
4. GAMES ON GRAPHS. 181Suppose that for some i < n, a0a1 � � �a2n 62 Ui and ti = 0, ontraditing rule(3) of G0. This means that there is some U 0i suh that� 0(a0; a1; : : : ; a2i+1; U 0i) = (1; a0a1 � � �a2n):We an then hange Ui for U 0i . This will hange some further moves in G0 as wefollow the strategy � 0, but none of the moves (a0; a1; : : : ; a2n) by the de�nitionof G0. Playing in this way, Player II will keep all his ommitments beause hisstrategy is a winning one and win G0, thus winning G.One may note that the proof above is not e�etive in any sense, beause ofthe unountably many hoies required by the simulation on the game G0. Con-sequently, the previous proof gives a general existene result on determinay butit does not address the problem of the omputational omplexity of a solution.4 Games on graphs.We now onsider games played on graphs, in whih eah player hooses in turna vertex adjaent to the urrent vertex. The abstrat games G(X) onsidereduntil now an be onsidered as games on the Cayley graph of A�. But atually,a game G(X) suh that X is an !-rational set an also be onsidered as a gameon a �nite graph by playing the game on an automaton reognizing X. Thus thenotion of a game played on a graph will give us more exibility by allowing usto hoose the more appropriate graph to play the game. As a ounterpart, theproperties of the game graph obtained by playing the game on an automatonwill the depend on the automaton hosen to reognize the winning set.Let us de�ne formally a game on a graph. A graph G = (V;E) on a ountableset of verties V is alled an arena or game graph if(1) it is bipartite, i.e. its vertex set V is partitionned into V1 and V2 and theedges onnet verties belonging to di�erent subsets.(2) there is at least one edge starting from every vertex (i.e. there are no deadends).If G is an arena, a game on G is given by a set X of winning paths. We shallalways suppose that the set of winning paths does not depend on the startingvertex, i.e. that the set X is suÆx-losed. All the partiular winning setsonsidered later have this property.We onsider that Player I plays on verties in V1 and Player II on verties inV2. A play is thus an in�nite path in G. Thus, if the �rst vertex is in V1, thenPlayer I plays �rst and otherwise, Player II plays �rst. Player I wins the play ifit is a winning path, i.e. belongs to X. Otherwise, Player II wins the play.Thus a game on a graph is essentially a partiular ase of the notion of gamede�ned in Setion 2, the alphabet being the set of verties of the graph. Theonly di�erene is that the �rst player is not always Player I. This de�nes thenotion of a strategy and of a winning strategy for eah player as a funtion fromthe set of paths of even (or odd length) into the set V of verties.Example 4.1 Let G be the graph of Figure 4.1. We use simple irles for thepositions of Player I and double ones for those of Player II. Thus V1 = f1; 3gand V2 = f2g.



182 CHAPTER IV. GAMES AND STRATEGIES1 2 3Figure 4.1. A game graph.If X is the set of paths passing in�nitely often by 1, Player II wins the game byalways hoosing vertex 3.Let G be a game graph. A memoryless strategy, say for Player I, is a strategywhih depends only on the last vertex of the path. When it is moreover a winningstrategy, we will speak of amemoryless winning strategy. Atually, a memorylessstrategy an be onsidered as a subgraph sine it onsists in seleting one edgefor eah vertex on whih Player I makes a move.Formally, we say that a pair (P; F ) onsisting of a set P � V of verties anda subset F � E \ (P � P ) is a winning poliy for Player I if(a) for eah q 2 P \ V1, there is exatly one edge in F starting at q.(b) for eah q 2 P \ V2, all edges starting at q are in F .() all paths in (P; F ) are winning for Player I.The orresponding notion for Player II is symmetrial. It is lear that eahplayer has a memoryless winning strategy from vertex p if and only if he or shehas a winning poliy (P; F ) suh that p 2 P (we use here the hypothesis thatthe set of winning paths is suÆx-losed).We say that a player has a winning poliy on a set W if he or she has awinning poliy of the form (W;F ).Example 4.2 In the game of Example 4.1, Player II has a memoryless winningstrategy from every vertex.The following auxiliary result allows one to merge di�erent memoryless win-ning strategies into one winning poliy. It shows that there is a maximal set onwhih a player has a winning poliy.Proposition 4.1 Eah player has a winning poliy on the set of all vertiesfrom whih he or she has a memoryless winning strategy.Proof. Let W be the set of all verties from whih Player I has a memorylesswinning strategy. Thus, for eah p 2W we an hoose a winning poliy (Pp; Fp)for Player I suh that p 2 Pp (note that this requires the axiom of hoie). Sinethe setW , as a subset of V , is ountable, we may index the set of these strategiesby integers. For eah vertex p 2 W \ V1, we selet the pair (Px; Fx) suh thatp 2 Px whih has minimal index. This de�nes a unique edge going out of p. LetF be the set formed by all edges of this type and by those in (W \ V2) �W .Then the pair (W;F ) is a winning poliy on W for Player I.The same result is of ourse true for Player II.For a vertex set U , we de�ne the attrator ofU for player I, denoted A1(G;U ),or simply A1(U ), as the set of verties from whih Player I an fore a visit inU . The omplement W of A1(U ) is a set whih is a trap for Player I: Player II



