
Chapter VIIIAn exursion into logi1 Introdution.This hapter is devoted to the presentation of the links between �nite automataand logi. B�uhi was the �rst to set up a logial language equivalent to �niteautomata. This logial formalism is rather unommon sine it makes use ofseond order variables. The reader will �nd in the notes at the end of thishapter the motivations that drove B�uhi into this diretion and a desription ofthe genesis of this aspet of the theory of automata. We shall simply emphasizehere two aspets of this question.It is remarkable that all the logial theories ourring in this framework aredeidable theories. This is a onstant of the theory of �nite automata in whihmost of the usual problems are not only deidable but even of low omplexity.Showing o� a deidable logial theory equivalent to �nite automata is, in asense, a on�rmation of this general priniple.Furthermore, the logial formalismis the same for �nite words and for in�nitewords. The only swith ours in the interpretation of formulas, in ontrast withthe formalism of automata or rational expressions, in whih the �nite and thein�nite ase have to be distinguished. In a sense, the material of this hapteronstitutes a justi�ation of the unity of the theories of automata on �nite orin�nite words.We �rst present in Setion 2 the elements of formal logi neessary to un-derstand the sequel. It onsists essentially of very elementary notions whihan be skipped by a reader having some bakground in logi. We introdue inpartiular monadi seond order logi, whih is the logial language equivalentwith automata, as is shown further on. We detail the interpretation of formulason words. It amounts mainly to onsider a word as a struture by assoiatingto eah index i the letter in position i. The relations that are used are the orderrelation between the indexes and the relation a(i) expressing that the letter inposition i is an a.In Setion 3, we prove the equivalene between �nite automata and monadiseond order logi (B�uhi's theorem). We prove this result for �nite words andfor in�nite words. One of the onsequenes of this result is the deidability ofthe monadi seond order logi on natural integers (also alled monadi seondorder logi of one suessor). Besides, the proof of this latter result is one the301



302 CHAPTER VIII. AN EXCURSION INTO LOGICmotivation of the work of B�uhi. The extension of B�uhi's deidability resultto two suessors is Rabin's theorem, whih will be presented in Chapter X(Theorem X.4.3).The onversion from automata to logi an be made by writing a formulastating that a word is the label of a suessful path in an automaton. This proofbrings us a supplementary lue: every formula of monadi seond order logiis equivalent to a formula of low omplexity in terms of quanti�er alternation.In partiular, the hierarhy based on the number of quanti�er alternations ol-lapses. We shall see later on that this is a major di�erene between �rst andseond order.We also investigate the expressive power of the logial language obtained byreplaing the order relation on integers by the suessor funtion. We shall seethat, for in�nite words, the monadi seond order logis of these two languagesare equivalent. It should not be a surprise to the reader familiar with logi, sinethe order relation is de�nable in monadi seond order logi of the suessorfuntion.Furthermore, we show that monadi seond order logi is, on the integers,equivalent with weak monadi seond order logi. The weak logi utilizes thesame formulas as the \strong" one but the interpretation is more restritive:set variables are always interpreted as �nite sets of integers. The equivalenebetween weak and strong logi is a onsequene of MNaughton's theorem. In-deed, one an dedue from this theorem that eah rational set X � A! is aboolean ombination of subsets of the form �!Y with Y � A�. And suh a set isde�nable by the formula 8x 9y (y > x ^ '(y))where '(y) is the formula expressing that the y's �rst letters of a word arein Y . Sine Y is a set of �nite words, we an restrit ourselves to weak logito interpret '(y). This interdependene of results expressible in logi and interms of automata is the mark of the deep and real onnetion between the twoapproahes. We shall see other examples in the sequel when we shall deal with�rst order logi.In Setion 4, we present the orresponding theory for �rst order logi. Westart by �rst order theory of the linear order sine, and it is a �rst di�erenewith the monadi ase, the logi of the linear order and that of the suessorare no longer equivalent.The �rst order logi of the linear order is shown to be equivalent to aperiodiautomata or, as we have seen in Chapter VI, to star-free sets. This is true for�nite words and for in�nite words.In Setion 4.2, we desribe the hierarhy of the �rst order logi of the linearorder, orresponding to the alternate use of existential and universal quanti�ers.We show that this hierarhy orresponds, on words, to the onatenation hier-arhy desribed in Chapter VI. This leads to a doubly satisfying situation: �rstorder formulas not only orrespond globally to a natural lass of reognizablesets (the star-free sets), but this orrespondene holds level by level.In Setion 5, we study a more restrited language, the �rst order logi ofthe suessor. We give an e�etive haraterization of the sets of in�nite wordsde�nable in this logi: they are the threshold loally testable sets (de�ned inChapter VII) whih are in the lass �2 (de�ned in Chapter III. We shall in-trodue on this oasion a tehnique of proof, alled Fra��ss�e-Ehrenfeuht game,



