Chapter VIII

An excursion into logic

1 Introduction.

This chapter is devoted to the presentation of the links between finite automata
and logic. Bichi was the first to set up a logical language equivalent to finite
automata. This logical formalism is rather uncommon since it makes use of
second order variables. The reader will find in the notes at the end of this
chapter the motivations that drove Biichi into this direction and a description of
the genesis of this aspect of the theory of automata. We shall simply emphasize
here two aspects of this question.

It is remarkable that all the logical theories occurring in this framework are
decidable theories. This is a constant of the theory of finite automata in which
most of the usual problems are not only decidable but even of low complexity.
Showing off a decidable logical theory equivalent to finite automata is, in a
sense, a confirmation of this general principle.

Furthermore, the logical formalismis the same for finite words and for infinite
words. The only switch occurs in the interpretation of formulas, in contrast with
the formalism of automata or rational expressions, in which the finite and the
infinite case have to be distinguished. In a sense, the material of this chapter
constitutes a justification of the unity of the theories of automata on finite or
infinite words.

We first present in Section 2 the elements of formal logic necessary to un-
derstand the sequel. It consists essentially of very elementary notions which
can be skipped by a reader having some background in logic. We introduce in
particular monadic second order logic, which is the logical language equivalent
with automata, as is shown further on. We detail the interpretation of formulas
on words. It amounts mainly to consider a word as a structure by associating
to each index 7 the letter in position i. The relations that are used are the order
relation between the indexes and the relation a(é) expressing that the letter in
position 7 is an a.

In Section 3, we prove the equivalence between finite automata and monadic
second order logic (Biichi’s theorem). We prove this result for finite words and
for infinite words. One of the consequences of this result is the decidability of
the monadic second order logic on natural integers (also called monadic second
order logic of one successor). Besides, the proof of this latter result is one the

301



302 CHAPTER VIII. AN EXCURSION INTO LOGIC

motivation of the work of Biichi. The extension of Buchi’s decidability result
to two successors is Rabin’s theorem, which will be presented in Chapter X
(Theorem X.4.3).

The conversion from automata to logic can be made by writing a formula
stating that a word is the label of a successful path in an automaton. This proof
brings us a supplementary clue: every formula of monadic second order logic
1s equivalent to a formula of low complexity in terms of quantifier alternation.
In particular, the hierarchy based on the number of quantifier alternations col-
lapses. We shall see later on that this is a major difference between first and
second order.

We also investigate the expressive power of the logical language obtained by
replacing the order relation on integers by the successor function. We shall see
that, for infinite words, the monadic second order logics of these two languages
are equivalent. It should not be a surprise to the reader familiar with logic, since
the order relation is definable in monadic second order logic of the successor
function.

Furthermore, we show that monadic second order logic is, on the integers,
equivalent with weak monadic second order logic. The weak logic utilizes the
same formulas as the “strong” one but the interpretation is more restrictive:
set variables are always interpreted as finite sets of integers. The equivalence
between weak and strong logic is a consequence of McNaughton’s theorem. In-
deed, one can deduce from this theorem that each rational set X C A is a
boolean combination of subsets of the form ? with Y C A*. And such a set is
definable by the formula

Ve Jy (y >« A e(y)

where o(y) is the formula expressing that the y’s first letters of a word are
in Y. Since Y is a set of finite words, we can restrict ourselves to weak logic
to interpret ¢(y). This interdependence of results expressible in logic and in
terms of automata is the mark of the deep and real connection between the two
approaches. We shall see other examples in the sequel when we shall deal with
first order logic.

In Section 4, we present the corresponding theory for first order logic. We
start by first order theory of the linear order since, and it is a first difference
with the monadic case, the logic of the linear order and that of the successor
are no longer equivalent.

The first order logic of the linear order is shown to be equivalent to aperiodic
automata or, as we have seen in Chapter VI, to star-free sets. This is true for
finite words and for infinite words.

In Section 4.2, we describe the hierarchy of the first order logic of the linear
order, corresponding to the alternate use of existential and universal quantifiers.
We show that this hierarchy corresponds, on words, to the concatenation hier-
archy described in Chapter VI. This leads to a doubly satisfying situation: first
order formulas not only correspond globally to a natural class of recognizable
sets (the star-free sets), but this correspondence holds level by level.

In Section 5, we study a more restricted language, the first order logic of
the successor. We give an effective characterization of the sets of infinite words
definable in this logic: they are the threshold locally testable sets (defined in
Chapter VIT) which are in the class Ay (defined in Chapter ITI. We shall in-

troduce on this occasion a technique of proof, called Fraissé-Ehrenfeucht game,



2. THE FORMALISM OF LOGIC. 303

and we shall use it for proving the characterization theorem.

We introduce in the last section the formalism of temporal logic and show
that this logic 1s equivalent to first order logic. Finally, we describe the expres-
sive power of the temporal logic without the until operator.

