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Abstract. Given a finite set S of unimodular Pisot substitutions, we
provide a method for characterizing the infinite sequences over S that
allow to generate a full discrete plane when, starting from a finite seed,
we iterate the multidimensional dual substitutions associated with S. We
apply our results to study the substitutions associated with the Brun
multidimensional continued fraction algorithm.

1 Introduction
The study of Pisot substitutions has been initiated by Rauzy [18] and has led
to many developments in several domains, including combinatorics on words,
symbolic dynamics, fractal topology and number theory [12,6].

Dual substitutions, introduced by Arnoux and Ito [1] have proven to be a
very powerful combinatorial tool in several contexts (see, e.g., [6]). Intuitively, a
3-letter substitution σ acts on broken lines made of translated unit vectors in Z3,
and its dual E?

1(σ) acts on 2-dimensional unit faces in Z3; see Definition 2.4.
A striking fact is that the image by a dual substitution of a discrete plane

remains a discrete plane. This link between substitutions and discrete planes
leads us to our main concern: given a finite patch V (a seed) of a discrete plane,
iterating dual substitutions starting from V yields finite patches of increasing
size. When does this procedure generate a whole discrete plane?

A finite seed of particular interest is U := (the largest pattern included in
every discrete plane, see Remark 2.6). The above question with V = U has many
equivalent formulations and implications, which constitutes our main motivation
for this work, as described in Section 1.1.

Our results Let σBrun
1 , σBrun

2 , σBrun
3 be the substitutions associated with the Brun

continued fraction algorithm. In this paper, we obtain in Theorem 5.2:
– The existence of a finite seed V from which iterating E?

1(σBrun
in

) generates a
whole discrete plane, for every Brun-admissible sequence (in)n>0.

– A characterization the sequences (in)n>0 for which the seed V = U is not
sufficient to generate a whole discrete plane when iterating the E?

1(σBrun
in

).
The methods we use are generic and allow the study of other families than

the Brun substitutions. Note that the above properties are easy to check for a
given single substitution σ [6]. Our main contribution is to extend such results to
infinite families of substitutions obtained as arbitrary products from a finite set.



1.1 Motivation and applications
The work presented in this article is motivated by the following consequences
(and equivalent formulations) of our results. Establishing these links in detail will
be the subject of a forthcoming article.

Multidimensional Sturmian sequences One-dimensional Sturmian sequences can
be defined as the coding (in {1, 2}Z) of the discretization of a line in the plane.
They can also be described as the infinite sequences generated by iterating the
substitutions 1 → 1, 2 → 21 and 1 → 12, 2 → 2 (see [12, Chapter 6]). We
generalize this result to two-dimensional Sturmian sequences, that is, discrete
planes coded in {1, 2, 3}Z2 . The link between a discrete plane of normal vector v
and substitutions can be made thanks to the multidimensional continued fraction
expansion of v (as it is done for Sturmian sequences with the classical continued
fraction algorithm). We use the Brun algorithm for this purpose.

Symbolic dynamics The subshift associated with a unimodular Pisot substitution
σ has pure discrete spectrum if and only if the patches generated by iterating
the dual substitution E?

1(σ) on U cover balls of arbitrarily large radius [16,6].
The Pisot conjecture states that this is always the case. Our present results allow
us to prove this property for some infinite families defined by finite products
of substitutions over a finite set. (It remains to prove that, in the case where a
whole plane is not generated from U , some arbitrarily large balls are still covered
somewhere.)

Topology of Rauzy fractals The periodic sequences of substitutions that fail to
generate a whole plane correspond precisely to the finite products of substitutions
whose Rauzy fractal does not contain 0 as an interior point (see [5,20]). Moreover,
our results imply that the Rauzy fractal associated with a finite product of
substitutions is always connected.

Number theory Generating arbitrarily large patches of a discrete plane allows us
to approximate its normal vector. We hence obtain proofs of convergence for the
associated multidimensional continued fraction algorithms if the substitutions
have been chosen accordingly, see Corollary 5.3.

Generating a whole discrete plane can be seen as an analog of the finiteness
property in β-numeration (see the extended (F) property in [5]). Such properties
have already been proved for some infinite families of algebraic numbers (see for
example [13]).

We are also able to associate fractal tiles with every real cubic number field,
thanks to a result by Paysant-Le-Roux and Dubois [17] and a similar study of
the Jacobi-Perron algorithm.

