
Chapter VIIIAn ex
ursion into logi
1 Introdu
tion.This 
hapter is devoted to the presentation of the links between �nite automataand logi
. B�u
hi was the �rst to set up a logi
al language equivalent to �niteautomata. This logi
al formalism is rather un
ommon sin
e it makes use ofse
ond order variables. The reader will �nd in the notes at the end of this
hapter the motivations that drove B�u
hi into this dire
tion and a des
ription ofthe genesis of this aspe
t of the theory of automata. We shall simply emphasizehere two aspe
ts of this question.It is remarkable that all the logi
al theories o

urring in this framework arede
idable theories. This is a 
onstant of the theory of �nite automata in whi
hmost of the usual problems are not only de
idable but even of low 
omplexity.Showing o� a de
idable logi
al theory equivalent to �nite automata is, in asense, a 
on�rmation of this general prin
iple.Furthermore, the logi
al formalismis the same for �nite words and for in�nitewords. The only swit
h o

urs in the interpretation of formulas, in 
ontrast withthe formalism of automata or rational expressions, in whi
h the �nite and thein�nite 
ase have to be distinguished. In a sense, the material of this 
hapter
onstitutes a justi�
ation of the unity of the theories of automata on �nite orin�nite words.We �rst present in Se
tion 2 the elements of formal logi
 ne
essary to un-derstand the sequel. It 
onsists essentially of very elementary notions whi
h
an be skipped by a reader having some ba
kground in logi
. We introdu
e inparti
ular monadi
 se
ond order logi
, whi
h is the logi
al language equivalentwith automata, as is shown further on. We detail the interpretation of formulason words. It amounts mainly to 
onsider a word as a stru
ture by asso
iatingto ea
h index i the letter in position i. The relations that are used are the orderrelation between the indexes and the relation a(i) expressing that the letter inposition i is an a.In Se
tion 3, we prove the equivalen
e between �nite automata and monadi
se
ond order logi
 (B�u
hi's theorem). We prove this result for �nite words andfor in�nite words. One of the 
onsequen
es of this result is the de
idability ofthe monadi
 se
ond order logi
 on natural integers (also 
alled monadi
 se
ondorder logi
 of one su

essor). Besides, the proof of this latter result is one the301



302 CHAPTER VIII. AN EXCURSION INTO LOGICmotivation of the work of B�u
hi. The extension of B�u
hi's de
idability resultto two su

essors is Rabin's theorem, whi
h will be presented in Chapter X(Theorem X.4.3).The 
onversion from automata to logi
 
an be made by writing a formulastating that a word is the label of a su

essful path in an automaton. This proofbrings us a supplementary 
lue: every formula of monadi
 se
ond order logi
is equivalent to a formula of low 
omplexity in terms of quanti�er alternation.In parti
ular, the hierar
hy based on the number of quanti�er alternations 
ol-lapses. We shall see later on that this is a major di�eren
e between �rst andse
ond order.We also investigate the expressive power of the logi
al language obtained byrepla
ing the order relation on integers by the su

essor fun
tion. We shall seethat, for in�nite words, the monadi
 se
ond order logi
s of these two languagesare equivalent. It should not be a surprise to the reader familiar with logi
, sin
ethe order relation is de�nable in monadi
 se
ond order logi
 of the su

essorfun
tion.Furthermore, we show that monadi
 se
ond order logi
 is, on the integers,equivalent with weak monadi
 se
ond order logi
. The weak logi
 utilizes thesame formulas as the \strong" one but the interpretation is more restri
tive:set variables are always interpreted as �nite sets of integers. The equivalen
ebetween weak and strong logi
 is a 
onsequen
e of M
Naughton's theorem. In-deed, one 
an dedu
e from this theorem that ea
h rational set X � A! is aboolean 
ombination of subsets of the form �!Y with Y � A�. And su
h a set isde�nable by the formula 8x 9y (y > x ^ '(y))where '(y) is the formula expressing that the y's �rst letters of a word arein Y . Sin
e Y is a set of �nite words, we 
an restri
t ourselves to weak logi
to interpret '(y). This interdependen
e of results expressible in logi
 and interms of automata is the mark of the deep and real 
onne
tion between the twoapproa
hes. We shall see other examples in the sequel when we shall deal with�rst order logi
.In Se
tion 4, we present the 
orresponding theory for �rst order logi
. Westart by �rst order theory of the linear order sin
e, and it is a �rst di�eren
ewith the monadi
 
ase, the logi
 of the linear order and that of the su

essorare no longer equivalent.The �rst order logi
 of the linear order is shown to be equivalent to aperiodi
automata or, as we have seen in Chapter VI, to star-free sets. This is true for�nite words and for in�nite words.In Se
tion 4.2, we des
ribe the hierar
hy of the �rst order logi
 of the linearorder, 
orresponding to the alternate use of existential and universal quanti�ers.We show that this hierar
hy 
orresponds, on words, to the 
on
atenation hier-ar
hy des
ribed in Chapter VI. This leads to a doubly satisfying situation: �rstorder formulas not only 
orrespond globally to a natural 
lass of re
ognizablesets (the star-free sets), but this 
orresponden
e holds level by level.In Se
tion 5, we study a more restri
ted language, the �rst order logi
 ofthe su