2. THE FORMALISM OF LOGIC. 303and we shall use it for proving the haraterization theorem.We introdue in the last setion the formalism of temporal logi and showthat this logi is equivalent to �rst order logi. Finally, we desribe the expres-sive power of the temporal logi without the until operator.In Chapters IX and X, we shall see how the logial framework presented inthis hapter extends to the more general ases of bi-in�nite words and in�nitetrees.2 The formalism of logi.In this setion, we review the basi de�nitions of logi that will be used inthis book. We shall de�ne suessively �rst order logi, seond order, monadiseond order and weak monadi seond order logi.2.1 Syntax.We shall �rst de�ne the syntax of logial formulas. Let us start by �rst orderlogi.The basi ingredients are the logial symbols whih enompass the logialonnetives: ^ (and), _ (or), : (not), ! (implies), the equality symbol =, thequanti�ers 9 (there exists) and 8 (for all), an in�nite set of variables (most oftendenoted by x, y, z, or x0, x1, x2,. . . ) and parenthesis (to ensure legibility of theformulas).In addition to these logial symbols, we make use of a set L of non logi-al symbols. These auxiliary symbols an be of three types: relation symbols(for instane <), funtion symbols (for instane min), or onstant symbols (forinstane 0, 1). Expressions are built from the symbols of L by obeying theusual rules of the syntax, then �rst order formulas are built by using the logi-al symbols, and are denoted by F1(L). We now give a detailed desription ofthe syntaxi rules to obtain the logial formulas in three steps, passing sues-sively, following the standard terminology, from terms to atomi formulas andsubsequently to formulas.We shall illustrate the formation rules by taking as an exampleL = f < ;min; 0gin whih < is a binary relation symbol, min is a two-variable funtion symboland 0 is a onstant.We �rst de�ne the set of L-terms. It is the least set of expressions ontainingthe variables, the onstant symbols of L (if there are some) whih is losed underthe following formation rule: if t1; t2; : : : ; tn are terms and if f is a funtionsymbol with n arguments, then the expression f(t1; t2; : : : ; tn) is a term. Inpartiular, if L does not ontain any funtion symbol, the only terms are thevariables and the onstant symbols. In our example, the following expressionsare terms:x0 min(0; 0) min(x1;min(0; x2)) min(min(x0; x1);min(x1; x2))The atomi formulas are formulas either of the form(t1 = t2)



304 CHAPTER VIII. AN EXCURSION INTO LOGICwhere t1 and t2 are terms, or of the formR(t1; : : : ; tn)where t1; : : : ; tn are terms and where R is a n-ary relation symbol of L. On ourexample, the following expressions are atomi formulas:(min(x1;min(0; x2)) = x1) (min(0; 0) < 0)(min(min(x0; x1);min(x1; x2)) < min(x3; x1))Notie that, in order to improve legibility, we didn't take literally the de�nitionof atomi formulas: indeed, sine < is a symbol of binary relation, one shouldwrite < (t1; t2) instead of t1 < t2.Finally, the �rst order formulas on L form the least set of expressions on-taining the empty formula and the atomi formulas and losed under the fol-lowing formation rules:(i) If ('i)i2I is a �nite family of �rst order formulas, so are the expressions(î2I 'i) and (_i2I 'i)(ii) If ' and  are �rst order formulas, so are the expressions:' and ('!  )(iii) If ' is a �rst order formula and if x is a variable, then the expressions(9x') and (8x')are �rst order formulas.To make notations easier, we settrue = î2;'i and false = _i2;'iThe following expressions are �rst order formulas of our example language:(9x (8y ((y < min(z; 0)) ^ (x < 0)))) (8x (y = x))Again, it is onvenient to simplify notation by suppressing some of the paren-thesis and we shall write the previous formulas under the form9x 8y (y < min(x; 0))^ (z < 0) 8x y = xIn a �rst order formula, some variables our after a quanti�er (existential oruniversal): the ourrenes of these variables are said to be bounded and theother ourrenes are said to be free. For example, in the formula9x (y < h(x; 0)) ^ 8y (z < y)the simply underlined ourrenes of x and y are bounded and the ourrenesof z and y doubly underlined are free. A variable is free if at least one of itsourrenes is free. The set FV (') of free variables of a formula ' an bede�ned indutively as follows:



2. THE FORMALISM OF LOGIC. 305(1) If ' is an atomi formula, FV (') is the set of variables ourring in ',(2) FV (:') = FV (')(3) FV (Vi2I 'i) = FV (Wi2I 'i) = Si2I FV ('i)(4) FV ('!  ) = FV (') [ FV ( )(5) FV (9x') = FV (8x') = FV (') n fxgA statement is a formula in whih all ourrenes of variables are bounded. Forexample, the formula 9x 8y (y < min(x; 0))is a statement.We shall denote by '(x1; x2; : : : ; xn) a formula' in whih the set of free vari-ables is ontained in fx1; : : : ; xng (but is not neessarily equal to fx1; : : : ; xng).The variables used in �rst order logi, or �rst order) are interpreted, as weshall see, as the elements of a set. In seond order logi, one makes use of anothertype of variables, alled seond order variables, whih represent relations. Thesevariables are denoted traditionally by apital letters: X0, X1, et.. One built inthis way the set of seond order formulas on L, denoted by F2(L). The set ofterms is the same as for �rst order. The atomi formulas are either of the form(t1 = t2)where t1 and t2 are terms, or of the formR(t1; : : : ; tn) or X(t1; : : : ; tn)where t1; : : : ; tn are terms, R is a n-ary relation symbol of L and X is a variablerepresenting a n-ary relation.Finally, seond order formulas on L form the least set of expressions on-taining the atomi formulas and losed under the following formation rules:(i) If ' and  are seond order formulas, then so are:'; (' ^  ); (' _  ); ('!  )(ii) If ' is a seond order formula, if x is a variable and if X is a variable ofrelation, then the expressions(9x') (8x') (9X') (8X')are seond order formulas.We all monadi seond order logi the fragment of seond order logi in whihthe only relation variables are unary relation variables, in other words, variablesrepresenting subsets of the domain. By onveniene, they are alled set vari-ables. We denote by MF2(L) the set of monadi seond order logi on L. Weshall also use the notation x 2 X instead of X(x).2.2 Semantis.We have adopted so far a syntati point of view to de�ne formulas with noreferene to semantis. But of ourse, formulas would be uninteresting if theywere meaningless. Giving a preise meaning to formulas requires to speify thedomain on whih we want to interpret eah of the symbols of the language L.Formally, a struture S on L is given by a nonempty set D, alled domain andby a map de�ned on L, alled an assignment whih assoiates



306 CHAPTER VIII. AN EXCURSION INTO LOGIC(1) to eah n-ary relation symbol of L, a n-ary relation de�ned on D,(2) to eah n-ary funtion symbol f of L, a n-ary funtion de�ned on D,(3) to eah onstant symbol  of L, an element of D.To deongest notations, we shall use the same notation for the relation (resp.funtion, onstant) symbols and for the relations (resp. funtions, onstants)represented by these symbols. The ontext will allow us to determine easilywhat the notation stands for. For example, we shall always employ the symbol< to designate the usual order relation on a set of integers, independently ofthe domain (N,Z, or a subset of N).We still have to interpret variables. Let us start by �rst order variables.Given a �xed struture S on L, with domain D, a valuation on S is a map� from the set of variables into the set D. It is then easy to extend � into afuntion of the set of terms of L into D, by indution on the formation rules ofterms:(1) If  is a onstant symbol, we put �() = ,(2) if f is a n-ary funtion symbol and if t1, . . . , tn are terms,��f(t1; : : : ; tn)� = f(�(t1) : : : �(tn))If � is a valuation and a an element of D, we denote by ��ax� the valuation � 0de�ned by �0(y) = (�(y) if y 6= xa if y = xThe notion of interpretation an be now easily formalized. De�ne, for eah�rst order formula ' and for eah valuation �, the expressions \the valuation �satis�es ' in S", or \S satis�es '[�℄", denoted by S j= '[�℄, as follows:(1) S j= (t1 = t2)[�℄ if and only if �(t1) = �(t2)(2) S j= R(t1; : : : ; tn)[�℄ if and only if ��(t1); : : : ; �(tn)� 2 R(3) S j= :'[�℄ if and only if not S j= '[�℄(4) S j= (î2I ')[�℄ if and only if for eah i 2 I; S j= 'i[�℄(5) S j= (_i2I ')[�℄ if and only if there exists i 2 I; S j= 'i[�℄(6) S j= ('!  )[�℄ if and only if S 6j= '[�℄ or S j=  [�℄(7) S j= (9x')[�℄ if and only if S j= '[��ax�℄ for some a 2 D(8) S j= (8x')[�℄ if and only if S j= '[��ax�℄ for eah a 2 DNote that, atually, the truth of the expression \the valuation � satis�es ' inS" only depends on the values taken by the free variables of '. In partiular,if ' is a statement, the hoie of the valuation is irrelevant. Therefore, if ' is astatement, one says that ' is satis�ed by S (or that S satis�es '), and denoteby S j= ', if, for eah valuation �, S j= '[�℄.Next we move to the interpretation of seond order formulas. Given a strutureS on L, with domain D, a seond order valuation on S is a map � whihassoiates to eah �rst order variable an element of D and to eah n-ary relationvariable a subset of Dn (i.e. a n-ary relation on D).