S-adic systems The study of the dynamical systems and the fractal tiles associated
with arbitrary infinite products (S-adic sequences) is still at its beginnings. It is
for example not completely understood in what cases an S-adic sequence can be
associated with a fractal tile. Our tools provide a starting point for the study of
such systems, as initiated in [7].
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1.2 Methods

Ito and Ohtsuki [15] initiated the study of the generation of discrete planes with
substitutions, while investigating properties of the Jacobi-Perron algorithm. Their
main argument is to prove that some topological annuli are preserved under the
image by a substitution, and that these annuli grow to a whole discrete plane
when the substitutions are iterated.

We use the same approach in Section 4, but with additional combinatorial
restrictions (strong coverings) introduced in Section 2.3 that are crucial in order
to prove the annulus property (the fact that the image of an annulus remains an
annulus). We introduce a combinatorial criterion, Property A (Definition 4.1),
which allows for more systematic proofs.

The algorithmic methods developed in Section 3 (the generation graph, Defi-
nition 3.1) provide powerful tools to manage the complicated behaviour of the
growth of the patterns, without having to deal with numerous cases by hand.

The main steps of our argument are:

1. Choose good substitutions and good patterns for strong coverings. Describe
all the possible minimal strongly-covered annuli. (Section 2.2.)

2. Construct generation graphs, both to prove that a first annulus is generated,
but also to characterize the sequences that fail to generate whole discrete
planes. (Section 3.)

3. Prove that annuli are preserved by substitutions. (Section 4.)

Many of the computational tasks performed in Sections 3 and 4 have been
performed using the Sage mathematics software.

1.3 Related works

The study of the Jacobi-Perron substitutions in this context was initiated in [15].
Arnoux-Rauzy substitutions have been treated in [3] and [4] (for them the seed
U is always enough). The Modified Jacobi-Perron algorithm is studied in [14]
and the substitutions associated with the ordered fully subtractive algorithm
have been used in [8] for other (discrete geometrical) purposes.

Our work focuses on the case where the coordinates of the normal vector of
the discrete plane are linearly independent over Q. The case of rational vectors
has been treated by Fernique [11].

Let us note also that depending on the substitutions studied, our techniques
can fail to work if the topological features of the generated patterns are too
complicated (for example if many holes appear). This is the case for example
with the Selmer algorithm (which is described in [19]).

Acknowledgements This work was supported by Agence Nationale de la Recherche
through project Fractals and Numeration ANR-12-IS01-0002. and project Kidico
ANR-2010-BLAN-0205.
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2 Preliminaries

2.1 Discrete planes and substitutions

Before defining discrete planes we introduce faces [x, i]?, which are defined by

[x, 1]? = {x + λe2 + µe3 : λ, µ ∈ [0, 1]} =
[x, 2]? = {x + λe1 + µe3 : λ, µ ∈ [0, 1]} =
[x, 3]? = {x + λe1 + µe2 : λ, µ ∈ [0, 1]} =

where i ∈ {1, 2, 3} is the type of [x, i]?, and x ∈ Z3 is the vector of [x, i]?.

Definition 2.1 (Discrete plane). Let v ∈ R3
>0. The discrete plane Γv of

normal vector v is the union of faces [x, i]? satisfying 0 6 〈x,v〉 < 〈ei,v〉.

More intuitively, Γv can also be seen as the boundary of the union of the
unit cubes with integer coordinates that intersect the lower half-space {x ∈ R3 :
〈x,v〉 < 0}.

Remark 2.2. We will often use the arithmetic restrictions of Definition 2.1 in
order to simplify the combinatorics of the patterns that appear in a discrete
plane of normal vector v = (v1, v2, v3). For example, if v1 6 v3 and v2 6 v3, then
Γv cannot contain any translate of the two-face pattern [0, 1]? ∪ [(0, 1, 0), 1]? =

or [0, 2]? ∪ [(0, 0, 1), 2]? = . If moreover v1 6 v2, then the pattern [0, 1]? ∪
[(0, 1, 0), 1]? = also never appears.

Definition 2.3 (Substitution). Let A = {1, . . . , n} be a finite set of symbols.
A substitution is a non-erasing morphism of the free monoid A?, i.e., a function
σ : A? → A? such that σ(uv) = σ(u)σ(v) for all words u, v ∈ A?, and such that
σ(a) is non-empty for every a ∈ A.

