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Abstract 

A degree of parallelism is an equivalence class of Scott-continuous functions which are rel- 
atively definable by each other with respect to the language PCF (a paradigmatic sequential 
language). We introduce an infinite (“bi-dimensional”) hierarchy of degrees. This hierarchy 
is inspired by representing first order continuous functions as hypergraphs. We assume some 
familiarity with the language PCF and with its continuous model. 
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1. Introduction 

A natural notion of relative definability in the continuous type hierarchy is given by 

the following definition: 

Definition 1. Given two continuous functions f and g, we say that f is less parallel 

than g (f <par g) if there exists a closed PCF-term M such that @Q = f. 

A degree of parallelism is a class of the equivalence relation associated with the 

preorder 6par. 

In this paper we deal with degrees of parallelism of first order boolean functions, i.e. 

of functions which take tuples of booleans as arguments and give booleans as results. 

PCF-definability for first order functions is fully characterized by the notion of se- 

quentiality (in any of its formulations), and Sieber’s sequential@ reZations [5] provide 

a characterization of first order degrees of parallelism. Moreover this characterization 

is effective: given f and g one can decide if f Gpar g, and recently Stoughton [6] has 

implemented an algorithm which solves this decision problem. Nevertheless, as far as 

I know, there is little knowledge of the structure of the partial order Gpar on first order 

boolean functions. 
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A well known fact is that any continuous fnnction(a1) is less parallel than the “par- 

allel or” function (the non-strict binary disjunction) [3], and we also know that any 

first order stable function is less parallel than the Berry function [2, p. 3341, but there 

is a lack of general results about the poset of degrees, whose structure turns out to 

be quite complicated, already at first order. Sazonov’s paper [4] may be considered as 

a first step towards a systematic study of the poset of degrees of parallelism. 

In this paper we give a geometric account of first order degrees of parallelism, 

by representing first order functions as hypergraphs which highlight the structure of 

linearly coherent’ subsets in the trace of the function. Then we introduce a hierarchy 

of functions &,m)]n~m~ o which has the property that fcn,m) <par fc,,/,,,l) if and only 

if there exists a morphism from the hypergraph associated with fen+) to the hypergraph 

associated with fc,,l,,,t). 
Throughout the paper PCF terms will be written in uncurried form (as n-ary func- 

tions), and some “macros” like a syntactic I and a sequential conjunction A will be 

used. 

2. Preliminaries 

We denote by 99 the flat domain of boolean values {I, true, false}. Tuples of boolean 

values are ordered componentwise. Given a continuous function f : S?” 4 93, the trace 
of f is defined by 

tr(f)={(u,b)IuE&Y’, b~49, b#J-, f(u)=6 and Vu’<u f(u’) = I}. 

A continuous function f : 93’” + L~I is stable if for all ui, u2 E ~1 (tr( f )), q yu2. A subset 

A = {u,, . . . ) uk} of 98” is linearly coherent (or simply coherent) if 

~~11~Qn((~Zl~Z~kuj#I) * (VZi,12 l<~iQ124ku{=zQ)) 

or equivalently if for any linear function 3 ~1: !P’ --f 0, tx( AA) = Am(A), where 0 denotes 

the Sierpinsky domain {I, T}. 
The set of coherent subsets of _%Y’ is denoted %?(g”). 

Fact 1. Zf A E Q?(@‘) and B is an Egli-Milner lower bound of A (that is if Kx E A3y 
EB y&x and ‘dyEB3xEA yQx) then BE%‘(L~?“). 

Definition 2. A continuous function f : @’ + 9iP is linearly strongly stable (or simply 

strongly stable) if for any A E %?(SY’) 
- f(A) E %‘(LP). 

- f(AA)=Af(A). 

2 In the sense of [l]. 

3 A function is linear if it is stable and it commutes with least upper bounds of finite sets. 
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2.1. Sequential logical relations 

Definition 3 (Sieber [5]). For each n 3 0 and each pair of sets A C B 2 { 1,. . . , n} let 

S,“,” & W be defined by 

S,A,B(bl ,...,b,) H (3iEA bi=I)V(‘di,jEB bi=bj) 

An n-ary logical relation R is called a sequentiality relation if it is an intersection of 

relations of the form S,“,“. 