essor. We give an e�e
tive 
hara
terization of the sets of in�nite wordsde�nable in this logi
: they are the threshold lo
ally testable sets (de�ned inChapter VII) whi
h are in the 
lass �2 (de�ned in Chapter III. We shall in-trodu
e on this o

asion a te
hnique of proof, 
alled Fra��ss�e-Ehrenfeu
ht game,



2. THE FORMALISM OF LOGIC. 303and we shall use it for proving the 
hara
terization theorem.We introdu
e in the last se
tion the formalism of temporal logi
 and showthat this logi
 is equivalent to �rst order logi
. Finally, we des
ribe the expres-sive power of the temporal logi
 without the until operator.In Chapters IX and X, we shall see how the logi
al framework presented inthis 
hapter extends to the more general 
ases of bi-in�nite words and in�nitetrees.2 The formalism of logi
.In this se
tion, we review the basi
 de�nitions of logi
 that will be used inthis book. We shall de�ne su

essively �rst order logi
, se
ond order, monadi
se
ond order and weak monadi
 se
ond order logi
.2.1 Syntax.We shall �rst de�ne the syntax of logi
al formulas. Let us start by �rst orderlogi
.The basi
 ingredients are the logi
al symbols whi
h en
ompass the logi
al
onne
tives: ^ (and), _ (or), : (not), ! (implies), the equality symbol =, thequanti�ers 9 (there exists) and 8 (for all), an in�nite set of variables (most oftendenoted by x, y, z, or x0, x1, x2,. . . ) and parenthesis (to ensure legibility of theformulas).In addition to these logi
al symbols, we make use of a set L of non logi-
al symbols. These auxiliary symbols 
an be of three types: relation symbols(for instan
e <), fun
tion symbols (for instan
e min), or 
onstant symbols (forinstan
e 0, 1). Expressions are built from the symbols of L by obeying theusual rules of the syntax, then �rst order formulas are built by using the logi-
al symbols, and are denoted by F1(L). We now give a detailed des
ription ofthe syntaxi
 rules to obtain the logi
al formulas in three steps, passing su

es-sively, following the standard terminology, from terms to atomi
 formulas andsubsequently to formulas.We shall illustrate the formation rules by taking as an exampleL = f < ;min; 0gin whi
h < is a binary relation symbol, min is a two-variable fun
tion symboland 0 is a 
onstant.We �rst de�ne the set of L-terms. It is the least set of expressions 
ontainingthe variables, the 
onstant symbols of L (if there are some) whi
h is 
losed underthe following formation rule: if t1; t2; : : : ; tn are terms and if f is a fun
tionsymbol with n arguments, then the expression f(t1; t2; : : : ; tn) is a term. Inparti
ular, if L does not 
ontain any fun
tion symbol, the only terms are thevariables and the 
onstant symbols. In our example, the following expressionsare terms:x0 min(0; 0) min(x1;min(0; x2)) min(min(x0; x1);min(x1; x2))The atomi
 formulas are formulas either of the form(t1 = t2)



304 CHAPTER VIII. AN EXCURSION INTO LOGICwhere t1 and t2 are terms, or of the formR(t1; : : : ; tn)where t1; : : : ; tn are terms and where R is a n-ary relation symbol of L. On ourexample, the following expressions are atomi
 formulas:(min(x1;min(0; x2)) = x1) (min(0; 0) < 0)(min(min(x0; x1);min(x1; x2)) < min(x3; x1))Noti
e that, in order to improve legibility, we didn't take literally the de�nitionof atomi
 formulas: indeed, sin
e < is a symbol of binary relation, one shouldwrite < (t1; t2) instead of t1 < t2.Finally, the �rst order formulas on L form the least set of expressions 
on-taining the empty formula and the atomi
 formulas and 
losed under the fol-lowing formation rules:(i) If ('i)i2I is a �nite family of �rst order formulas, so are the expressions(î2I 'i) and (_i2I 'i)(ii) If ' and  are �rst order formulas, so are the expressions:' and ('!  )(iii) If ' is a �rst order formula and if x is a variable, then the expressions(9x') and (8x')are �rst order formulas.To make notations easier, we settrue = î2;'i and false = _i2;'iThe following expressions are �rst order formulas of our example language:(9x (8y ((y < min(z; 0)) ^ (x < 0)))) (8x (y = x))Again, it is 
onvenient to simplify notation by suppressing some of the paren-thesis and we shall write the previous formulas under the form9x 8y (y < min(x; 0))^ (z < 0) 8x y = xIn a �rst order formula, some variables o

ur after a quanti�er (existential oruniversal): the o

urren
es of these variables are said to be bounded and theother o

urren
es are said to be free. For example, in the formula9x (y < h(x; 0)) ^ 8y (z < y)the simply underlined o

urren
es of x and y are bounded and the o

urren
esof z and y doubly underlined are free. A variable is free if at least one of itso

urren
es is free. The set FV (') of free variables of a formula ' 
an bede�ned indu
tively as follows:



2. THE FORMALISM OF LOGIC. 305(1) If ' is an atomi
 formula, FV (') is the set of variables o

urring in ',(2) FV (:') = FV (')(3) FV (Vi2I 'i) = FV (Wi2I 'i) = Si2I FV ('i)(4) FV ('!  ) = FV (') [ FV ( )(5) FV (9x') = FV (8x') = FV (') n fxgA statement is a formula in whi
h all o

urren
es of variables are bounded. Forexample, the formula 9x 8y (y < min(x; 0))is a statement.We shall denote by '(x1; x2; : : : ; xn) a formula' in whi
h the set of free vari-ables is 
ontained in fx1; : : : ; xng (but is not ne
essarily equal to fx1; : : : ; xng).The variables used in �rst order logi
, or �rst order) are interpreted, as weshall see, as the elements of a set. In se
ond order logi
, one makes use of anothertype of variables, 
alled se
ond order variables, whi
h represent relations. Thesevariables are denoted traditionally by 
apital letters: X0, X1, et
.. One built inthis way the set of se
ond order formulas on L, denoted by F2(L). The set ofterms is the same as for �rst order. The atomi
 formulas are either of the form(t1 = t2)where t1 and t2 are terms, or of the formR(t1; : : : ; tn) or X(t1; : : : ; tn)where t1; : : : ; tn are terms, R is a n-ary relation symbol of L and X is a variablerepresenting a n-ary relation.Finally, se
ond order formulas on L form the least set of expressions 
on-taining the atomi
 formulas and 
losed under the following formation rules:(i) If ' and  are se
ond order formulas, then so are:'; (' ^  ); (' _  ); ('!  )(ii) If ' is a se
ond order formula, if x is a variable and if X is a variable ofrelation, then the expressions(9x') (8x') (9X') (8X')are se
ond order formulas.We 
all monadi
 se
ond order logi
 the fragment of se
ond order logi
 in whi
hthe only relation variables are unary relation variables, in other words, variablesrepresenting subsets of the domain. By 
onvenien
e, they are 
alled set vari-ables. We denote by MF2(L) the set of monadi
 se
ond order logi
 on L. Weshall also use the notation x 2 X instead of X(x).2.2 Semanti
s.We have adopted so far a synta
ti
 point of view to de�ne formulas with noreferen
e to semanti
s. But of 
ourse, formulas would be uninteresting if theywere meaningless. Giving a pre
ise meaning to formulas requires to spe
ify thedomain on whi
h we want to interpret ea
h of the symbols of the language L.Formally, a stru
ture S on L is given by a nonempty set D, 
alled domain andby a map de�ned on L, 
alled an assignment whi
h asso
iates
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h n-ary relation symbol of L, a n-ary relation de�ned on D,(2) to ea
h n-ary fun
tion symbol f of L, a n-ary fun
tion de�ned on D,(3) to ea
h 
onstant symbol 
 of L, an element of D.To de
ongest notations, we shall use the same notation for the relation (resp.fun
tion, 
onstant) symbols and for the relations (resp. fun
tions, 
onstants)represented by these symbols. The 
ontext will allow us to determine easilywhat the notation stands for. For example, we shall always employ the symbol< to designate the usual order relation on a set of integers, independently ofthe domain (N,Z, or a subset of N).We still have to interpret variables. Let us start by �rst order variables.Given a �xed stru
ture S on L, with domain D, a valuation on S is a map� from the set of variables into the set D. It is then easy to extend � into afun
tion of the set of terms of L into D, by indu
tion on the formation rules ofterms:(1) If 
 is a 
onstant symbol, we put �(
) = 
,(2) if f is a n-ary fun
tion symbol and if t1, . . . , tn are terms,��f(t1; : : : ; tn)� = f(�(t1) : : : �(tn))If � is a valuation and a an element of D, we denote by ��ax� the valuation � 0de�ned by �0(y) = (�(y) if y 6= xa if y = xThe notion of interpretation 
an be now easily formalized. De�ne, for ea
h�rst order formula ' and for ea
h valuation �, the expressions \the valuation �satis�es ' in S", or \S satis�es '[�℄", denoted by S j= '[�℄, as follows:(1) S j= (t1 = t2)[�℄ if and only if �(t1) = �(t2)(2) S j= R(t1; : : : ; tn)[�℄ if and only if ��(t1); : : : ; �(tn)� 2 R(3) S j= :'[�℄ if and only if not S j= '[�℄(4) S j= (î2I ')[�℄ if and only if for ea
h i 2 I; S j= 'i[�℄(5) S j= (_i2I ')[�℄ if and only if there exists i 2 I; S j= 'i[�℄(6) S j= ('!  )[�℄ if and only if S 6j= '[�℄ or S j=  [�℄(7) S j= (9x')[�℄ if and only if S j= '[��ax�℄ for some a 2 D(8) S j= (8x')[�℄ if and only if S j= '[��ax�℄ for ea
h a 2 DNote that, a
tually, the truth of the expression \the valuation � satis�es ' inS" only depends on the values taken by the free variables of '. In parti
ular,if ' is a statement, the 
hoi
e of the valuation is irrelevant. Therefore, if ' is astatement, one says that ' is satis�ed by S (or that S satis�es '), and denoteby S j= ', if, for ea
h valuation �, S j= '[�℄.Next we move to the interpretation of se
ond order formulas. Given a stru
tureS on L, with domain D, a se
ond order valuation on S is a map � whi
hasso
iates to ea
h �rst order variable an element of D and to ea
h n-ary relationvariable a subset of Dn (i.e. a n-ary relation on D).