The incidence matrix Mσ of σ is the matrix of size n × n defined by
Mσ = (mij), where mi,j is the number of occurrences of the letter i in σ(j). A
substitution σ is unimodular if det Mσ = ±1.

Definition 2.4 (Dual substitution). Let σ be a unimodular substitution. The
dual substitution E?

1(σ) is defined by

E?
1(σ)([x, i]?) =

⋃
(p,j,s)∈A?×A×A? : σ(j)=pis

[M−1
σ (x + `(s)), j]?,

where ` : w 7→ (|w|1, . . . , |w|n) ∈ Z3 is the abelianization map and |w|i denotes
the number of occurrences of i in w. We extend the above definition to any union
of faces: E?

1(σ)(P1 ∪ P2) = E?
1(σ)(P1) ∪E?

1(σ)(P2).

Note that for every face [x, i]? we have E?
1(σ)([x, i]?) = M−1

σ x+E?
1([0, i]?), which

implies the linearity E?
1(σ). We also have E?

1(σ ◦ σ′) = E?
1(σ′) ◦E?

1(σ) for every
unimodular σ and σ′ [1]. The next proposition establishes a fundamental link
between discrete planes and E?

1 maps.
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Proposition 2.5 ([1,10]). Let Γv be a discrete plane and σ be a unimodular
substitution. We have:
1. E?

1(σ)(Γv) is the discrete plane ΓtMσv.
2. If f, g ∈ Γv are distinct, then E?

1(σ)(f)∩E?
1(σ)(g) does not contain any face.

Remark 2.6. The pattern U = [0, 1]? ∪ [0, 2]? ∪ [0, 3]? = is included in every
discrete plane because the coordinates of the normal vector of a discrete plane
are assumed to be positive.

2.2 The Brun algorithm
Let v ∈ R3

>0 such that v = (v1, v2, v3) and v1 6 v2 6 v3. The algorithm of Brun
[9] is one of the possible natural generalizations of Euclid’s algorithm: subtract
the second largest component of v to the largest, and iterate. Here we reorder
the coordinates at each step, so that the condition v1 6 v2 6 v3 always holds.
More formally:

v 7→


(v1, v2, v3 − v2) if v1 6 v2 6 v3 − v2

(v1, v3 − v2, v2) if v1 6 v3 − v2 6 v2

(v3 − v2, v1, v2) if v3 − v2 6 v1 6 v2.

Iterating this map yields an infinite sequence of vectors v0 = v,v1,v2, . . . and
the algorithm can be rewritten in matrix form: vn = Minvn−1 for every n > 1,
where

M1 =

1 0 0
0 1 0
0 −1 1

 M2 =

1 0 0
0 −1 1
0 1 0

 M3 =

0 −1 1
1 0 0
0 1 0


and in ∈ {1, 2, 3}. This allows us to define the Brun expansion of v as the infinite
sequence (in)n>1 obtained above. It enjoys the following nice property.
Proposition 2.7 ([9]). The Brun expansion (in)n>1 of v ∈ R3

>0 contains in-
finitely many 3’s if and only if v is totally irrational.

We now define some substitutions associated with the Brun algorithm.

σBrun
1 :

1 7→ 1
2 7→ 2
3 7→ 32

σBrun
2 :

1 7→ 1
2 7→ 3
3 7→ 23

σBrun
3 :

 1 7→ 2
2 7→ 3
3 7→ 13

and ΣBrun
i = E?

1(σBrun
i ). The maps ΣBrun

1 , ΣBrun
2 , ΣBrun

3 are respectively given by

[0, 1]? 7→ [0, 1]?
[0, 2]? 7→ [0, 2]? ∪ [0, 3]?
[0, 3]? 7→ [(0, 1, 0), 3]?

[0, 1]? 7→ [0, 1]?
[0, 2]? 7→ [(0, 1, 0), 3]?
[0, 3]? 7→ [0, 2]? ∪ [0, 3]?

[0, 1]? 7→ [(0, 1, 0), 3]?
[0, 2]? 7→ [0, 1]?
[0, 3]? 7→ [0, 2]? ∪ [0, 3]?

,

or more graphically

ΣBrun
1 :


7→
7→
7→

ΣBrun
2 :


7→
7→
7→

ΣBrun
3 :


7→
7→
7→

.
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2.3 Coverings and strong coverings

We call a pattern any finite union of faces. In the definitions below, L will always
denote a set of patterns which is closed by translation of Z3, so we will define
such sets by giving only one element of each translation class. The following set
of patterns will be used throughout this article:

LBrun =
{

, , , , , , ,
}
.

