Suites automatiques

Lucas Boczkowski

Janvier 2011

Plan

- Présentation
- 2 Théorème de Cobham
- Théorème de Christol
- 4 Divers

Définition (Suite de Thue-Morse)

Pour n entier, on note s_n la somme des chiffres de n écrit en base 2.

On définit $t_n := s_n[2]$

Premiers termes:

011010011001...

Définition (Suite de Thue-Morse)

Pour n entier, on note s_n la somme des chiffres de n écrit en base 2.

On définit $t_n := s_n[2]$

Premiers termes:

011010011001...

Définition (Thue-Morse 2)

$$t_0 = 0,$$

$$\forall n, \ t_{2n} = t_n,$$

$$\forall n, \ t_{2n+1} = 1 - t_n$$

Définition (Thue-Morse 3)

Considérons le morphisme 2-uniforme $\sigma:\{0,1\}^* \to \{0,1\}^*$ donné par

$$\sigma(0) = 01$$

$$\sigma(1) = 10$$

Alors t correspond au point fixe de σ : $\sigma^{\infty}(0)$

En quoi la suite est-elle automatique?

Définition

Soit k un entier ≥ 2 . On dit qu'une suite $(u_n)_n$ est k-automatique s'il existe un automate $\mathcal{A} = \{\mathcal{Q}, \delta, q_o, \tau\}$ tel que :

$$\forall n, \tau(\delta(q_0, \langle n \rangle_k)) = u_n$$

Autrement dit, si on lit dans l'automate \mathcal{A} la suite constituée des chiffres de n en base k à partir du chiffre de poids faible, on tombe sur un état dont la valeur de sortie est u_n .

En quoi la suite est-elle automatique?

Définition

Soit k un entier ≥ 2 . On dit qu'une suite $(u_n)_n$ est k-automatique s'il existe un automate $\mathcal{A} = \{\mathcal{Q}, \delta, q_o, \tau\}$ tel que :

$$\forall n, \tau(\delta(q_0, \langle n \rangle_k)) = u_n$$

Autrement dit, si on lit dans l'automate \mathcal{A} la suite constituée des chiffres de n en base k à partir du chiffre de poids faible, on tombe sur un état dont la valeur de sortie est u_n .

Remarque

automatique VS désordonnée?

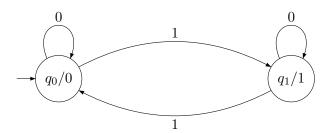


Figure: Automate de Thue-Morse

Remarque

 q/α est une notation pour dire que la valeur de sortie à l'état $q,\,\tau(q),$ est $\alpha.$

Définition

Pour une suite u donnée et un entier k, le k-noyau que l'on notera $K_u^{(k)}$ ou plus simplement K_u lorsqu'il n'y aura pas d'ambiguïté est:

$$K_u^{(k)} \stackrel{def}{=} \{ (u(k^{\alpha}n + r))_n / \alpha \in \mathbb{N}, \ 0 \le r < \alpha \}$$

Proposition (Cobham, 1972)

Soit $k \in \mathbb{N}^*$ et soit $(u_n)_n$ une suite à valeurs dans $\{0, ..., k-1\}$, alors les trois conditions suivantes sont équivalentes :

i) la suite $(u_n)_n$ est k-automatique

Définition

Pour une suite u donnée et un entier k, le k-noyau que l'on notera $K_u^{(k)}$ ou plus simplement K_u lorsqu'il n'y aura pas d'ambiguïté est:

$$K_u^{(k)} \stackrel{def}{=} \{(u(k^{\alpha}n+r))_n \ /\alpha \in \mathbb{N}, \ 0 \le r < \alpha\}$$

Proposition (Cobham, 1972)

Soit $k \in \mathbb{N}^*$ et soit $(u_n)_n$ une suite à valeurs dans $\{0, ..., k-1\}$, alors les trois conditions suivantes sont équivalentes :

- i) la suite $(u_n)_n$ est k-automatique
- ii) le noyau de u, K_u , est fini

Définition

Pour une suite u donnée et un entier k, le k-noyau que l'on notera $K_u^{(k)}$ ou plus simplement K_u lorsqu'il n'y aura pas d'ambiguïté est:

$$K_u^{(k)} \stackrel{def}{=} \{(u(k^{\alpha}n+r))_n / \alpha \in \mathbb{N}, \ 0 \le r < \alpha\}$$