2. THE FORMALISM OF LOGIC. 307If � is a valuation and R a subset of Dn, ��RX� denotes the valuation � 0 de�nedby � 0(x) = �(x) if x is a �rst order variable�0(Y ) = (�(Y ) if Y 6= XR if Y = XThe notion of interpretation, already de�ned for �rst order, is supplemented bythe following rules:(9) S j= (X(t1; : : : ; tn))[�℄ if and only if ��(t1); : : : ; �(tn)� 2 �(X)(10) S j= (9X')[�℄ if and only if there exists R � Dn; S j= '[��RX�℄(11) S j= (8X')[�℄ if and only if for ea
h R � Dn; S j= '[��RX�℄Weak monadi
 se
ond order logi
 is 
omposed with the same formulas thanmonadi
 se
ond order logi
, but the interpretation is even more restri
ted: areonly 
onsidered valuations whi
h asso
iate to set variables �nite subsets of thedomain D.Two formulas ' and  are said to be logi
ally equivalent if, for ea
h stru
tureS on L, we have S j= ' if and only if S j=  .It is easy to see that the following formulas are logi
ally equivalent:(1) ' ^  and :(:' _ : )(2) '!  and :' _  (3) 8x' and :(9x :')(4) ' _  and  _ '(5) ' ^  and  ^ '(6) ' ^ false and false(7) ' _ false and 'Consequently, up to logi
al equivalen
e, we may assume that the formulas arebuilt without the symbols ^, ! and 8.Logi
al equivalen
e also permits to give a more stru
tured form to formulas.A formula is said to be under disjun
tive normal form if it 
an be writtenas disjun
tion of 
onjun
tions of atomi
 formulas or of negations of atomi
formulas, in other words under the form_i2I ^j2Ji('ij _ : ij)where I and the Ji are �nite sets, and where the 'ij and the  ij are atomi
formulas. The next result is standard and easily proved.Proposition 2.1 Every quanti�er free formula is logi
ally equivalent with aquanti�er free formula in disjun
tive normal form.One 
an set up a hierar
hy inside �rst order formulas as follows. Let �0 = �0the set quanti�er-free formulas. Next, for ea
h n � 0, denote by �n+1 the leastset � of formulas su
h that
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ontains the boolean 
ombinations of formulas of �n,(2) � is 
losed under disjun
tions and �nite 
onjun
tions,(3) if ' 2 � and if x is a variable, 9x' 2 �.Similarly, denote by �n+1 the least set � of formulas su
h that(1) � 
ontains the boolean 
ombinations of formulas of �n,(2) � is 
losed under disjun
tions and �nite 
onjun
tions,(3) if ' 2 � and if x is a variable, 8x' 2 �.In parti
ular, �1 is the set of existential formulas | that is of the form9x1 9x2 : : : 9xk 'where ' is quanti�er-free.Finally, we denote by B�n the set of boolean 
ombinations of formulas of �n.A �rst order formula is said to be in prenex normal form if it is of the form = Q1x1 Q2x2 : : : Qnxn 'where the Qi are existential or universal quanti�ers (9 or 8) and ' is quanti�er-free. The sequen
e Q1x1 Q2x2 : : : Qnxn, whi
h 
an be 
onsidered as a wordon the alphabet f 9x1; 9x2; : : : ; 8x1; 8x2; : : : g;is 
alled the quanti�
ation pre�x of  . The interest of these formulas in prenexnormal form 
omes from the following result.Proposition 2.2 Every �rst order formula is logi
ally equivalent to a formulain prenex normal form.Proof. It suÆ
es to verify that if the variable x does not o

ur in the formula then 9x(' ^  ) � (9x') ^  9x(' _  ) � (9x') _  and the same formulas hold for the quanti�er 8. Hen
e it is possible, by renamingthe variables, to throw ba
k the quanti�ers to the outside.Proposition 2.2 
an be improved to take into a

ount the level of the formulain the �n hierar
hy.Proposition 2.3 For ea
h integer n � 0,(1) Every formula of �n is logi
ally equivalent to a formula in prenex normalform in whi
h the quanti�
ation pre�x is a sequen
e of n (possibly empty)alternating blo
ks of existential and universal quanti�ers, starting with ablo
k of existential quanti�ers.(2) Every formula of �n is logi
ally equivalent to a formula in prenex normalform in whi
h the quanti�
ation pre�x is a sequen
e of n (possibly empty)alternating blo
ks of existential and universal quanti�ers, starting with ablo
k of universal quanti�ers.