In Chapters IX and X, we shall see how the logical framework presented in
this chapter extends to the more general cases of bi-infinite words and infinite
trees.

2 The formalism of logic.

In this section, we review the basic definitions of logic that will be used in
this book. We shall define successively first order logic, second order, monadic
second order and weak monadic second order logic.

2.1 Syntax.

We shall first define the syntax of logical formulas. Let us start by first order
logic.

The basic ingredients are the logical symbols which encompass the logical
connectives: A (and), V (or), = (not), — (implies), the equality symbol =, the
quantifiers 3 (there exists) and V (for all), an infinite set of variables (most often
denoted by #, y, z, or xg, #1, £3,...) and parenthesis (to ensure legibility of the
formulas).

In addition to these logical symbols, we make use of a set £ of non logi-
cal symbols. These auxiliary symbols can be of three types: relation symbols
(for instance <), function symbols (for instance min), or constant symbols (for
instance 0, 1). Expressions are built from the symbols of £ by obeying the
usual rules of the syntax, then first order formulas are built by using the logi-
cal symbols, and are denoted by Fy(L£). We now give a detailed description of
the syntaxic rules to obtain the logical formulas in three steps, passing succes-
sively, following the standard terminology, from terms to atomic formulas and
subsequently to formulas.

We shall illustrate the formation rules by taking as an example

£ ={< ,min, 0}

in which < is a binary relation symbol, min is a two-variable function symbol
and 0 is a constant.

We first define the set of L-terms. It is the least set of expressions containing
the variables, the constant symbols of £ (if there are some) which is closed under
the following formation rule: if ¢1,¢s,... ¢, are terms and if f is a function
symbol with n arguments, then the expression f(¢1,%s,...,%,) is a term. In
particular, if £ does not contain any function symbol, the only terms are the
variables and the constant symbols. In our example, the following expressions
are terms:

T min(0, 0) min(z1, min(0, z2)) min(min(zg, 1), min(zy, z2))
The atomic formulas are formulas either of the form

(t =12)



304 CHAPTER VIII. AN EXCURSION INTO LOGIC

where t; and t5 are terms, or of the form
R(ty,...,tn)

where ¢1,...,1, are terms and where R is a n-ary relation symbol of £. On our
example, the following expressions are atomic formulas:

(min(z1, min(0, z2)) = 21) (min(0,0) < 0)
(min(min(zg, £1), min(zq, 22)) < min(zs, 1))

Notice that, in order to improve legibility, we didn’t take literally the definition
of atomic formulas: indeed, since < 1s a symbol of binary relation, one should
write < (t1,12) instead of t; < ta.

Finally, the first order formulas on £ form the least set of expressions con-
taining the empty formula and the atomic formulas and closed under the fol-
lowing formation rules:

(1) If (4)ier is a finite family of first order formulas, so are the expressions
(Ae) and (V)
iel i€l
(i1) If ¢ and 9 are first order formulas, so are the expressions
—p and (@ —¢)
(iii) If ¢ is a first order formula and if # is a variable, then the expressions
(Fee) and  (Yay)

are first order formulas.

To make notations easier, we set
true = /\ w; and false = \/ i
icd icd
The following expressions are first order formulas of our example language:
(32 (Vy ((y < min(z,0)) A (z <0)))) (Vo (y =)

Again, 1t is convenient to simplify notation by suppressing some of the paren-
thesis and we shall write the previous formulas under the form

Jx Vy (y < min(x,0)) A (z < 0) Vey=ux

In a first order formula, some variables occur after a quantifier (existential or
universal): the occurrences of these variables are said to be bounded and the
other occurrences are said to be free. For example, in the formula

3 (y < h(z,0) Ay (2<y)

the simply underlined occurrences of x and y are bounded and the occurrences
of z and y doubly underlined are free. A variable is free if at least one of its
occurrences is free. The set FV(p) of free variables of a formula ¢ can be
defined inductively as follows:



2. THE FORMALISM OF LOGIC. 305

If ¢ is an atomic formula, FV () is the set of variables occurring in ¢,

FV(=p) = FV(p)

FV(/\ZEI @i) = FV(\/Z'EI @i) = UiEI FV (i)

FV(p =)= FV(e) UFV(¢)

5) FV(Jwp) = FV(Vup) = FV(p) \ {x}

A statement is a formula in which all occurrences of variables are bounded. For

example, the formula

Jdz Yy (y < min(z,0))

is a statement.

We shall denote by ¢(x1, 22, ..., 2,) a formula ¢ in which the set of free vari-
ables is contained in {z1,...,2,} (but is not necessarily equal to {z1,...,z,}).