2. THE FORMALISM OF LOGIC. 307If � is a valuation and R a subset of Dn, ��RX� denotes the valuation � 0 de�nedby � 0(x) = �(x) if x is a �rst order variable�0(Y ) = (�(Y ) if Y 6= XR if Y = XThe notion of interpretation, already de�ned for �rst order, is supplemented bythe following rules:(9) S j= (X(t1; : : : ; tn))[�℄ if and only if ��(t1); : : : ; �(tn)� 2 �(X)(10) S j= (9X')[�℄ if and only if there exists R � Dn; S j= '[��RX�℄(11) S j= (8X')[�℄ if and only if for eah R � Dn; S j= '[��RX�℄Weak monadi seond order logi is omposed with the same formulas thanmonadi seond order logi, but the interpretation is even more restrited: areonly onsidered valuations whih assoiate to set variables �nite subsets of thedomain D.Two formulas ' and  are said to be logially equivalent if, for eah strutureS on L, we have S j= ' if and only if S j=  .It is easy to see that the following formulas are logially equivalent:(1) ' ^  and :(:' _ : )(2) '!  and :' _  (3) 8x' and :(9x :')(4) ' _  and  _ '(5) ' ^  and  ^ '(6) ' ^ false and false(7) ' _ false and 'Consequently, up to logial equivalene, we may assume that the formulas arebuilt without the symbols ^, ! and 8.Logial equivalene also permits to give a more strutured form to formulas.A formula is said to be under disjuntive normal form if it an be writtenas disjuntion of onjuntions of atomi formulas or of negations of atomiformulas, in other words under the form_i2I ^j2Ji('ij _ : ij)where I and the Ji are �nite sets, and where the 'ij and the  ij are atomiformulas. The next result is standard and easily proved.Proposition 2.1 Every quanti�er free formula is logially equivalent with aquanti�er free formula in disjuntive normal form.One an set up a hierarhy inside �rst order formulas as follows. Let �0 = �0the set quanti�er-free formulas. Next, for eah n � 0, denote by �n+1 the leastset � of formulas suh that



308 CHAPTER VIII. AN EXCURSION INTO LOGIC(1) � ontains the boolean ombinations of formulas of �n,(2) � is losed under disjuntions and �nite onjuntions,(3) if ' 2 � and if x is a variable, 9x' 2 �.Similarly, denote by �n+1 the least set � of formulas suh that(1) � ontains the boolean ombinations of formulas of �n,(2) � is losed under disjuntions and �nite onjuntions,(3) if ' 2 � and if x is a variable, 8x' 2 �.In partiular, �1 is the set of existential formulas | that is of the form9x1 9x2 : : : 9xk 'where ' is quanti�er-free.Finally, we denote by B�n the set of boolean ombinations of formulas of �n.A �rst order formula is said to be in prenex normal form if it is of the form = Q1x1 Q2x2 : : : Qnxn 'where the Qi are existential or universal quanti�ers (9 or 8) and ' is quanti�er-free. The sequene Q1x1 Q2x2 : : : Qnxn, whih an be onsidered as a wordon the alphabet f 9x1; 9x2; : : : ; 8x1; 8x2; : : : g;is alled the quanti�ation pre�x of  . The interest of these formulas in prenexnormal form omes from the following result.Proposition 2.2 Every �rst order formula is logially equivalent to a formulain prenex normal form.Proof. It suÆes to verify that if the variable x does not our in the formula then 9x(' ^  ) � (9x') ^  9x(' _  ) � (9x') _  and the same formulas hold for the quanti�er 8. Hene it is possible, by renamingthe variables, to throw bak the quanti�ers to the outside.Proposition 2.2 an be improved to take into aount the level of the formulain the �n hierarhy.Proposition 2.3 For eah integer n � 0,(1) Every formula of �n is logially equivalent to a formula in prenex normalform in whih the quanti�ation pre�x is a sequene of n (possibly empty)alternating bloks of existential and universal quanti�ers, starting with ablok of existential quanti�ers.(2) Every formula of �n is logially equivalent to a formula in prenex normalform in whih the quanti�ation pre�x is a sequene of n (possibly empty)alternating bloks of existential and universal quanti�ers, starting with ablok of universal quanti�ers.



2. THE FORMALISM OF LOGIC. 309For example, the formula9x1 9x2 9x3| {z }blok 1 8x4 8x5| {z }blok 2 9x6 9x7| {z }blok 3 '(x1; : : : ; x6)belongs to �3 (and also to all �n's suh that n � 3). Similarly the formula|{z}blok 1 8x4 8x5| {z }blok 2 9x6 9x7| {z }blok 3 '(x1; : : : ; x7)belongs to �3 and to �2, but not to �2, sine the ounting of bloks of a �n-formula should always begin by a possibly empty blok of existential quanti�ers.One an introdue normal forms and a hierarhy for seond order monadiformulas. Thus, one an show that every monadi seond order formula islogially equivalent to a formula of the form = Q1X1 Q2X2 : : : QnXn 'where the Qi are existential or universal quanti�ers and ' is a �rst order formula.2.3 Logi on words.The logial language that we shall use now was introdued by B�uhi underthe name of \sequential alulus". It permits to formalize ertain properties ofwords. To interpret formulas on words, we shall onsider a word u = u(0)u(1) : : :as a map assoiating a letter to eah index. The set of indexes will itself beonsidered as a subset of the setN = N[ f1gthe set of natural numbers with a new maximal element, denoted by 1.Let A be an alphabet. For an in�nite word u 2 A!, we set juj =1, so thatthe length of a word is always an element of the set N . For eah word u 2 A1,one de�nes the domain of u, denoted by Dom(u) asDom(u) = fi 2 N j 0 � i � jujgSo, if u is a �nite word, Dom(u) = f0; : : : ; jujg and if u is an in�nite word,Dom(u) = N . De�ne for eah letter a 2 A a unary relation a on the domain ofu by a = fi < juj j u(i) = ag:Finally, let us assoiate to eah word u the strutureMu = �Dom(u); (a)a2A�;Beware that, with these de�nitions, the domain of a �nite or in�nite wordomprises a supplementary position at the end. One an imagine that thisposition is oupied by an end symbol (the $ prized by lexial analyzers. . . ).For example, if u = abbaab, then Dom(u) = f0; 1; : : : ; 6g, a = f0; 3; 4g andb = f1; 2; 5g. If u = (aba)!, thena = fn 2 N j n � 0 mod 3 or n � 2 mod 3g andb = fn 2 N j n � 1 mod 3g



