
Describing an n log n algorithm for minimizing

states in deterministic finite automaton

Yingjie XU

January 3, 2009

Abstract

There are several well known algorithms to minimize deterministic
finite automata. In this paper, an algorithm is given for minimizing the
number of states in a finite automaton or for determining if two finite
automata are equivalent. The asymptotic running time of the algorithm
is bounded by kn log n where k is some constant depends linearly on the
size of the input alphabet and n is the number of states.

Contents

1 Introduction 1

2 Preliminaries 2
2.1 DFA, word and language . 2
2.2 Equivalent states and Minimal DFA 2

3 Minimization 2
3.1 The classical algorithm . 2
3.2 The Hopcroft’s algorithm . 4

1 Introduction

The problem of writing efficient algorithms to find the minimal deterministic
finite automaton equivalent to a given automaton can be traced back to 1950’s
with the works of Huffman [Huf55] and Moore [Moo58]. Over the years several
alternative algorithms were proposed. However, a worst case analysis of these
algorithms indicate that they are n2 processes where n is the number of states.
Hopcroft [Hop71] introduced in 1971 an O(n log n) algorithm for minimizing
a finite deterministic automaton of n states. The constant of proportionality
depends linearly on the number of input symbols. Clearly the same algorithm
can be used to determine if two finite automata are equivalent. Recent researches
[BC04, BBC08] show this bound is tight.

The text is organized as follows. In Section 2 we present some definitions
and notation used throughout the paper. In Section 3 we describe Hopcroft’s
algorithm, explain how it works.

1

2 Preliminaries

2.1 DFA, word and language

Definition 2.1. A deterministic finite automaton (DFA) D is a tuple (Q,Σ, δ, q0, F)
where:

• Q is a finite set of states;

• Σ is the input alphabet;

• δ : Q× Σ→ Q is the transition function;

• q0 is the initial state;

• F ⊆ Q is the set of final states.

When the transition function is total, the automatonD is said to be complete.

Definition 2.2. Any finite sequence of alphabet symbols a ∈ Σ is a word.

Let Σ∗ denote the set of all words over the alphabet Σ and ϵ denote the
empty word. We define the extended transition function δ̂ : Q× Σ∗ → Q in the
following way: {

δ̂(q, ϵ) = q

δ̂(q, xa) = δ(δ̂(q, x), a)

Definition 2.3. The language accepted by D, L(D), is the set of all words
w ∈ Σ∗ such that δ̂(q0, w) ∈ F .

2.2 Equivalent states and Minimal DFA

Given a DFA D = (Q, Σ, δ, q0, F), two states q1, q2 ∈ Q are said to be
equivalent, denoted q1 ≈ q2, if for every w ∈ Σ∗, δ̂(q1, w) ∈ F ⇔ δ̂(q2, w) ∈ F .
Two states that are not equivalent are called distinguishable. The equivalent
minimal automatonD/ ≈ is called quotient automaton, and its states correspond
to the equivalence class of ≈. It is proved to be unique up to isomorphism.

Definition 2.4. Two DFAs D and D̃ are equivalent if and only if L(D) = L(D̃).

Definition 2.5. A DFA is called minimal if there is no other equivalent DFA
with fewer states.

3 Minimization

3.1 The classical algorithm

Definition 3.1. A state q ∈ Q of a DFA D = (Q,Σ, δ, q0, F) is called accessible
if δ̂(q0, w) = q for some w ∈ Σ∗.

Definition 3.2. If all states in Q are accessible, a complete DFA D is called
initially-connected (ICDFA).

Lemma 3.1. Suppose that D is a ICDFA. Then D is minimal if and only if all
pairs of states are distinguishable.

2

Proof. (⇒) This implication is easy, for if D has two equivalent states, one of
them can be eliminated, and the transitions into this state can be changed to
go to the other one. This will not affect the accepted language.

(⇐) Assume that in D all states are pairwise distinguishable. Let D have
k states. Consider any other D̃ with l < k states. We need to prove that
L(D̃) ̸= L(D).

For each state q of D, choose arbitrarily one string wq such that δ̂(q0, wq) = q.
That such wq exists for each q follows from the assumption that all states are
accessible. Since l < k, there are two states p ̸= q of D such that in D̃ we have
δ̂(q0, wp) = δ̂(q0, wq). Since p, q are distinguishable in D, there is a string w

such that δ̂(qw) ∈ F but δ̂(pw) ̸∈ F (or vice verse, but if so, we can always swap
p and q). This means that D accepts wpw but not wqw. But in D̃, we have
δ̂(q0, wpw) = δ̂(q0, wqw), so D̃ either accepts both wpw and wqw or rejects both.
Therefore L(D̃) ̸= L(D), as claimed.

Lemma 3.2. State indistinguishability is an equivalence relation.

Lemma 3.3. Let δ(p, a) = p′ and δ(q, a) = q′. Then, if p′, q′ are distinguishable
then so are p, q.

To minimize automaton A, after removing unreachable states, we will find
all equivalence class of the indistinguishability relation and join all states in
each class into one state of the new automaton Ã.

To determine which states are equivalent, we will use the following algorithm.
Instead of trying to figure out which states are indistinguishable, we will try to
figure out which states are distinguishable. The complete algorithm is given
below.

Algorithm 1 The classical algorithm
Require: Deterministic finite automaton A
Ensure: Minimal automaton Ã equivalent to A
1: Remove inaccessible states
2: Mark all pairs p, q, where p ∈ F and q ̸∈ F
3: repeat
4: for all non-marked pairs p, q do
5: for all symbol a do
6: if the pair δ(p, a), δ(q, a) is marked then
7: mark p, q
8: end if
9: end for

10: end for
11: until no new pairs are marked
12: Construct the reduced automaton Ã

Theorem 3.1. Minimization algorithm 3.1 is correct, that is L(Ã) = L(A) and
Ã is minimal.