2. THE FORMALISM OF LOGIC. 309For example, the formula9x1 9x2 9x3| {z }blo
k 1 8x4 8x5| {z }blo
k 2 9x6 9x7| {z }blo
k 3 '(x1; : : : ; x6)belongs to �3 (and also to all �n's su
h that n � 3). Similarly the formula|{z}blo
k 1 8x4 8x5| {z }blo
k 2 9x6 9x7| {z }blo
k 3 '(x1; : : : ; x7)belongs to �3 and to �2, but not to �2, sin
e the 
ounting of blo
ks of a �n-formula should always begin by a possibly empty blo
k of existential quanti�ers.One 
an introdu
e normal forms and a hierar
hy for se
ond order monadi
formulas. Thus, one 
an show that every monadi
 se
ond order formula islogi
ally equivalent to a formula of the form = Q1X1 Q2X2 : : : QnXn 'where the Qi are existential or universal quanti�ers and ' is a �rst order formula.2.3 Logi
 on words.The logi
al language that we shall use now was introdu
ed by B�u
hi underthe name of \sequential 
al
ulus". It permits to formalize 
ertain properties ofwords. To interpret formulas on words, we shall 
onsider a word u = u(0)u(1) : : :as a map asso
iating a letter to ea
h index. The set of indexes will itself be
onsidered as a subset of the setN = N[ f1gthe set of natural numbers with a new maximal element, denoted by 1.Let A be an alphabet. For an in�nite word u 2 A!, we set juj =1, so thatthe length of a word is always an element of the set N . For ea
h word u 2 A1,one de�nes the domain of u, denoted by Dom(u) asDom(u) = fi 2 N j 0 � i � jujgSo, if u is a �nite word, Dom(u) = f0; : : : ; jujg and if u is an in�nite word,Dom(u) = N . De�ne for ea
h letter a 2 A a unary relation a on the domain ofu by a = fi < juj j u(i) = ag:Finally, let us asso
iate to ea
h word u the stru
tureMu = �Dom(u); (a)a2A�;Beware that, with these de�nitions, the domain of a �nite or in�nite word
omprises a supplementary position at the end. One 
an imagine that thisposition is o

upied by an end symbol (the $ prized by lexi
al analyzers. . . ).For example, if u = abbaab, then Dom(u) = f0; 1; : : : ; 6g, a = f0; 3; 4g andb = f1; 2; 5g. If u = (aba)!, thena = fn 2 N j n � 0 mod 3 or n � 2 mod 3g andb = fn 2 N j n � 1 mod 3g



310 CHAPTER VIII. AN EXCURSION INTO LOGICFrom now and on, we shall interpret logi
al formulas on words, that is, on astru
ture of the formMu as explained above. Let ' be a statement. A �nite orin�nite word u 2 A1 satis�es ' if the stru
ture Mu satis�es '. This is denotedby u j= '. We also say that u is a model of '. De�ne the spe
trum of ' as theset S(') = fu 2 A1 j u satis�es 'gWe also set S�(') = S(') \A�, S+(') = S(') \A+ and S!(') = S(') \A!.From now and on, all the variables will be interpreted as natural integers or1. Therefore, we shall use logi
al equivalen
e restri
ted to interpretations ofdomain N .The various logi
al languages that we shall 
onsider all 
ontain, for ea
ha 2 A, a unary relation symbol denoted (a) when no 
onfusion arises. We shallalso use two other non logi
al symbols, < and S, that will be interpreted asthe usual order and as the su

essor relation on Dom(u): S(x; y) if and only ify = x + 1. In the sequel, we shall mainly 
onsider two logi
al languages: thelanguage L< = f<g [ fa j a 2 Agwill be 
alled the language of the linear order and the languageLS = fSg [ fa j a 2 Agwill be 
alled the language of the su

essor. The atomi
 formulas of the languageof the linear order are of the forma(x); x = y; x < yand those of the language of the su

essor are of the forma(x); x = y; S(x; y):We shall denote respe
tively by F1(<) and MF2(<) the set of �rst order andmonadi
 se
ond order formulas of signature f<; (a)a2Ag. Similarly, we denoteby F1(S) andMF2(S) the same sets of formulas of signature fS; (a)a2Ag. InsideF1(<) (resp. F1(S)), the �n(<) (resp. �n(S)) hierar
hy is based on the numberof quanti�er alternations.We shall now start the 
omparison between the various logi
al languages wehave introdu
ed. First of all, the distin
tion between the signatures S and <is only relevant for �rst order in view of the following proposition. A relationR(x1; � � � ; xn) on the integers is said to be de�ned by a formula '(x1; : : : ; xn)if, for ea
h i1; : : : ; in � 0, R(i1; : : : ; in) if and only if '(i1; : : : ; in) is true.Proposition 2.4 The su

essor relation 
an be de�ned in F1(<), and the orderrelation on integers 
an be de�ned in MF2(S).Proof. The su