310 CHAPTER VIII. AN EXCURSION INTO LOGICFrom now and on, we shall interpret logial formulas on words, that is, on astruture of the formMu as explained above. Let ' be a statement. A �nite orin�nite word u 2 A1 satis�es ' if the struture Mu satis�es '. This is denotedby u j= '. We also say that u is a model of '. De�ne the spetrum of ' as theset S(') = fu 2 A1 j u satis�es 'gWe also set S�(') = S(') \A�, S+(') = S(') \A+ and S!(') = S(') \A!.From now and on, all the variables will be interpreted as natural integers or1. Therefore, we shall use logial equivalene restrited to interpretations ofdomain N .The various logial languages that we shall onsider all ontain, for eaha 2 A, a unary relation symbol denoted (a) when no onfusion arises. We shallalso use two other non logial symbols, < and S, that will be interpreted asthe usual order and as the suessor relation on Dom(u): S(x; y) if and only ify = x + 1. In the sequel, we shall mainly onsider two logial languages: thelanguage L< = f<g [ fa j a 2 Agwill be alled the language of the linear order and the languageLS = fSg [ fa j a 2 Agwill be alled the language of the suessor. The atomi formulas of the languageof the linear order are of the forma(x); x = y; x < yand those of the language of the suessor are of the forma(x); x = y; S(x; y):We shall denote respetively by F1(<) and MF2(<) the set of �rst order andmonadi seond order formulas of signature f<; (a)a2Ag. Similarly, we denoteby F1(S) andMF2(S) the same sets of formulas of signature fS; (a)a2Ag. InsideF1(<) (resp. F1(S)), the �n(<) (resp. �n(S)) hierarhy is based on the numberof quanti�er alternations.We shall now start the omparison between the various logial languages wehave introdued. First of all, the distintion between the signatures S and <is only relevant for �rst order in view of the following proposition. A relationR(x1; � � � ; xn) on the integers is said to be de�ned by a formula '(x1; : : : ; xn)if, for eah i1; : : : ; in � 0, R(i1; : : : ; in) if and only if '(i1; : : : ; in) is true.Proposition 2.4 The suessor relation an be de�ned in F1(<), and the orderrelation on integers an be de�ned in MF2(S).Proof. The suessor relation an be de�ned by the formula(i < j) ^ 8k �(i < k)! ((j = k) _ (j < k))�whih states that j = i + 1 if i is smaller than j and there exist no elementbetween i and j. Conversely, i < j an be expressed in MF2(S) as follows:9X �8x8y ��(x 2 X) ^ S(x; y)� ! (y 2 X)�� ^ (j 2 X) ^ (i =2 X)