Proof. We prove all the required conditions, one by one.

The equivalence are correct The proof is quite easy, by induction on the
length of the shortest word that distinguishes p, q, using Lemma 3.3.

3

Ã is well define The fact that indistinguishability is an equivalence relation
from Lemma 3.2 implies that the states of Ã are well-defined.

L(Ã) = L(A) For each w we have δ̂(q0, w) ∈ δ̂(q̂0, w). Thus, by the definition
of the final states of Ã, Ã accepts w if and only if A accepts w.

Ã is minimal This is where Lemma 3.1 is helpful. This is quite obvious from
the construction that all states are distinguishable in Ã.

Theorem 3.2. The running time of Algorithm 3.1 is O(n2).

3.2 The Hopcroft’s algorithm

Lemma 3.4. Let D = (Q,Σ, δ, q0, F) and a series ρi (i ≥ 0) of equivalence
relations on Q be defined as follows:

ρ0 = {(p, q)|p, q ∈ F} ∪ {(p, q)|p, q ∈ Q− F},
ρi+1 = {(p, q) ∈ ρi|(∀a ∈ Σ)(δ(p, a), δ(q, a)) ∈ ρi}.

Then the following holds:

• ρ0 ⊇ ρ1 ⊇ · · · .

• If ρi = ρi+1 then ρi = ρj for all j > i.

• There exists 0 ≤ k ≤ |Q| such that ρk = ρk+1.

Now consider the situation where ρi ̸= ρi+1,

ρi ̸= ρi+1 ⇔ (∃p, q ∈ Q, a ∈ Σ) (p, q) ∈ ρi and (δ(p, a), δ(q, a)) ̸∈ ρi

⇔ (∃U ∈ Q/ρi, a ∈ Σ) p, q ∈ U and (δ(p, a), δ(q, a)) ̸∈ ρi

⇔ (∃U, V ∈ Q/ρi, a ∈ Σ) p, q ∈ U and δ(p, a) ∈ V and δ(q, a) ̸∈ V
⇔ (∃U, V ∈ Q/ρi, a ∈ Σ) δ(U, a) ∩ V ̸= ∅ and δ(U, a) ̸⊆ V

(1)
Using Lemma 3.4, equivalent relation on D can be computed by the algo-

rithm below:

Algorithm 2 Computing equivalent relation using refinements
1: Q/θ ← {F, Q− F}
2: while (∃U, V ∈ Q/θ, a ∈ Σ) s.t. Equation 1 holds do
3: Q/θ ← (Q/θ − {U}) ∪ {U ∩ δ−1(V, a), U − U ∩ δ−1(V, a)}
4: end while

As such, it is yet rather abstract, and in particular we have to decide how
to efficiently find some triple U, V, a for which Equation 1 holds.

Lemma 3.5. Let D = (Q,Σ, δ, q0, F) and U ∈ Q/θ. Suppose we refine U into
U ′ and U ′′. Then, for any a ∈ Σ, refining all the classes of θ with respect to
(U ′, a) and (U ′′, a) yields the same result as refining θ with respect to (U, a),
(U ′, a) and (U ′′, a).

Lemma 3.6. Let D = (Q, Σ, δ, q0, F), Q/θ = {F, Q − F}, and a ∈ Σ. Then
refining θ with respect to either (F, a) or (Q − F, a) yields the same result as
refining θ with respect to both of them.

4

Algorithm 3 Hopcroft’s algorithm
1: W ← {F, Q− F}
2: P ← {F, Q− F}
3: while W is not empty do
4: select and remove S from W
5: for all a ∈ Σ do
6: la ← δ−1(S, a)
7: for all R in P such that R ∩ la ̸= ∅ and R ̸⊆ la do
8: partition R into R1 and R2: R1 ← R ∩ la and R2 ← R−R1

9: replace R in P with R1 and R2

10: if R ∈W then
11: replace R in W with R1 and R2

12: else
13: if |R1| ≤ |R2| then
14: add R1 to W
15: else
16: add R2 to W
17: end if
18: end if
19: end for
20: end for
21: end while

Lemmas 3.5 and 3.6 provide a possibility to reduce calculation. Algorithm
3.2 is the Hopcroft’s algorithm:

Theorem 3.3. Let U = {U1, U2, . . . , Um} (1 ≤ m ≤ |Q|) be the set of all built
classes created in the minimization algorithm. Then

|U| =
m∑

i=1

|Ui| ≤ |Q| log |Q|

Theorem 3.4. The running time of Algorithm 3.2 is O(n log n).

References

[BBC08] Jean Berstel, Luc Boasson, and Olivier Carton. Hopcroft’s automa-
ton minimization algorithm and sturmian words. In DMTCS’2008,
volume AI, pages 355–366, 2008.

[BC04] Jean Berstel and Olivier Carton. On the complexity of hopcroft’s state
minimization algorithm. In CIAA’2004, volume 3317, pages 35–44,
2004.

[Hop71] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. Technical Report CS-71-190, Stanford University, January
1971.

[Huf55] D. A. Huffman. The synthesis of sequential switching circuits. The
Journal of Symbolic Logic, 20(1), 1955.

5

[Moo58] E. F. Moore. Gedanken-experiments on sequential machines. The
Journal of Symbolic Logic, 23(1), 1958.

6

	Introduction
	Preliminaries
	DFA, word and language
	Equivalent states and Minimal DFA

	Minimization
	The classical algorithm
	The Hopcroft's algorithm