A function f : CP + ifi? is invariant under the m-ary logical relation R if for any 

(.K: ,..., x;“)~R,(xi ,..., xF)ER ,..., (x: ,..., x:)ER. 

one has that 

(f(xl’,x:,. . .,x;),f(.+;,. . .,x,‘), . . .,f(x:,$,. . . ,x,“>> E R. 

Proposition 1. For any f: ZP + 99 and g : SF’ + 93 continuous functions, f Gpar g tf 
and only tf for any sequentiality relation R, tf g is invariant under R then f is 

invariant too. 

Actually this is a relativized version of the main theorem of [5]: a continuous func- 

tion of first or second order is PCF-definable if and only if it is invariant under all 

sequentiality relations. 

Fact 2. A set A = { vl,. . . , ok} 2 .L?+??” is linearly coherent if and only if 

Vj E { 1,. . . , n}(v[, vi,, . .,v~>q {L...,k),{L...,kJ 

The next lemma highlights the connections between strong stability and sequentiality 

relations. 

Lemma 1. Let f : ii?’ + 93 be continuous and k > 2. Then the following conditions for 
f are equivalent: 

(1) There is no coherent set Ccnl(tr(f)) with 2<#Cdk. 
(2) Whenever C 2 98’” is coherent and #C < k, then 

- f(C) is coherent; 

- f(AC)=Af(C). 
(3) f is invariant under all relations of the form SLyB with #A<k. 

{ 1, . . . . k}, { l,..., k+l} (4) f is invariant under the relation Sk+, 

Proof. ( 1) + (2): given a coherent C = {vi, . . ..t+.}&P with p<k, we prove that 

either there exists a v E nl(tr( f )) such that for any i E { 1,. . . ,p} v < vi or there exists 

an iE{l , . . .,p} such that f(vi)= 1. In both cases it is easy to see that f(C) is 

coherent and f (AC) = A f (C). 
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By contradiction, let us suppose that no element of nl(tr(f)) is a lower bound of 

all the elements of C, and that any element of C has a lower bound in zt(t~(f)). For 

any vi E C let Wi E r~r(t~(f)) be such that wi <vi. The set 

is such that 2 <#W 6 p< k, and it is an Egli-Milner lower bound of C, hence it is 

coherent; contradiction. 

(2) + (3): given Si,B, let {VI,. . . , v,} C Bn be such that 

VjE{l)...) n} <v; )...) v;}ES,A? 

We have to prove that (f(vl), . . . ,f(v,)) ES, A,B. We have that the set {vl 1 I E A} 

is coherent, and that for any k E (B\A) uk 3 ArEp VI (these two conditions are easily 

seen to be equivalent to Vjg{l,...,n} (v{,...,v~}~S$~). Hence by (2) we get that 

{f(v~)I ZEA} is coherent and that VkE(B\A) f(uk)>/j[EAf(~[), that is (f(vt),..., 

f(GI)) E $$“. 
(3) * (4): trivial. 

(4) + (1): let us suppose by contradiction that there exists a coherent set C = 

{Vl,..., up} 2 ~~l(tr(f)) with 2 < , p , <k , and consider the multiset {Q(I), . . . , &(k)}, where 

e:{l,...,k}+{l ,...,p} is defined by e(i)=((i- 1)MODp) + 1. Let WEB’ be 

defined by wj = /&c vj, 1 <j <n. The k + 1 vectors v,(t), . . . ,&(k), w are such that 

Vjc{l 
{l,..., k},{l ,I.., k+l} 

,...,n} (v,/(,),...,V~~k),W’)ESk+l 

since the z& are coherent, and wj is their greatest lower bound. On the other hand 

(1, ,k),{L...,k+l) 
(f(vecl,),...,f(ve(k,),f(W))~Sk+;” 

since for any iE{l,..., k} f(Ve(i)) > I and f(w) = I (this last condition being assured 

by the fact that k> p>2). Hence f is not invariant under ~~~;‘k}‘{“““k”}, contradic- 

tion. 0 

Fact 3. A function f : ~28’” 4 93 is stable if and only if it satisjies one of the conditions 
of Lemma 1 for k = 2. It is strongly stable if and only lf it satisfies one of the 

conditions of Lemma 1 for all k > 2. 

The following proposition states that strong stability captures the notion of sequential 

definability, at least at first order. 

Proposition 2. f : 33” -+ @ is strongly stable, if and only if it is PCF-de$nable. 