2. THE FORMALISM OF LOGIC. 311whih intuitively means that there exists an interval of the form [k;+1[ on-taining j but not i.On the ontrary, we shall see later on (Corollary 5.10) that the relation <annot be de�ned in F1(S).Given two sets of formulas F and G, we use the notation F � G if for eahformula of F , there exists an equivalent formula in G (we remind the readerthat the variables are always interpreted as integers). Denote by F � G theassoiated equivalene and by F < G the relation F � G but F 6� G. The nextresult summarizes the expressive power of the various logial languages.Proposition 2.5 The following relations hold:F1(S) < F1(<) < MF2(S) = MF2(<)Proof. Proposition 2.4 shows the double inequality F1(S) � F1(<) � MF2(S).The fat that these inequalities are strit follow respetively from Corollary 5.10and Corollary 4.4, whih will be proved later on.Finally, we have MF2(S) � MF2(<) sine S an be expressed in F1(<),whih in turn is ontained in MF2(<). But we also have MF2(<) � MF2(S)sine, by Proposition 2.4, the relation < an be de�ned in MF2(S).It will be onvenient to enrih our logial languages by adding auxiliaryformulas whih an be onsidered as abbreviations. We shall see an example afew lines below with the prediate Finite(X) whih expresses the fat that a set(of integers) is �nite.If x is a variable, it is onvenient to write x + 1 (resp. x � 1) to replaea variable y submitted to the ondition S(x; y) (resp. S(y; x)). However, thereader should beware of the fat that x+y is not de�nable inMF2(<) (Exerise3). We an also use the symbols � and 6= with their usual interpretations: x � ystands for (x < y) _ (x = y) and x 6= y for :(x = y).Another example, to be used below, are the symbols min, max, whih desig-nate the �rst and the last element of the domain. These symbols an be de�nedin F1(S) with two alternations of quanti�ers:min : 9min 8x :S(x;min)max : 9max 8x :S(max; x)These symbols permit to express that u is the empty word (max = min) or thatu is �nite ((max = min)_9 xS(x;max)). We shall denote by FINITE the latterformula.We shall sometimes need a parametrized, or relative, notion of satisfationfor a formula. Let indeed '(x; y) be a formula with only two free variables xand y. Let u 2 A1 be a word and i; j 2 Dom(u). A word u 2 A1 is said tosatisfy the formula ' between i and j if ui : : :uj�1 j= ' (or uiui+1 : : : j= ' ifj =1).Proposition 2.6 For eah statement ', there exists a formula '(x; y) with thesame signature, the same order (and, in the ase of a �rst order formula, the



312 CHAPTER VIII. AN EXCURSION INTO LOGICsame level in the hierarhy �n), having x and y as unique free variables andwhih satis�es the following property: for eah �nite or in�nite word u and foreah s; t 2 Dom(u), u j= '(s; t) if and only if u satis�es ' between s and t.Proof. The formulas '(x; y) are built by indution on the formation rules asfollows: if ' is an atomi formula, we set '(x; y) = '. Otherwise, we set(:')(x; y) = :'(x; y)(' _  )(x; y) = '(x; y) _  (x; y)(9z')(x; y) = 9z ((x � z) ^ (z < y) ^ '(x; y))(9X')(x; y) = 9X ((8 z(X(z) ! (x � z) ^ (z < y)) ^ '(x; y))It is easy to verify that the formulas '(x; y) built in this way have the requiredproperties.We onlude this setion by examining the plae of the weak theories of thelinear order and the suessor. First of all, one an verify that the formulasused in the proof of Proposition 2.4 atually de�ne the relation < in WMF2(S)(Exerise 1). It follows thatWMF2(S) =WMF2(<)and that the weak monadi theories of the suessor and of the linear order arethe same.We shall see on the other hand thatWMF2(<) = MF2(<)so that the weak and strong theories of the linear order oinide. We an alsonote immediately the next result, whih is true in a muh more general setting(atually as soon as one an write a formula expressing that a set is �nite).Proposition 2.7 The formula WMF2(<) � MF2(<) holds.Proof. One an write in MF2(<) a formula Finite(X) expressing that a set Xis �nite. For instane Finite(X) = 9x (8y X(y) ! y < x)Every formula of WMF2(<) is equivalent to a formula of the form = Q1X1 : : :QnXn'where ' is a �rst order formula. The formula is then equivalent to the formulaQ1X1 : : :QnXn' ^ ^1�i�nFinite(Xi)of MF2(<).The formulas in whih the prediates a do not our pertain uniquely tointegers. We shall see in the next setion that the words have nevertheless thesame role to play, as soon as formulas with free variables have to be interpreted.



3. MONADIC SECOND ORDER LOGIC ON WORDS. 3133 Monadi seond order logi on words.This setion is devoted to the proof of a result of B�uhi stating that the subsetsof A1 de�nable in monadi seond order logi are exatly the rational (resp.!-rational) sets.Theorem 3.1 Let X � A1 be a set of �nite or in�nite words. The followingonditions are equivalent:(1) X is de�nable by a formula of MF2(<),(2) X is reognizable.The proof of this result an be deomposed into two parts: passing fromwords to formulas, and from formulas to words.To pass from words to formulas, we simulate the behaviour of an automatonby a formula.Proposition 3.2 For eah B�uhi automaton A = (Q;A;E; I; F ), there existformulas '+; '! of MF2(<) suh that S+('+) = L+(A), S!('!) = L!(A) andL1(A) = S('+ _ '!).Proof. Suppose that Q = f1; : : : ; ng. We �rst write a formula  expressing theexistene of a path of label u. To this purpose, we assoiate to eah state q aset variable Xq whih enodes the set of positions in whih a given path visitsthe state q. The formula states that the Xq 's are pairwise disjoint and that ifa path is in state q in position x, in state q0 in position x + 1 and if the x-thletter is an a, then (q; a; q0) 2 E. This gives = �q̂ 6=q0 :9x(Xq(x) ^Xq0 (x))�^�8x8y S(x; y) ! _(q;a;q0)2E�Xq(x) ^ a(x) ^Xq0 (y)��It remains to state that the path is suessful. For a �nite path, it suÆes toknow that 0 belongs to one of the Xq 's suh that q 2 I and that max belongsto one of the Xq 's suh that q 2 F . Therefore, we set + =  ^ FINITE ^ �_q2IXq(0)� ^ �_q2F Xq(max)�An in�nite path is suessful if 0 belongs to one of the Xq 's suh that q 2 I andif, for eah position x, there exists a position y > x in whih the path visits a�nal state. In summary, we set: ! =  ^ �_q2IXq(0)� ^ �_q2F 8x 9y (x < y ^ Xq(y))�The formulas '+ = 9X19X2 : : :9Xn( +)'! = 9X19X2 : : :9Xn( !)