4. GAMES ON GRAPHS. 183an fore Player I to remain inside W . This implies that for eah vertex of W ,there is at least one edge leading to a vertex inW . Thus the subgraph restritedto W is again a game graph, sometimes alled a subgame.The attrator of U for Player II, denoted by A2(U ), is de�ned in the sameway. In the same way, a trap for Player II is a set X of verties suh that PlayerI an fore Player II to remain inside X. The omplement of A2(U ) is a trapfor Player II.4.1 Simple games.It is interesting to ome bak with these new de�nitions to the simple gamesde�ned by open or �2-sets that we have treated before.Let us �rst onsider open games. Suh a game an always be obtained as agame on a graph G in whih the set of winning paths is formed by the pathswhih pass through a given set F � V of verties. Let us denote by (G;F ) suha game.Proposition 4.2 In an open game (G;F ), Player I has a memoryless winningstrategy on the attrator A1(F ) and Player II on the omplement.Proof. The winning strategies of Players I and II an be omputed using rankfuntions de�ned diretly using de�nitions similar to those of Setion 3.1. In-deed, the rank of a vertex q an be de�ned as the smallest integer i suh thatq 2 Wi where Wi is an inreasing sequene of subsets of Q de�ned by W0 = Fand indutivelyWi+1 =Wi [ fp 2 Q1 j q 2Wi for some (p; q) 2 Eg[ fp 2 Q2 j q 2Wi for every (p; q) 2 Eg:The attrator of F is [k�0Wk.The strategy of Player I on this set onsists in dereasing the rank. Thestrategy of Player II on the omplement onsists in keeping o� the positions ofA1(F ). Both strategies are memoryless strategies.The ase of �2-games orresponds to games on a graph G in whih thewinning paths are those whih pass in�nitely often through F . Let us onsiderhere the ase where the graph G is �nite. For a set W of verties, we denoteby R(W ) the set of verties from whih Player I an fore a visit to W after apath of length � 1. The set R(W ) is lose to the attrator A1(W ) and an beomputed in a similar way. We then onsider the dereasing sequene of setsde�ned by W1 = F and Wi+1 = R(F \Wi)Sine the set Q of verties is �nite, the sequene Wi is stationnary. Let k be suhthat Wk = Wk+1. Then Player I has a memoryless winning strategy from theset U = Wk onsisting in reahing a vertex of F \U . Player II has a memorylesswinning strategy on the other verties. It onsists in avoiding U .Example 4.3 Let G be the graph represented in Figure 4.2 where 2; 4 arepositions of Player I and 1; 3; 5 are positions of Player II. Player I wins if vertex1 is visited in�nitely often. Player I an fore an in�nity of visits of 1 from 1