essor relation 
an be de�ned by the formula(i < j) ^ 8k �(i < k)! ((j = k) _ (j < k))�whi
h states that j = i + 1 if i is smaller than j and there exist no elementbetween i and j. Conversely, i < j 
an be expressed in MF2(S) as follows:9X �8x8y ��(x 2 X) ^ S(x; y)� ! (y 2 X)�� ^ (j 2 X) ^ (i =2 X)
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h intuitively means that there exists an interval of the form [k;+1[ 
on-taining j but not i.On the 
ontrary, we shall see later on (Corollary 5.10) that the relation <
annot be de�ned in F1(S).Given two sets of formulas F and G, we use the notation F � G if for ea
hformula of F , there exists an equivalent formula in G (we remind the readerthat the variables are always interpreted as integers). Denote by F � G theasso
iated equivalen
e and by F < G the relation F � G but F 6� G. The nextresult summarizes the expressive power of the various logi
al languages.Proposition 2.5 The following relations hold:F1(S) < F1(<) < MF2(S) = MF2(<)Proof. Proposition 2.4 shows the double inequality F1(S) � F1(<) � MF2(S).The fa
t that these inequalities are stri
t follow respe
tively from Corollary 5.10and Corollary 4.4, whi
h will be proved later on.Finally, we have MF2(S) � MF2(<) sin
e S 
an be expressed in F1(<),whi
h in turn is 
ontained in MF2(<). But we also have MF2(<) � MF2(S)sin
e, by Proposition 2.4, the relation < 
an be de�ned in MF2(S).It will be 
onvenient to enri
h our logi
al languages by adding auxiliaryformulas whi
h 
an be 
onsidered as abbreviations. We shall see an example afew lines below with the predi
ate Finite(X) whi
h expresses the fa
t that a set(of integers) is �nite.If x is a variable, it is 
onvenient to write x + 1 (resp. x � 1) to repla
ea variable y submitted to the 
ondition S(x; y) (resp. S(y; x)). However, thereader should beware of the fa
t that x+y is not de�nable inMF2(<) (Exer
ise3). We 
an also use the symbols � and 6= with their usual interpretations: x � ystands for (x < y) _ (x = y) and x 6= y for :(x = y).Another example, to be used below, are the symbols min, max, whi
h desig-nate the �rst and the last element of the domain. These symbols 
an be de�nedin F1(S) with two alternations of quanti�ers:min : 9min 8x :S(x;min)max : 9max 8x :S(max; x)These symbols permit to express that u is the empty word (max = min) or thatu is �nite ((max = min)_9 xS(x;max)). We shall denote by FINITE the latterformula.We shall sometimes need a parametrized, or relative, notion of satisfa
tionfor a formula. Let indeed '(x; y) be a formula with only two free variables xand y. Let u 2 A1 be a word and i; j 2 Dom(u). A word u 2 A1 is said tosatisfy the formula ' between i and j if ui : : :uj�1 j= ' (or uiui+1 : : : j= ' ifj =1).Proposition 2.6 For ea
h statement ', there exists a formula '(x; y) with thesame signature, the same order (and, in the 
ase of a �rst order formula, the



312 CHAPTER VIII. AN EXCURSION INTO LOGICsame level in the hierar
hy �n), having x and y as unique free variables andwhi
h satis�es the following property: for ea
h �nite or in�nite word u and forea
h s; t 2 Dom(u), u j= '(s; t) if and only if u satis�es ' between s and t.Proof. The formulas '(x; y) are built by indu
tion on the formation rules asfollows: if ' is an atomi
 formula, we set '(x; y) = '. Otherwise, we set(:')(x; y) = :'(x; y)(' _  )(x; y) = '(x; y) _  (x; y)(9z')(x; y) = 9z ((x � z) ^ (z < y) ^ '(x; y))(9X')(x; y) = 9X ((8 z(X(z) ! (x � z) ^ (z < y)) ^ '(x; y))It is easy to verify that the formulas '(x; y) built in this way have the requiredproperties.We 
on
lude this se
tion by examining the pla
e of the weak theories of thelinear order and the su

essor. First of all, one 
an verify that the formulasused in the proof of Proposition 2.4 a
tually de�ne the relation < in WMF2(S)(Exer
ise 1). It follows thatWMF2(S) =WMF2(<)and that the weak monadi
 theories of the su

essor and of the linear order arethe same.We shall see on the other hand thatWMF2(<) = MF2(<)so that the weak and strong theories of the linear order 
oin
ide. We 
an alsonote immediately the next result, whi
h is true in a mu
h more general setting(a
tually as soon as one 
an write a formula expressing that a set is �nite).Proposition 2.7 The formula WMF2(<) � MF2(<) holds.Proof. One 
an write in MF2(<) a formula Finite(X) expressing that a set Xis �nite. For instan
e Finite(X) = 9x (8y X(y) ! y < x)Every formula of WMF2(<) is equivalent to a formula of the form = Q1X1 : : :QnXn'where ' is a �rst order formula. The formula is then equivalent to the formulaQ1X1 : : :QnXn' ^ ^1�i�nFinite(Xi)of MF2(<).The formulas in whi
h the predi
ates a do not o

ur pertain uniquely tointegers. We shall see in the next se
tion that the words have nevertheless thesame role to play, as soon as formulas with free variables have to be interpreted.



3. MONADIC SECOND ORDER LOGIC ON WORDS. 3133 Monadi
 se
ond order logi
 on words.This se
tion is devoted to the proof of a result of B�u
hi stating that the subsetsof A1 de�nable in monadi
 se
ond order logi
 are exa
tly the rational (resp.!-rational) sets.Theorem 3.1 Let X � A1 be a set of �nite or in�nite words. The following
onditions are equivalent:(1) X is de�nable by a formula of MF2(<),(2) X is re
ognizable.The proof of this result 
an be de
omposed into two parts: passing fromwords to formulas, and from formulas to words.To pass from words to formulas, we simulate the behaviour of an automatonby a formula.Proposition 3.2 For ea
h B�u
hi automaton A = (Q;A;E; I; F ), there existformulas '+; '! of MF2(<) su
h that S+('+) = L+(A), S!('!) = L!(A) andL1(A) = S('+ _ '!).Proof. Suppose that Q = f1; : : : ; ng. We �rst write a formula  expressing theexisten
e of a path of label u. To this purpose, we asso
iate to ea
h state q aset variable Xq whi
h en
odes the set of positions in whi
h a given path visitsthe state q. The formula states that the Xq 's are pairwise disjoint and that ifa path is in state q in position x, in state q0 in position x + 1 and if the x-thletter is an a, then (q; a; q0) 2 E. This gives = �q̂ 6=q0 :9x(Xq(x) ^Xq0 (x))�^�8x8y S(x; y) ! _(q;a;q0)2E�Xq(x) ^ a(x) ^Xq0 (y)��It remains to state that the path is su