We now introduce L-coverings and strong L-coverings, which are the combinatorial
tools we will use in order to prove the annulus property in Section 4.

Definition 2.8 (L-covering). Let L be a set of patterns. A pattern P is L-
covered if for all faces e, f ∈ P , there exist patterns Q1, . . . , Qn ∈ L such that

1. e ∈ Q1 and f ∈ Qn;
2. Qk ∩Qk+1 contains at least one face, for all k ∈ {1, . . . , n− 1};
3. Qk ⊆ P for all k ∈ {1, . . . , n}.

Proposition 2.9 ([15]). Let P be an L-covered pattern, Σ be a dual substitution
and L be a set of patterns such that Σ(Q) is L-covered for every Q ∈ L. Then
Σ(P ) is L-covered.

Definition 2.10 (Strong L-covering). A pattern P is strongly L-covered if P
is L-covered and if for every pattern X ⊆ P that is edge-connected and consists
of two faces, there exists a pattern Y ∈ L such that X ⊆ Y ⊆ P .

Proposition 2.11 (Brun strong covering). Let P be an LBrun-covered pattern
such that the patterns , and do not occur in P . Then ΣBrun

i (P ) is strongly
LBrun-covered for i ∈ {1, 2, 3}.

Proof (Sketch). First, ΣBrun
i (P ) is LBrun-covered thanks to Proposition 2.9, be-

cause ΣBrun
i (Q) is LBrun-covered for every Q ∈ LBrun (there are 24 patterns to

check). To prove that ΣBrun
i (P ) is strongly LBrun-covered, we can enumerate the

preimages by Σi of all the two-face connected patterns X to check that there is
always a suitable Y ∈ LBrun that satisfies the requirements of Definition 2.10. ut

2.4 Minimal annuli

Definition 2.12 (L-annulus). An L-annulus of a pattern P is a pattern A
such that A is strongly L-covered and P ∩ ∂(P ∪A) = ∅.

Example 2.13. Let A1, A2 and A3 be defined by

A1 ∪ U = A2 ∪ U = A3 ∪ U = ,

where U is shown in dark gray and the other faces are the Ai. We have:
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– A1 is not an annulus of U because it does not satisfy U ∩ ∂(U ∪A1) = ∅ (U
is not well surrounded).

– A2 is not an LBrun-annulus of U because of the two-face pattern X =
depicted in white: the only pattern in LBrun that contains X is Y = , but
it cannot be included in A2 so A2 is not strongly LBrun-covered.

– A3 is an LBrun-annulus of U .

Proposition 2.14 (Brun minimal annuli). Let A be an LBrun-annulus of U
that is included in a discrete plane of normal vector v with v1 < v2 < v3. Then
A contains one of the following two LBrun-annuli ABrun

1 or ABrun
2 (shown in light

gray) of U (shown in dark gray):

ABrun
1 ∪ U = ABrun

2 ∪ U = .

Proof (Sketch). This proposition can be proved by enumerating all the possible
surroundings of U of “thickness 1”, and by doing a case analysis on the problematic
patterns that appear using the definition of LBrun. ut

Example 2.15. Let P be a pattern equal to the union of [0, 3]?∪[(1, 0,−1), 2]?∪
[(0, 1,−1), 1]? (in dark gray) and some other faces in light gray.

P = ΣBrun
1 ΣBrun

2 (P ) =

The images of the annulus in light gray fail to be annuli. However, the annulus
in P is not strongly LBrun-covered, which shows the need for strong coverings if
we want the image of an annulus to remain an annulus.

The substitutions above are chosen in such a way that Mi = tM−1
σBrun
i

for
i ∈ {1, 2, 3}, which allows us to define the sequence of pattern we will use to
generate the discrete plane Γv, as described by the proposition below.

Proposition 2.16. Let v ∈ R3
>0 and (in)n>1 be its Brun expansion. We have

Σi1 · · ·Σin(V) ⊆ Γv for all n > 1, where V = U , or V = U ∪ABrun
1 (if i1 ∈ {1, 2}),

or V = U ∪ ABrun
2 (if i1 = 3).