Proposition (Cobham, 1972)

Soit $k \in \mathbb{N}^*$ et soit $(u_n)_n$ une suite à valeurs dans $\{0, ..., k-1\}$, alors les trois conditions suivantes sont équivalentes :

- i) la suite $(u_n)_n$ est k-automatique
- ii) le noyau de u, K_u , est fini
- iii) la suite $(u_n)_n$ est image d'un point fixe d'un morphisme k-uniforme

$$F(X) := \sum_{n} t_n X^n = \sum_{n} t_{2n} X^{2n} + \sum_{n} t_{2n+1} X^{2n+1}$$

$$F(X) := \sum_{n} t_n X^n = \sum_{n} t_{2n} X^{2n} + \sum_{n} t_{2n+1} X^{2n+1}$$
$$= \sum_{n} t_n X^{2n} + \sum_{n} X^{2n+1} + \sum_{n} t_n X^{2n+1}$$

$$F(X) := \sum_{n} t_n X^n = \sum_{n} t_{2n} X^{2n} + \sum_{n} t_{2n+1} X^{2n+1}$$
$$= \sum_{n} t_n X^{2n} + \sum_{n} X^{2n+1} + \sum_{n} t_n X^{2n+1}$$
$$= F(X^2) + \frac{X}{1 + X^2} + XF(X^2)$$

$$F(X) := \sum_{n} t_{n} X^{n} = \sum_{n} t_{2n} X^{2n} + \sum_{n} t_{2n+1} X^{2n+1}$$

$$= \sum_{n} t_{n} X^{2n} + \sum_{n} X^{2n+1} + \sum_{n} t_{n} X^{2n+1}$$

$$= F(X^{2}) + \frac{X}{1 + X^{2}} + XF(X^{2})$$

$$= (1 + X)F(X)^{2} + \frac{X}{1 + X^{2}}$$

Généralisons:

Théorème (Christol, 1979)

Soit p un nombre premier ≥ 2 et q une puissance de p. Une suite $(u_n)_n$ à valeurs dans \mathbb{F}_q est q-automatique si et seulement si la série formelle $F(u) = \sum_n u_n X^n$ est algébrique sur $\mathbb{F}_q(X)$.

preuve (idée de).

Sens direct. $d := Card(K_u)$. On montre (petits calculs) que

$$\forall k \leq d : F(u)^{q^k} \in \text{Vect}_{v \in K_u} \langle F(v)^{q^{d+1}} \rangle$$

or dim
$$\operatorname{Vect}_{v \in K_u} \langle F(v)^{q^{d+1}} \rangle \leq \operatorname{Card}(K_u)$$

et la famille $\{F(u), F(u)^q, \dots, F(u)^{q^d}\}$ est liée.

Sens indirect. (Idée) Trouver un ensemble fini de séries formelles contenant F_u et stable par les applications

$$\Lambda_r : \sum_n a_n X^n \in \mathbb{F}_q[[X]] \mapsto \sum_n a_{qn+r} X^n$$

Théorème

Soit k et l deux entiers multiplicativement indépendants et soit u une suite k et l-automatique. Alors u est ultimement périodique.

Corollaire

Soit q_1 et q_2 multiplicativement indépendants et u telle que F_u soit à la fois algébrique sur \mathbb{F}_{q_1} et \mathbb{F}_{q_2} . Alors u est ultimement périodique.

Corollaire

Soit q_1 et q_2 multiplicativement indépendants et u telle que F_u soit à la fois algébrique sur \mathbb{F}_{q_1} et \mathbb{F}_{q_2} . Alors u est ultimement périodique.

à comparer à

Conjecture

Soit $(u_n)_{n\geq 0} \in \{0,1\}^{\mathbb{N}}$ telle que les deux nombres réels $\sum_{n\geq 0} u_n 2^{-n}$ et $\sum_{n\geq 0} u_n 3^{-n}$ sont algébriques sur \mathbb{Q} alors ces deux nombres sont rationnels.