184 CHAPTER IV. GAMES AND STRATEGIESand 2 but not from 3; 4 or 5. Thus Player I has a memoryless strategy on f1; 2gand Player II on f3; 4; 5g.1 2 3 4 5Figure 4.2. A game graph.4.2 Winning onditions.We shall onsider games on graphs in whih the winning set is de�ned througha �nite set of olors in the following way. Let G = (V;E) be a game graph andlet  : V ! Q be a map from the set of verties into a �nite set Q of olors. Ifx is an in�nite path on G, we denote by Inf(x) = Inf((x)) the set of in�nitelyrepeated olors in x.We hoose a partiular olletion F of subsets of Q and we de�ne the setX of winning paths as those paths in G suh that Inf(x) belongs to F . Inthis setion, we study partiular lasses F of sets of states used to de�ne thewinning paths. This game will be denoted by (G;F).We shall denote by F the omplement of F in P(Q), that is, the set ofsubsets of Q whih are not in F . We de�ne the split tree of F as follows. It isa tree T whose verties are pairs (1; X) for X 2 F or (2; X) for X 62 F . Theroot of T is (�;Q) with � = 1 or 2 aording to Q 2 F or not. Indutively, ifx = (1; X) is a vertex of T , then(1) if X ontains subsets whih do not belong to F , then the hildren of x areall the (2; Y )'s where Y is a maximal subset of X whih do not belong toF .(2) otherwise, x is a leaf of T .A symmetrial ondition holds if x = (2; X)(1) if X ontains subsets whih belong to F , then the hildren of x are all the(1; Y ) where Y is a maximal subset of X whih is in F .(2) otherwise, x is a leaf of T .Sine the olletion F is �nite, the split tree of F has a �nite heigth.Example 4.4 Let G be the graph of Figure 4.1 with F = ff1; 2; 3gg. Theorresponding split tree is represented in Figure 4.3. If F = ff1; 2; 3g; f1gg, thesplit tree is represented in Figure 4.4.



4. GAMES ON GRAPHS. 185(1; f1; 2; 3g)(2; f1; 2g) (2; f2; 3g) (2; f1; 3g)Figure 4.3. A split tree.(1; f1; 2; 3g)(2; f1; 2g)(1; f1g) (2; f2; 3g) (2; f1; 3g)(1; f1g)Figure 4.4. Another split tree.The following proposition shows that the olletion F an be omputed fromits split tree T .Proposition 4.3 A set X is in F if and only if there is a vertex x = (1; Y )suh that X � Y and X 6� Z for every hild (2; Z) of x.Proof. If X satis�es the ondition, then X has to be in F sine otherwise therewould be a hild (2; Z) of x with X � Z. Thus X 2 F .Conversely, let x = (1; Y ) be a node of T as low as possible suh that X � Y .Suh a node exists sine the root satis�es this ondition. No hild z = (2; Z) ofx an satisfy X � Z sine otherwise z would have a hild (1;W ) with X � W ,a ontradition with the hoie of x. Thus the property holds for x.Example 4.5 Let F � Q and let F = fX � Q j X \F 6= ;g. The split tree ofF has two verties: the root (1; Q) with one hild (2; Q n F ).Let P = (Li; Ri)i2I be a family of pairs of subsets of a set Q. A subset X ofa set Q is said to satisfy Streett ondition S(P) if for every i 2 I, Li \X 6= ; orRi \X = ;. Thus a Streett ondition is just the negation of a Rabin ondition(see Chapter I). A olletion F of subsets of Q is said to be expressible by aStreett ondition if there is a set P of pairs suh that X 2 F if and only if Xsatis�es S(P).



186 CHAPTER IV. GAMES AND STRATEGIESProposition 4.4 A olletion F of nonempty subsets of a �nite set Q is ex-pressible by a Streett ondition if and only if it is losed under union.Proof. If X and Y satisfy the Streett ondition S(P), then so does X [ Y .Indeed, if P = (Li; Ri)i2I , then for every i, either one of X;Y meets Li and sodoes X [ Y , or none of them meets Ui and neither does X [ Y .Conversely, let F be a olletion of nonempty subsets of Q losed underunion and let T be the split tree of F. Let I be the set of all subsets U ofQ suh that (1; U ) is a node of T (thus none of the U 's are in F). Eah node(1; U ) an have at most one hild sine F is losed under union. Let VU be thelabel of this hild if there is one and let VU be the empty set otherwise.Then, by Proposition 4.3, X 2 F if and only if, for some U , X � U andX 6� VU . Let LU = U  and RU = V U . Then X 2 F if and only if for someU , one has X \RU 6= ; and X \ LU = ;. Thus X 2 F if and only if for eahU 2 I, one has X \ LU 6= ; or X \RU = ;. It follows that X is de�ned by theStreett ondition S(P) with P = (LU ; RU)U2I .Let C be an inreasing sequene of subsets of QC : E1 � F1 � E2 � F2 � : : : � En � FnA subset P of Q is said to satisfy the Rabin hain ondition C if there is anindex k suh that P \Ek = ; and P \ Fk 6= ;.There is an alternative formulation of Rabin hain ondition using a parityondition. Given a funtion � : Q ! N, we say that X satis�es the parityondition � if and only if min f �(q) j q 2 X g is oddThis formulation of the hain ondition makes it extremely easy to use sine itentails a very ompat representation.We say that a olletion F of subsets of Q is expressible by a Rabin hainondition, (resp. by a parity ondition �) if there exists a hain C suh thatX 2 F if and only if X satis�es C (resp. �).Proposition 4.5 Let F be a olletion of �nite nonempty subsets of a set Q.The following onditions are equivalent:(1) F and F are losed under union.(2) F an be de�ned by a Rabin hain ondition.(3) F an be de�ned by a parity ondition.Proof. (1) implies (2). Let T be the split tree of the olletion F . Sine F andF are losed under union, eah vertex of T has at most one hild. It followsthat T has exatly one leaf. We may suppose that Q 2 F, so that the root ofT is (2; Q). Let ((2; V0); (1; U1); (2; V1); : : :) be the unique path from the root tothe leaf. For i � 0, let Fi = U i and Ei = V i . Then the sequene C formed byE1 � F1 � � � � is inreasing and, by Proposition 4.3, one has X 2 F if and onlyif X satis�es C. Thus F an be de�ned by a Rabin hain ondition.(2) implies (3). LetE1 � F1 � E2 � F2 � : : : � En � Fn



