Implementation of Hopcroft's Algorithm

Hang Zhou
ENS
7 January 2009

(1) Introduction
(2) Data Structures
(3) Analysis of Time Complexity

Introduction

Definition

Let \mathcal{P} be a partition of Q. The number of classes in \mathcal{P} is bounded by N. Hence every class of \mathcal{P} can be entitled with a unique name between 1 and N.

Definition

Let \mathcal{A} be a deterministic finite automaton (Q, A, E, I, F) and let $a \in A$ and $B, C \subseteq Q$. Then B is split by (C, a), if $B \cdot a \nsubseteq C$ and $B \cdot a \cap C \neq \emptyset$ with $B \cdot a=\{x \cdot a \mid x \in B\}$.

Hopcroft's Algorithm - First Version

```
```

Algorithm1 ()

```
```

Algorithm1 ()
$1 \mathcal{P} \leftarrow\left\{F, F^{c}\right\}$
$1 \mathcal{P} \leftarrow\left\{F, F^{c}\right\}$
$2 \quad S \leftarrow \emptyset$
$2 \quad S \leftarrow \emptyset$
3 for $a \in A$
3 for $a \in A$
4 do Insert $\left(\min \left(F, F^{c}\right), a\right)$ to S
4 do Insert $\left(\min \left(F, F^{c}\right), a\right)$ to S
5 while $S \neq \emptyset$
5 while $S \neq \emptyset$
6 do Delete (C, a) from S
6 do Delete (C, a) from S
$7 \mathcal{T} \leftarrow\{B \mid B$ is split by $(C, a)\}$
$7 \mathcal{T} \leftarrow\{B \mid B$ is split by $(C, a)\}$
8 for each $B \in \mathcal{T}$
8 for each $B \in \mathcal{T}$
$9 \quad$ do $B^{\prime}, B^{\prime \prime} \leftarrow \operatorname{Split}(B, C, a)$

```
```

 \(9 \quad\) do \(B^{\prime}, B^{\prime \prime} \leftarrow \operatorname{Split}(B, C, a)\)
    ```
```

```
        Replace \(B\) by \(B^{\prime}\) and \(B^{\prime \prime}\) in \(\mathcal{P}\)
```

 Replace \(B\) by \(B^{\prime}\) and \(B^{\prime \prime}\) in \(\mathcal{P}\)
 for \(b \in A\)
 for \(b \in A\)
 do if \((B, b) \in S\)
 do if \((B, b) \in S\)
 then Replace \((B, b)\) by \(\left(B^{\prime}, b\right)\) and \(\left(B^{\prime \prime}, b\right)\) in \(S\)
 then Replace \((B, b)\) by \(\left(B^{\prime}, b\right)\) and \(\left(B^{\prime \prime}, b\right)\) in \(S\)
 else Insert \(\left(\min \left(B^{\prime}, B^{\prime \prime}\right), b\right)\) to \(S\)
    ```
        else Insert \(\left(\min \left(B^{\prime}, B^{\prime \prime}\right), b\right)\) to \(S\)
```


Extreme Condition

Partition in this moment: 1234-5

Extreme Condition

Partition in this moment: 1234-5

Extreme Condition

Partition in this moment: 123-4-5

Extreme Condition

Partition in this moment: 123-4-5

Extreme Condition

Partition in this moment: 12-3-4-5

Extreme Condition

Partition in this moment : 12-3-4-5

Extreme Condition

Partition in this moment : 1-2-3-4-5

Extreme Condition

Partition in this moment : 1-2-3-4-5

Extreme Condition

Partition in this moment : 1-2-3-4-5

The Question Throughout the Writing

What's the execution time of the while loop if it is carried out efficiently?

Idea:

- define Inverse $=a^{-1} C$
- wish to prove $O(\mid$ Inverse $\mid)$ complexity of while loop

Difficulty

We cannot directly obtain \mathcal{T} in $O(\mid$ Inverse $\mid)$, what to do?

Solution:

- Instead, we calculate its approximate substitute \mathcal{T}^{\prime} :

$$
\mathcal{T}^{\prime}=\{\mathrm{B} \mid \mathrm{B} \bigcap \text { Inverse } \neq \emptyset\}
$$

- $O(1)$ time to check whether an element in \mathcal{T}^{\prime} is also in \mathcal{T}

B1

INVERSE
B3

Hopcroft's Algorithm - Second Version

```
```

Algorithm2()

```
```

Algorithm2()
$1 \mathcal{P} \leftarrow\left\{F, F^{c}\right\}$
$1 \mathcal{P} \leftarrow\left\{F, F^{c}\right\}$
$2 \quad S \leftarrow \emptyset$
$2 \quad S \leftarrow \emptyset$
3 for $a \in A$
3 for $a \in A$
4 do Insert $\left(\min \left(F, F^{c}\right), a\right)$ to S
4 do Insert $\left(\min \left(F, F^{c}\right), a\right)$ to S
5 while $S \neq \emptyset$
5 while $S \neq \emptyset$
6 do Delete (C, a) from S
6 do Delete (C, a) from S
7 InVERSE $\leftarrow a^{-1} C$
7 InVERSE $\leftarrow a^{-1} C$
$8 \quad \mathcal{T}^{\prime} \leftarrow\{B \mid B \bigcap$ Inverse $\neq \emptyset\}$
$8 \quad \mathcal{T}^{\prime} \leftarrow\{B \mid B \bigcap$ Inverse $\neq \emptyset\}$
9 for each $B \in \mathcal{T}^{\prime}$
9 for each $B \in \mathcal{T}^{\prime}$
10 do if $B \cdot a \nsubseteq C$
10 do if $B \cdot a \nsubseteq C$
$11 \quad$ then $B^{\prime}, B^{\prime \prime} \leftarrow \operatorname{Split}(B, C, a)$

```
```