This follows from condition (3) of Lemma 1, because for a first order function 

invariance under the relations S,“,” implies invariance under all sequentiality relations. 
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In the next example we show a typical use of sequentiality relations to explore the 

poset of degrees of parallelism: 

Example 1. We show that there exists a degree of parallelism strictly in between the 

degree of the weak parallel or function Par- : B 2 -+ 33 and the one of the parallel or 

function Por : B2 --+ 3, where 

tr(Por-) = {((true, I), true), ((I, true), true)} 

and 

tr(Por) = {((true, I), true), ((I, true), true), ((false, faZse),false)}. 

We are looking for a (first order) function f such that Par- -cpar f cpar Por. Let 

f :934+9J be defined by 

tr( f) = {((true, I, true, true), true), ((I, true, true, true), true), 

((false, false, false, I),false), ((false, false, I, false), false)}. 

A general method for showing that, for two given first order functions g and g’, g cpar g’ 

is to define a PCF-term M such that [[Ml,/ = g, showing that g Gpar g’, and a sequen- 

tiality relation R such that g is invariant under R and g’ is not, which entails g’ +S par g 

by Proposition 1. 

Let us use this method for Par- Kpar f. Firstly 

Par- = [AyLx~x2y(x~,x2, true, true)] f 

Then consider the sequentiality relation S,(1,...,4’,‘1,...‘4’. It is easy to see that Par- is 

invariant under it and f is not. 

As for f < parPor, it is enough to show that Por 6 par f, since any function is less 

parallel than Por [3]. Let us consider the sequentiality relation R = Sj(1’2’3”“22’3’: Por 
is not invariant under R since 

(true, I, false), (I, true, false) E R 

and 

(Por( true, I), Por( I, true), Por( false, false)) = (true, true, false) 6 R. 

On the other hand f is invariant under R: let vi, ~2, u3 E B4 be such that Vj E { 1,. . . ,4} 

(v[,v~,v~)~R. Then, by Fact 2, {zQ,u~,u~}E%?(~). If 3jE{1,2,3} f(Uj)=l then 

(f(q), f (uz), f (u3)) E R, otherwise there exists an Egli-Milner lower bound E of 

{~1,~2,v3) in nl(tr(f )) such that #E < 3. It is easy to see that this implies f (v1 ) = 

f (u2) = f (uj), and hence we conclude that (f(q), f (uz), f (03)) E R. 0 
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3. Hypergraphs for boolean functions 

We consider a category whose objects are (colored) hypergraphs and whose mor- 

phisms are arcs-preserving and coloring-preserving maps: 

Definition 4. A colored hypergraph h = (&Ah, Ch) is given by a set I$ of vertices, 

a set Ah L{A 2 Vh 1 #A 2 2) of (hyper)arcs and a coloring function Ch : vh + {black, 

white}. A morphism from a hypergraph h to a hypergraph h’ is a function m : vh + vhl 

such that 

- for all AC 6, if AE& then m(A)EAh/. 

- for all x,x’ E 6, C&X) = C&X’) if and only if Chl(m(X)) = Ch’(m(X’)). 

Definition 5. Let f: s?2P ---f 63 be the n-ary function defined by tr( f ) = {(VI, bt ), . . . , 

(uk, bk)}. The hypergraph H(f) is defined by 

- V,,,,={1,2 )...) k}. 

- AH(~) = ((4, iz,. ..,i~}LVH(f)11~2 and {U;l,vi2 )...) Ui,}E%‘(@)}. 

- CH(f)(i) = if bi then white else black. 

Example 2. Consider the function G : B3 4 CZI defined by 

tr( G) = {((I, true, false), true), ((false, I, true), true), ((true, false, I), false)) 

and the function Por : 912 4 &I defined in Example 1. We have 

H(G)=({1,2,3},{{1,2,3}},CH(~)(1)=CH(G)(2)=~hi~e,CH(G)(3)=b~ack) 

ff(Por) = ({1,2,3),((1,2),(1,2,3}}, 

CH(P~~)(~ 1 = CH(Por)(2) = white, CH(Por)@) = black). 

The map m :H( G) + H( Por) defined by m(i) = i, for i = 1,2,3, is a morphism. A term 

M such that [M]Por = G is 

M = ~fhX2X3f(h, t2 ), 

tl = if XI then (if x2 then I else false) else $x3 then true else _L 

tz = if x2 then ($x3 then I else true) else if xl then false else 1. 0 

Example 3. Let 3Por : iB3 + 49 be defined by 

tr(3Por) = {((true, I, I), true), ((I, true, I), true), ((I, I, true), true)}. 