The variables used in first order logic, or first order) are interpreted, as we
shall see, as the elements of a set. In second order logic, one makes use of another
type of variables, called second order variables, which represent relations. These
variables are denoted traditionally by capital letters: Xy, X1, etc.. One built in
this way the set of second order formulas on £, denoted by Fa(L). The set of
terms 1s the same as for first order. The atomic formulas are either of the form

(tL =t2)
where t; and t5 are terms, or of the form
R(tl,...,tn) or X(tl,...,tn)

where ¢1,...,1, are terms, R is a n-ary relation symbol of £ and X is a variable
representing a n-ary relation.

Finally, second order formulas on £ form the least set of expressions con-
taining the atomic formulas and closed under the following formation rules:

(i) If ¢ and ¢ are second order formulas, then so are

¢, (30/\1/))’ (30\/1/))a (30_>1/))

(i1) If ¢ is a second order formula, if « is a variable and if X is a variable of
relation, then the expressions

(Fzep) (Vo) (FXp)  (VXyp)

are second order formulas.

We call monadic second order logic the fragment of second order logic in which
the only relation variables are unary relation variables, in other words, variables
representing subsets of the domain. By convenience, they are called set vari-
ables. We denote by M F5(L) the set of monadic second order logic on £. We
shall also use the notation # € X instead of X ().

2.2 Semantics.

We have adopted so far a syntactic point of view to define formulas with no
reference to semantics. But of course, formulas would be uninteresting if they
were meaningless. Giving a precise meaning to formulas requires to specify the
domain on which we want to interpret each of the symbols of the language L.
Formally, a structure § on £ 1s given by a nonempty set D, called domain and
by a map defined on £, called an assignment which associates



306 CHAPTER VIII. AN EXCURSION INTO LOGIC

1

(1) to each n-ary relation symbol of £, a n-ary relation defined on D,
(2) to each n-ary function symbol f of £, a n-ary function defined on D,

(3) to each constant symbol ¢ of £, an element of D.

To decongest notations, we shall use the same notation for the relation (resp.
function, constant) symbols and for the relations (resp. functions, constants)
represented by these symbols. The context will allow us to determine easily
what the notation stands for. For example, we shall always employ the symbol
< to designate the usual order relation on a set of integers, independently of
the domain (N, Z, or a subset of IN).

We still have to interpret variables. Let us start by first order variables.
Given a fixed structure § on £, with domain D, a valuation on § is a map
v from the set of variables into the set D. It i1s then easy to extend v into a
function of the set of terms of £ into D, by induction on the formation rules of
terms:

(1) Tf ¢ is a constant symbol, we put v(c) = ¢,

(2) if fis a n-ary function symbol and if ¢1, ..., ¢, are terms,
v(f(t, .. ta) = f(v(ty) ...v(tn))
If v is a valuation and a an element of D, we denote by V(g) the valuation v/
defined by
V(y) = v(y) ify#ux
a ify==x

The notion of interpretation can be now easily formalized. Define, for each
first order formula ¢ and for each valuation v, the expressions “the valuation v
satisfies ¢ in 87, or “§ satisfies p[v]”, denoted by S |= ¢[v], as follows:

1) S E (t1 =t2)[V] if and only if v(¢1) = v(t2)

(

(2) S | R(t1, ..., to)[v] if and only if (v(t1),...,v(t,)) € R

(3) S E —¢lv] if and only if not § |= ¢[v]

4) S E (/\ »)[v] if and only if for each i € I, S = ¢;[v]
i€l

(5) S E (\/ »)[v] if and only if there exists i € I, S | ¢i[V]
i€l

(6) S E (¢ — ¥)[V] if and only if SE£ ¢[v] or S |E ¢[v]

(7) S E (Fzy)[v] if and only if S = ¢[v(%)] for some a € D

[v(c
(8) S E (Vay)[v] if and only if § = ¢[v(2)] for each a € D

Note that, actually, the truth of the expression “the valuation v satisfies ¢ in
S” only depends on the values taken by the free variables of ¢. In particular,
if ¢ 1s a statement, the choice of the valuation is irrelevant. Therefore, if ¢ is a
statement, one says that ¢ is satisfied by S (or that S satisfies ¢), and denote
by S = ¢, if, for each valuation v, § = ¢[v].

Next we move to the interpretation of second order formulas. Given a structure
S on L, with domain D, a second order valuation on & is a map v which
assoclates to each first order variable an element of D and to each n-ary relation
variable a subset of D" (i.e. a n-ary relation on D).



2. THE FORMALISM OF LOGIC. 307

If v is a valuation and R a subset of D7, 1/()1?) denotes the valuation v’ defined

by
V'(z) = v(z) if z is a first order variable

oy [P) Y £ X
A e

The notion of interpretation, already defined for first order, is supplemented by
the following rules:

(9) SE (X(t1,...,tn))[v] if and only if (I/(tl), e I/(tn)) € v(X)
(10) S E (3X)[v] if and only if there exists RC D", S | p[v ()1?)]
(11) S E (VX ¢)[v] if and only if for each R C D", S | go[y()l?)]