Proof. Since we have v = M−1
i1
· · ·M−1

in
vn, and tMσBrun

in
= M−1

in
, and since

V ⊆ Γvn , it follows from Proposition 2.5 that Σi1 · · ·Σin(V) ⊆ Σi1 · · ·Σin(Γvn) =
ΓtM

σBrun
i1
···tM

σBrun
in

vn = Γv. ut
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3 Generation graphs

We fix the following notation for this section:

– Σ1, . . . , Σk are dual substitutions,
– X and Y are finite sets of faces,
– F is an infinite family of faces.

We want to characterize the sequences (i1, . . . , in) ∈ {1, . . . , k}n and the faces
f ∈ Y such that f cannot be reached by iterating Σi1 , . . . , Σin starting from the
“seed” X . Our approach below is to recursively track all the possible preimages of
the faces in Y, by constructing a generation graph providing us with the desired
characterization. The set F is used as a filter, in order to make the generation
graph as simple as possible by eliminating some useless faces.

Definition 3.1. The generation graph is defined by G =
⋃
n∈N Gn (an increasing

union which is not always finite), where (Gn)n∈N is the sequence of directed
graphs defined by induction as follows.

1. Initialization. G0 has no edges and its set of vertices is Y.
2. Iteration. Suppose that Gn is constructed for some n > 0. Start with Gn+1

having the same vertices and edges as Gn. Then, for each vertex f of Gn, for
each i ∈ {1, . . . , k} and for each g ∈ F such that f ∈ Σi(g), add the vertex g
and the edge g i→ f to Gn+1.

Proposition 3.2. Let G be the graph defined in Definition 3.1, let f0 ∈ G be a
face and let (i1, . . . , in) ∈ {1, . . . , k}n. Consider the following two statements.

1. f0 /∈ Σi1 · · ·Σin(X ).
2. There exists a path fn

in→ · · · i2→ f1
i1→ f0 in G with fn /∈ X .

We have:

(i) (1) ⇒ (2) if for every f ∈ F and every i ∈ {1, . . . , k}, there exists g ∈ F
such that f ∈ Σi(g).

(ii) (2) ⇒ (1) if X = U and if every face of F belongs to a discrete plane.

Proof. (i). The assumption in (i) implies that a path fn
in→ · · · i2→ f1

i1→ f0 must
exist in G. By (1), we cannot have have fn ∈ X , which proves the first implication.

(ii). Let P = Σi1 · · ·Σin(fn), g ∈ X and Q = Σi1 · · ·Σin(g). By the assump-
tion in (ii), fn and g must belong to a common discrete plane because g ∈ U ,
fn belongs to a discrete plane and U is included in every discrete plane. Hence,
Proposition 2.5 implies the patterns P and Q do not have any face in common.
It follows that f0 /∈ Σi1 · · ·Σin(g) for every g ∈ X . ut

Remark 3.3. Part (i) of Proposition 3.2 will be used to obtaine “positive”
results, such as proving that a given seed always generate a full discrete plane
(see Lemma 3.5, Proposition 5.1 and Theorem 5.2 (1)). Conversely, part (ii) will
be used to characterize which sequences do not generate a full discrete plane (see
Lemma 3.4 and Theorem 5.2 (2)).
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Generation graphs for Brun We now consider substitutions ΣBrun
1 , ΣBrun

2 , ΣBrun
3 .

We will take the filter FBrun to be the set of all the faces f that belong to a
discrete plane Γ(v1,v2,v3) with 0 < v1 < v2 < v3. We use Definition 3.1 to compute
the following graphs.
– The graph GBrun is obtained by starting with Y = ABrun

1 ∪ ABrun
2 . Its compu-

tation stops after two iterations of the algorithm. It has 19 vertices and 47
edges. We will use it below with X = U .

– The graph HBrun is obtained by starting with Y equal to the set of faces of
all the possible minimal LBrun-annuli of ABrun

1 and ABrun
2 (a total of 60 faces).

Its computation stops after six iterations of the algorithm. It has 101 vertices
and 240 edges. We will use it below with X = U ∪ ABrun

1 or U ∪ ABrun
2 .

Lemma 3.4. The graph GBrun verifies (i) and (ii) of Proposition 3.2 with X = U .
Lemma 3.5. The graph HBrun verifies item (i) of Proposition 3.2, both with
X = U ∪ ABrun

1 and X = U ∪ ABrun
2 .