The associated hypergraph is 

~(3Por)=(~1,2,3~,~~1,2~,~1,3},{2,3~,{1,2,3}}, 

C( 1) = C(2) = C(3) = white). 
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It is easy to see that there exists no morphism m : H(3Por) + H(Por). Nevertheless, 

3 Por < par Por, since for instance 

3 Por = [M]Por, 

where 

M = 3Lf;l~t~2~3 if f( J(x~,x~),x~) then true else 1. 0 

The following are simple properties relating hypergraphs and degrees of parallelism: 

Fact 4. Let f : LA?” -+ 28 be a continuous function: f is stable if and only if H(f) 

has no 2-arc. It is strongly stable if and only H(f) has no arc. 

This follows from Fact 3 and condition (1) of Lemma 1. 

Proposition 3. Let f : ~49~ + B and g : 9” + ~!8 be such that 

min{#A I A E AH(~)} < min{#A 1 A E&T(~)} 

Then f gpnr 9. 

Proof. Let k = min{#A 1 A E A H(,-)}. By Lemma 1 (conditions (1) and (4)) we know 

that g is invariant under the sequentiality relation ~~~:““k}‘{1’2”“‘~‘1}, and that f is 

not. By Proposition 1 we are done. 0 

4. A hierarchy of degrees 

Definition 6. Given two natural numbers m b n 3 3, let hc,,, be the hypergraph defined 

by 

h~,,)=({l,2,...,m},{AC{l,2,..., m} 1 #A 3 n}, for all i C(i) = white). 

Given h,,,, and hc,r,,f,, we are interested in determining the conditions under which 

there exists a morphism f : hc,,) + h(,~,,~). Since the hci,i)‘s are monocolored, the 

only condition to be satisfied for a function f : { 1,. . . , m} + { 1,. . . , m’} to be a mor- 

phism is the preservation of arcs. It is easy to see that f is a morphism if and only 

if 

max{#f-‘(B)IBC{l,...,m’} and #B=n’- 1) <n 

since only in that case every arc of hc,,,, is mapped by f to an arc of h(,/,,r). Hence 

there exists a morphism from h(,,,) to h(,r,,j) if and only if 

n> min 
f:{l,_.., m} - {l,..., m’} 

max{#f-‘(B)IBC{l ,...,m’} and #B=n’- 1). 
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It is quite easy to see that one of the functions f : { 1,. . . , m} + { 1, . . . , m’} which realize 

the minimum above is fo(i) = ((i - 1) MOD m’) + 1, and that 

max{#f,-l(B) 1 BC{ 1 ,...,lt2’} and #B=n’- 1) 

= (min{n’ - 1,mMODm’) * [:1> 

+ (max{O,(n’ - 1) - (mMODm’)} * I:]), 

where 1x1 and 1x1 denote the integer parts of x + 1 and x, respectively. If we denote 

this natural number by Cm,n’,m’, we have that there exists a morphism from hc,,) to 

h(,/,,,, if and only if n > Cm~“‘~m’. 

We define now a set of boolean functions { fcn,m,} such that for all n,m (with 

3GnGm), H(f(n,m))=h,(n,y), and we show that for all n,m,n’, ml f&,,) <parfcn,,mt) 
if and only if n > Cm,” ,m . We start by showing how to construct, for any given 

h,,,,, a boolean function f such that H( f )= hc,,). The trace of f has to contain 

m elements, its second projection has to be the singleton {true} and for any subset A 

of the first projection of the trace, A has to be coherent if and only if #A an. Before 

describing the general method for constructing such a function f, let us consider an 

example: 

Example 4. The function f described by the following trace (which we represent as 

a matrix), is such that H(f) = hc3,4) (Table 1): 

Table 1 

true 

false 

1 

1 

true 
I 

false 

I 

true 
I 

I 

false 

-I_ 

true 

false 

I 

I 

true 

_L 

false 

I 

I 

true 

false 

true 
hue 

hue 

true 

Actually a subset of the first projection of this trace is coherent if and only if its 

cardinality is at least 3, since for any binary subset {i,i} of rows there exists a column 