Weak monadic second order logic is composed with the same formulas than
monadic second order logic, but the interpretation is even more restricted: are
only considered valuations which associate to set variables finite subsets of the
domain D.

Two formulas ¢ and v are said to be logically equivalent if, for each structure
S on L, we have § | ¢ if and only if § | .

It is easy to see that the following formulas are logically equivalent:

(1) Ay and  —(=p V =)
(2) ¢—=v¢  and VY

(3) Vap and  —(Jz —yp)
@) eve  ad by

6) et ad GAg

(6) @A false and false

(7) ¢V false and ¢

Consequently, up to logical equivalence, we may assume that the formulas are
built without the symbols A, — and V.

Logical equivalence also permits to give a more structured form to formulas.
A formula is said to be under disjunctive normal form if it can be written
as disjunction of conjunctions of atomic formulas or of negations of atomic
formulas, in other words under the form

VoA (i Vv i)
el jeJ;
where I and the J; are finite sets, and where the ¢;; and the 1/;; are atomic

formulas. The next result is standard and easily proved.

Proposition 2.1 Every quantifier free formula is logically equivalent with a
quantifier free formula in disjunctive normal form.

One can set up a hierarchy inside first order formulas as follows. Let Xy = Il
the set quantifier-free formulas. Next, for each n > 0, denote by ¥, 11 the least
set A of formulas such that



308 CHAPTER VIII. AN EXCURSION INTO LOGIC

(1) A contains the boolean combinations of formulas of X,
(2) Ais closed under disjunctions and finite conjunctions,
(3) if ¢ € A and if » is a variable, Jzp € A.

Similarly, denote by Il, 41 the least set I' of formulas such that
(1) T contains the boolean combinations of formulas of TI,,,
(2) T is closed under disjunctions and finite conjunctions,

(3) if ¢ € T and if x is a variable, Vap € T.

In particular, ¥y 1s the set of existential formulas — that is of the form
Jzqy Jzo ... Jap @

where ¢ 1s quantifier-free.
Finally, we denote by BY,, the set of boolean combinations of formulas of ¥,,.
A first order formula is said to be in prenex normal form if it is of the form

Y=z Qaxra ... Quryp @

where the ); are existential or universal quantifiers (3 or ¥) and ¢ is quantifier-
free. The sequence Q1x1 Qsx9 ... Qpx,, which can be considered as a word
on the alphabet

{ E|$1,E|$2,...,V$1,Vl‘2,... },

is called the quantification prefix of . The interest of these formulas in prenex
normal form comes from the following result.

Proposition 2.2 FEvery first order formula is logically equivalent to a formula
mn prenexr normal form.

Proof. It suffices to verify that if the variable # does not occur in the formula

1 then

Ja(p AY) = (ep) A
Ja(p V) = (ep) VY

and the same formulas hold for the quantifier V. Hence it is possible, by renaming
the variables, to throw back the quantifiers to the outside. 0O

Proposition 2.2 can be improved to take into account the level of the formula
in the X, hierarchy.

Proposition 2.3 For each integer n > 0,

(1) Every formula of ¥, is logically equivalent to a formula in prenex normal
form in which the quantification prefir is a sequence of n (possibly empty)
alternating blocks of existential and universal quantifiers, starting with a
block of existential quantifiers.

(2) Every formula of T, is logically equivalent to a formula in prenex normal
form in which the quantification prefir is a sequence of n (possibly empty)
alternating blocks of existential and universal quantifiers, starting with a
block of universal quantifiers.



2. THE FORMALISM OF LOGIC. 309

For example, the formula

dxy Jwg s Yaq Yas Jwe Jor (21, ..., 26)
—————— —— ——
block 1 block 2 block 3

belongs to X3 (and also to all X,,’s such that n > 3). Similarly the formula

Vg Vas Jwe Jor (o, ..., 27)
——— S——
block 1 block 2 block 3

belongs to X3 and to Ily, but not to X, since the counting of blocks of a ¥,,-
formula should always begin by a possibly empty block of existential quantifiers.

One can introduce normal forms and a hierarchy for second order monadic
formulas. Thus, one can show that every monadic second order formula is
logically equivalent to a formula of the form

P=X1 Q2Xs ... QnXy @

where the ); are existential or universal quantifiers and ¢ is a first order formula.

2.3 Logic on words.

The logical language that we shall use now was introduced by Buchi under
the name of “sequential calculus”. It permits to formalize certain properties of
words. To interpret formulas on words, we shall consider a word « = u(0)u(1) ...
as a map associating a letter to each index. The set of indexes will itself be
considered as a subset of the set

N =NU {0}

the set of natural numbers with a new maximal element, denoted by co.