Proof. For both lemmas we have to check that the assumption in (i) is satisfied.
Let f ∈ FBrun and let i ∈ {1, 2, 3}. Because f ∈ FBrun, there exists v = (v1, v2, v3)
such that 0 < v1 < v2 < v3 and f ∈ Γv. By Proposition 2.5 and by definition of
the Brun algorithm (Section 2.2), we have Γv = ΣBrun

i (Γw), where w = tM−1
σBrun
i

v.
We have 0 < w1 < w2 < w3, so all the faces of Γw belong to FBrun, so there
exists a face g ∈ FBrun such that f ∈ Σi(g) because f ∈ Γv = Σi(Γw). Finally
(for Lemma 3.5 only), the assumptions required in (ii) trivially hold. ut

In Section 5 we will need to consider only the infinite paths in GBrun and
HBrun that contain infinitely many edges labelled by 3, and that avoid X . In the
case of HBrun, there turns out to be no such infinite path, which is the key point
to prove Proposition 5.1. However GBrun is more interesting, and removing all the
vertices which are not contained in such a path yields the following graph.

fa fb fc

fd fe ff

fg

fh

fi

1

1
1

1

2

2

3

33

2

3

2

1

3

1

2

3

The faces corresponding to the vertices of the graph are

fa = [(1, 1,−1), 1]? fd = [(−1, 1, 0), 2]? fg = [(−1, 0, 1), 2]?

fb = [(1,−1, 1), 3]? fe = [(−1, 0, 1), 3]? fh = [(−1,−1, 1), 3]?

fc = [(1, 1,−1), 2]? ff = [(−1, 1, 0), 3]? fi = [(1, 1,−1), 3]?.
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4 The annulus property

Definition 4.1 (Property A). Let Σ be a dual substitution and let L be a
set of edge-connected patterns. Property A holds for Σ with L if for all faces
f, g, f0, g0 such that f ∈ Σ(f0), g ∈ Σ(g0), f ∪ g is connected and f0 ∪ g0 is
disconnected, there cannot exist a pattern P and an L-annulus A of P which
are included in a common discrete plane Γ such that f0 ∈ P , g0 /∈ A ∪ P , and
f0 ∪ g0 ⊆ Γ and f ∪ g ⊆ Σ(Γ ).

Proposition 4.2. Let Σ be a dual substitution and L be a set of edge-connected
patterns such that Property A holds for Σ with L, and such that the image by Σ
of every strongly L-covered pattern is strongly L-covered. Let P be a pattern and
A be an L-annulus of P , both included in a common discrete plane. Then Σ(A)
is an L-annulus of Σ(P ).

Proof. The pattern A is strongly L-covered because it is an L-annulus, so Σ(A) is
also strongly L-covered, by assumption. It remains to show that Σ(P )∩∂(Σ(P )∪
Σ(A)) = ∅. Suppose the contrary. This means that there exist faces f, g, f0, g0
such that f ∈ Σ(f0), g ∈ Σ(g0), f ∪ g is connected, and f0 ∪ g0 is disconnected
(because f0 ∈ P and g0 /∈ A ∪ P ). These are precisely the conditions stated in
Property A, so such a situation cannot occur and the proposition holds. ut

Proposition 4.3 (Property A for Brun). Property A holds for Brun substi-
tutions with LBrun, when restricted to planes Γ(v1,v2,v3) with v1 6 v2 6 v3.

Proof. There are finitely many two-face connected patterns f ∪ g, so we can
enumerate all the faces f, g, f0, g0 that satisfy the three conditions of Definition
4.1, for ΣBrun

1 , ΣBrun
2 and ΣBrun

3 . It turns out that there are 9 such possibilities,
where the corresponding values for f0 ∪ g0 are shown in the table below.

ΣBrun
1 ΣBrun

2 ΣBrun
3

[0, 2]? ∪ [(0, 1, 0), 1]? [0, 3]? ∪ [(1, 0,−1), 3]? [0, 3]? ∪ [(0, 1,−1), 3]?
[0, 2]? ∪ [(1,−1, 0), 2]? [0, 3]? ∪ [(0, 1, 1), 1]? [0, 3]? ∪ [(0, 0, 1), 2]?
[0, 2]? ∪ [(0, 1, 1), 1]? [0, 3]? ∪ [(0, 0, 1), 1]? [0, 3]? ∪ [(1, 0, 1), 2]?