1 such that the elements (i, 1) and (j, 1) are defined and different. 0 

For constructing a function ft,,,,) whose associated hypergraph is h(,,,) we have 

just to generalize the idea above: for any subset of less than n rows (and of at least 

two rows), there must exist a column which makes that subset incoherent. The ar- 

ity of the function is x:1. (T), and in the jth column, only elements correspond- 

ing to rows in the jth subset (with respect to any enumeration whatsoever) will 

be defined, say by true for the first row in that subset and by false for the other 

rows. 
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Example 5. The following matrix represents rci(f~( fid,d))): 

vi = true true true I I -L true true true _l 

u2 = false I I true true _L false I false true 

us= _L false I false I true false false -L false 

u4= i I false I false false I false false false 

and the following one represents ni(tr( ~73,~))): 

WI = true true I 

w2 = false I true 

w3= I false false 

Proposition 4. If n, m, n’, m’ E o are such that 3 <n <m, 3 6 n’ d m’ and n > Cm,“‘+‘, 

then f&,) $arf(n~,m/). 

Proof. Letk= CrL. (T) andk’= &~‘(~‘),andletA=7i~(t~(~,~~))={~~,...,u,} 

and B=n~(tr(f~,~,,~~))={w~,...,w,~}. By hypothesis there exists a function 

f : {l,..., m}+(l)..., m’} which maps every non-singleton coherent subset of A 

to a non-singleton coherent subset of B. Let us consider, for 1 <j < k’, the function 

gj : Bk + 93 defined by 

tr(gj)= {(~,wf/~~,) 1 1 didm A w:ci, # I}. 

We prove that gj is strongly stable, for j E { 1,. . . , k’}, by using the condition (1) of 

Lemma 1: let C={Vi,,..., Vi,}&nl(tY(g’)) be such that 261. Let H=f{i,,...,ir}. 

By definition of gj we have that for any h E H w/ # I, hence by construction of 

fC nj,mf) we get #H <n’ - 1, hence #C <n - 1 and C is not coherent. 

The gJ’s are strongly stable, first order functions, hence by Proposition 2, for all 

i< k’ there exists a PCF term tj(x 1,. . . ,xk) which defines gj. Consider the term 

M=~y~X,X2...Xky(t1(X1 ,..., Xk),t2(X1 ,..., xk) ,..., tk’& ,..., xk)). 

In order to prove that i[M]fc nl,ml) = -f&m) we just remark that, by construction, 

Vv~B~((3j<rn’(g’(u) ,...,gk’(U))>Wj) * @i<muBu, and f(i)=j)). 0 

Example 6. Let us apply the construction above to show that fc4,4) Gpar fc3,3) (remark 

that C4’3,3 = 3) ( we refer to Example 5). 

Any smjective function f : { 1,2,3,4} + { 1,2,3} satisfies the condition of being 

a morphism from hc4,4) to hc3,3); let us choose for instance 

f(l)=f(4)=1, f(2)=2, f(3)=3. 
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The corresponding gj are defined by 

Hs2> = {(ul, @ue>,(u3,false), (~4, true)}, 

tr(s3) = ((02, true), (u3,fal=)}. 

The terms tj are essentially sequences of conditional statements: for instance 

t3 = Ax, . . .x10 if x4 then (if (1x1 A x5 A 7x7 A 7x9 ~~10) then true else I) 

eke (if (7x2 Ax6 A 7x7 A 1x8 A -x10) then true eke I). 

The rest of this section is devoted to a proof that the condition n > C”+‘~” is indeed 

necessary for having f&,+) Gpar fc,,~,,,~): 

Proposition 5. If n, m, n’, m’ are such that 3 <n <m, 3 <n’ <m’ and n < Cm,n’,m’, then 

_fin,m)~parhn',m'). 

Proof. By Proposition 1 it is sufficient to define a sequential logical relation R such 

that f(n/,m/) is invariant with respect to R and fc,,,,) is not. 

The first projection of tr( f$m,) is 

n*(tr(f(n,m)))={(X~ )... x~=q )...) (xi )...) x~yG’(y))}. 

Remark that, by definition, any “column” of the first projection of tr-(f&,m,), i.e. any 

tuple 

contains at most n - 1 components different from 1. Hence it is easy to see that f&,m) 
is not invariant with respect to the (m + 1)-ary sequential logical relation 

R= n y;“l ” (~~l,;.d,Il,...1 m+") 

AC{1,2 ,..., m},#Akn 

since the tuples 

are in R, and the application of (Jc~,~), .,', fcn,m;) to those tuples yields the mple 

m+l 
(true, true,. . . , true, I) which is not in R. 
\ , 

m 
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If we prove that f&l,m/) is invariant with respect to R we are done. By reductio ad 

absurdurn, let us suppose that fp,f,,,/) is not invariant. Then there exist m + 1 tuples 

01 = (YI1,...,Y, 
CX)) 

v2 = <v;, . . ., Y, 
x::,‘(y)) 

such that 

and 

(f(n’,m’) (~1 1, . . . > f(n~,m+~m+l 1) M. 

