes by integer points [BCK04℄. Usually,

these methods 
onsist in sele
ting integer points within a bounded distan
e from

the 
onsidered plane. Su
h obje
ts are 
alled dis
rete planes.

Let {e1, e2, e3} be the 
anoni
al basis of R
3
. We 
all unit 
ube any translate

of the fundamental unit 
ube with integral verti
es, that is, any set x + C where

x ∈ Z
3
and C is the fundamental unit 
ube:

C =
{

λ1e1 + λ3e3 + λ3e3 | (λ1, λ2, λ3) ∈ [0, 1]3
}

.

Let P : 〈v,x〉 + µ = 0, with v ∈ R
3
+ and µ ∈ R. The stepped plane PP

asso
iated to P , also 
alled dis
rete plane in [ABS04℄, is de�ned as the union of

the fa
es of the integral 
ubes that 
onne
t the set {x ∈ Z
3 | 0 ≤ 〈v,x〉 + µ <

‖v‖1 =
∑

vi}. More pre
isely:

De�nition 1. [IO93,IO94℄ We 
onsider the plane P : 〈v,x〉 + µ = 0, with

v ∈ R
3
+ and µ ∈ R. Let CP be the union of the unit 
ubes interse
ting the open

half-spa
e of equation 〈v,x〉 + µ < 0. The stepped plane PP asso
iated to P is

de�ned by: PP = CP \
◦

CP , where CP (resp.

◦

CP) is the 
losure (resp. the interior)

of the set CP in R
3
, provided with its usual topology. The ve
tor v (resp. µ) is


alled the normal ve
tor (resp. the translation parameter) of the stepped plane

PP .

It is 
lear, by 
onstru
tion, that a stepped plane is 
onne
ted and is a union

of fa
es of unit 
ubes. In fa
t, by introdu
ing a suitable de�nition of fa
es, we


an des
ribe the stepped plane as a partition of su
h fa
es, as detailed below.

Let E1, E2 and E3 be the three following fundamental fa
es (see Figure 1):

E1 =
{

λe2 + µe3 | (λ, µ) ∈ [0, 1[2
}

,

E2 =
{

−λe1 + µe3 | (λ, µ) ∈ [0, 1[2
}

,

E3 =
{

−λe1 − µe2 | (λ, µ) ∈ [0, 1[2
}

.

For x ∈ Z
3
and i ∈ {1, 2, 3}, the fa
e of type i pointed on x ∈ Z

3
is the set

x + Ei. Let us noti
e that ea
h pointed fa
e in
ludes exa
tly one integer point,

namely, its distinguished vertex. As mentioned above we obtain:

Theorem 1. [BV00,ABI02℄ A stepped plane P is partitioned by its pointed

fa
es.
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Fig. 1. The three fundamental fa
es.

Finally, an easy way to 
hara
terize the type of a pointed fa
e in
luded in a

stepped plane is given by:

Theorem 2. Let v = (v1, v2, v3) ∈ R
3
+ and µ ∈ R. Let P = P(v, µ) be the

stepped plane with normal ve
tor v and translation parameter µ. Let I1 = [0, v1[,
I2 = [v1, v1 + v2[ and I3 = [v1 + v2, v1 + v2 + v3[. Then,

∀k ∈ {1, 2, 3}, ∀x ∈ P, x+ Ek ⊂ P ⇐⇒ 〈x,v〉 + µ ∈ Ik.

Let P0 be the diagonal plane of equation x+y+z = 0 and let π be the proje
tion

on P0 along (1, 1, 1).

Theorem 3. [ABI02℄ Let P be a stepped plane. The restri
tion πP of π from P

onto P0 is a bije
tion. Furthermore, the set of points of P with integer 
oordinates

is in one-to-one 
orrespondan
e with the latti
e Zπ(e1) + Zπ(e2).

This theorem allows us to 
ode a stepped plane P as a two-dimensional word

u ∈ {ψ, 2, 3}Z
2

as follows: for all (m,n) ∈ Z
2
, for i = 1, 2, 3, then

u(m,n) = i⇐⇒ π−1
P (mπ(e1) + nπ(e2)) + Ei ⊂ P.

2.3 Stepped surfa
es

It is thus natural to try to extend the previous de�nitions and results to more

general obje
ts:

De�nition 2. [Jam04℄ A 
onne
ted union S of pointed fa
es x+Ek, where x ∈
Z

3
and i ∈ {1, 2, 3}, is 
alled a stepped surfa
e if the restri
tion πS : S −→ P0

of π is a bije
tion.

A two-dimensional word u ∈ {1, 2, 3}Z
2

is said to be a 
oding of the stepped

surfa
e S if for all (m,n) ∈ Z
2
, for i = 1, 2, 3, then

u(m,n) = i⇐⇒ π−1
S (mπ(e1) + nπ(e2)) + Ei ⊂ S.

In parti
ular, a stepped plane is a stepped surfa
e, a

ording to what pre-


edes.
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Fig. 2. A pie
e of a stepped surfa
e and its two-dimensional 
oding.