Let us treat the case f0 ∪ g0 = [0, 2]? ∪ [(1,−1, 0), 2]?. Suppose that there exists
a pattern P and an LBrun-annulus A of P that is included in a discrete plane
such that f0 ∈ P and g0 ∈ A. Because A is an annulus of P , any extension of
f0 ∪ g0 within a discrete plane must be of the form or , where f0 ∪ g0

is shown in light gray and the dark gray faces are included in A.
The first case cannot happen because it contains an occurrence of , which is

forbidden since we are restricted to discrete planes with normal vector v satisfying
v1 < v2 < v3 (see Remark 2.2). The second case also cannot happen, because A
is strongly LBrun-covered. Indeed, ⊆ A, so there must exist a translation of
a pattern of LBrun that is included in A and that contains . The only such
pattern in LBrun is (note that /∈ LBrun). This is impossible because then

and f0 ∪ g0 overlap, which is a contradiction because f0, g0 /∈ A and ∈ A.
The same reasoning applies to the eight other cases. ut

10



5 Main results

Let P be a pattern that contains U . The combinatorial radius of P is the length
of the shortest path of faces f1, . . . , fn in P such that: f1 ∈ U , the fi and fi+1
are adjacent, and fn shares an edge with the boundary of P .

Proposition 5.1. Let (un = un,1 · · ·un,kn)n>1 be an infinite sequence of words
in {1, 2, 3}? such that the number of 3’s in the un is strictly increasing. Let V be
equal either U ∪ ABrun

1 or to U ∪ ABrun
2 . Then the pattern ΣBrun

un,1 · · ·Σ
Brun
un,kn

(V) has
arbitrarily large combinatorial radius when n→∞.

Proof. Let R be a positive integer (an arbitrary radius that we want to bound
above). We can algorithmically check that, in the graph HBrun described in
Section 3, there are no infinite paths containing infinitely many 3’s that avoid
ABrun

1 ∪ ABrun
2 ∪ U . Hence by Lemma 3.5 there exists an integer N such that R

annuli are generated from V by ΣBrun
uN,1 · · ·Σ

Brun
uN,kN

. By Propositions 4.2 and 4.3,
these annuli remain annuli, so the combinatorial radius cannot be less that R. ut

Theorem 5.2. Let v ∈ R3
>0 be an ordered totally irrational vector and let

(in) ∈ {1, 2, 3}N be its Brun expansion. We have:

1.
⋃
n>1 Σ

Brun
i1
· · ·ΣBrun

in
(V) = Γv, where V =

{
U ∪ ABrun

1 if i1 ∈ {1, 2},
U ∪ ABrun

2 if i1 = 3.

2.

⋃
n>1 Σ

Brun
i1
· · ·ΣBrun

in
(U) ( Γv if and only if

there exists N > 0 such that • iN← • iN+1← · · ·
is an infinite path in the following graph: 1

1 1
2

2
2

3

33

Proof. Assertion (1) follows from Propositions 2.16 and 5.1, and (2) follows
directly from (1), Lemma 3.4 and the description of GBrun given in Section 3. ut

Some applications Theorem 5.2 implies the following for finite products of
Brun substitutions: for every σ = σBrun

i1
· · ·σBrun

in
such that at least one in = 3, we

have
⋃
n>1 E?

1(σ)(U) = Γv if and only if there is no infinite periodic path labelled
by (i1 · · · in)∞ in the graph above. This has several consequences, as mentioned
in Section 1.1. Note that such substitutions σ are always Pisot irreducible [2].

Another application (also mentioned in Section 1.1) is Corollary 5.3 below: the
convergence of the Brun algorithm. Indeed, similarly as in the proof of Proposition
2.16, the approximated discrete planes Γwn contain patterns of arbitrarily large
radius. These patterns are also included in Γv, so the approximated vectors wn

are constrained and their direction must tend to that of v.

Corollary 5.3. Let v ∈ R3
>0 be an ordered totally irrational vector and let

(in) ∈ {1, 2, 3}N be its Brun expansion. Let wn = M−1
i1
· · ·M−1

in
·(1, 1, 1), where the

Mi are the Brun matrices given in Section 2.2. Then, the sequence (wn/‖wn‖)n>1
converges to v/‖v‖ as n→∞.

11



Lastly, note that the above results do not directly imply that iterating
substitutions from U generates patterns containing translations of patterns
with arbitrarily large radius. This requires another proof (to be published in a
forthcoming article), and is linked with the Pisot conjecture (see Section 1.1).
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