$11 \quad$ then $B^{\prime}, B^{\prime \prime} \leftarrow \operatorname{Split}(B, C, a)$

```
```

```
        Replace \(B\) by \(B^{\prime}\) and \(B^{\prime \prime}\) in \(\mathcal{P}\)
```

 Replace \(B\) by \(B^{\prime}\) and \(B^{\prime \prime}\) in \(\mathcal{P}\)
 for \(b \in A\)
 for \(b \in A\)
 do if \((B, b) \in S\)
 do if \((B, b) \in S\)
 then Replace \((B, b)\) by \(\left(B^{\prime}, b\right)\) and \(\left(B^{\prime \prime}, b\right)\) in \(S\)
 then Replace \((B, b)\) by \(\left(B^{\prime}, b\right)\) and \(\left(B^{\prime \prime}, b\right)\) in \(S\)
 else Insert \(\left(\min \left(B^{\prime}, B^{\prime \prime}\right), b\right)\) to \(S\)
    ```
        else Insert \(\left(\min \left(B^{\prime}, B^{\prime \prime}\right), b\right)\) to \(S\)
```


Calculate Inverse efficiently

By definition, Inverse $=a^{-1} C$.
We use a two-dimensional array Inv :

- $\operatorname{Inv}[\mathrm{x}, \mathrm{a}]:$
a pointer to the linked list of all states y, such that $y \cdot a=x$
- So we have :

$$
\begin{gathered}
\text { for all } x \in \operatorname{InvERSE} \\
\stackrel{\downarrow}{\text { for all } y \in C} \text { and all } x \in \operatorname{Inv}[y, a]
\end{gathered}
$$

Support list operations efficiently

List operations includes:

- search an element
- insert an element
- delete an arbitrary element
- test whether the list is empty

We use a linked list S and an array InList together, s.t.
InList [C, a$]= \begin{cases}\text { a pointer to the position of }(\mathrm{C}, \mathrm{a}) \text { in } \mathrm{S} & \text { if }(C, a) \in S \\ \text { Null } & \text { if }(C, a) \notin S\end{cases}$
$O(1)$ time of all operations above

Characterize a Partition

- Class $[\mathrm{x}]$: the name of the class which contains state x;
- Part [i] : a pointer to the doubly linked list with all states in class i;
- Card [i] : the size of class i;
- Place $[\mathrm{x}]$: a pointer to the position of state x in the linked list Part [p], where $\mathrm{p}=$ Class [x$]$.

Example: $Q=\{1, . ., 6\}$ and $\mathcal{P}: 35-1-246$

Classe

CARD

Split the Classes

- Involved : a linked list of the names of classes in \mathcal{T}^{\prime};
- Size[i] : the size of $B \bigcap a^{-1} C$, where B is the class i;
- Twin [i] : the name of the newly created class while splitting the class i.

Noting: They should be cleared every time the while loop is executed.

Time Complexity - Part 1

Algorithm2()
$1 \mathcal{P} \leftarrow\left\{F, F^{c}\right\}$
$2 \quad S \leftarrow \emptyset$
3 for $a \in A$
4 do Insert $\left(\min \left(F, F^{c}\right), a\right)$ to S
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
$O(M)$

Time Complexity - Part 2

```
Algorithm2()
    \(1 \mathcal{P} \leftarrow\left\{F, F^{c}\right\}\)
    \(2 \quad S \leftarrow \emptyset\)
    3 for \(a \in A\)
    4 do Insert \(\left(\min \left(F, F^{c}\right), a\right)\) to \(S\)
5
6 while \(S \neq \emptyset\)
7 do Delete ( \(C, a\) ) from \(S\)
\(O(M N) ?\)
8
9
10
11
12
13
14
15

\section*{Time Complexity - Part 3}
```

Algorithm2()
$1 \mathcal{P} \leftarrow\left\{F, F^{c}\right\}$
$2 \quad S \leftarrow \emptyset$
3 for $a \in A$
do Insert $\left(\min \left(F, F^{c}\right), a\right)$ to S
$O(M)$
5
while $S \neq \emptyset$
do Delete (C, a) from S
$O(M N) ?$
8
$9 \quad$ InVERSE $\leftarrow a^{-1} C$
10
11
12
13

Time Complexity - Part 4