Let A be an alphabet. For an infinite word u € A, we set |u| = oo, so that
the length of a word is always an element of the set A/, For each word u € A,
one defines the domain of u, denoted by Dom(u) as

Dom(u) = {i € '] 0 < < Jul}

So, if w is a finite word, Dom(u) = {0,...,|u|} and if « is an infinite word,
Dom(u) = . Define for each letter a € A a unary relation a on the domain of
u by

a={i<|ul|u(@)=a}.

Finally, let us associate to each word u the structure
M, = (Dom(u), (a)aca),

Beware that, with these definitions, the domain of a finite or infinite word
comprises a supplementary position at the end. One can imagine that this
position is occupied by an end symbol (the $ prized by lexical analyzers. . .).

For example, if u = abbaab, then Dom(u) = {0,1,...,6}, a = {0,3,4} and
b ={1,2,5}. If u = (aba)®, then

a={neN|n=0 mod3orn=2 mod 3} and
b={neN|n=1 mod 3}



310 CHAPTER VIII. AN EXCURSION INTO LOGIC

From now and on, we shall interpret logical formulas on words, that is, on a
structure of the form M, as explained above. Let ¢ be a statement. A finite or
infinite word u € A™ satisfies o if the structure M, satisfies ¢. This is denoted
by u | ¢. We also say that u is a model of ¢. Define the spectrum of ¢ as the
set

S(p) = {u € A™ | u satisfies ¢}

We also set S*(p) = S(p) N A*, ST(p) = S(p) N AT and S¥(p) = S(p) N A“.

From now and on, all the variables will be interpreted as natural integers or
oo. Therefore, we shall use logical equivalence restricted to interpretations of
domain N .

The various logical languages that we shall consider all contain, for each
a € A, a unary relation symbol denoted (a) when no confusion arises. We shall
also use two other non logical symbols, < and S, that will be interpreted as
the usual order and as the successor relation on Dom(w): S(x,y) if and only if
y = x4+ 1. In the sequel, we shall mainly consider two logical languages: the
language

£< :{<}U{a|a€A}
will be called the language of the linear order and the language

Ls={S}U{alac A}

will be called the language of the successor. The atomic formulas of the language
of the linear order are of the form

a(z), r=y, r<y
and those of the language of the successor are of the form

a(z), x =y, S(z,y).

We shall denote respectively by Fy (<) and M Fa(<) the set of first order and
monadic second order formulas of signature {<, (a)qea}. Similarly, we denote
by F1(S) and M F2(S) the same sets of formulas of signature {5, (a)qea }. Inside
F1(<) (resp. Fy(S)), the ¥,,(<) (resp. X,,(5)) hierarchy is based on the number
of quantifier alternations.

We shall now start the comparison between the various logical languages we
have introduced. First of all, the distinction between the signatures S and <
is only relevant for first order in view of the following proposition. A relation
R(x1,- - ,2,) on the integers is said to be defined by a formula (21, ..., 2,)
if, for each 41,...,4, >0, R(¢1,...,4,) if and only if p(¢1,...,4,) is true.

Proposition 2.4 The successor relation can be defined in F1(<), and the order
relation on integers can be defined in M Fs(S).

Proof. The successor relation can be defined by the formula
(i< i) AVE (< k)= (=R V([ <k))

which states that j = ¢ + 1 if 7 1s smaller than 5 and there exist no element
between ¢ and j. Conversely, i < j can be expressed in M F»(S) as follows:

3x [VxVy (((x EX)AS(z,y) = (ye X))] ANjeEX)A(G & X)



2. THE FORMALISM OF LOGIC. 311

which intuitively means that there exists an interval of the form [k, +oo[ con-
taining j but not . O

On the contrary, we shall see later on (Corollary 5.10) that the relation <
cannot be defined in Fy(S5).

Given two sets of formulas F' and (G, we use the notation F' < (G if for each
formula of I, there exists an equivalent formula in ¢ (we remind the reader
that the variables are always interpreted as integers). Denote by F = G the
associated equivalence and by F' < (G the relation /' < G but /' # (. The next
result summarizes the expressive power of the various logical languages.

Proposition 2.5 The following relations hold:
Fl(S) < F1(<) < MFQ(S) = MF2(<)

Proof. Proposition 2.4 shows the double inequality F1(S) < Fy (<) < M Fy(S).
The fact that these inequalities are strict follow respectively from Corollary 5.10
and Corollary 4.4, which will be proved later on.

Finally, we have M Fy(S) < MF5(<) since S can be expressed in F(<),
which in turn is contained in M Fa(<). But we also have M Fa(<) < M Fy(S)
since, by Proposition 2.4, the relation < can be defined in M F5(S). O

It will be convenient to enrich our logical languages by adding auxiliary
formulas which can be considered as abbreviations. We shall see an example a
few lines below with the predicate Finite(X) which expresses the fact that a set
(of integers) is finite.