314 CHAPTER VIII. AN EXCURSION INTO LOGICnow entirely enode the automaton.To pass from statements to sets of words, a natural idea is to argue byindution on the formation rules of formulas. The problem is that the set S(')is only de�ned when ' is a statement. The traditional solution in this aseonsists of adding onstants to interpret free variables to the struture in whihthe formulas are interpreted. For the sake of homogeneity, we proeed in aslightly di�erent way, so that these strutures remain words.The idea is to use an extended alphabet of the formBp;q = A� f0; 1gp � f0; 1gqsuh that p (resp. q) is greater than or equal to the number of �rst order (resp.seond order) variables of '. An in�nite word on the alphabet Bp;q an beidenti�ed with the sequene(u0; u1; : : : ; up; up+1; : : : ; up+q)where u0 2 A! and u1; : : : ; up; up+1; : : : ; up+q 2 f0; 1g!. We are atually inter-ested in the set Kp;q of words of B1p;q in whih eah of the omponents u1; : : : ; upontain exatly one ourrene of 1. If the ontext permits, we shall note B in-stead of Bp;q and K instead of Kp;q. We also setK� = K \B�; K! = K \B!For example, if A = fa; bg, a word of B!3;2 is represented in Figure 3.1.u0 a b a a b a b � � �u1 0 1 0 0 0 0 0 � � �u2 0 0 0 0 1 0 0 � � �u3 1 0 0 0 0 0 0 � � �u4 0 1 1 0 0 1 1 � � �u5 1 1 0 1 0 1 0 � � �Figure 3.1. A word of B!3;2.The elements of K are alled marked words on A. This terminology expressesthe fat that the elements of K are (�nite or in�nite) words in whih labelsmarking ertain positions have been added. Eah of the p �rst rows only marksone position and the last q ones an arbitrary number of positions.Reall that the star-free subsets of B1 are obtained from the sets B1 and; by using the boolean operations and the marked produt(X; b; Y )! XbYwhih assoiates to X � A�, b 2 B and Y � B1, the subset XbY of B1. Star-free sets are in partiular rational subsets of B1. Then we have the followingproperty.Proposition 3.3 For eah p; q � 0, the set Kp;q is a star-free, and hene ra-tional, subset of B1p;q .



3. MONADIC SECOND ORDER LOGIC ON WORDS. 315Proof. Set, for 1 � i � p,Ci = f (b0; b1; : : : ; bp+q) 2 B j bi = 1 gThen K is the set of words of B1 ontaining exatly one letter of eah Ci, for1 � i � p. Now the formulaK = \1�i�pB�CiB1 n [1�i�pB�CiB�CiB1:shows that K is a star-free subset of B1.The interpretation of formulas on the words of B1p;q follows the main lines ofthe interpretation desribed in Setion 2.3, but the interpretation of a is slightlymodi�ed by setting a = fi < juj j u0(i) = ag:Let '(x1; : : : ; xr; X1; : : : ; Xs) be a formula in whih the �rst (resp. seond)order free variables are x1; : : : ; xr (resp. X1; : : : ; Xs), with r � p and s � q. Letu = (u0; u1; : : : ; up+q) be a word of Kp;q and, for 1 � i � p, denote by ni theposition of the unique 1 of the word ui. On the example above, one would haven1 = 1, n2 = 4 and n3 = 0. A word u is said to satisfy ' if u0 satis�es '[�℄,where � is the valuation de�ned by�(xj) = nj (1 � j � r)�(Xj) = f i 2 N j up+j;i = 1 g (1 � j � s)In other words, eah Xj is interpreted as the set of positions of 1's in up+j , andeah xj as the unique position of 1 in uj. Note that for p = q = 0, we reoverthe ustomary interpretation of statements.Set Sp;q(') = f u 2 Kp;q j u satis�es '(x1; : : : ; xp; X1; : : : ; Xq) gAgain, we shall sometimes simply use the notation S(') instead of Sp;q('). Wealso note that S�(') = S(') \ A� and S!(') = S(') \ A!. Conjuntions anddisjuntions are easily onverted into boolean operations.Proposition 3.4 For eah �nite family of formulas ('i)i2I , the following equal-ities hold:(1) S(Wi2I 'i) = Si2I S('i),(2) S(Vi2I 'i) = Ti2I S('i),(3) S(:') = Kp;q n S(')Proof. This is an immediate onsequene of the de�nitions.To onlude the proof of Theorem 3.1, it remains to prove by indution onthe formation rules of formulas that the sets S(') are rational. Let us startwith the atomi formulas. As for the set K, we prove a slightly more preiseresult that will be used later on in this hapter.