essful. For a �nite path, it suÆ
es toknow that 0 belongs to one of the Xq 's su
h that q 2 I and that max belongsto one of the Xq 's su
h that q 2 F . Therefore, we set + =  ^ FINITE ^ �_q2IXq(0)� ^ �_q2F Xq(max)�An in�nite path is su

essful if 0 belongs to one of the Xq 's su
h that q 2 I andif, for ea
h position x, there exists a position y > x in whi
h the path visits a�nal state. In summary, we set: ! =  ^ �_q2IXq(0)� ^ �_q2F 8x 9y (x < y ^ Xq(y))�The formulas '+ = 9X19X2 : : :9Xn( +)'! = 9X19X2 : : :9Xn( !)
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ode the automaton.To pass from statements to sets of words, a natural idea is to argue byindu
tion on the formation rules of formulas. The problem is that the set S(')is only de�ned when ' is a statement. The traditional solution in this 
ase
onsists of adding 
onstants to interpret free variables to the stru
ture in whi
hthe formulas are interpreted. For the sake of homogeneity, we pro
eed in aslightly di�erent way, so that these stru
tures remain words.The idea is to use an extended alphabet of the formBp;q = A� f0; 1gp � f0; 1gqsu
h that p (resp. q) is greater than or equal to the number of �rst order (resp.se
ond order) variables of '. An in�nite word on the alphabet Bp;q 
an beidenti�ed with the sequen
e(u0; u1; : : : ; up; up+1; : : : ; up+q)where u0 2 A! and u1; : : : ; up; up+1; : : : ; up+q 2 f0; 1g!. We are a
tually inter-ested in the set Kp;q of words of B1p;q in whi
h ea
h of the 
omponents u1; : : : ; up
ontain exa
tly one o

urren
e of 1. If the 
ontext permits, we shall note B in-stead of Bp;q and K instead of Kp;q. We also setK� = K \B�; K! = K \B!For example, if A = fa; bg, a word of B!3;2 is represented in Figure 3.1.u0 a b a a b a b � � �u1 0 1 0 0 0 0 0 � � �u2 0 0 0 0 1 0 0 � � �u3 1 0 0 0 0 0 0 � � �u4 0 1 1 0 0 1 1 � � �u5 1 1 0 1 0 1 0 � � �Figure 3.1. A word of B!3;2.The elements of K are 
alled marked words on A. This terminology expressesthe fa
t that the elements of K are (�nite or in�nite) words in whi
h labelsmarking 
ertain positions have been added. Ea
h of the p �rst rows only marksone position and the last q ones an arbitrary number of positions.Re
all that the star-free subsets of B1 are obtained from the sets B1 and; by using the boolean operations and the marked produ
t(X; b; Y )! XbYwhi
h asso
iates to X � A�, b 2 B and Y � B1, the subset XbY of B1. Star-free sets are in parti
ular rational subsets of B1. Then we have the followingproperty.Proposition 3.3 For ea
h p; q � 0, the set Kp;q is a star-free, and hen
e ra-tional, subset of B1p;q .