If # is a variable, it is convenient to write 4+ 1 (resp. @ — 1) to replace
a variable y submitted to the condition S(x,y) (resp. S(y,z)). However, the
reader should beware of the fact that 4y is not definable in M F5(<) (Exercise

We can also use the symbols < and # with their usual interpretations: z <y
stands for (z < y) V (x = y) and & # y for =(x = y).

Another example, to be used below, are the symbols min, max, which desig-
nate the first and the last element of the domain. These symbols can be defined
in F1(S) with two alternations of quantifiers:

min: JImin Yz =S(x, min)

max: Jdmax Ve —S(max, x)

These symbols permit to express that u is the empty word (max = min) or that
w is finite ((max = min) V3 #S(x, max)). We shall denote by FINITE the latter
formula.

We shall sometimes need a parametrized, or relative, notion of satisfaction
for a formula. Let indeed ¢(z,y) be a formula with only two free variables x
and y. Let u € A be a word and ,j € Dom(u). A word u € A* is said to
satisfy the formula ¢ between i and j if w; ... uj_1 FE ¢ (or wuiqq ... E ¢ if
J = o0).

Proposition 2.6 For each statement o, there exists a formula ¢(x,y) with the
same signature, the same order (and, in the case of a first order formula, the



312 CHAPTER VIII. AN EXCURSION INTO LOGIC

same level in the hierarchy ¥, ), having ¥ and y as unique free variables and
which satisfies the following property: for each finite or infinite word u and for
each s,t € Dom(u), u = ¢(s,t) if and only if u satisfies ¢ between s and t.

Proof. The formulas ¢(z,y) are built by induction on the formation rules as
follows: if ¢ is an atomic formula, we set ¢(x,y) = ¢. Otherwise, we set

() (z,y) = ~p(x,y)
(P VU)(z,y) = oz, y) Vi(z,y
(Fzp)(w,y) = 3z ((# < 2) A (2 < y) Ap(,y)
(AXe)(z,y) = 3X ((V 2(X(2) = (2 < 2) A (2 < y) Ap(z,y))

Tt is easy to verify that the formulas ¢(z, y) built in this way have the required
properties. O

We conclude this section by examining the place of the weak theories of the
linear order and the successor. First of all, one can verify that the formulas
used in the proof of Proposition 2.4 actually define the relation < in WM F5(S)
(Exercise 1). Tt follows that

WMFQ(S) = WMF2(<)

and that the weak monadic theories of the successor and of the linear order are
the same.
We shall see on the other hand that

WM Py (<) = MPy(<)

so that the weak and strong theories of the linear order coincide. We can also
note immediately the next result, which is true in a much more general setting
(actually as soon as one can write a formula expressing that a set is finite).

Proposition 2.7 The formula WM Fa(<) < M Fy(<) holds.

Proof. One can write in M F3(<) a formula Finite(X') expressing that a set X
is finite. For instance

Finite(X) =3z Yy X(y) =y < 2)
Every formula of WM F2(<) is equivalent to a formula of the form

where ¢ is a first order formula. The formula ¢ 1s then equivalent to the formula
Q1 X1 ... QuXnp A [\ Finite(X;)
1<i<n
of MFa(<). O
The formulas in which the predicates a do not occur pertain uniquely to

integers. We shall see in the next section that the words have nevertheless the
same role to play, as soon as formulas with free variables have to be interpreted.



3. MONADIC SECOND ORDER LOGIC ON WORDS. 313

3 Monadic second order logic on words.

This section is devoted to the proof of a result of Buchi stating that the subsets
of A% definable in monadic second order logic are exactly the rational (resp.
w-rational) sets.

Theorem 3.1 Let X C A be a set of finite or infinite words. The following
conditions are equivalent:

(1) X is definable by a formula of M Fa(<),

(2) X is recognizable.

The proof of this result can be decomposed into two parts: passing from
words to formulas, and from formulas to words.

To pass from words to formulas, we simulate the behaviour of an automaton
by a formula.

Proposition 3.2 For each Biichi automaton A = (Q, A, E, I, F), there erist
formulas 4, ¢, of M Fa(<) such that ST (py) = LT(A), S¥(pw) = L¥(A) and
L (A) = S(p4 Vpw).