4. GAMES ON GRAPHS. 187be an inreasing sequene of subsets of Q de�ning a Rabin hain ondition. Letus de�ne a funtion � : Q! N by setting, for 1 � k � n,�(q) = 8>>><>>>:0 if q 2 E12k � 2 if q 2 Ek n Fk�1 and k > 12k � 1 if q 2 Fk nEk2n if q =2 FnThen a set X satis�es C if and only if �(X) is odd. Thus X is de�ned by aparity ondition.(3) implies (1). If F is de�ned by a parity ondition, then F and F arelearly losed under union.4.3 Parity games.We now onsider games on graphs, alled parity games, in whih the winningset is de�ned by a parity or Rabin hain ondition de�ned by a hain CE1 � F1 � : : : � En � Fn:More preisely, let G = (V;E) be a game graph and let  : V ! Q be a oloring.The parity game de�ned by C is the game (G;F), where F is the olletionof subsets of Q de�ned by the Rabin hain ondition C. Therefore, the setX of winning paths onsists of the paths x suh that Inf(x) \ Ek = ; andInf(x) \ Fk 6= ; for some k 2 f1; : : : ; ng.Observe that any play visiting in�nitely often E1-olored verties is winningfor Player II. Indeed, let x be a path in G and let P = Inf(x). If P\E1 6= ;, anyof the sets Ek is met in�nitely often and thus there an be no index k satisfyingthe ondition P \Ek = ;.Theorem 4.6 In a parity game, one of the players has a memoryless winningstrategy from eah vertex.Proof. We shall prove by indution on the length of the hain C that there is apartition Q = W1[W2 on the set of verties suh that Player I has a memorylesswinning strategy on W1 and Player II has one on W2. We make the assumptionthat E1 6= ;. Otherwise, we would exhange the roles of Players I and II in theforthoming disussion. Thus, whenever we �nd a game with a hain of lengthn and E1 = ;, we an invoke the indution hypothesis.If n = 0, then Player II wins anyway.Let W be the set of verties from whih Player I has a memoryless winningstrategy. By Proposition 4.1, Player I has a winning poliy on the set W . Wewant to prove that Player II has a memoryless winning strategy from everyvertex in L = W .