3. MONADIC SECOND ORDER LOGIC ON WORDS. 315Proof. Set, for 1 � i � p,Ci = f (b0; b1; : : : ; bp+q) 2 B j bi = 1 gThen K is the set of words of B1 
ontaining exa
tly one letter of ea
h Ci, for1 � i � p. Now the formulaK = \1�i�pB�CiB1 n [1�i�pB�CiB�CiB1:shows that K is a star-free subset of B1.The interpretation of formulas on the words of B1p;q follows the main lines ofthe interpretation des
ribed in Se
tion 2.3, but the interpretation of a is slightlymodi�ed by setting a = fi < juj j u0(i) = ag:Let '(x1; : : : ; xr; X1; : : : ; Xs) be a formula in whi
h the �rst (resp. se
ond)order free variables are x1; : : : ; xr (resp. X1; : : : ; Xs), with r � p and s � q. Letu = (u0; u1; : : : ; up+q) be a word of Kp;q and, for 1 � i � p, denote by ni theposition of the unique 1 of the word ui. On the example above, one would haven1 = 1, n2 = 4 and n3 = 0. A word u is said to satisfy ' if u0 satis�es '[�℄,where � is the valuation de�ned by�(xj) = nj (1 � j � r)�(Xj) = f i 2 N j up+j;i = 1 g (1 � j � s)In other words, ea
h Xj is interpreted as the set of positions of 1's in up+j , andea
h xj as the unique position of 1 in uj. Note that for p = q = 0, we re
overthe 
ustomary interpretation of statements.Set Sp;q(') = f u 2 Kp;q j u satis�es '(x1; : : : ; xp; X1; : : : ; Xq) gAgain, we shall sometimes simply use the notation S(') instead of Sp;q('). Wealso note that S�(') = S(') \ A� and S!(') = S(') \ A!. Conjun
tions anddisjun
tions are easily 
onverted into boolean operations.Proposition 3.4 For ea
h �nite family of formulas ('i)i2I , the following equal-ities hold:(1) S(Wi2I 'i) = Si2I S('i),(2) S(Vi2I 'i) = Ti2I S('i),(3) S(:') = Kp;q n S(')Proof. This is an immediate 
onsequen
e of the de�nitions.To 
on
lude the proof of Theorem 3.1, it remains to prove by indu
tion onthe formation rules of formulas that the sets S(') are rational. Let us startwith the atomi
 formulas. As for the set K, we prove a slightly more pre
iseresult that will be used later on in this 
hapter.
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h variable x; y, for ea
h set variable X and for ea
hletter a 2 A, the sets of the form S(a(x)), S(x = y), S(x < y) and S(X(x)) arestar-free, and hen
e rational, subsets of B1.Proof. Set, for i; j 2 f1; : : : ; p+ qgCj;a = fb 2 Bp;q j bj = 1 and b0 = agCi;j = fb 2 Bp;q j bi = bj = 1gCi = fb 2 Bp;q j bi = 1gThen we have, by setting B = Bp;qS(a(xi)) = K \B�Ci;aB1S(xi = xj) = K \B�Ci;jB1S(xi < xj) = K \B�CiB�CjB1S(Xi(xj)) = K \B�Ci+p;jB1whi
h establishes the proposition.Proposition 3.4 allows one to treat logi
al 
onne
tives. It remains to treatthe 
ase of the formulas of the form 9x' and 9X'. Denote by �i the fun
tion
onsisting to \erase" the i-th 
omponent, de�ned by�i(b0; b1; : : : ; bp+q) = (b0; b1; : : : ; bi�1; bi+1; : : : ; bp+q)Thus �i should be 
onsidered as a fun
tion from Bp;q into Bp�1;q if i � p andinto Bp;q�1 if p < i � p+ q.Proposition 3.6 For ea
h formula ', the following formulas hold(1) Sp�1;q(9xp') = �p(Sp;q('))(2) Sp;q�1(9Xq') = �p+q(Sp;q('))Proof. This follows from the de�nition of existential quanti�ers.We are now ready to show that if S(') is rational, then so are S(9x') andS(9X'). We may assume that x = xp and X = Xq . Then, by Proposition 3.6,we have S(9xp') = �p(S(')) and S(9Xq') = �p+q(S(')). Sin
e morphismspreserve rationality, the result follows.This 
on
ludes the proof of B�u
hi's theorem. The reader will �nd in Exer-
ise 4 the sket
h of another proof to pass from words to formulas based on atradu
tion of rational expressions.We now show, as it was announ
ed in Se
tion 2.3 that strong and weak logi

oin
ide on words.Theorem 3.7 The theories MF2(<) and WMF2(<) are equivalent on words.Proof. Proposition 2.7 shows that WMF2(<) � MF2(<). To establish theopposite dire
tion, it suÆ
es, by B�u
hi's theorem, to show that ea
h rationalsubset of A1 
an be de�ned by a formula of WMF2(<). There is no problemfor a set of �nite words, sin
e set variables are ne
essarily interpreted as �nite
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es to 
onsider the 
ase of a re
ognizable set X of in�nitewords.By M
Naughton's theorem (Theorem I.9.1), X is a boolean 
ombination ofsets of the form �!Y . We 
laim that su
h a set is de�nable in weak monadi
se
ond order logi
. Indeed, let '(x; y) be a formula of WMF2(<) de�ningY (whi
h 
onsists of �nite words). Then we have u j= '(0; n) if and only ifu0u1 : : :un�1 2 Y by Proposition 2.6 and the formula = 8x�9y(x < y) ^'(0; y)�guaranties that u has in�nitely many pre�xes in Y . Thus S( ) = �!Y .Another proof of this result is given in Exer
ise 5. It 
onsists in 
odingdire
tly a Muller automaton by a weak monadi
 se
ond order formula. We
on
lude this se
tion by making two observations of logi
al nature.First of all, B�u
hi's theorem allows one to show that the monadi
 se
ondorder theory of non negative integers is de
idable.Theorem 3.8 There is an algorithm to de
ide whether a given statement ofMF2(<) is true on N.Proof. Let ' 2MF2(<). One 
an e�e
tively 
al
ulate the set S(') and de
idewhether S(') = A! or S(') = ;.Next, the proof of Proposition 3.2 shows that the hierar
hy on formulasof MF2(<) based on the number of alternations of se
ond order quanti�ers
ollapses to the �rst level. We have indeed the following result.Proposition 3.9 Every formula of MF2(<) is equivalent to a formula of theform 9X1 : : :9Xk'(X1; : : : ; Xk)where ' is a �rst order formula.In fa
t, one 
an even show that every formula of MF2(<) is equivalent to aformula of the form 9X'(X) where ' is a �rst order formula (Exer
ise 2).4 First order logi
 of the linear order.We now study the language F1(<) of the �rst order logi
 of the linear order. Weshall, in a �rst step, 
hara
terize the sets of words de�nable in this logi
, whi
hhappen to be the star-free sets. Next, we shall see in Se
tion 4.2 how this result
an be re�ned to establish a 
orresponden
e between the levels the �n-hierar
hyof �rst order logi
 and the 
on
atenation hierar
hy of star-free sets.4.1 First order and star-free sets.We shall prove the following key result.Theorem 4.1 A set of �nite or in�nite words is star-free if and only if it isde�nable by a formula of F1(<).