Proof. Suppose that @ = {1,...,n}. We first write a formula > expressing the
existence of a path of label u. To this purpose, we associate to each state ¢ a
set variable X, which encodes the set of positions in which a given path visits
the state ¢. The formula states that the X,’s are pairwise disjoint and that if
a path is in state ¢ In position z, in state ¢’ in position # + 1 and if the z-th
letter is an a, then (¢,a,¢’) € E. This gives

b= (A ~3e(Xy(e) A Xy (£) A

q7#q’

(VxVy S(z,y) — \/ (Xq(l‘) Na(z) A Xq’(i‘/)))

(g,a,9")EE

It remains to state that the path is successful. For a finite path, it suffices to
know that 0 belongs to one of the X,’s such that ¢ € I and that max belongs
to one of the X,’s such that ¢ € F'. Therefore, we set

Y4 = ¥ A FINITE A (\/ Xq(O)) A (\/ Xq(max))

An infinite path is successful if 0 belongs to one of the X, ’s such that ¢ € I and
if, for each position z, there exists a position y > x in which the path visits a
final state. In summary, we set:

o= A (VX 0) A (V¥ dn @<y A X))

The formulas

oy = E|X15|X2 .. Ean(’l/)-l-)
Spw = E|X15|X2 .. Ean(1/)w)



314 CHAPTER VIII. AN EXCURSION INTO LOGIC

now entirely encode the automaton. O

To pass from statements to sets of words, a natural idea is to argue by
induction on the formation rules of formulas. The problem is that the set S(¢)
is only defined when ¢ is a statement. The traditional solution in this case
consists of adding constants to interpret free variables to the structure in which
the formulas are interpreted. For the sake of homogeneity, we proceed in a
slightly different way, so that these structures remain words.

The idea is to use an extended alphabet of the form

prq =Ax {Oa 1}17 X {Oa 1}(1

such that p (resp. ¢) is greater than or equal to the number of first order (resp.
second order) variables of ¢. An infinite word on the alphabet B, , can be
identified with the sequence

(UOa Uy ooy Up, Upyd, - o, Up+q)
where ug € A¥ and uy, ..., Up, Upt1, ..., Upsq € {0,1}*. We are actually inter-
ested in the set K}, ; of words of B, in which each of the components uy, ..., u;,

contain exactly one occurrence of 1. If the context permits, we shall note B in-
stead of B, ;, and K instead of K, ;. We also set

K.=KnB", K,=KnB*

For example, if A = {a,b}, a word of By , is represented 1n Figure 3.1.

ug |la b a a b a b
wp |0 1 0 0 0 0 0
us |0 0 0 0 1 0 0
ug |1 0 0 0 0 0 O
ug |0 1 1 0 0 1 1
ug |1 1 0 1 0 1 O

Figure 3.1. A word of BY,.

The elements of K are called marked words on A. This terminology expresses
the fact that the elements of K are (finite or infinite) words in which labels
marking certain positions have been added. Each of the p first rows only marks
one position and the last ¢ ones an arbitrary number of positions.

Recall that the star-free subsets of B™ are obtained from the sets B* and
() by using the boolean operations and the marked product

(X,b,Y) = XbY

which associates to X C A* b€ B and Y C B®, the subset XbY of B*. Star-
free sets are in particular rational subsets of B®. Then we have the following

property.

Proposition 3.3 For each p,q > 0, the set K, , ts a star-free, and hence ra-
tional, subset of B, .



3. MONADIC SECOND ORDER LOGIC ON WORDS. 315

Proof. Set, for 1 <i <p,
CZ':{(bo,bl,...,bp+q)EB|bi:1}

Then K is the set of words of B containing exactly one letter of each Cj, for
1 <7 < p. Now the formula

K = ﬂ B*C; B>\ U B*C;B*C;B*.
1<i<p 1<i<p

shows that K 1s a star-free subset of B®. 0O

The interpretation of formulas on the words of B, follows the main lines of
the interpretation described in Section 2.3, but the interpretation of a is slightly
modified by setting

a={i<|ul|up(i) =a}l.

Let o(x1,...,2r, X1,...,X;) be a formula in which the first (resp. second)
order free variables are x1,..., 2, (resp. Xy,..., X,), with r < pand s <g¢. Let
u = (up, U1, ..., Upyq) be a word of K, , and, for 1 < i < p, denote by n; the
position of the unique 1 of the word u;. On the example above, one would have
ny =1, no = 4 and n3 = 0. A word u is said to satisfy ¢ if ug satisfies ¢[v],
where v is the valuation defined by

v(zgj)=n;  (1<j<r)
v(Xj)={ieN|uyp =1} (1<j<s)

In other words, each X; is interpreted as the set of positions of 1’s in up4;, and
each x; as the unique position of 1 in u;. Note that for p = ¢ = 0, we recover
the customary interpretation of statements.

Set

Spqle) =1 u€ K, 4| usatisfies p(z1,...,2p, X1,...,Xy) }

Again, we shall sometimes simply use the notation S(¢) instead of Sy, ,(¢). We
also note that S*(¢) = S(¢) N A* and S¥(¢) = S(¢) N A¥. Conjunctions and
disjunctions are easily converted into boolean operations.

Proposition 3.4 For each finite family of formulas (¢;)icr, the following equal-
ties hold:

(1) SVierei) = Uier (i),
(2) S(Ajerei) = Nier (i),
(3) S(=p) = Kp g\ S(e)

Proof. This is an immediate consequence of the definitions. O

To conclude the proof of Theorem 3.1, it remains to prove by induction on
the formation rules of formulas that the sets S(yp) are rational. Let us start
with the atomic formulas. As for the set K, we prove a slightly more precise
result that will be used later on in this chapter.