188 CHAPTER IV. GAMES AND STRATEGIESE LW Y ZFigure 4.5. The memoryless strategies.We �rst notie that, for Player I, W is its own attrator. Thus L is a trapfor Player I. This implies that the graph indued by G on L is a game graph G0.Let Y be the attrator for Player II of the set E1 inside the game G0.Y = A2(G0; L \E1)Let �nally Z be the omplement of Y in L. Sine Z \ E1 = ;, we may applythe indution hypothesis to the game restrited to Z. There an be no positionsin Z on whih Player I has a winning strategy beause Z is disjoint from W .Thus Player II has a memoryless winning strategy on Z (provided the gameremains within Z). Let us onsider the strategy for Player II on L onsisting infollowing the winning strategy on Z and to reah E1 on the verties of Y . Thisis learly a memoryless strategy. It is atually winning beause either the playpasses in�nitely often through E1 or it stays out of Y from some moment onand then it stays within Z and is thus winning for Player II.4.4 Parity automata.An m-parity automaton is an automaton A = (Q; i; �) where � is a funtionfrom Q into f0; 1; : : :;mg. For a path  in A, we de�ne�() = maxf�(q) j q ours in�nitely often in g:By de�nition, a path  in A is suessful if it starts at i and the integer �() isodd. As for parity games, an equivalent de�nition is obtained by onsidering aninreasing sequene C = E1 � F1 � : : : � En � Fn. A Rabin hain automatonis an automaton A = (Q; i; C), with C as above. A path in A is �nal if the set ofin�nitely repeated states satis�es the Rabin hain ondition C. As a onsequeneof Proposition 4.5, any parity automaton an be viewed as a Rabin automatonand vie versa.We shall use here a onstrution that allows one to build a parity automatonfrom a Muller automaton. We shall meet this onstrution later in Chapter V.It is based on the notion of a memory extension of a �nite automaton.Let A = (Q; i;F) be a Muller automaton. We build a deterministi automa-ton B as follows. Let Arr(Q) denote the set of sequenes of elements of Q, eahappearing at most one (sometimes alled arrangements). The set of states ofB is S = f(u; v) j uv 2 Arr(Q)g. An element of S an be alled last appearanereord sine the transitions are de�ned in suh a way that the arrangement uv



4. GAMES ON GRAPHS. 189gives the order of last ourrene of eah state. The division of uv into a pair(u; v) marks the previous position of the last state. The initial state of B isthe pair ("; i) where i is the initial state of A and where " denotes the emptysequene. The transitions are de�ned as follows. Let (u; v) 2 S and a 2 A. Letp be the last element of uv and let q = p� a. Then(u; v)� a = ((x; yq) if uv = xqy(uv; q) if q =2 uvThe automaton B is alled the memory extension of A.Example 4.6 The memory extension of the automaton A1 of Figure 4.6 ispitured in Figure 4.7. 1 2a bbaFigure 4.6. A Muller automaton.1; 2 "; 21 2; 1"; 12"; 1 b a abb bab aaFigure 4.7. The memory extension of the automaton A1.The fundamental property of the memory extension is the following one. For apath  in an automaton, we denote by Inf() the set of states ourring in�nitelyoften in . In the following proposition, we use the notation v to denote the setof elements appearing in a sequene v.Proposition 4.7 Let A be an automaton and let B be its memory extension.Let  be an initial path in A and let 0 be the orresponding path in B. ThenT = Inf() if and only if all states (u; v) 2 Inf(0) satisfy v � T and at least onesatis�es v = T .Proof. Let (q0; q1; : : :) be the sequene of states appearing along . We �rstobserve that all states of 0 are ultimately of the form (uv0n; v00n) with u = S andvn = T , where vn = v0nv00n and where S is the set of states appearing �nitelyoften along . Next, for eah state of this form with v0n 6= ", there is later on



190 CHAPTER IV. GAMES AND STRATEGIESthe path a state of the form (u; vm). Let indeed v0n = qw0 with q 2 Q. Sineq 2 T , there is an ourrene of q on  later on. For the �rst index m > n suhthat qm = q, we have v0m = ".This shows that the ondition is neessary and suÆient.We de�ne a hain E0 � F0 � � � � � En � Fn � � � � as follows. For i � 0, letEi be the set of states (u; v) of B suh that either juj < i or juj = i and v 62 F .And let Fi be the union of Ei and the set of states (u; v) suh that juj = i andv 2 F . This de�nes a hain automaton whih is learly equivalent with A.We have thus proved the following result.Theorem 4.8 For any Muller automaton, there exists an equivalent parity au-tomaton.It would not hange anything to use as set of states the pairs (u; v) whereuv is a permutation of Q. In this ase, the initial state an be hosen as anyof the states of the form (u; vi), where i is the initial state. This an be usedto redue the number of states of the resulting automaton, as in the followingexample.Example 4.7 Let A = (Q; i;F) be the Muller automaton represented in Figure4.8 with i = 2 and F = f1; 2; 3g.1 2 3ab abFigure 4.8. A Muller automaton.It reognizes the set of in�nite words in (ab+ ba)! with both an in�nite numberof ourrenes of ab and ba.The memory extension B of A is represented in Figure 4.9. Atually, we haverepresented only the states whih are permutations of Q. Both states (3; 12) or(1; 32) an be used as initial state.