3 Generalized substitutions a
ting on fa
es of a stepped

plane

The aim of this se
tion is to re
all the notion of generalized substitution a
ting

on fa
es of a stepped plane [AI01,AIS01,Pyt02℄.

Let σ denote a unimodular Pisot substitution over the three-letter alphabet

A = {1, 2, 3}. Let Mσ be its in
iden
e matrix, and let α, λ1, λ2 denote its eigen-

values with α > 1 > |λ1| ≥ |λ2| > 0. Let P be the 
ontra
ting plane of Mσ, that

is, the real plane generated by the eigenve
tors asso
iated to λ1, λ2.

Sin
e the in
iden
e matrix of a Pisot substitution is primitive [CS01℄, then,

a

ording to Perron-Frobenius Theorem, the eigenvalue α admits a positive

eigenve
tor v. Let us denote by Pσ the stepped plane with normal ve
tor v

and translation parameter µ = 0.

Example 2. We 
ontinue Example 1. The 
hara
teristi
 polynomial of Mσ is

x3 − x2 − 1; it admits one eigenvalue α > 1 (whi
h is known as the se
ond

smallest Pisot number), and two 
omplex 
onjugate eigenvalues of modulus

stri
tly smaller than 1. The 
ontra
ting plane of Mσ is the plane with equa-

tion α2x+ αy + z0.

De�nition 3. [IO93,IO94,ABI02,ABS04℄ Let σ be a unimodular substitution

over the three-letter alphabet A = {1, 2, 3}. Let Pσ be the stepped plane asso
iated

to σ. The generalized substitution Σσ asso
iated to σ is de�ned as follows:

Σσ(x + Ei) =

3
⋃

k=1

⋃

P
σ(k)=P iS



M−1
σ



x − ψ(P ) −

i
∑

j=1

ej







 +

k
∑

j=1

ej + Ek

Example 3. Let σ : 1 7→ 13, 2 7→ 1, 3 7→ 2. Then,

Σσ : x + E1 7→
(

M−1
σ x + e1 − e2 + E1

)

∪
(

M−1
σ x + e1 + E2

)

,

x + E2 7→M−1
σ x + e1 + E3,

x + E3 7→M−1
σ x − e2 − e3 + E1.
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In 
ombinatorial terms, Σσ 
an be 
oded as

1 7→
2
1

2 7→ 3 3 7→ 1.

Let r = r(m,n) = −⌈(α2m+ αn)/(α2 + α+ 1)⌉ + 1. One has:

((m,n), 1) 7→ ((1 − n,m− n− r(m,n) − 1), 1) + ((1 − n,m− n− r(m,n)), 2)
((m,n), 2) 7→ ((1 − n,m− n− r(m,n)), 3)
((m,n), 3) 7→ ((1 − n,m− n− r(m,n)), 1).

Theorem 4. [AI01℄ Let σ be a unimodular Pisot substitution over the three-

letter alphabet A = {1, 2, 3}, let Pσ be the stepped plane asso
iated to σ and let

Σσ be the generalized substitution asso
iated to σ.

i) Two distin
t fa
es have disjoint images under Σσ.

ii) The generalized substitution Σσ maps any pattern of Pσ (that is, any �nite

union of fa
es of Pσ) on a pattern of Pσ.

iii) Σσ(Pσ) ⊆ Pσ.

Sin
e Σσ is well-de�ned on Pσ (a

ording to Theorem 4 i)), and sin
e Pσ is

invariant under the a
tion of Σσ, it is natural to investigate the a
tion of Σσ on

any stepped plane. More pre
isely, given a stepped plane P(v, µ), 
an we extend

the domain of de�nition of the generalized substitution Σσ to the patterns of

P(v, µ)? In fa
t:

Theorem 5. Let σ be a unimodular Pisot substitution, let Mσ be its in
iden
e

matrix, and let Σσ be the generalized substitution asso
iated to σ.
For any stepped plane P(v, µ) with v ∈ R

3
+, one has:

i) The images of two distin
t pointed fa
es of P(v, µ) by Σσ are disjoint.

ii) The image of P(v, µ) is in
luded in the stepped plane P(tM · v, µ):

Σσ(P(v, µ)) ⊆ P(tM · v, µ)

Proof (Sket
h). The proof is based on the same ideas as in the proof of Lemma 2

and 3 in [AI01℄. It mainly uses the following geometri
 interpretation of Theorem

2: a pointed fa
e x+Ei is in
luded in P(v, µ) if and only the point x+
∑i−1

k=1 ek

is above the plane 〈v,x〉+µ = 0 while the point x+
∑i

k=1 ek is below the latter.

4 Generalized substitutions a
ting on fa
es of a stepped

surfa
e

4.1 The general 
ase

Sin
e the image of a stepped plane by a generalized substitution is a subset of a

stepped plane, it is interesting to investigate the a
tion of generalized substitu-

tions over a more general 
lass of stepped objets, namely, the stepped surfa
es.