316 CHAPTER VIII. AN EXCURSION INTO LOGIC

Proposition 3.5 For each variable x,y, for each set variable X and for each
letter a € A, the sets of the form S(a(z)), S(z = y), S(z < y) and S(X(x)) are

star-free, and hence rational, subsets of B®.
Proof. Set, fori,j € {l,...,p+q}

Cia={b€eB,,|bj=1andby=a}
Cij={b€Bpy|b=b;=1}
Ci={beBpq|bi =1}

Then we have, by setting B = B, 4

S(a(z;)) = KNB"C; 4B™
S(z; ==2;) = KNB"C; ;B~
S(z; < z;) = KNB"C;B*C; B™
S(Xi(z;)) = KN B*Ciyp ;B

which establishes the proposition. O

Proposition 3.4 allows one to treat logical connectives. It remains to treat
the case of the formulas of the form Jz¢ and IX¢. Denote by m; the function
consisting to “erase” the i-th component, defined by

Fi(bo,bl, .. ~abp+q) = (bo,bl, .. ~abi—1abi+1a .. ~abp+q)

Thus m; should be considered as a function from B, , into B,_; 4 if ¢ < p and
into B, g—1 ifp<i<p+q.

Proposition 3.6 For each formula ¢, the following formulas hold
(1) Sp—1,¢(Fzpp) = 7 (5p,4(%))
(2) Spg-1(3Xgp) = Tp1q(Spq())

Proof. This follows from the definition of existential quantifiers. O

We are now ready to show that if S(p) is rational, then so are S(3z¢) and
S(3X ). We may assume that & = z, and X = X,. Then, by Proposition 3.6,
we have S(Jzp¢) = m,(S(¢)) and S(IX,¢) = mpyqe(S(¢)). Since morphisms
preserve rationality, the result follows.

This concludes the proof of Biichi’s theorem. The reader will find in Exer-
cise 4 the sketch of another proof to pass from words to formulas based on a
traduction of rational expressions.

We now show, as it was announced in Section 2.3 that strong and weak logic
coincide on words.

Theorem 3.7 The theories M Fa(<) and WM Fs(<) are equivalent on words.

Proof. Proposition 2.7 shows that WM Fy(<) < MFy(<). To establish the
opposite direction, it suffices, by Biichi’s theorem, to show that each rational
subset of A% can be defined by a formula of WM Fy(<). There is no problem
for a set of finite words, since set variables are necessarily interpreted as finite



4. FIRST ORDER LOGIC OF THE LINEAR ORDER. 317

sets. Therefore it suffices to consider the case of a recognizable set X of infinite
words.
By McNaughton’s theorem (Theorem 1.9.1), X is a boolean combination of

sets of the form ? We claim that such a set is definable in weak monadic
second order logic. TIndeed, let ¢(xz,y) be a formula of WM Fa(<) defining
Y (which consists of finite words). Then we have u = ¢(0,n) if and only if
UgUy ... Uz_1 € Y by Proposition 2.6 and the formula

Y =Vr(3y(z <y) Ap(0,y))
guaranties that « has infinitely many prefixes in Y. Thus S(¢) = ? m

Another proof of this result is given in Exercise 5. It consists in coding
directly a Muller automaton by a weak monadic second order formula. We
conclude this section by making two observations of logical nature.

First of all, Buichi’s theorem allows one to show that the monadic second
order theory of non negative integers 1s decidable.

Theorem 3.8 There is an algorithm to decide whether a given statement of
M F5(<) is true on M.

Proof. Let ¢ € M F5(<). One can effectively calculate the set S(¢) and decide
whether S(¢) = A¥ or S(¢) = 0. O

Next, the proof of Proposition 3.2 shows that the hierarchy on formulas
of MF5(<) based on the number of alternations of second order quantifiers
collapses to the first level. We have indeed the following result.

Proposition 3.9 FEvery formula of M F5(<) is equivalent to a formula of the
form

E|X1 . .HXkQD(Xl, . ..,Xk)

where ¢ is a first order formula.

In fact, one can even show that every formula of M F5(<) is equivalent to a
formula of the form 3X¢(X) where ¢ is a first order formula (Exercise 2).

4 First order logic of the linear order.

We now study the language F;(<) of the first order logic of the linear order. We
shall, in a first step, characterize the sets of words definable in this logic, which
happen to be the star-free sets. Next, we shall see in Section 4.2 how this result
can be refined to establish a correspondence between the levels the X,,-hierarchy
of first order logic and the concatenation hierarchy of star-free sets.

4.1 First order and star-free sets.
We shall prove the following key result.

Theorem 4.1 A set of finite or infinite words is star-free of and only if it is
definable by a formula of Fy(<).