```
Algorithm2()
    \(1 \mathcal{P} \leftarrow\left\{F, F^{c}\right\}\)
    \(2 \quad S \leftarrow \emptyset\)
    3 for \(a \in A\)
    do Insert \(\left(\min \left(F, F^{c}\right), a\right)\) to \(S\)
    \(O(M)\)
    while \(S \neq \emptyset\)
    do Delete \((C, a)\) from \(S\)
    \(O(M N) ?\)
    INVERSE \(\leftarrow a^{-1} C\)
    \(\mathcal{T}^{\prime} \leftarrow\{B \mid B \bigcap\) Inverse \(\neq \emptyset\}\)
    for each \(B \in \mathcal{T}^{\prime}\)
    do if \(B \cdot a \nsubseteq C\)
        then \(B^{\prime}, B^{\prime \prime} \leftarrow \operatorname{Split}(B, C, a)\)
                Replace \(B\) by \(B^{\prime}\) and \(B^{\prime \prime}\) in \(\mathcal{P}\)
                \(O(M N \log N) ?\)
            for \(b \in A\)
            do if \((B, b) \in S\)
                then Replace \((B, b)\) by \(\left(B^{\prime}, b\right)\) and \(\left(B^{\prime \prime}, b\right)\) in \(S\)
                else Insert \(\left(\min \left(B^{\prime}, B^{\prime \prime}\right), b\right)\) to \(S\)
                \(O(M N) ?\)
```


Analysis of Time Complexity

Proposition

The number of pairs (C, a) inserted into S is at most $2 M N$.

Lemma

The number of classes created during the execution is at most $2 N-1$.

Corollary

The number of iterations of the while loop is at most $2 M N$.

Analysis of Time Complexity

Why does Part 3(i.e. bottleneck) have global execution time $O\left(M N l o g_{2} N\right)$?

We take the following two steps:

- Evaluate $\sum \mid$ Inverse \mid (i.e. the sum of |INVERSE| in all executions of the while loop)
- Ensure the global execution time to be $\mathrm{O}\left(\sum \mid\right.$ Inverse $\left.\mid\right)$

Bottleneck Analysis - Evaluation of $\sum \mid$ Inverse \mid

Proposition

When $a \in A$ and $p \in Q$ are fixed, the number of (C, a) being deleted from list S, such that $p \in C$, is bounded by $\log _{2} N$.

Corollary
 $\sum \mid$ Inverse \mid is bounded by $M N \log _{2} N$.

Bottleneck Analysis - Implementation - Part 3.1

Algorithm3()1 create an empty list Involved
2 for all $y \in C$ and all $x \in \operatorname{Inv}[y, a]$
3 do $i \leftarrow \operatorname{Class}[x]$
if Size $[i]=0$
then Size $[i] \leftarrow 1$
insert i to Involved
else $\quad \operatorname{Size}[i] \leftarrow \operatorname{Size}[i]+1$

Bottleneck Analysis - Implementation - Part 3.2

```
Algorithm3()
    1 create an empty list Involved
    2 for all \(y \in C\) and all \(x \in \operatorname{Inv}[y, a]\)
    \(3 \quad\) do \(i \leftarrow\) Class \([x]\)
9 for all \(y \in C\) and all \(x \in \operatorname{Inv}[y, a]\)
```

```
        if Size \([i]=0\)
        then Size \([i] \leftarrow 1\)
        insert \(i\) to Involved
        else \(\quad \operatorname{Size}[i] \leftarrow \operatorname{Size}[i]+1\)
    do \(i \leftarrow \mathrm{Class}[x]\)
    if Size \([i]<\operatorname{Card}[i]\)
        then if Twin \([i]=0\)
        then Counter \(\leftarrow\) Counter +1
        Twin \([i] \leftarrow\) Counter
                delete \(x\) from class i and insert \(x\) into class \(\operatorname{Twin}[i]\)
```


Bottleneck Analysis - Implementation - Part 3.3

```
Algorithm3()
    create an empty list Involved
    for all \(y \in C\) and all \(x \in \operatorname{Inv}[y, a]\)
    do \(i \leftarrow\) Class \([x]\)
    if Size \([i]=0\)
        then Size \([i] \leftarrow 1\)
        insert \(i\) to Involved
        else \(\quad \operatorname{Size}[i] \leftarrow \operatorname{Size}[i]+1\)
    for all \(y \in C\) and all \(x \in \operatorname{Inv}[y, a]\)
    do \(i \leftarrow \mathrm{Class}[x]\)
    if Size \([i]<\operatorname{Card}[i]\)
        then if Twin \([i]=0\)
        then Counter \(\leftarrow\) Counter +1
                        Twin \([i] \leftarrow\) Counter
                        delete \(x\) from class i and insert \(x\) into class \(\operatorname{Twin}[i]\)
    for all \(j \in\) Involved
    do Size \([j] \leftarrow 0\)
    \(\operatorname{Twin}[j] \leftarrow 0\)
```


Conclusion

The global execution time of Part 3 is $O\left(M N \log _{2} N\right)$.
So we have:

Theorem

Let A be an alphabet of M letters and let \mathcal{A} be a DFA on this alphabet with N states, then Hopcroft's algorithm using previous data structures is in time $O\left(M N \log _{2} N\right)$ in the worst case.

Remark: This bound can also be proved to be tight.