In fa
t,
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Theorem 6. Let S be a stepped surfa
e. Let σ be a unimodular Pisot substitu-

tion over the three-letter alphabet {1, 2, 3} and let Σσ be the asso
iated general-

ized substitution. Then, the image of two distin
t pointed fa
es of S are disjoint.

Furthermore, the restri
tion πΣσ(S) : Σσ(S) −→ P0 is 1-1.

Proof (Sket
h). We �rst noti
e that given two fa
es x+Ei and y+Ej , then there

exists a stepped plane P with positive normal ve
tor 
ontaining simultaneously

x + Ei, y + Ej and z + Ek. We then apply Theorem 5.

In other words, it remains to prove that πΣσ(S) is onto and that Σσ(S) is a

onne
ted union of fa
es to dedu
e that Σσ(S) is a stepped surfa
e a

ording

to De�nition 2. Let us investigate this problem in the parti
ular 
ase of the

generalized substitution Σσ asso
iated to the substitution σ : 1 7→ 13, 2 7→
1, 3 7→ 2.

4.2 The parti
ular 
ase of σ : 1 7→ 13, 2 7→ 1, 3 7→ 2.

In the present se
tion, σ denotes the substitution σ : 1 7→ 13, 2 7→ 1, 3 7→ 2
whereas Σσ is the generalized substitition asso
iated to σ:

Σσ : x + E1 7→
(

M−1
σ x + e1 − e2 + E1

)

∪
(

M−1
σ x + e1 + E2

)

,

x + E2 7→M−1
σ x + e1 + E3,

x + E3 7→M−1
σ x − e2 − e3 + E1.

Let us show that for this substitution, then the image of a stepped surfa
e

is still a stepped surfa
e. First, given a two-dimensional word u ∈ {1, 2, 3}Z
2

, we


all hook-word a fa
tor of u with the following shape (see Fig. 3):

PSfrag repla
ements

m

n

Fig. 3. Hook-shape.

The set of hook-words of u with a hook-shape is 
alled the hook-language

of u. In [Jam04,JP04℄, the authors redu
ed the re
ognition problem of the two-

dimensional words 
oding dis
rete surfa
es to a hook re
ognition problem. More

pre
isely,

Theorem 7. [Jam04,JP04℄ Let u ∈ {1, 2, 3}Z
2

. Then u is a 
oding of a dis
rete

surfa
e in the sense of De�nition 2 if and only if the hook-language of u is

in
luded in the following set of patterns (see Fig. 4).
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Fig. 4. Left: The permitted hook-words. Right: The 3-dimensional representation of

the permitted hook-words.

We 
onversely asso
iate to ea
h permitted hook-word its 3-dimensional rep-

resentation as a 
onne
ted union of fa
es as depi
ted in Figure 4: the 
oding of

any o

urren
e of this 3-dimensional representation in a stepped surfa
e is equal

to the 
orresponding hook-word.

Proposition 1. The image by Σσ of all the 3-dimensional representations of

the permitted hooks (see Fig. 5) are 
onne
ted in R
3
.

(a) (b) (
) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5. The image of the permitted hooks by Σσ.

We then dedu
e that:

Theorem 8. The image of a stepped surfa
e S by Σσ is 
onne
ted and the

restri
tion of the proje
tion map π to the latter is inje
tive. Furthermore, all the

hook-words o

urring in the 
oding with respe
t to the inje
tive proje
tion πΣσ(S)

(see Theorem 6) are permitted hook-words.
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Proof (Sket
h). A

ording to Theorem 6, the image of a stepped surfa
e by

Σσ is well-de�ned. The 
onne
tedness follows from Proposition 1. Consider now

a union H of three fa
es whose 
oding a

ording to the inje
tive proje
tion

πΣσ
(S) (see Theorem 6) is a hook-word UH . There exist (at most) three fa
es of

whi
h the union of the images by Σσ 
ontains H . One 
he
ks that the distan
e

(de�ned as d(v,w) = |w−v|1) between the distinguished verti
es of those fa
es

is uniformly bounded. By performing a �nite 
ase study, one 
he
ks that the

hook-word UH is permitted.

(a) S (b) Σσ(S).

(
) Σ
2

σ
(S).

Fig. 6. A pie
e of a non-planar stepped surfa
e S and 2 iterations by Σσ.

Remarks. Given a stepped surfa
e S 
ontaining the unit 
ube

{e1 + E1, e1 + e2 + E2, e1 + e2 + e3 + E3, }, then the sequen
e of stepped
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surfa
es (Σn
σ (S))n∈N seems to 
onverge towards the stepped plane Pσ (see Fig.

6); to be more pre
ise, the limit points of the sequen
e (Σn
σ (S))n∈N are subsets

of Pσ. We will investigate these 
onvergen
e results and more generally, the

possibility of extension of the domain of de�nition of these multidimensional

substitutions to any stepped surfa
e in a subsequent paper. Let us note that

this study 
an also be applied to obtain an e�
ient generation methods of

stepped planes and surfa
es.
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