4. GAMES ON GRAPHS. 1913; 21 3; 12 1; 32 1; 23"; 123"; 321ab aba bbaFigure 4.9. The memory extension.The hain redues to F0 = f("; 123); ("; 321)g sine E0 = ; and F1 = F0. ThusB is atually a B�uhi deterministi automaton.4.5 Rational winning strategies.Let G be a game graph in whih the winning ondition is given in Muller form,i.e. by a olletion F of subsets of Q suh that Player I wins the play if the setof in�nitely repeated verties belongs to F . The following example shows that,in general, there is no memoryless winning strategy.Example 4.8 Let G be the game graph of Figure 4.10 with F = ff1; 2; 3gg.Player I has a winning strategy from eah vertex onsisting in hoosing alter-nately 1 and 3 from vertex 2. However, there is no memoryless strategy sineit would fore Player I to always hoose either 1 or 3 after 2, resulting in a loopeither on f1; 2g or on f2; 3g.1 2 3Figure 4.10. Player I has no memoryless strategy.We now ome bak to abstrat games given by the winning set X � A! . Arational or �nite memory strategy for Player I is given by a �nite deterministiautomaton S = (M; i; Æ) and a funtionf :M ! A:We say that Player I follows the strategy (S; f) in the play a0a1 � � � if for everyn � 0, a2n = f(m) where m = Æ(i; a0 � � �a2n�1).We prove the following result, known as the B�uhi-Landweber theorem.



192 CHAPTER IV. GAMES AND STRATEGIESTheorem 4.9 In a rational game, one of the players has a rational winningstrategy.Proof. By Theorem 4.8, there is a parity automatonA reognizing X. We maysuppose, by dupliating the states that the set of states Q is partitionned intoQ = Q1 [ Q2 in suh a way that the initial state is in Q1 and that the graphof A is bipartite. The game G(X) de�nes a parity game on the graph of A andthis game is equivalent to the original one. By Theorem 4.6, one of the players,say Player I, has a memoryless winning strategy in this game. This player has arational winning strategy in G(X). It uses the automaton A and the followingfuntion f : Q1 ! A (the value of f on Q2 is irrelevant). For p 2 Q1, there isa state q 2 Q2 given by the memoryless strategy of Player I. Let a be a symbolsuh that (p; a; q) is a transition of A. Then we de�ne f(p) = a. This is learlya rational winning strategy for Player I.Example 4.9 LetX be the set reognized by the Muller automaton of Example4.7. The graph of the automaton oinides with the graph of Example 4.8 andthe winning ondition is the same. Aordingly, Player I wins G(X) by hoosingalternately the states 1 and 3, i.e. by playing alternately a and b (or any otherstrategy ensuring to play in�nitely often a and b).A parity automaton reognizing X is represented in Figure 4.9. This time,we have a memoryless strategy on the graph of the automaton. It onsists inplaying b in (1; 32) and a in (3; 12). It happens to be the same strategy as above,resulting in one of the two possible plays (abba)! or (baab)!.5 Wadge games.Let X � A! and Y � B! . The Wadge game G(X;Y ) is a game on A [ Bde�ned as follows. Player I �rst hooses a0 2 A. Then Player II hoosesb0 2 B. Player I hooses a1 2 A, and so on. Thus a play in this game is asequene a0b0a1b1 � � � 2 (A[B)! whih is the interleaving of the two sequenesx = a0a1 � � � and y = b0b1 � � � 2 B! played by eah player. Player II wins ifeither (x 2 X and y 2 Y ) or (x 62 X and y 62 Y ).Suh a game an be viewed as a game on the alphabet A [ B with a ruleforing Player I to hoose a symbol from A and Player II a symbol from B.Observe that, ifX and Y are Borel sets, then so is the winning set Z � (A[B)! .These games are strongly related with the following notion. We say thatX � A! Wadge redues or simply redues to Y � B! , denoted (X;A!) �W(Y;B!) or simply X �W Y if there exists a ontinuous funtion f : A! ! B!suh that X = f�1(Y )The funtion f is alled a redution. It is important that the de�nition of theredution is relative to the embedding of X in A! (see Example 5.2 below).Obviously, X �W Y if and only if X �W Y . It is possible to havesimultaneously X �W Y and Y �W X, in whih ase X and Y are alledWadge equivalent, denoted X �W Y . The �W -lass of X is alled the Wadgelass of X.The lass of X and the lass of X are alled dual. The lass of X is alledself-dual if X �W X.