It is easy to see that this is the case if and only if 

fc n/,m+~~ ) = f(d,d)(V2) = . . . = f(d,d)(h) = true and f(n~,m/)(~m+l) = 1. 

Hence for any 1 d i d m there exists an element wf(i) of the first projection of tr( f(n/,mf)) 
such that Vi >wY(~), 4 for some function f:{1,2 ,..., m}+{1,2 ,..., m’}. Since n< 

c IV’,~‘, there exists a set A & { 1,. . . , m} such that #A b n and #f(A) < n’ - 1. Let A be 

a maximal set with that property. 

If f(A) = {I} is a singleton, then #f(A) < n’ - 1, hence A = { 1,. . . , m} because 

A is maximal. This means Vi 2 w[ for i = 1,. . . , m and hence also u,+i 2 w[ since 

(y{, . , Y:+~ ) E R & S,$~ml’l”~‘~‘mil’. This implies fc n~,m~)(um+i)>/ f(n~,m/)(w) = true, 
contradiction. 

If #f(A) 22, then C ‘&f {Wf(i) 1 i E A} C zl(tr( fp,t,mf))) cannot be coherent because 

2 < #C < n’ - 1. Hence also C’ =&f { Ut 1 i E A} cannot be coherent because C is an Egli- 

Milner lower bound of C’. This contradicts (y’ i, . ., yi+i) ES/$, for all j. q 

Hence fc,,,,) dpar fc,,t,,,t) if and only if n > CmJ”,m’, It is easy to see that this hierarchy 

is non-trivial: 

Proposition 6. If An,,,,) Gparfin~,,,,~) and f&l,,,,/) ~~~~j&,,,,) then n = n’ and m = m’. 

Proof. By Proposition 3 we get that n = n’. Let us suppose, without loss of generality, 

that m > m’. Thus any morphism from h(,,) to hc,l,,r, is non-injective 

n = n’, it is easy to see that there is no morphism at all. 0 

and, since 

4 This element is unique since f&,,,,,, is stable 
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In order to draw a picture of (a part of) this hierarchy of degrees, let us compute 

some typical values of Ci,j,‘: 

Cn+‘,n,n = 2 + (n - 2) = n =+ vn 23 f(n+l,n+l) <par f (n,n) 

Cn,n-i,n+’ = n - 2 =S kh 24 &I,~) ~p~~f(~-i,~+i) 

c n+l,“-l,” =2 + (n - 3) = n - 1 + ‘dn>4 f(n,n+l) +rf(n-1.n). 

We can prove that the inequalities above are strict by using the same method: for the 

first one we have for instance 

CnJ+‘,n+’ = n * vnf(n,n)~~arf(n+l,n+i). 

The following picture shows some degrees in the hierarchy (arrows denote Spur- 

relations, (n,m) denotes f~~,~)): 

(596) (494) 

This hierarchy contains infinite ascending chains, infinite descending chains and infinite 

antichains (i.e. denumerable sets of pairwise unrelated elements). The diagram could be 

a bit misleading since the regular pattern it shows is not complete: there exist arrows 

that cannot be extrapolated by the finite portion of the hierarchy in the picture. For 

instance, it turns out that f(5.s) <parfcs,4), even if they lie on the same row in the 

diagram. On the other hand the elements of the row containing (3,3) (or any (n,n)) 

form an antichain. 
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5. Conclusions 

The hypergraph that we associate with a function f yields some information about 

the degree of parallelism of f. 

Actually, as shown by Example 3, the existence of a morphism from H(f) to H(g) 

is not a necessary condition for f <porg, but some of the results we obtained (like 

Proposition 3, or the existence of the hierarchy f&m)), support our feeling that the 

study of the combinatory of hypergraphs can result in a better understanding of the 

poset of degrees of parallelism. 

A complete characterization of first order degrees of parallelism can be considered 

as preliminary to the study of the decidability problem for Gpar at higher order, which 

is open. 
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