316 CHAPTER VIII. AN EXCURSION INTO LOGICProposition 3.5 For eah variable x; y, for eah set variable X and for eahletter a 2 A, the sets of the form S(a(x)), S(x = y), S(x < y) and S(X(x)) arestar-free, and hene rational, subsets of B1.Proof. Set, for i; j 2 f1; : : : ; p+ qgCj;a = fb 2 Bp;q j bj = 1 and b0 = agCi;j = fb 2 Bp;q j bi = bj = 1gCi = fb 2 Bp;q j bi = 1gThen we have, by setting B = Bp;qS(a(xi)) = K \B�Ci;aB1S(xi = xj) = K \B�Ci;jB1S(xi < xj) = K \B�CiB�CjB1S(Xi(xj)) = K \B�Ci+p;jB1whih establishes the proposition.Proposition 3.4 allows one to treat logial onnetives. It remains to treatthe ase of the formulas of the form 9x' and 9X'. Denote by �i the funtiononsisting to \erase" the i-th omponent, de�ned by�i(b0; b1; : : : ; bp+q) = (b0; b1; : : : ; bi�1; bi+1; : : : ; bp+q)Thus �i should be onsidered as a funtion from Bp;q into Bp�1;q if i � p andinto Bp;q�1 if p < i � p+ q.Proposition 3.6 For eah formula ', the following formulas hold(1) Sp�1;q(9xp') = �p(Sp;q('))(2) Sp;q�1(9Xq') = �p+q(Sp;q('))Proof. This follows from the de�nition of existential quanti�ers.We are now ready to show that if S(') is rational, then so are S(9x') andS(9X'). We may assume that x = xp and X = Xq . Then, by Proposition 3.6,we have S(9xp') = �p(S(')) and S(9Xq') = �p+q(S(')). Sine morphismspreserve rationality, the result follows.This onludes the proof of B�uhi's theorem. The reader will �nd in Exer-ise 4 the sketh of another proof to pass from words to formulas based on atradution of rational expressions.We now show, as it was announed in Setion 2.3 that strong and weak logioinide on words.Theorem 3.7 The theories MF2(<) and WMF2(<) are equivalent on words.Proof. Proposition 2.7 shows that WMF2(<) � MF2(<). To establish theopposite diretion, it suÆes, by B�uhi's theorem, to show that eah rationalsubset of A1 an be de�ned by a formula of WMF2(<). There is no problemfor a set of �nite words, sine set variables are neessarily interpreted as �nite



4. FIRST ORDER LOGIC OF THE LINEAR ORDER. 317sets. Therefore it suÆes to onsider the ase of a reognizable set X of in�nitewords.By MNaughton's theorem (Theorem I.9.1), X is a boolean ombination ofsets of the form �!Y . We laim that suh a set is de�nable in weak monadiseond order logi. Indeed, let '(x; y) be a formula of WMF2(<) de�ningY (whih onsists of �nite words). Then we have u j= '(0; n) if and only ifu0u1 : : :un�1 2 Y by Proposition 2.6 and the formula = 8x�9y(x < y) ^'(0; y)�guaranties that u has in�nitely many pre�xes in Y . Thus S( ) = �!Y .Another proof of this result is given in Exerise 5. It onsists in odingdiretly a Muller automaton by a weak monadi seond order formula. Weonlude this setion by making two observations of logial nature.First of all, B�uhi's theorem allows one to show that the monadi seondorder theory of non negative integers is deidable.Theorem 3.8 There is an algorithm to deide whether a given statement ofMF2(<) is true on N.Proof. Let ' 2MF2(<). One an e�etively alulate the set S(') and deidewhether S(') = A! or S(') = ;.Next, the proof of Proposition 3.2 shows that the hierarhy on formulasof MF2(<) based on the number of alternations of seond order quanti�ersollapses to the �rst level. We have indeed the following result.Proposition 3.9 Every formula of MF2(<) is equivalent to a formula of theform 9X1 : : :9Xk'(X1; : : : ; Xk)where ' is a �rst order formula.In fat, one an even show that every formula of MF2(<) is equivalent to aformula of the form 9X'(X) where ' is a �rst order formula (Exerise 2).4 First order logi of the linear order.We now study the language F1(<) of the �rst order logi of the linear order. Weshall, in a �rst step, haraterize the sets of words de�nable in this logi, whihhappen to be the star-free sets. Next, we shall see in Setion 4.2 how this resultan be re�ned to establish a orrespondene between the levels the �n-hierarhyof �rst order logi and the onatenation hierarhy of star-free sets.4.1 First order and star-free sets.We shall prove the following key result.Theorem 4.1 A set of �nite or in�nite words is star-free if and only if it isde�nable by a formula of F1(<).


